1
|
Grasse N, Massei R, Seiwert B, Scholz S, Escher BI, Reemtsma T, Fu Q. Impact of Biotransformation on Internal Concentrations and Specificity Classification of Organic Chemicals in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17898-17907. [PMID: 39315645 PMCID: PMC11465767 DOI: 10.1021/acs.est.4c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment. To evaluate the prediction of a mass balance model (MBM) and the impact of biotransformation on ICs, experimental ICs of 63 chemicals in zebrafish embryos were compared to predictions with physicochemical properties as input parameters. Experimental ICs of 79% (50 of 63) of the chemicals deviated less than 10-fold from predictions, and the remaining 13 deviated up to a factor of 90. Using experimental ICs changed the classification for 19 chemicals, with ICs 5 to 90 times lower than predicted, showing the bias of specificity classification. Uptake kinetics of pirinixic acid, genistein, dexamethasone, ethoprophos, atorvastatin, and niflumic acid were studied over a 96 h exposure period, and transformation products (TPs) were elucidated using suspect- and nontarget screening with UPLC-HRMS. 35 TPs (5 to 8 TPs per compound) were tentatively identified and semiquantified based on peak areas, suggesting that biotransformation may partly account for the overpredictions of ICs.
Collapse
Affiliation(s)
- Nico Grasse
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Riccardo Massei
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Thorsten Reemtsma
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnestrasse
3, 04103 Leipzig, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
2
|
Luckenbach T, Burkhardt-Medicke K. Differing temperature dependencies of functional homologs zebrafish Abcb4 and human ABCB1. Front Pharmacol 2024; 15:1426040. [PMID: 39166110 PMCID: PMC11333832 DOI: 10.3389/fphar.2024.1426040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
The ATP binding cassette (ABC) transporters human ABCB1 and zebrafish (Danio rerio) Abcb4 are functionally homologous multixenobiotic/multidrug (MXR/MDR) efflux transporters that confer the efflux of a broad range of diverse chemical compounds from the cell. As ATPases, the transporters utilize the energy released by ATP cleavage for protein conformation changes and concomitant active transport of substrate compounds. The temperatures, at which human ABCB1 and zebrafish Abcb4 need to function, can substantially differ: Whereas the ambient temperature of human ABCB1, which is that of the human body, is constant, zebrafish Abcb4 has to be active in a wider temperature range as the body temperature of zebrafish can considerably vary, depending on the ambient water temperature (18°C-40°C). Here, we examined the effect of temperature on the ATPase activities of recombinant human ABCB1 and zebrafish Abcb4 generated with the baculovirus expression system. Incubation temperatures for enzyme reactions were set to 37°C and 27°C, corresponding to the human body temperature and the cultivation temperature of zebrafish in our lab, respectively. For stimulation and inhibition of zebrafish Abcb4 and human ABCB1 ATPase activities verapamil and cyclosporin A were added at different concentrations and 50% effect concentrations (EC50) were determined. The different temperatures had a stronger effect on the human ABCB1 than on the zebrafish Abcb4 ATPase: Differences between EC50 values for verapamil at 37°C and 27°C, respectively, were 1.8-fold for human ABCB1 but only 1.2-fold for zebrafish Abcb4. Activation energies (Ea) of basal and verapamil-stimulated ATPases, calculated based on the Arrhenius equation, were 2-fold (basal) and 1.5-fold (verapamil-stimulated) higher for human ABCB1 than for zebrafish Abcb4. The differences between zebrafish Abcb4 and human ABCB1 ATPases in temperature sensitivity and activation energy could be important for the comparison of the functional properties of the two transporter proteins in the context of pharmaco-/toxicokinetics. Related to this, our finding that at equal reaction conditions the zebrafish Abcb4 ATPase activity tended to be generally higher than that of human ABCB1 may also be important, as this may point to a higher substrate compound transport rate of Abcb4.
Collapse
Affiliation(s)
- Till Luckenbach
- Department Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | |
Collapse
|
3
|
Małkowska A, Ługowska K, Grucza K, Małkowska W, Kwiatkowska D. Ethyl glucuronide and ethyl sulfate in the zebrafish after ethanol exposure. Alcohol 2024; 115:33-39. [PMID: 37633541 DOI: 10.1016/j.alcohol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Ethanol exposure during pregnancy is an important problem and is the cause of fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorder (FASD). The etiology of FAS and FASD can be elucidated using animal models. Recently, a novel model, the zebrafish (Danio rerio), has garnered the interest of researchers. This study confirmed the negative influence of ethyl alcohol (0.5 %, 1.5 %, and 2.5 % v/v) on the development of zebrafish embryos. The observed malformations included pericardial and yolk sac edema, increased body curvature, tail edema, and a decreased embryo hatching rate. The differences in body length, body width, and heart rate were statistically significant. Due to the similarities in the quantity and function of ethanol biotransformation enzymes between zebrafish and mammals, this study investigated the nonoxidative metabolites of ethanol - ethyl glucuronide (EtG) and ethyl sulfate (EtS) - in zebrafish following ethanol exposure. This research confirmed that EtG and EtS concentrations can be measured in zebrafish embryos, and the levels of these metabolites appear to be associated with the ethyl alcohol concentration in the medium.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Kinga Ługowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Krzysztof Grucza
- Polish Anti-Doping Laboratory, Księcia Ziemowita 53/4 Street, 03-885 Warsaw, Poland
| | - Weronika Małkowska
- Department of Life Sciences, University of Roehampton, SW15 5PJ, London, United Kingdom
| | - Dorota Kwiatkowska
- Polish Anti-Doping Laboratory, Księcia Ziemowita 53/4 Street, 03-885 Warsaw, Poland
| |
Collapse
|
4
|
Grasse N, Seiwert B, Massei R, Scholz S, Fu Q, Reemtsma T. Uptake and Biotransformation of the Tire Rubber-derived Contaminants 6-PPD and 6-PPD Quinone in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15598-15607. [PMID: 37782849 PMCID: PMC10586378 DOI: 10.1021/acs.est.3c02819] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a widely used antioxidant in tire rubber known to enter the aquatic environment via road runoff. The associated transformation product (TP) 6-PPD quinone (6-PPDQ) causes extreme acute toxicity in some fish species (e.g., coho salmon). To interpret the species-specific toxicity, information about biotransformation products of 6-PPDQ would be relevant. This study investigated toxicokinetics of 6-PPD and 6-PPDQ in the zebrafish embryo (ZFE) model. Over 96 h of exposure, 6-PPD and 6-PPDQ accumulated in the ZFE with concentration factors ranging from 140 to 2500 for 6-PPD and 70 to 220 for 6-PPDQ. A total of 22 TPs of 6-PPD and 12 TPs of 6-PPDQ were tentatively identified using liquid chromatography coupled to high-resolution mass spectrometry. After 96 h of exposure to 6-PPD, the TPs of 6-PPD comprised 47% of the total peak area (TPA), with 4-hydroxydiphenylamine being the most prominent in the ZFE. Upon 6-PPDQ exposure, >95% of 6-PPDQ taken up in the ZFE was biotransformed, with 6-PPDQ + O + glucuronide dominating (>80% of the TPA). Among other TPs of 6-PPD, a reactive N-phenyl-p-benzoquinone imine was found. The knowledge of TPs of 6-PPD and 6-PPDQ from this study may support biotransformation studies in other organisms.
Collapse
Affiliation(s)
- Nico Grasse
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Riccardo Massei
- Department
of Bioanalytical Ecotoxicology, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department
of Bioanalytical Ecotoxicology, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Qiuguo Fu
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department
of Analytical Chemistry, Helmholtz-Centre
for Environmental Research—UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnestrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Wang Z, Tan Y, Li Y, Duan J, Wu Q, Li R, Shi H, Wang M. Comprehensive study of pydiflumetofen in Danio rerio: Enantioselective insight into the toxic mechanism and fate. ENVIRONMENT INTERNATIONAL 2022; 167:107406. [PMID: 35850082 DOI: 10.1016/j.envint.2022.107406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Pydiflumetofen (PYD) is primarily used to control fungal disease. The potential risks posed by PYD enantiomers to the aquatic ecosystem are currently unclear. In this study, the enantioselective toxicity and fate of PYD in Danio rerio were investigated, and the enantioselective toxic mechanism and metabolic pathway were explored. The acute toxicity of R-PYD was 10.7-14.7-fold than that of S-PYD against Danio rerio embryos, larvae, and adults. Meanwhile, R-PYD presented a stronger effect on embryo hatching and abnormalities, adult tissue damage and oxidative stress. R-PYD inhibited the succinate dehydrogenase (SDH) activity more than S-PYD because of its better interaction with SDH with a lower binding free energy (-59.35 kcal/mol), explaining the mechanism of enantioselective toxicity. Remarkable enantioselectivity was observed in uptake, distribution, and elimination. R-PYD showed preferential uptake with the higher uptake rate constants and slow metabolism with a longer half-life, resulting in the bioaccumulation of R-PYD with higher BCFk (7.37 at 0.05 mg/L and 14.69 at 0.2 mg/L). Besides, muscle is an important tissue for PYD accumulation, existing potential food risk. Eleven PYD metabolites were qualitatively identified, and the metabolic pathway was proposed, including hydroxylation, N-demethylation, demethoxylation, hydrolysation (phase Ⅰ), and acetylation and glucuronidation (phase Ⅱ). The predicted toxicity of the metabolite indicated that several highly toxic metabolites need to be considered in the future. This study provides a new perspective for evaluating the ecological and human health risks of chiral pesticides.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Park YM, Dahlem C, Meyer MR, Kiemer AK, Müller R, Herrmann J. Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041290. [PMID: 35209079 PMCID: PMC8879502 DOI: 10.3390/molecules27041290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Markus R. Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany;
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| |
Collapse
|
7
|
Bars C, Hoyberghs J, Valenzuela A, Buyssens L, Ayuso M, Van Ginneken C, Labro AJ, Foubert K, Van Cruchten SJ. Developmental Toxicity and Biotransformation of Two Anti-Epileptics in Zebrafish Embryos and Early Larvae. Int J Mol Sci 2021; 22:12696. [PMID: 34884510 PMCID: PMC8657848 DOI: 10.3390/ijms222312696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5¼- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.
Collapse
Affiliation(s)
- Chloé Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Jente Hoyberghs
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| | - Alain J. Labro
- Laboratory of Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kenn Foubert
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Steven J. Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (C.B.); (J.H.); (A.V.); (L.B.); (M.A.); (C.V.G.)
| |
Collapse
|
8
|
Muniz MS, Halbach K, Alves Araruna IC, Martins RX, Seiwert B, Lechtenfeld O, Reemtsma T, Farias D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117096. [PMID: 33866217 DOI: 10.1016/j.envpol.2021.117096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Oliver Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
9
|
Loerracher AK, Braunbeck T. Cytochrome P450-dependent biotransformation capacities in embryonic, juvenile and adult stages of zebrafish (Danio rerio)-a state-of-the-art review. Arch Toxicol 2021; 95:2299-2334. [PMID: 34148099 PMCID: PMC8241672 DOI: 10.1007/s00204-021-03071-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Given the strong trend to implement zebrafish (Danio rerio) embryos as translational model not only in ecotoxicological, but also toxicological testing strategies, there is an increasing need for a better understanding of their capacity for xenobiotic biotransformation. With respect to the extrapolation of toxicological data from zebrafish embryos to other life stages or even other organisms, qualitative and quantitative differences in biotransformation pathways, above all in cytochrome P450-dependent (CYP) phase I biotransformation, may lead to over- or underestimation of the hazard and risk certain xenobiotic compounds may pose to later developmental stages or other species. This review provides a comprehensive state-of-the-art overview of the scientific knowledge on the development of the CYP1-4 families and corresponding phase I biotransformation and bioactivation capacities in zebrafish. A total of 68 publications dealing with spatiotemporal CYP mRNA expression patterns, activities towards mammalian CYP-probe substrates, bioactivation and detoxification activities, as well as metabolite profiling were analyzed and included in this review. The main results allow for the following conclusions: (1) Extensive work has been done to document mRNA expression of CYP isoforms from earliest embryonic stages of zebrafish, but juvenile and adult zebrafish have been largely neglected so far. (2) There is insufficient understanding of how sex- and developmental stage-related differences in expression levels of certain CYP isoforms may impact biotransformation and bioactivation capacities in the respective sexes and in different developmental stages of zebrafish. (3) Albeit qualitatively often identical, many studies revealed quantitative differences in metabolic activities of zebrafish embryos and later developmental stages. However, the actual relevance of age-related differences on the outcome of toxicological studies still needs to be clarified. (4) With respect to current remaining gaps, there is still an urgent need for further studies systematically assessing metabolic profiles and capacities of CYP isoforms in zebrafish. Given the increasing importance of Adverse Outcome Pathway (AOP) concepts, an improved understanding of CYP capacities appears essential for the interpretation and outcome of (eco)toxicological studies.
Collapse
Affiliation(s)
- Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Halbach K, Holbrook T, Reemtsma T, Wagner S. Effective processing and evaluation of chemical imaging data with respect to morphological features of the zebrafish embryo. Anal Bioanal Chem 2021; 413:1675-1687. [PMID: 33523257 PMCID: PMC7921040 DOI: 10.1007/s00216-020-03131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
A workflow was developed and implemented in a software tool for the automated combination of spatially resolved laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and data on the morphology of the biological tissue. Making use of a recently published biological annotation software, FishImager automatically assigns the biological feature as regions of interest (ROIs) and overlays them with the quantitative LA-ICP-MS data. Furthermore, statistical tools including cluster algorithms can be applied to the elemental intensity data and directly compared with the ROIs. This is effectively visualized in heatmaps. This allows gaining statistical significance on distribution and co-localization patterns. Finally, the biological functions of the assigned ROIs can then be easily linked with elemental distributions. We demonstrate the versatility of FishImager with quantitative LA-ICP-MS data of the zebrafish embryo tissue. The distribution of natural elements and xenobiotics is analyzed and discussed. With the help of FishImager, it was possible to identify compartments affected by toxicity effects or biological mechanisms to eliminate the xenobiotic. The presented workflow can be used for clinical and ecotoxicological testing, for example. Ultimately, it is a tool to simplify and reproduce interpretations of imaging LA-ICP-MS data in many applications. ![]()
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Timothy Holbrook
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany. .,Institute for Water and Energy Management, University of Applied Sciences Hof, 95028, Hof, Germany.
| |
Collapse
|
11
|
Ribbenstedt A, Benskin JP. Rapid in-plate screening of biotransformation products in single zebrafish embryos. RSC Adv 2021; 11:27812-27819. [PMID: 35480773 PMCID: PMC9038038 DOI: 10.1039/d1ra01111a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
A procedure was developed for rapid screening of xenobiotic biotransformation products (bioTPs) in single zebrafish (ZF; Danio rerio) embryos. Exposure was carried out from 0–120 hours post fertilization (hpf) to 6 different concentrations of the model compound propranolol (PPL). Following in-plate extraction and non-target instrumental analysis by high resolution mass spectrometry, suspected bioTPs were identified using custom data filtration scripts and matching to in silico structural predictions. A total of eight PPL bioTPs were identified (five at a level 1 confidence and one at a level 2–3 confidence). These findings supplement previously generated toxicometabolomic models derived from the same dataset, and were obtained without conducting additional exposure experiments. In addition to facilitating assessments of inter-individual variability in bioTP production in ZF embryos, we demonstrate that bioTPs can be elucidated using extremely small quantities of biomass (i.e. ∼200 μg). To the best of our knowledge, this is the first time bioTP elucidation has been carried out in single ZF embryos. A procedure was developed for rapid screening of xenobiotic biotransformation products (bioTPs) in single zebrafish (ZF; Danio rerio) embryos.![]()
Collapse
|
12
|
Halbach K, Ulrich N, Goss KU, Seiwert B, Wagner S, Scholz S, Luckenbach T, Bauer C, Schweiger N, Reemtsma T. Yolk Sac of Zebrafish Embryos as Backpack for Chemicals? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10159-10169. [PMID: 32639148 DOI: 10.1021/acs.est.0c02068] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The zebrafish embryo (Danio rerio) has developed into one of the most important nonsentient animal models for the hazard assessments of chemicals, but the processes governing its toxicokinetics (TK) are poorly understood. This study compares the uptake of seven test compounds into the embryonic body and the yolk sac of the zebrafish embryo using TK experiments, a dialysis approach, thermodynamic calculations, and kinetic modeling. Experimental data show that between 95% (4-iodophenol) and 67% (carbamazepine) of the total internal amount in 26 h post fertilization (hpf) embryos and between 80 and 49% in 74 hpf embryos were found in the yolk. Thus, internal concentrations determined for the whole embryo overestimate the internal concentration in the embryonic body: for the compounds of this study, up to a factor of 5. Partition coefficients for the embryonic body and a one-compartment model with diffusive exchange were calculated for the neutral test compounds and agreed reasonably with the experimental data. For prevalently ionic test compounds at exposure pH (bromoxynil, paroxetine), however, the extent and the speed of uptake were low and could not be modeled adequately. A better understanding of the TK of ionizable test compounds is essential to allow assessment of the validity of this organismic test system for ionic test compounds.
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Kai-Uwe Goss
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Chemistry, University of Halle-Wittenberg, 06120 Halle, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Coretta Bauer
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Fu Q, Fedrizzi D, Kosfeld V, Schlechtriem C, Ganz V, Derrer S, Rentsch D, Hollender J. Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4400-4408. [PMID: 32036646 DOI: 10.1021/acs.est.9b07127] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biotransformation plays a crucial role in regulating the bioaccumulation potential and toxicity of organic compounds in organisms but is, in general, poorly understood for emerging contaminants. Here, we have used diclofenac as a model compound to study the impact of biotransformation on the bioaccumulation potential and toxicity in two keystone aquatic invertebrates: Gammarus pulex and Hyalella azteca. In both species, diclofenac was transformed into several oxidation products and conjugates, including two novel products, that is, diclofenac taurine conjugate (DCF-M403) and unexpected diclofenac methyl ester (DCF-M310.03). The ratios of biotransformation products to parent compound were 12-17 for DCF-M403 and 0.01-0.7 for DCF-M310.03 after 24 h exposure. Bioconcentration factors (BCFs) of diclofenac were 0.5 and 3.2 L kgww-1 in H. azteca and G. pulex, respectively, whereas BCFs of DCF-M310.03 was 164.5 and 104.7 L kgww-1, respectively, representing a 25- to 110-fold increase. Acute toxicity of DCF-M310.03 was also higher than the parent compound in both species, which correlated well with the increased bioconcentration potential. The LC50 of diclofenac in H. azteca was 216 mg L-1, while that of metabolite DCF-M310.03 was reduced to only 0.53 mg L-1, representing a 430-fold increase in acute toxicity compared to diclofenac. DCF-M403 is less toxic than its parent compound toward H. azteca, which may be linked to its slightly lower hydrophobicity. Furthermore, the transformation of diclofenac to its methyl ester derivative was explored in crude invertebrate extracts spiked with an S-adenosylmethionine cofactor, revealing possible catalysis by an S-adenosylmethionine-dependent carboxylic acid methyltransferase. Methylation of diclofenac was further detected in fish hepatocytes and human urine, indicating a broader relevance. Therefore, potentially methylated metabolites of polar contaminants should be considered for a comprehensive risk assessment in the future.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Davide Fedrizzi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Verena Kosfeld
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- Institute for Environmental Research (Biology V) 52074 Aachen, Germany
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- Institute for Environmental Research (Biology V) 52074 Aachen, Germany
| | - Vera Ganz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Samuel Derrer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Daniel Rentsch
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Escher BI, Abagyan R, Embry M, Klüver N, Redman AD, Zarfl C, Parkerton TF. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:269-286. [PMID: 31569266 DOI: 10.1002/etc.4602] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ruben Abagyan
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Nils Klüver
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
15
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio). Toxicol Sci 2019; 162:702-712. [PMID: 29361160 PMCID: PMC5888913 DOI: 10.1093/toxsci/kfx293] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations.
Collapse
Affiliation(s)
- Alena Tierbach
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, 1015 Lausanne, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
16
|
Brunner AM, Vughs D, Siegers W, Bertelkamp C, Hofman-Caris R, Kolkman A, Ter Laak T. Monitoring transformation product formation in the drinking water treatments rapid sand filtration and ozonation. CHEMOSPHERE 2019; 214:801-811. [PMID: 30296768 DOI: 10.1016/j.chemosphere.2018.09.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Transformation products (TPs) can be formed from organic micropollutants in the water cycle through both biological and technological processes. Despite the TPs' potentially altered toxicity compared to their parent compounds, transformation processes are not routinely monitored, and in particular those induced by drinking water treatment remain elusive. This lack of information is mainly due to the technical challenges in analyzing TPs, which are often unknown compounds occurring in low concentrations. Their analysis requires sophisticated analytical techniques such as non-target screening (NTS) based on high-resolution tandem mass spectrometry (HRMS/MS) methods combined with novel data analysis approaches. Here, we addressed the challenges of TP analysis and the scarcity of TP research concerning studies in drinking water. We performed lab-scale experiments to monitor TP formation of three organic micropollutants prevalent in drinking water sources, i.e. carbamazepine, clofibric acid and metolachlor, during rapid sand filtration and ozonation, two readily applied biotic and abiotic drinking water treatments, respectively. To facilitate TP identification in the NTS data, halogenated and/or isotopically labeled parent compounds were used, revealing potential TPs through their isotopic patterns. The experimental results showed that degradation of the parent compounds and TP formation were treatment and compound specific. In silico TP prediction and literature mining enabled suspect screening of the non-target data and thereby significantly enhanced TP identification. Overall, the developed workflow enables an efficient and more comprehensive assessment of drinking water quality changes during water treatment.
Collapse
Affiliation(s)
- Andrea Mizzi Brunner
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands.
| | - Dennis Vughs
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Wolter Siegers
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Cheryl Bertelkamp
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Roberta Hofman-Caris
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Annemieke Kolkman
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Thomas Ter Laak
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| |
Collapse
|
17
|
Fu Q, Rösch A, Fedrizzi D, Vignet C, Hollender J. Bioaccumulation, Biotransformation, and Synergistic Effects of Binary Fungicide Mixtures in Hyalella azteca and Gammarus pulex: How Different/Similar are the Two Species? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13491-13500. [PMID: 30298730 DOI: 10.1021/acs.est.8b04057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aquatic organisms are consistently exposed to a mixture of micropollutants that can bioaccumulate, undergo biotransformation, and may exert mixture effects. However, little is known on the underlying mechanisms and species-specificity. Herein we investigated bioaccumulation, biotransformation and synergistic effects of azole (i.e., prochloraz) and strobilurin (i.e., azoxystrobin) fungicides in the two aquatic invertebrate species, Hyalella azteca and Gammarus pulex. Bioaccumulation of azoxystrobin was similar, whereas bioaccumulation of prochloraz was slightly different in the two species but was still significantly below the REACH criteria for bioaccumulative substances. Similar biotransformation patterns were observed in both species, and only a few unique biotransformation reactions were detected in H. azteca such as malonyl-glucose and taurine conjugation. Toxicokinetic modeling additionally indicated that biotransformation is a more important elimination pathway in H. azteca. In mixtures, no-observed-adverse-effect levels of prochloraz decreased the LC50s of azoxystrobin in both species which correlated well with increased internal azoxystrobin concentrations. This synergistic effect is partly due to the inhibition of cytochrome P450 monooxygenases by prochloraz which subsequently triggered the reduced biotransformation of azoxystrobin (lower by five folds in H. azteca). The largely similar responses in both species suggest that the easier-to-cultivate H. azteca is a promising representative of invertebrates for toxicity testing.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Andrea Rösch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - Davide Fedrizzi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Department of Plant and Environmental Sciences , University of Copenhagen , 1871 Frederiksberg C , Denmark
| | - Caroline Vignet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
18
|
de Souza Anselmo C, Sardela VF, de Sousa VP, Pereira HMG. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:34-46. [PMID: 29969680 DOI: 10.1016/j.cbpc.2018.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.
Collapse
Affiliation(s)
- Carina de Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Institute of Chemistry, LPDI-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Valeria Pereira de Sousa
- Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Damalas DE, Bletsou AA, Agalou A, Beis D, Thomaidis NS. Assessment of the Acute Toxicity, Uptake and Biotransformation Potential of Benzotriazoles in Zebrafish ( Danio rerio) Larvae Combining HILIC- with RPLC-HRMS for High-Throughput Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6023-6031. [PMID: 29683664 DOI: 10.1021/acs.est.8b01327] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The current study reports on the toxicity, uptake, and biotransformation potential of zebrafish (embryos and larvae) exposed to benzotriazoles (BTs). Acute toxicity assays were conducted. Cardiac function abnormalities (pericardial edema and poor blood circulation) were observed from the phenotypic analysis of early life zebrafish embryos after BTs exposure. For the uptake and biotransformation experiment, extracts of whole body larvae were analyzed using liquid chromatography-high-resolution tandem mass spectrometry (UPLC-Q-TOF-HRMS/MS). The utility of hydrophilic interaction liquid chromatography (HILIC) as complementary technique to reversed phase liquid chromatography (RPLC) in the identification process was investigated. Through HILIC analyses, additional biotransformation products (bio-TPs) were detected, because of the enhanced sensitivity and better separation efficiency of isomers. Therefore, reduction of false negative results was accomplished. Both oxidative (hydroxylation) and conjugative (glucuronidation, sulfation) metabolic reactions were observed, while direct sulfation proved the dominant biotransformation pathway. Overall, 26 bio-TPs were identified through suspect and nontarget screening workflows, 22 of them reported for the first time. 4-Methyl-1- H-benzotriazole (4-MeBT) demonstrated the highest toxicity potential and was more extensively biotransformed, compared to 1- H-benzotriazole (BT) and 5-methyl-1- H-benzotriazole (5-MeBT). The extent of biotransformation proved particularly informative in the current study, to explain and better understand the different toxicity potentials of BTs.
Collapse
Affiliation(s)
- Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Anna A Bletsou
- Laboratory of Analytical Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| | - Adamantia Agalou
- Developmental Biology , Biomedical Research Foundation Academy of Athens , Athens 11527 , Greece
| | - Dimitris Beis
- Developmental Biology , Biomedical Research Foundation Academy of Athens , Athens 11527 , Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , 15771 Athens , Greece
| |
Collapse
|
20
|
Sobanska M, Scholz S, Nyman AM, Cesnaitis R, Gutierrez Alonso S, Klüver N, Kühne R, Tyle H, de Knecht J, Dang Z, Lundbergh I, Carlon C, De Coen W. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:657-670. [PMID: 29226368 DOI: 10.1002/etc.4055] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In 2013 the Organisation for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity (FET) was adopted. It determines the acute toxicity of chemicals to embryonic fish. Previous studies show a good correlation of FET with the standard acute fish toxicity (AFT) test; however, the potential of the FET test to predict AFT, which is required by the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation (EC 1907/2006) and the Classification, Labelling and Packaging (CLP) Regulation (EC 1272/2008), has not yet been fully clarified. In 2015 the European Chemicals Agency (ECHA) requested that a consultant perform a scientific analysis of the applicability of FET to predict AFT. The purpose was to compare the toxicity of substances to fish embryos and to adult fish, and to investigate whether certain factors (e.g., physicochemical properties, modes of action, or chemical structures) could be used to define the applicability boundaries of the FET test. Given the limited data availability, the analysis focused on organic substances. The present critical review summarizes the main findings and discusses regulatory application of the FET test under REACH. Given some limitations (e.g., neurotoxic mode of action) and/or remaining uncertainties (e.g., deviation of some narcotic substances), it has been found that the FET test alone is currently not sufficient to meet the essential information on AFT as required by the REACH regulation. However, the test may be used within weight-of-evidence approaches together with other independent, relevant, and reliable sources of information. The present review also discusses further research needs that may overcome the remaining uncertainties and help to increase acceptance of FET as a replacement for AFT in the future. For example, an increase in the availability of data generated according to OECD test guideline 236 may provide evidence of a higher predictive power of the test. Environ Toxicol Chem 2018;37:657-670. © 2017 SETAC.
Collapse
Affiliation(s)
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | | | - Nils Klüver
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ralph Kühne
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henrik Tyle
- Danish Environmental Protection Agency, Copenhagen, Denmark
| | - Joop de Knecht
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Zhichao Dang
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Wim De Coen
- European Chemicals Agency, Helsinki, Finland
| |
Collapse
|
21
|
Souza Anselmo C, Sardela VF, Matias BF, Carvalho AR, Sousa VP, Pereira HMG, Aquino Neto FR. Is zebrafish
(
Danio rerio
)
a tool for human‐like metabolism study? Drug Test Anal 2017; 9:1685-1694. [DOI: 10.1002/dta.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Bernardo Fonseca Matias
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Amanda Reis Carvalho
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Valeria Pereira Sousa
- Federal University of Rio de Janeiro, Faculty of PharmacyDepartment of Drugs and Pharmaceutics Av. Carlos Chagas Filho, 373, bloco Bss, 36 ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐170 Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Francisco Radler Aquino Neto
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| |
Collapse
|
22
|
Tanoue R, Margiotta-Casaluci L, Huerta B, Runnalls TJ, Nomiyama K, Kunisue T, Tanabe S, Sumpter JP. Uptake and Metabolism of Human Pharmaceuticals by Fish: A Case Study with the Opioid Analgesic Tramadol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12825-12835. [PMID: 28977743 DOI: 10.1021/acs.est.7b03441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent species-extrapolation approaches to the prediction of the potential effects of pharmaceuticals present in the environment on wild fish are based on the assumption that pharmacokinetics and metabolism in humans and fish are comparable. To test this hypothesis, we exposed fathead minnows to the opiate pro-drug tramadol and examined uptake from the water into the blood and brain and the metabolism of the drug into its main metabolites. We found that plasma concentrations could be predicted reasonably accurately based on the lipophilicity of the drug once the pH of the water was taken into account. The concentrations of the drug and its main metabolites were higher in the brain than in the plasma, and the observed brain and plasma concentration ratios were within the range of values reported in mammalian species. This fish species was able to metabolize the pro-drug tramadol into the highly active metabolite O-desmethyl tramadol and the inactive metabolite N-desmethyl tramadol in a similar manner to that of mammals. However, we found that concentration ratios of O-desmethyl tramadol to tramadol were lower in the fish than values in most humans administered the drug. Our pharmacokinetic data of tramadol in fish help bridge the gap between widely available mammalian pharmacological data and potential effects on aquatic organisms and highlight the importance of understanding drug uptake and metabolism in fish to enable the full implementation of predictive toxicology approaches.
Collapse
Affiliation(s)
- Rumi Tanoue
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Luigi Margiotta-Casaluci
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Belinda Huerta
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| | - Kei Nomiyama
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Centre for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - John P Sumpter
- Institute of Environment, Health and Societies, Brunel University , Uxbridge, Middlesex, London UB8 3PH, United Kingdom
| |
Collapse
|
23
|
Aceña J, Pérez S, Eichhorn P, Solé M, Barceló D. Metabolite profiling of carbamazepine and ibuprofen in Solea senegalensis bile using high-resolution mass spectrometry. Anal Bioanal Chem 2017; 409:5441-5450. [DOI: 10.1007/s00216-017-0467-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023]
|
24
|
Le Fol V, Brion F, Hillenweck A, Perdu E, Bruel S, Aït-Aïssa S, Cravedi JP, Zalko D. Comparison of the In Vivo Biotransformation of Two Emerging Estrogenic Contaminants, BP2 and BPS, in Zebrafish Embryos and Adults. Int J Mol Sci 2017; 18:E704. [PMID: 28346357 PMCID: PMC5412290 DOI: 10.3390/ijms18040704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 01/20/2023] Open
Abstract
Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using ³H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances.
Collapse
Affiliation(s)
- Vincent Le Fol
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'Écotoxicologie In Vitro et In Vivo, F-60550 Verneuil-en-Halatte, France.
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'Écotoxicologie In Vitro et In Vivo, F-60550 Verneuil-en-Halatte, France.
| | - Anne Hillenweck
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Elisabeth Perdu
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Sandrine Bruel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'Écotoxicologie In Vitro et In Vivo, F-60550 Verneuil-en-Halatte, France.
| | - Jean-Pierre Cravedi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| |
Collapse
|
25
|
Brox S, Seiwert B, Küster E, Reemtsma T. Toxicokinetics of Polar Chemicals in Zebrafish Embryo (Danio rerio): Influence of Physicochemical Properties and of Biological Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10264-72. [PMID: 27571242 DOI: 10.1021/acs.est.6b04325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The time-resolved uptake of 17 nonionic and ionic polar compounds (logD ≤ 2) with a diversity of functional groups into zebrafish embryos (ZFE) was studied over 96 h of exposure. Among them were pharmaceuticals, pesticides and plant active ingredients. Uptake rates for the diffusion controlled passive uptake through the ZFE membrane ranged from 0.02 to 24 h(-1) for the nonionic compounds and were slower for ionic compounds (<0.008-0.08 h(-1)). The study compounds did not enrich much in the ZFE (median bioconcentration factor of 1, max. 7). Biotransformation significantly influenced the internal concentration of some of the test compounds over time (benzocaine, phenacetin, metribuzin, phenytoin, thiacloprid, valproic acid). For benzocaine, valproic acid and phenacetin several transformation products (TPs) were observed by LC-MS already at early life-stages (before 28 hpf); for benzocaine the TPs comprised >90% of the initial amount taken up into the ZFE. For six compounds internal concentrations remained very low (rel. int. conc. < 0.2). Besides biotransformation (sulfamethoxazole), poor membrane permeability (cimetidine, colchicine) and also affinity to efflux transporters (atropine and chloramphenicol) are the likely reasons for these low internal concentrations. This study outlines that the uptake of polar compounds into ZFE is influenced by their physicochemical properties. However, biological processes, biotransformation and, likely, efflux can strongly affect the internal concentrations already in early developmental stages of the ZFE. This should be considered in future toxicokinetic modeling. The evaluation of the toxicity of chemicals by ZFE requires toxicokinetic studies of the test compounds and their TPs to increase comparability to effects in fish.
Collapse
Affiliation(s)
- Stephan Brox
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Eberhard Küster
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|