1
|
Gu Y, Li Y, Zhang C, Liu Y, Shi H, Tian X, Du J, Zhang H, Cao S, Gao L, Zhang Y, Zhao G. BCL6 Alleviates Hepatic Ischemia/Reperfusion Injury Via Recruiting SIRT1 to Repress the NF-κB/NLRP3 Pathway. Transplantation 2025; 109:e297-e310. [PMID: 39800885 PMCID: PMC12091221 DOI: 10.1097/tp.0000000000005305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury (HIRI) is an intrinsic phenomenon observed in the process of various liver surgeries. Unfortunately, there are currently few options available to prevent HIRI. Accordingly, we aim to explore the role and key downstream effects of B-cell lymphoma 6 (BCL6) in hepatic I/R (HIR). METHODS BCL6 expression levels were measured in I/R liver tissue and primary hepatocytes stimulated by hypoxia/reoxygenation (H/R). Moreover, we ascertained the BCL6 effect on HIR in vivo using liver-specific BCL6 knockout mice and adenovirus-BCL6-infected mice. RNA-sequencing, luciferase, chromatin immunoprecipitation, and interactome analysis were combined to identify the direct target and corresponding molecular events contributing to BCL6 function. DNA pull-down was applied to identify upstream of BCL6 in the H/R challenge. RESULTS HIR represses BCL6 expression in vivo and in vitro. Hepatic BCL6 overexpression attenuates inflammation and apoptosis after I/R injury, whereas BCL6 deficiency aggravates I/R-induced liver injury. RNA-sequencing showed that BCL6 modulated nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 inflammasome signaling in HIRI. Mechanistically, BCL6 deacetylated nuclear factor kappa-B p65 lysine 310 by recruiting sirtuin 1 (SIRT1), thereby inhibiting the nuclear factor kappa-B/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 pathway. Moreover, overexpression of SIRT1 blocked the detrimental effects of BCL6 depletion. Moreover, EX 527, a SIRT1 inhibitor, vanished protection from BCL6 overexpression. Furthermore, transcription factor 7 was found to mediate the transcription regulation of BCL6 on H/R challenge. CONCLUSIONS Our results provide the first evidence supporting BCL6 as an important protective agent of HIR. This suggests a potential therapeutic approach for HIR.
Collapse
Affiliation(s)
- Yulei Gu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Huiting Shi
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoxu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiaqi Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hao Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Cao
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guojun Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
3
|
Legrand M, Louveau B, Macagno N, Mancini M, Kazakov DV, Pissaloux D, Tirode F, Tallet A, Mourah S, Lepiller Q, de la Fouchardière A, Sohier P, Frouin E, von Deimling A, Goto K, Cribier B, Calonje E, Taibjee S, Battistella M, Kervarrec T. Recurrent GRHL fusions in a subset of sebaceoma: microscopic and molecular characterisation of eight cases. Histopathology 2025; 86:571-584. [PMID: 39564735 PMCID: PMC11791738 DOI: 10.1111/his.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
AIMS Sebaceous neoplasms constitute a group of adnexal tumours, including sebaceous adenoma, sebaceoma and sebaceous carcinoma. Although mismatch repair deficiency may be observed, the nature of the genetic alterations contributing to the development of most of these tumours is still unknown. In the present study, we describe the clinical, microscopic, and molecular features of eight sebaceomas with GRHL gene rearrangement. METHODS AND RESULTS Among these sebaceomas, four occurred in women and four in men; the median age was 63 years (range = 29-89). The tumours were located in the head and neck area in all cases. Microscopic examination revealed a well-demarcated lesion located in the dermis with focal extension into the subcutaneous tissue (three cases). The neoplasms displayed macronodular (eight cases), cribriform (seven cases) and organoid (six cases) growth patterns, occurring in combination. The tumours were mainly composed of immature basophilic cells associated with scattered mature sebocytes. Numerous small infundibular cysts were present in seven cases. Mitotic activity was low (none/one to four mitoses/mm2). Immunohistochemistry showed positivity for androgen receptor and p63. Preserved expression of MLH1, PMS2, MSH2 and MSH6 was observed in all cases. RNA-sequencing revealed RCOR1::GRHL2 (three cases), BCL6::GRHL1 (two cases), a BCOR::GRHL2 (one case), RCOR1::GRHL1 (one case) and TLE1::GRHL1 (one case) fusion transcript. Methylation analysis demonstrated that GRHL-fused sebaceomas form an independent cluster and highlight the proximity of such tumours with poromas with folliculo-sebaceous differentiation. CONCLUSIONS In conclusion, we report recurrent fusions of the GRHL genes in a distinctive subset of sebaceomas harbouring infundibulocystic differentiation, a frequent organoid growth pattern and lack of mismatch repair deficiency.
Collapse
Affiliation(s)
- Mélanie Legrand
- Department of PathologyUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
| | - Baptiste Louveau
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Nicolas Macagno
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathology, Aix Marseille UniversityLa Timone HospitalMarseilleFrance
| | - Maxence Mancini
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie InstitutPathologie Institut EngeZurichSwitzerland
| | | | - Franck Tirode
- Department of BiopathologyCenter Léon BérardLyonFrance
- Université de Lyon, Université Claude Bernard Lyon 1, Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le CancerLyonFrance
| | - Anne Tallet
- Platform of Somatic Tumour Molecular GeneticsUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
| | - Samia Mourah
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Quentin Lepiller
- French National Papillomavirus Reference Center, CHU de BesançonUniversité de Franche‐ComtéBesançonFrance
| | - Arnaud de la Fouchardière
- Department of BiopathologyCenter Léon BérardLyonFrance
- Université de Lyon, Université Claude Bernard Lyon 1, Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le CancerLyonFrance
| | - Pierre Sohier
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathology, Hôpital CochinAssistance Publique‐Hôpitaux de Paris, AP‐HP Centre‐Université Paris CitéParisFrance
| | - Eric Frouin
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathologyuniversity Hospital of Nîmes, University of NîmesNîmesFrance
| | - Andreas von Deimling
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐UniversityHeidelbergGermany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Keisuke Goto
- Department of PathologyTokyo Metropolitan Cancer and Infectious Disease Center, Komagome HospitalTokyoJapan
- Department of Diagnostic PathologyShizuoka Cancer Center HospitalSuntoJapan
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
- Department of DermatologyHyogo Cancer CenterAkashiJapan
| | - Bernard Cribier
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Dermatology ClinicHôpitaux Universitaires and Université de Strasbourg, Hôpital CivilStrasbourgFrance
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of DermatologySt Thomas’ HospitalLondonUK
| | - Saleem Taibjee
- Dermatology DepartmentDorset County Hospital NHS Foundation TrustDorchesterUK
| | - Maxime Battistella
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of PathologySaint‐Louis University HospitalParisFrance
| | - Thibault Kervarrec
- Department of PathologyUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Biologie des infections à polyomavirus teamUniversité de ToursToursFrance
| |
Collapse
|
4
|
Xiang W, Zhang X, Dong M, Wan L, Zhang B, Wan F. Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas. Pharmacol Res 2025; 212:107599. [PMID: 39818258 DOI: 10.1016/j.phrs.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells. Epigenetic modulators, including inhibitors of histone deacetylase (HDAC), enhancer of zeste homolog 2 (EZH2), BRG1/BRM-associated factor (BAF) complex, have shown promise in preclinical studies of pHGGs by altering the differentiation program of glioma cells. Although challenges remain in overcoming tumor cell heterogeneity, induced differentiation therapy holds promise for treating these currently incurable pediatric brain cancers.
Collapse
Affiliation(s)
- Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Lijun Wan
- Department of Neurosurgery, The Second Affiliated Hospital of The Third Army Medical University, Chongqing 404100, PR China.
| | - Bin Zhang
- Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
5
|
Wang W, Yuan G, Li G, Zhao T, Chen Y, Xu Y. Cigarette smoking extract induces mitochondrial dysfunction and apoptosis in HUVECs via the Sirt1-SHH axis. Hum Exp Toxicol 2025; 44:9603271251332251. [PMID: 40170556 DOI: 10.1177/09603271251332251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
IntroductionCigarette smoking extract (CSE) can cause endothelial cell (EC) dysfunction, and then promote the occurrence and development of atherosclerosis. However, the molecular mechanisms underlying CSE-induced EC dysfunction are unknown. Sirt1, as a deacetylase, is involved in various biological processes of ECs. Therefore, this study investigated whether CSE induces apoptosis and mitochondrial dysfunction in human umbilical vein endothelial cells (HUVECs) via Sirt1-dependent mechanisms.MethodsHUVEC activity was assessed using MTT and crystal violet staining following treatment with different concentrations of CSE. Lentiviral transfection technology was used to generate HUVECs overexpressing Sirt1. Apoptosis was detected by Tunnel staining. MitoTracker™ Deep Red FM and JC-1 were used to assess mitochondrial structure and membrane potential. ELISA was used to detect the expression of superoxide dismutase (SOD) and malondialdehyde (MDA). qPCR was used to determine mRNA expression. Atherosclerosis was evaluated by oil red O staining in ApoE-KO mice after cigarette smoke exposure.ResultsCSE decreased Sirt1 and sonic hedgehog (SHH) expression, leading to mitochondrial dysfunction and apoptosis in HUVECs. Overexpressing Sirt1 or activating the SHH signaling pathway attenuated CSE-induced apoptosis and mitochondrial dysfunction. However, inhibiting the SHH signaling axis attenuated the protective effect of Sirt1 overexpression on CSE-induced apoptosis and mitochondrial dysfunction. In vivo studies also showed that cigarette smoke exacerbated atherosclerosis in ApoE-KO mice, downregulating Sirt1, SHH, and Gli1 expression in the aorta. Additionally, cigarette smoke increased Bax expression and decreased Bcl-2 expression in ApoE-KO mice aortas.DiscussionsSmoking can affect all stages of the atherosclerosis process, and the specific mechanism remains unclear. This study confirms that CSE can induce mitochondrial dysfunction and apoptosis of HUVECs by reducing Sirt1 expression and inhibiting SHH signaling activation. These findings provide new insights into the prevention and treatment of smoking-induced atherosclerosis.
Collapse
Affiliation(s)
- Weiming Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Yuan
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
6
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
8
|
Minto MS, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BMC Biol 2024; 22:189. [PMID: 39218853 PMCID: PMC11367862 DOI: 10.1186/s12915-024-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa S Minto
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27710, USA
- Omics, Epidemiology and Analytics Program, RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Vijyendra Ramesh
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Minto M, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574185. [PMID: 38260638 PMCID: PMC10802290 DOI: 10.1101/2024.01.04.574185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during CGN differentiation. Results We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally-regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. Conclusion Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa Minto
- Duke University, Program in Computational Biology and Bioinformatics, Durham, NC 27710
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709
| | | | | | - Anne E. West
- Duke University, Department of Neurobiology, Durham, NC 27710
| |
Collapse
|
10
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
11
|
Zeng X, Zhao F, Jia J, Ma X, Jiang Q, Zhang R, Li C, Wang T, Liu W, Hao Y, Tao K, Lou Z, Zhang P. Targeting BCL6 in Gastrointestinal Stromal Tumor Promotes p53-Mediated Apoptosis to Enhance the Antitumor Activity of Imatinib. Cancer Res 2023; 83:3624-3635. [PMID: 37556508 DOI: 10.1158/0008-5472.can-23-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Imatinib mesylate (IM) has revolutionized the treatment of gastrointestinal stromal tumor (GIST). However, most patients inevitably acquire IM resistance. Second- and third-line treatments exhibit modest clinical benefits with a median time to disease progression of 4 to 6 months, highlighting the urgency for novel therapeutic approaches. Here, we report that the expression of BCL6, a known oncogenic driver and transcriptional repressor, was significantly induced in GIST cells following IM treatment. Elevated BCL6 levels suppressed apoptosis and contributed to IM resistance. Mechanistically, BCL6 recruited SIRT1 to the TP53 promoter to modulate histone acetylation and transcriptionally repress TP53 expression. The reduction in p53 subsequently attenuated cell apoptosis and promoted tolerance of GIST cells to IM. Concordantly, treatment of GIST cells showing high BCL6 expression with a BCL6 inhibitor, BI-3802, conferred IM sensitivity. Furthermore, BI-3802 showed striking synergy with IM in IM-responsive and IM-resistant GIST cells in vitro and in vivo. Thus, these findings reveal a role for BCL6 in IM resistance and suggest that a combination of BCL6 inhibitors and IM could be a potentially effective treatment for GIST. SIGNIFICANCE BCL6 drives resistance to imatinib by inhibiting p53-mediated apoptosis and can be targeted in combination with imatinib to synergistically suppress tumor growth, providing a therapeutic strategy for treating gastrointestinal stromal tumor.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha, China
| | - Jie Jia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Guo S, Deng J, Wang P, Kou F, Wu Z, Zhang N, Zhao Z, Nie Y, Yang L. The malignancy suppression and ferroptosis facilitation of BCL6 in gastric cancer mediated by FZD7 repression are strengthened by RNF180/RhoC pathway. Cell Biosci 2023; 13:73. [PMID: 37060074 PMCID: PMC10105459 DOI: 10.1186/s13578-023-01020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/25/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND B-cell lymphoma 6 (BCL6) is a transcription repressor that plays a tumor suppressor or promoting role in various tumors. However, its function and molecular mechanism in gastric cancer (GC) remain unclear. Ferroptosis, a novel programmed cell death, is closely related to tumor development. In this research, we aimed to explore the role and mechanism of BCL6 in malignant progression and ferroptosis of gastric cancer. METHODS Firstly, BCL6 was identified as an important biomarker that attenuated the proliferation and metastasis of GC through tumor microarrays and confirmed in GC cell lines. RNA sequence was performed to explore the downstream genes of BCL6. The underlying mechanisms were further investigated by ChIP, dual luciferase reporter assays and rescue experiments. Cell death, lipid peroxidation, MDA and Fe2+ level were detected to determine the effect of BCL6 on ferroptosis and the mechanism was revealed. CHX, MG132 treatment and rescue experiments were used to explore the upstream regulatory mechanism of BCL6. RESULTS Here we showed that BCL6 expression was significantly decreased in GC tissues, and patients with low BCL6 expression showed more malignant clinical features and poor prognosis. The upregulation of BCL6 may significantly inhibited the proliferation and metastasis of GC cells in vitro and in vivo. In addition, we found that BCL6 directly binds and transcriptionally represses Wnt receptor Frizzled 7 (FZD7) to inhibit the proliferation, metastasis of GC cells. We also found that BCL6 promoted lipid peroxidation, MDA and Fe2+ level to facilitate ferroptosis of GC cells by FZD7/β-catenin/TP63/GPX4 pathway. Furthermore, the expression and function of BCL6 in GC were regulated by the ring finger protein 180 (RNF180)/ras homolog gene family member C (RhoC) pathway, which had been elucidated to be involved in significantly mediating the proliferation and metastasis of GC cells. CONCLUSIONS In summary, BCL6 should be considered a potential intermediate tumor suppressor to inhibit the malignant progression and induce ferroptosis, which might be a promising molecular biomarker for further mechanistic investigation of GC.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Fan Kou
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zizhen Wu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Nannan Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhenzhen Zhao
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lili Yang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
13
|
Drug Resistance in Medulloblastoma Is Driven by YB-1, ABCB1 and a Seven-Gene Drug Signature. Cancers (Basel) 2023; 15:cancers15041086. [PMID: 36831428 PMCID: PMC9954169 DOI: 10.3390/cancers15041086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the multi-functional transcription factor YB-1. Genetic knockdown of YB-1 in Group 3 medulloblastoma cell lines diminished cell invasion in 3D in vitro assays and increased sensitivity to standard-of-care chemotherapeutic vincristine and anti-cancer agents panobinostat and JQ1. For vincristine, this occurred in part by YB-1-mediated transcriptional regulation of multi-drug resistance gene ABCB1, as determined by chromatin immunoprecipitation. Whole transcriptome sequencing of YB-1 knockdown cells identified a role for YB-1 in the regulation of tumourigenic processes, including lipid metabolism, cell death and survival and MYC and mTOR pathways. Stable cisplatin- and vincristine-tolerant Group 3 and SHH cell lines were generated to identify additional mechanisms driving resistance to standard-of-care medulloblastoma therapy. Next-generation sequencing revealed a vastly different transcriptomic landscape following chronic drug exposure, including a drug-tolerant seven-gene expression signature, common to all sequenced drug-tolerant cell lines, representing therapeutically targetable genes implicated in the acquisition of drug tolerance. Our findings provide significant insight into mechanisms and genes underlying therapy resistance in medulloblastoma.
Collapse
|
14
|
Liao H, Huang J, Liu J, Zhu H, Chen Y, Li X, Wen J, Yang Q. Sirt1 regulates microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury by targeting the Shh/Gli-1 signaling pathway. Mol Biol Rep 2023; 50:3317-3327. [PMID: 36725745 PMCID: PMC10042964 DOI: 10.1007/s11033-022-08167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemic injury leads to over-activation of microglia, which release pro-inflammatory factors that deteriorate neurological function during the acute phase of stroke. Thus, inhibiting microglial over-activation is crucial for reducing ischemic injury. Sirtuin 1 (Sirt1) has been shown to play a critical role in stroke, neurodegenerative diseases and aging. However, the effect of Sirt1 on the regulation of microglial activation following cerebral ischemic injury, as well as the underlying mechanism, remain unknown. Therefore, the purpose of the present study is to mainly investigate the effect of Sirt1 on oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N9 microglia following treatment with the Sirt1 agonists resveratrol and SRT1720 and the Sirt1 antagonist sirtinol. METHODS Cell viability, Apoptosis, activation and inflammatory responses of microglia, expressions and activity of Shh signaling pathway proteins were detected by Cell Counting Kit 8, Flow Cytometry, immunocytochemistry, ELISA, and Western blotting, respectively. RESULTS The results demonstrated that treatment with resveratrol or SRT1720 could inhibit the activation of microglia and inflammation during OGD/R. Moreover, these treatments also led to the translocation of the GLI family zinc finger-1 (Gli-1) protein from the cytoplasm to the nucleus and upregulated the expression of Sonic hedgehog (Shh), Patched homolog-1 (Ptc-1), smoothened frizzled class receptor and Gli-1. By contrast, the inhibition of Sirt1 using sirtinol had the opposite effect. CONCLUSION These findings suggested that Sirt1 may regulate microglial activation and inflammation by targeting the Shh/Gli-1 signaling pathway following OGD/R injury. Schematic representation of Sirt1 regulating the microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury via mediation of Shh/Gli-1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jie Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
15
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP, Dun MD. B-cell Lymphoma 6 (BCL6): From Master Regulator of Humoral Immunity to Oncogenic Driver in Pediatric Cancers. Mol Cancer Res 2022; 20:1711-1723. [PMID: 36166198 PMCID: PMC9716245 DOI: 10.1158/1541-7786.mcr-22-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a protooncogene in adult and pediatric cancers, first identified in diffuse large B-cell lymphoma (DLBCL) where it acts as a repressor of the tumor suppressor TP53, conferring survival, protection, and maintenance of lymphoma cells. BCL6 expression in normal B cells is fundamental in the regulation of humoral immunity, via initiation and maintenance of the germinal centers (GC). Its role in B cells during the production of high affinity immunoglobins (that recognize and bind specific antigens) is believed to underpin its function as an oncogene. BCL6 is known to drive the self-renewal capacity of leukemia-initiating cells (LIC), with high BCL6 expression in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and glioblastoma (GBM) associated with disease progression and treatment resistance. The mechanisms underpinning BCL6-driven therapy resistance are yet to be uncovered; however, high activity is considered to confer poor prognosis in the clinical setting. BCL6's key binding partner, BCL6 corepressor (BCOR), is frequently mutated in pediatric cancers and appears to act in concert with BCL6. Using publicly available data, here we show that BCL6 is ubiquitously overexpressed in pediatric brain tumors, inversely to BCOR, highlighting the potential for targeting BCL6 in these often lethal and untreatable cancers. In this review, we summarize what is known of BCL6 (role, effect, mechanisms) in pediatric cancers, highlighting the two sides of BCL6 function, humoral immunity, and tumorigenesis, as well as to review BCL6 inhibitors and highlight areas of opportunity to improve the outcomes of patients with pediatric cancer.
Collapse
Affiliation(s)
- Tabitha McLachlan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - William C. Matthews
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R. Jackson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Matthew D. Dun
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Corresponding Author: Matthew D. Dun, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Level 3, Life Sciences Bldg, Callaghan, NSW 2308, Australia. Phone: 612-4921-5693; E-mail:
| |
Collapse
|
16
|
Langouët M, Jolicoeur C, Javed A, Mattar P, Gearhart MD, Daiger SP, Bertelsen M, Tranebjærg L, Rendtorff ND, Grønskov K, Jespersgaard C, Chen R, Sun Z, Li H, Alirezaie N, Majewski J, Bardwell VJ, Sui R, Koenekoop RK, Cayouette M. Mutations in BCOR, a co-repressor of CRX/OTX2, are associated with early-onset retinal degeneration. SCIENCE ADVANCES 2022; 8:eabh2868. [PMID: 36070393 PMCID: PMC9451151 DOI: 10.1126/sciadv.abh2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/21/2022] [Indexed: 06/10/2023]
Abstract
Many transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes. CUT&RUN sequencing further shows that BCOR shares genome-wide binding profiles with CRX/OTX2, consistent with a general co-repression activity. We also identify missense mutations in human BCOR in five families that have no evidence of cancer but present severe early-onset X-linked retinal degeneration. Last, we show that the human BCOR mutants cause degeneration when expressed in the mouse retina and have enhanced repressive activity on OTX2. These results uncover a role for BCOR in photoreceptors in both health and disease.
Collapse
Affiliation(s)
- Maéva Langouët
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen P. Daiger
- EHGED Department, Human Genetics Center, School of Public Health, University of Texas HSC, Houston, TX 77030, USA
| | - Mette Bertelsen
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, The Kennedy Centre, Glostrup, Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Catherine Jespersgaard
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Najmeh Alirezaie
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Robert K. Koenekoop
- Departments of Pediatric Surgery, Human Genetics, Adult Ophthalmology and the McGill Ocular Genetics Laboratory, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
18
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
19
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
20
|
Yan Z, Ao X, Liang X, Chen Z, Liu Y, Wang P, Wang D, Liu Z, Liu X, Zhu J, Zhou S, Zhou P, Gu Y. Transcriptional inhibition of miR-486-3p by BCL6 upregulates Snail and induces epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis. Respir Res 2022; 23:104. [PMID: 35484551 PMCID: PMC9052631 DOI: 10.1186/s12931-022-02024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT. Methods The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR. Western blot was used to detect the changes of cellular epithelial marker protein E-cadherin, mesenchymal marker N-cadherin, Vimentin and other proteins. The target gene of miR-486-3p was predicted by bioinformatics method and the binding site was verified by dual luciferase reporter system. In vivo experiments, adeno-associated virus (AAV) was used to carry miR-486-3p mimic to lung. Radiation-induced pulmonary fibrosis (RIPF) model was constructed by 25Gy60Co γ-rays. The structural changes of mouse lung were observed by HE and Masson staining. The expression of relevant proteins in mice was detected by immunohistochemistry. Results IR could decrease the miR-486-3p levels in vitro and in vivo, and that effect was closely correlated to the occurrence of RIPF. The expression of Snail, which induces EMT, was shown to be restrained by miR-486-3p. Therefore, knockdown of Snail blocked the EMT process induced by radiation or knockdown of miR-486-3p. In addition, the molecular mechanism underlying the IR-induced miRNA level reduction was explored. The increased in BCL6 could inhibit the formation of pri-miR-486-3p, thereby reducing the levels of miR-486-3p in the alveolar epithelial cells, which would otherwise promote EMT and contribute to RIPF by targeting Snail. Conclusion IR can exacerbate RIPF in mice by activating the transcription factor BCL6, which inhibits the transcription of miR-486-3p and decreases its content, which in turn increases the content of the target gene slug and triggers EMT.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xingkun Ao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xinxin Liang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongmin Chen
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ping Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Duo Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zheng Liu
- School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shenghui Zhou
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China. .,Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
21
|
Fang SG, Xia TL, Fu JC, Li T, Zhong Q, Han F. BCL6-SPECC1L: A Novel Fusion Gene in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221139981. [PMID: 36412101 PMCID: PMC9706053 DOI: 10.1177/15330338221139981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Nasopharyngeal carcinomas (NPCs) are malignant tumors originating from the lining epithelium of the nasopharynx. Fusion genes have been confirmed to play important roles in the occurrence and development of various malignant tumors, but the role of fusion genes in NPC is poorly understood. We aimed to explore new fusion genes that promote the occurrence and development of NPC. Methods: RNA-seq was used to search for interchromosomal translocations in 18 NPC tissues. Polymerase chain reaction (PCR) and Sanger sequencing were applied to verify the presence of BCL6-SPECC1L (BS); quantitative PCR (qPCR) and Western blotting were used to measure the expression level of BCL-6 in NPC cells; MTT and in vivo tumorigenesis assays were applied to evaluate the cell proliferation ability; immunofluorescence assays were used to determine the cellular localization of BCL6 and BS; and a luciferase reporter assay was performed to evaluate the ability of BCL6 and BS to inhibit transcription. Results: BS was present in 5.34% (11/206) of primary NPC biopsies and 2.13% (1/47) of head and neck cancer biopsies. The expression of BCL6 was downregulated in NPC, and silencing of endogenous BCL6 promoted NPC cell proliferation in vitro. Overexpression of BCL6 but not BS inhibited the growth of NPC cells in vivo and in vitro. Mechanistically, BCL6 localized in the nucleus can inhibit the G1/S transition to suppress the growth of NPC cells. However, after the fusion of BCL6 and SPECC1L, the product cannot localize to the nucleus, and the transcriptional inhibitory function of BCL6 is abolished, eventually abolishing its tumor suppressor effect and leading to the development of NPC. Conclusion: BS is a novel fusion gene in NPC that may play an important role in the occurrence and development of this cancer. The clinical significance of the BS fusion gene needs further elucidation.
Collapse
Affiliation(s)
- Shuo-Gui Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Jian-Chang Fu
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Department of Pathology, Sun Yat-Sen University Cancer
Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangzhou,
China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and
Therapy, Guangzhou, China
| |
Collapse
|
22
|
An unusual clinical manifestation of a relapsed typical pulmonary carcinoϊd tumor. Respir Med Case Rep 2021; 33:101401. [PMID: 34458087 PMCID: PMC8378835 DOI: 10.1016/j.rmcr.2021.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Typical carcinoid tumors of the lungs carry an excellent prognosis after complete surgical excision. However, recurrence of these cancers remains poorly described in the literature and may occur many years after surgery. We report a case of carcinoid tumor of the lung. Clinical presentation and follow-up were uneventful. The 55 years old patient had got a surgical removal of a huge typical carcinoid tumor of the left lung. A left pneumonectomy with a mediastinal lymph node resection were performed. Thirteen years later, paraneoplastic acromegaly revealed a pulmonary and extrapulmonary recurrence of the tumor. We prescribed a chemotherapy regimen including Cisplatin and Etoposide. Endocrine paraneoplastic syndromes are related to mutations in specifically known genes. Several mutations may become a promising therapeutic target in the future. In the case of neuro-endocrine pulmonary tumors, authors described BCOR gene mutation as an oncogenic development inducer and an eventual generator of ectopic tumoral secretions. The more we get familiar with carcinoid tumor mutations, the closer we get to targeted therapy for non-resectable tumors.
Collapse
|
23
|
Huang Y, Zheng XD, Li H. Protective role of SIRT1-mediated Sonic Hedgehog signaling pathway in the preeclampsia rat models. J Assist Reprod Genet 2021; 38:1843-1851. [PMID: 33772412 PMCID: PMC8324598 DOI: 10.1007/s10815-021-02158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To explore the role of silent information regulator 1 (SIRT1)-mediated Sonic Hedgehog (SHH) pathway in reduced uterine perfusion pressure (RUPP) model of preeclampsia (PE) in rats. METHODS The pregnant rats were divided into sham, RUPP, RUPP + rSIRT1 (recombinant SIRT1 protein), RUPP + rSHH (recombinant SHH protein), and RUPP + rSIRT1+ Cy (cyclopamine, an SHH pathway inhibitor) groups, followed by the determination of mean arterial pressure (MAP) and pregnancy outcome. The gene or protein expression was determined by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), or Western blotting. RESULTS RUPP rats showed increases MAP with the lower levels of vascular endothelial growth factor (VEGF) and nitrite and nitrate (NOx), as well as the higher levels of soluble FMS-like tyrosine kinase-1 (sFlt-1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in maternal plasma, which was attenuated after rSIRT1 or rSHH treatment. Besides, the improvement in the pregnancy outcome was seen in the rats from the RUPP + rSIRT1/rSHH groups as compared with the RUPP group. However, the therapeutic effect of rSIRT1 was reversed by cyclopamine. Placenta tissues of RUPP rats manifested the down-regulations of SIRT1, Patched-1 (PTCH1), and GLI family zinc finger 2 (GLI2), which were up-regulated in the RUPP + rSIRT1 group. CONCLUSION SIRT1 was down-regulated while SHH pathway was inhibited in the placental tissue of PE rats. SIRT1 improved the blood pressure, angiogenic imbalance, inflammation, and pregnancy outcome in PE rats via SHH pathway, supporting its potential use for the treatment of PE.
Collapse
Affiliation(s)
- Yi Huang
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China
| | - Xiao-Dan Zheng
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, Jingzhou, City, 434020, Hubei Province, People's Republic of China.
| |
Collapse
|
24
|
Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol 2021; 120:105402. [PMID: 34174519 DOI: 10.1016/j.oraloncology.2021.105402] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES microRNA (miRNA) expression patterns have provided new insight as biomarkers of prognosis as well as novel therapeutic targets for several neoplasms. However, the role of exosomal miRNA in the prognosis of oral squamous cell carcinoma (OSCC) has not yet been completely clarified. Paired primary tumor and normal oral epithelial cells from OSCC patients were obtained, and the exosomal miRNA profiles between them were compared by miRNA microarray analysis. The miRNA levels in the serum exosomes of OSCC patients were verified by real-time quantitative reverse transcription PCR (qRT-PCR) analysis. Finally, the biological functions and the potential as a prognostic marker of the selected miRNA candidates were analyzed in the OSCC cells and patients, respectively. RESULTS Exosomal miR-155 and miR-21 were significantly upregulated, and exosomal miR-126 was dramatically downregulated in the primary OSCC cells and the serum of OSCC patients. In the analysis of oncogenic behaviors, coculture with either miR-155-rich or miR-21-rich exosomes could promote cell proliferation and invasion accompanied with downregulation of PTEN and Bcl-6 tumor suppressors. Moreover, treatment with miR-126-rich exosomes inhibited oncogenic behaviors and oncogene EGFL7 expression in OSCC cells. Finally, exosomal miR-126 was reduced in the serum of the late-staged OSCC patients, and downregulation of blood exosomal miR-126 was associated with poor survival in OSCC patients. CONCLUSION Exosomal miR-155 and miR-21 are oncogenic miRNAs which suppress PTEN and Bcl-6 expression, and exosomal miR-126 acts as a tumor suppressor which downregulates EGFL7 in OSCC. Furthermore, blood exosomal miRNAs may serve as biomarkers for the diagnosis and prognosis of OSCC.
Collapse
|
25
|
Shiraishi R, Kawauchi D. Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Sci 2021; 112:2948-2957. [PMID: 34050694 PMCID: PMC8353939 DOI: 10.1111/cas.14990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant cerebellar tumor in children. Recent technological advances in multilayered ’omics data analysis have revealed 4 molecular subgroups of medulloblastoma (Wingless/int, Sonic hedgehog, Group3, and Group4). (Epi)genomic and transcriptomic profiling on human primary medulloblastomas has shown distinct oncogenic drivers and cellular origin(s) across the subgroups. Despite tremendous efforts to identify the molecular signals driving tumorigenesis, few of the identified targets were druggable; therefore, a further understanding of the etiology of tumors is required to establish effective molecular‐targeted therapies. Chromatin regulators are frequently mutated in medulloblastoma, prompting us to investigate epigenetic changes and the accompanying activation of oncogenic signaling during tumorigenesis. For this purpose, we have used germline and non‐germline genetically engineered mice to model human medulloblastoma and to conduct useful, molecularly targeted, preclinical studies. This review discusses the biological implications of chromatin regulator mutations during medulloblastoma pathogenesis, based on recent in vivo animal studies.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
26
|
Yu P, Wang L, Tang F, Guo S, Liao H, Fan C, Yang Q. Resveratrol-mediated neurorestoration after cerebral ischemic injury - Sonic Hedgehog signaling pathway. Life Sci 2021; 280:119715. [PMID: 34116113 DOI: 10.1016/j.lfs.2021.119715] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022]
Abstract
AIMS Resveratrol pretreatment can decrease ischemic cerebral injury and enhance proliferation of neural stem cells via mediation of Sonic Hedgehog signaling. However, it is relatively little known about whether neurorestorative effects of resveratrol are mediated by Shh signaling in ischemic cerebral injury. The present study tests whether the Shh signaling pathway mediates resveratrol to promote neurorestoration of ischemic cerebral injury. MATERIALS AND METHODS Rats or neurons before middle cerebral artery occlusion/reperfusion (MCAO/R) or oxygen-glucose deprivation/reoxygenation (OGD/R) injury were pretreated with resveratrol. Immunohistochemistry is used to be determined BrdU+/DCX+, BrdU+/Nestin+ and BrdU+/NG2+ cell (markers of new proliferated neural stem/progenitor and oligodendrocyte precursor cell, respectively), BrdU+/MAP2+ and BrdU+/CNPase+ cell (markers of new mature neuron and oligodendrocyte, respectively), BrdU+/TUNEL+ cell (marker of apoptosis for new proliferated cell), SY, NF200, Iba-1 and GFAP (markers of synaptogenesis, axon, microglia and astrocyte, respectively). Shh and Gli-1 mRNAs were detected by RT-PCR assay. Iba-1, GFAP, Shh and Gli-1 proteins were detected by Western blot. KEY FINDINGS Resveratrol pretreatment significantly reduced neurological deficit scores, promoted proliferation, differentiation, migration and survival of neural stem/progenitor and oligodendrocyte precursor cells, inhibited astrocyte and microglia activation, strengthened synaptophysin and NF200 expression, at the same time, promoted neurite outgrowth of neurons. Meanwhile, expression levels of Shh and Gli-1 proteins were significantly increased and Gli-1 translocated into the nucleus. However, cyclopamine, a Smo inhibitor, canceled the above effects of resveratrol. CONCLUSIONS It may be mediated, at least partly, by the Shh signaling pathway that resveratrol pretreament promote neurorestoration of ischemic cerebral injury.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Physical Examination Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanren Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Guo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Liao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cengceng Fan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Manjur ABMK, Lempiäinen JK, Malinen M, Varjosalo M, Palvimo JJ, Niskanen EA. BCOR modulates transcriptional activity of a subset of glucocorticoid receptor target genes involved in cell growth and mobility. J Steroid Biochem Mol Biol 2021; 210:105873. [PMID: 33722704 DOI: 10.1016/j.jsbmb.2021.105873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Glucocorticoid (GC) receptor (GR) is a key transcription factor (TF) that regulates vital metabolic and anti-inflammatory processes. We have identified BCL6 corepressor (BCOR) as a dexamethasone-stimulated interaction partner of GR. BCOR is a component of non-canonical polycomb repressor complex 1.1 (ncPCR1.1) and linked to different developmental disorders and cancers, but the role of BCOR in GC signaling is poorly characterized. Here, using ChIP-seq we show that, GC induces genome-wide redistribution of BCOR chromatin binding towards GR-occupied enhancers in HEK293 cells. As assessed by RNA-seq, depletion of BCOR altered the expression of hundreds of GC-regulated genes, especially the ones linked to TNF signaling, GR signaling and cell migration pathways. Biotinylation-based proximity mapping revealed that GR and BCOR share several interacting partners, including nuclear receptor corepressor NCOR1. ChIP-seq showed that the NCOR1 co-occurs with both BCOR and GR on a subset of enhancers upon GC treatment. Simultaneous depletion of BCOR and NCOR1 influenced GR target gene expression in a combinatorial and gene-specific manner. Finally, we show using live cell imaging that the depletion of BCOR together with NCOR1 markedly enhances cell migration. Collectively, our data suggest BCOR as an important gene and pathway selective coregulator of GR transcriptional activity.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
28
|
Nakata S, Yuan M, Rubens JA, Kahlert UD, Maciaczyk J, Raabe EH, Eberhart CG. BCOR Internal Tandem Duplication Expression in Neural Stem Cells Promotes Growth, Invasion, and Expression of PRC2 Targets. Int J Mol Sci 2021; 22:3913. [PMID: 33920124 PMCID: PMC8070097 DOI: 10.3390/ijms22083913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.
Collapse
Affiliation(s)
- Satoshi Nakata
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.N.); (M.Y.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.A.R.); (E.H.R.)
| | - Ming Yuan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.N.); (M.Y.)
| | - Jeffrey A. Rubens
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.A.R.); (E.H.R.)
| | - Ulf D. Kahlert
- Neurosurgical Clinic, Medical Faculty, Heinrich-Heine University Duesseldorf, D-40225 Dusseldorf, Germany;
| | - Jarek Maciaczyk
- Department of Neurosurgery, University of Bonn, D-53127 Bonn, Germany;
| | - Eric H. Raabe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.A.R.); (E.H.R.)
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.N.); (M.Y.)
| |
Collapse
|
29
|
Bonnefont J, Vanderhaeghen P. Neuronal fate acquisition and specification: time for a change. Curr Opin Neurobiol 2021; 66:195-204. [PMID: 33412482 PMCID: PMC8064025 DOI: 10.1016/j.conb.2020.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
During embryonic development, neural stem/progenitor cells generate hundreds of different cell types through the combination of intrinsic and extrinsic cues. Recent data obtained in mouse and human cortical neurogenesis provide novel views about this interplay and how it evolves with time, whether during irreversible cell fate transitions that neural stem cells undergo to become neurons, or through gradual temporal changes of competence that lead to increased neuronal diversity from a common stem cell pool. In each case the temporal changes result from a dynamic balance between intracellular states and extracellular signalling factors. The underlying mechanisms are mostly conserved across species, but some display unique features in human corticogenesis, thereby linking temporal features of neurogenesis and human brain evolution.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Okado H. Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58. Br J Pharmacol 2020; 178:813-826. [PMID: 32959890 DOI: 10.1111/bph.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
The POZ domain Krüppel-like zinc finger transcription repressor (POK family) contains many important molecules, including RP58, Bcl6 and PLZF. They function as transcription repressors via chromatin remodelling and histone deacetylation and are known to be involved in the development and tumourigenesis of various organs. Furthermore, they are important in the formation and function of the nervous system. This review summarizes the role of the POK family transcription repressors in the nervous system. We particularly targeted Rp58 (also known as Znf238, Znp238 and Zbtb18), a sequence-specific transcriptional repressor that is strongly expressed in developing glutamatergic projection neurons in the cerebral cortex. It regulates various physiological processes, including neuronal production, neuronal migration and neuronal maturation. Human studies suggest that reduced RP58 levels are involved in cognitive function impairment and brain tumour formation. This review particularly focuses on the mechanisms underlying RP58-mediated neuronal development and function. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
31
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Aiello G, Ballabio C, Ruggeri R, Fagnocchi L, Anderle M, Morassut I, Caron D, Garilli F, Gianno F, Giangaspero F, Piazza S, Romanel A, Zippo A, Tiberi L. Truncated BRPF1 Cooperates with Smoothened to Promote Adult Shh Medulloblastoma. Cell Rep 2020; 29:4036-4052.e10. [PMID: 31851932 DOI: 10.1016/j.celrep.2019.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here, we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Indeed, postmitotic neurons re-entered the cell cycle and proliferated as a result of chromatin remodeling of neurons by BRPF1. Our model of brain cancer explains the onset of a subset of human medulloblastoma in adult individuals where granule neuron progenitors are no longer present.
Collapse
Affiliation(s)
- Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Riccardo Ruggeri
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Fagnocchi
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Morassut
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Davide Caron
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Garilli
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Gianno
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Felice Giangaspero
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
33
|
Xie L, Ji X, Tu Y, Wang K, Zhu L, Zeng X, Wang X, Zhang J, Zhu M. MLN4924 inhibits hedgehog signaling pathway and activates autophagy to alleviate mouse laser-induced choroidal neovascularization lesion. Biomed Pharmacother 2020; 130:110654. [PMID: 34321162 DOI: 10.1016/j.biopha.2020.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD), featured as choroidal neovascularization (CNV), can cause blindness in the elderly population. MLN4924, a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally down-regulated protein 8)-activating enzyme (NAE), inhibits the proliferation, angiogenesis and inflammation of multiple cancers via up-regulating hedgehog pathway-regulated autophagy. MLN4924 intraperitoneal injection mitigated the leakage, area and volume of mouse laser-induced CNV lesion. Additionally, compared to CNV 7 d group, MLN4924 treated mouse retina-retinal pigment epithelium (RPE)-choroid complex showed decreased expression of hedgehog pathway-associated molecules patched 1 (PTCH1), smoothened (SMO), GLI family zinc finger 1 (GLI1) and GLI family zinc finger 2 (GLI2) with increased expression of autophagy-associated molecules sequestosome 1 (p62) and LC microtubule-associated protein 1 light chain 3 (LC3). Meanwhile, human choroidal endothelial cells (HCECs) exposed to hypoxia condition also showed decreased expression of hedgehog pathway-associated molecules and increased expression of autophagy-associated molecules. Compared to hypoxia + MLN4924 group, SMO agonist SAG up-regulated hedgehog pathway and down-regulated autophagy, whereas autophagy inhibitor PIK-III inhibited autophagy with no effect on hedgehog pathway, indicating that MLN4924 facilitated autophagy of HCECs via hindering hedgehog pathway under hypoxia condition. Finally, MLN4924 inhibited proliferation, migration and tube formation of HCECs via boosting hedgehog pathway-regulated autophagy. In summary, MLN4924 relieved the formation of mouse laser-induced CNV lesion might via up-regulating hedgehog pathway-regulated autophagy. The results provide a potential interfering strategy for nAMD targeting the autophagy of choroidal endothelial cells.
Collapse
Affiliation(s)
- Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinwei Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
34
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
35
|
Kutscher LM, Okonechnikov K, Batora NV, Clark J, Silva PBG, Vouri M, van Rijn S, Sieber L, Statz B, Gearhart MD, Shiraishi R, Mack N, Orr BA, Korshunov A, Gudenas BL, Smith KS, Mercier AL, Ayrault O, Hoshino M, Kool M, von Hoff K, Graf N, Fleischhack G, Bardwell VJ, Pfister SM, Northcott PA, Kawauchi D. Functional loss of a noncanonical BCOR-PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes Dev 2020; 34:1161-1176. [PMID: 32820036 PMCID: PMC7462063 DOI: 10.1101/gad.337584.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, Kutscher et al. investigated the transcriptional corepressor BCOR as a putative tumor suppressor and used a genetically engineered mouse model to delete exons 9/10 of Bcor in GNPs during development. Their data suggest that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors. Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9–10) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9–10). While BcorΔE9–10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9–10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/−;BcorΔE9–10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/− GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/−;BcorΔE9–10 tumors. Overall, our data suggests that BCOR–PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.
Collapse
Affiliation(s)
- Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nadja V Batora
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia B G Silva
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Mikaella Vouri
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Sjoerd van Rijn
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Laura Sieber
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Micah D Gearhart
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Norman Mack
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Audrey L Mercier
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, UMR 3347, Centre National de la Recherche Scientifique (CNRS), U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), Orsay 91405, France.,Université Paris Sud, Université, UMR 3347, CNRS, U1021, INSERM, Orsay 91405, France
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-0031, Japan
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Katja von Hoff
- Department for Paediatric Oncology and Haematology, Charité University Medicine, 13354 Berlin, Germany
| | - Norbert Graf
- Department for Pediatric Oncology and Hematology, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | - Gudrun Fleischhack
- Pediatric Haematology and Oncology, Pediatrics III, University Hospital of Essen, 45147 Essen, Germany
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Wu F, Zhang C, Zhao C, Wu H, Teng Z, Jiang T, Wang Y. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res 2020; 80:2818-2832. [PMID: 32371475 DOI: 10.1158/0008-5472.can-19-2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised by acquisition of mutations that alter pathway components, notably secondary mutations in SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. Pharmacologic blockade of GLI2 activity could ultimately overcome these diversified refractory mechanisms, which would also be effective in a broader spectrum of primary tumors than current SMO antagonists. To this end, we conducted a high-content screening directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the growth of drug refractory human medulloblastoma xenografts. Together, these results identify PGE1 and other prostaglandins as potential templates for complementary therapeutic development to circumvent resistance to current generation SMO antagonists in use in the clinic. SIGNIFICANCE: These findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities for Hedgehog-targeted therapies and elicits significant antitumor effects in xenograft models of drug refractory human medulloblastoma mimicking GLI2 amplification.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenze Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China. .,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
The oncogene BCL6 is up-regulated in glioblastoma in response to DNA damage, and drives survival after therapy. PLoS One 2020; 15:e0231470. [PMID: 32320427 PMCID: PMC7176076 DOI: 10.1371/journal.pone.0231470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
The prognosis for people with the high-grade brain tumor glioblastoma is very poor, due largely to low cell death in response to genotoxic therapy. The transcription factor BCL6, a protein that normally suppresses the DNA damage response during immune cell maturation, and a known driver of B-cell lymphoma, was shown to mediate the survival of glioblastoma cells. Expression was observed in glioblastoma tumor specimens and cell lines. When BCL6 expression or activity was reduced in these lines, increased apoptosis and a profound loss of proliferation was observed, consistent with gene expression signatures suggestive of anti-apoptotic and pro-survival signaling role for BCL6 in glioblastoma. Further, treatment with the standard therapies for glioblastoma—ionizing radiation and temozolomide—both induced BCL6 expression in vitro, and an in vivo orthotopic animal model of glioblastoma. Importantly, inhibition of BCL6 in combination with genotoxic therapies enhanced the therapeutic effect. Together these data demonstrate that BCL6 is an active transcription factor in glioblastoma, that it drives survival of cells, and that it increased with DNA damage, which increased the survival rate of therapy-treated cells. This makes BCL6 an excellent therapeutic target in glioblastoma—by increasing sensitivity to standard DNA damaging therapy, BCL6 inhibitors have real potential to improve the outcome for people with this disease.
Collapse
|
38
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1176] [Impact Index Per Article: 235.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
39
|
Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, Aiello G, Piazza S, Caron D, Gianno F, Ciolfi A, Pedace L, Mastronuzzi A, Tartaglia M, Locatelli F, Ferretti E, Giangaspero F, Tiberi L. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun 2020; 11:583. [PMID: 31996670 PMCID: PMC6989674 DOI: 10.1038/s41467-019-13989-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and among the subtypes, Group 3 MB has the worst outcome. Here, we perform an in vivo, patient-specific screen leading to the identification of Otx2 and c-MYC as strong Group 3 MB inducers. We validated our findings in human cerebellar organoids where Otx2/c-MYC give rise to MB-like organoids harboring a DNA methylation signature that clusters with human Group 3 tumors. Furthermore, we show that SMARCA4 is able to reduce Otx2/c-MYC tumorigenic activity in vivo and in human cerebellar organoids while SMARCA4 T910M, a mutant form found in human MB patients, inhibits the wild-type protein function. Finally, treatment with Tazemetostat, a EZH2-specific inhibitor, reduces Otx2/c-MYC tumorigenesis in ex vivo culture and human cerebellar organoids. In conclusion, human cerebellar organoids can be efficiently used to understand the role of genes found altered in cancer patients and represent a reliable tool for developing personalized therapies.
Collapse
Affiliation(s)
- Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Cardano
- University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvano Piazza
- University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Davide Caron
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesca Gianno
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | | | - Felice Giangaspero
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
40
|
Lempiäinen JK, Manjur ABMK, Malinen M, Ketola K, Niskanen EA, Palvimo JJ. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 2020; 39:2391-2407. [PMID: 31925334 DOI: 10.1038/s41388-020-1153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
41
|
Liu W, Yan H, Zhou D, Cai X, Zhang Y, Li S, Li H, Li S, Zhou DS, Li X, Zhang C, Sun Y, Dai JP, Zhong J, Yao YG, Luo XJ, Fang Y, Zhang D, Ma Y, Yue W, Li M, Xiao X. The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Transl Psychiatry 2019; 9:333. [PMID: 31819045 PMCID: PMC6901563 DOI: 10.1038/s41398-019-0675-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is recognized as a primary cause of disability worldwide, and effective management of this illness has been a great challenge. While genetic component is supposed to play pivotal roles in MDD pathogenesis, the genetic and phenotypic heterogeneity of the illness has hampered the discovery of its genetic determinants. In this study, in an independent Han Chinese sample (1824 MDD cases and 3031 controls), we conducted replication analyses of two genetic loci highlighted in a previous Chinese MDD genome-wide association study (GWAS), and confirmed the significant association of a single nucleotide polymorphism (SNP) rs12415800 near SIRT1. Subsequently, using hypothesis-free whole-brain analysis in two independent Han Chinese imaging samples, we found that individuals carrying the MDD risk allele of rs12415800 exhibited aberrant gray matter volume in the left posterior cerebellar lobe compared with those carrying the non-risk allele. Besides, in independent Han Chinese postmortem brain and peripheral blood samples, the MDD risk allele of rs12415800 predicted lower SIRT1 mRNA levels, which was consistent with the reduced expression of this gene in MDD patients compared with healthy subjects. These results provide further evidence for the involvement of SIRT1 in MDD, and suggest that this gene might participate in the illness via affecting the development of cerebellum, a brain region that is potentially underestimated in previous MDD studies.
Collapse
Affiliation(s)
- Weipeng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Danyang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shiyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Huijuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Jia-Pei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Jingmei Zhong
- Psychiatry Department, The first people's hospital of Yunnan province, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.
- NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
42
|
Mankuzhy NP, Anderson B, Kumar C, Heider A, Koschmamn C, Mody RJ. BCOR Alterations in Pediatric and Young Adult Patients With Sarcomas and High-Grade Glial Malignancies: A Case Series. JCO Precis Oncol 2019; 3:1-8. [DOI: 10.1200/po.19.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nikhil P. Mankuzhy
- Oakland University William Beaumont School of Medicine, Rochester, MI
- University of Michigan, Ann Arbor, MI
| | | | | | | | | | | |
Collapse
|
43
|
Bonnefont J, Tiberi L, van den Ameele J, Potier D, Gaber ZB, Lin X, Bilheu A, Herpoel A, Velez Bravo FD, Guillemot F, Aerts S, Vanderhaeghen P. Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways. Neuron 2019; 103:1096-1108.e4. [PMID: 31353074 PMCID: PMC6859502 DOI: 10.1016/j.neuron.2019.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.
Collapse
Affiliation(s)
- Jerome Bonnefont
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Luca Tiberi
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Jelle van den Ameele
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Delphine Potier
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Xionghui Lin
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Adèle Herpoel
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Fausto D Velez Bravo
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Welbio, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
| |
Collapse
|
44
|
van den Ameele J, Brand AH. Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. eLife 2019; 8:47887. [PMID: 31513013 PMCID: PMC6763261 DOI: 10.7554/elife.47887] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Translating advances in cancer research to clinical applications requires better insight into the metabolism of normal cells and tumour cells in vivo. Much effort has focused on understanding how glycolysis and oxidative phosphorylation (OxPhos) support proliferation, while their impact on other aspects of development and tumourigenesis remain largely unexplored. We found that inhibition of OxPhos in neural stem cells (NSCs) or tumours in the Drosophila brain not only decreases proliferation, but also affects many different aspects of stem cell behaviour. In NSCs, OxPhos dysfunction leads to a protracted G1/S-phase and results in delayed temporal patterning and reduced neuronal diversity. As a consequence, NSCs fail to undergo terminal differentiation, leading to prolonged neurogenesis into adulthood. Similarly, in brain tumours inhibition of OxPhos slows proliferation and prevents differentiation, resulting in reduced tumour heterogeneity. Thus, in vivo, highly proliferative stem cells and tumour cells require OxPhos for efficient growth and generation of diversity.
Collapse
Affiliation(s)
- Jelle van den Ameele
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- The Gurdon Institute, Cambridge, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2019; 2:2199-2213. [PMID: 30185437 DOI: 10.1182/bloodadvances.2018021063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27kip1 and upregulation of the transferrin receptor, CD71. Surprisingly, STAT5 inhibition does not significantly affect IL-7-mediated Bcl-2 upregulation, suggesting that, contrary to normal T-cells, STAT5 promotes leukemia cell survival through a Bcl-2-independent mechanism. STAT5 chromatin immunoprecipitation sequencing and RNA sequencing reveal a diverse IL-7-driven STAT5-dependent transcriptional program in T-ALL cells, which includes BCL6 inactivation by alternative transcription and upregulation of the oncogenic serine/threonine kinase PIM1 Pharmacological inhibition of PIM1 abrogates IL-7-mediated proliferation on T-ALL cells, indicating that strategies involving the use of PIM kinase small-molecule inhibitors may have therapeutic potential against a majority of leukemias that rely on IL-7 receptor (IL-7R) signaling. Overall, our results demonstrate that STAT5, in part by upregulating PIM1 activity, plays a major role in mediating the leukemia-promoting effects of IL-7/IL-7R.
Collapse
|
46
|
Papaioannou E, Yánez DC, Ross S, Lau CI, Solanki A, Chawda MM, Virasami A, Ranz I, Ono M, O'Shaughnessy RFL, Crompton T. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest 2019; 129:3153-3170. [PMID: 31264977 PMCID: PMC6668675 DOI: 10.1172/jci125170] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–β (TGF-β) in Treg signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven, Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Eleftheria Papaioannou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diana C Yánez
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mira Manilal Chawda
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alex Virasami
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ismael Ranz
- Department of Respiratory Medicine and Allergy, King's College London, London, United Kingdom
| | - Masahiro Ono
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ryan F L O'Shaughnessy
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
47
|
Ghia EM, Rassenti LZ, Neuberg DS, Blanco A, Yousif F, Smith EN, McPherson JD, Hudson TJ, Harismendy O, Frazer KA, Kipps TJ. Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood 2019; 133:2651-2663. [PMID: 30923040 PMCID: PMC6587306 DOI: 10.1182/blood-2018-09-873695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted sequencing of 103 leukemia-associated genes in leukemia cells from 841 treatment-naive patients with chronic lymphocytic leukemia (CLL) identified 89 (11%) patients as having CLL cells with mutations in genes encoding proteins that putatively are involved in hedgehog (Hh) signaling. Consistent with this finding, there was a significant association between the presence of these mutations and the expression of GLI1 (χ2 test, P < .0001), reflecting activation of the Hh pathway. However, we discovered that 38% of cases without identified mutations also were GLI1+ Patients with GLI1+ CLL cells had a shorter median treatment-free survival than patients with CLL cells lacking expression of GLI1 independent of IGHV mutation status. We found that GANT61, a small molecule that can inhibit GLI1, was highly cytotoxic for GLI1+ CLL cells relative to that of CLL cells without GLI1. Collectively, this study shows that a large proportion of patients have CLL cells with activated Hh signaling, which is associated with early disease progression and enhanced sensitivity to inhibition of GLI1.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Zinc Finger Protein GLI1/metabolism
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Alejandro Blanco
- Programa de Genetica Humana, Universidad de Chile, Santiago, Chile
| | - Fouad Yousif
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA; and
| | | | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA
| | - Kelly A Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| |
Collapse
|
48
|
Kelly MJ, So J, Rogers AJ, Gregory G, Li J, Zethoven M, Gearhart MD, Bardwell VJ, Johnstone RW, Vervoort SJ, Kats LM. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun 2019; 10:1347. [PMID: 30902969 PMCID: PMC6430802 DOI: 10.1038/s41467-019-09250-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
The BCL6 Corepressor (BCOR) is a component of a variant Polycomb repressive complex 1 (PRC1) that is essential for normal development. Recurrent mutations in the BCOR gene have been identified in acute myeloid leukaemia and myelodysplastic syndrome among other cancers; however, its function remains poorly understood. Here we examine the role of BCOR in haematopoiesis in vivo using a conditional mouse model that mimics the mutations observed in haematological malignancies. Inactivation of Bcor in haematopoietic stem cells (HSCs) results in expansion of myeloid progenitors and co-operates with oncogenic KrasG12D in the initiation of an aggressive and fully transplantable acute leukaemia. Gene expression analysis and chromatin immunoprecipitation sequencing reveals differential regulation of a subset of PRC1-target genes including HSC-associated transcription factors such as Hoxa7/9. This study provides mechanistic understanding of how BCOR regulates cell fate decisions and how loss of function contributes to the development of leukaemia.
Collapse
Affiliation(s)
- Madison J Kelly
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joan So
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Amy J Rogers
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Gareth Gregory
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.,Monash Haematology, Monash Health and School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Magnus Zethoven
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
49
|
Okado H. Regulation of brain development and brain function by the transcriptional repressor RP58. Brain Res 2019; 1705:15-23. [PMID: 29501651 DOI: 10.1016/j.brainres.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 12/16/2022]
Abstract
The mechanisms regulating the formation of the cerebral cortex have been well studied. In the developing cortex, (also known Znf238, Zfp238, and Zbtb18), which encodes a sequence-specific transcriptional repressor, is expressed in glutamatergic projection neurons and progenitor cells. Targeted deletion of Rp58 leads to dysplasia of the neocortex and hippocampus, a reduction in the number of mature cortical neurons, and defects in laminar organization due to abnormal neuronal migration within the cortical plate. During late embryogenesis, Rp58-deficient mice have larger numbers of progenitor cells due to a delay in cell cycle exit. RP58 represses all four Id genes (Id1-Id4), which regulate cell cycle exit in the developing cerebral cortex, and is essential for transcriptional repression of Ngn2 and Rnd2, which regulate the multipolar-to-bipolar transition during neuronal migration independently of its role in cell cycle exit.
Collapse
Affiliation(s)
- Haruo Okado
- Tokyo Metropolitan Institute of Medical Science, Brain Development and Neural Degeneration, Neural Development Project, Japan.
| |
Collapse
|
50
|
Feltrin AS, Tahira AC, Simões SN, Brentani H, Martins DC. Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders. PLoS One 2019; 14:e0210431. [PMID: 30645614 PMCID: PMC6333352 DOI: 10.1371/journal.pone.0210431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Psychiatric disorders involve both changes in multiple genes as well different types of variations. As such, gene co-expression networks allowed the comparison of different stages and parts of the brain contributing to an integrated view of genetic variation. Two methods based on co-expression networks presents appealing results: Weighted Gene Correlation Network Analysis (WGCNA) and Network-Medicine Relative Importance (NERI). By selecting two different gene expression databases related to schizophrenia, we evaluated the biological modules selected by both WGCNA and NERI along these databases as well combining both WGCNA and NERI results (WGCNA-NERI). Also we conducted a enrichment analysis for the identification of partial biological function of each result (as well a replication analysis). To appraise the accuracy of whether both algorithms (as well our approach, WGCNA-NERI) were pointing to genes related to schizophrenia and its complex genetic architecture we conducted the MSET analysis, based on a reference gene list of schizophrenia database (SZDB) related to DNA Methylation, Exome, GWAS as well as copy number variation mutation studies. The WGCNA results were more associated with inflammatory pathways and immune system response; NERI obtained genes related with cellular regulation, embryological pathways e cellular growth factors. Only NERI were able to provide a statistical meaningful results to the MSET analysis (for Methylation and de novo mutations data). However, combining WGCNA and NERI provided a much more larger overlap in these two categories and additionally on Transcriptome database. Our study suggests that using both methods in combination is better for establishing a group of modules and pathways related to a complex disease than using each method individually. NERI is available at: https://bitbucket.org/sergionery/neri.
Collapse
Affiliation(s)
- Arthur Sant’Anna Feltrin
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
- * E-mail: (ASF); (DCMJ)
| | - Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sérgio Nery Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, ES, Brazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), São Paulo, SP, Brazil
| | - David Corrêa Martins
- Center for Mathematics, Computation and Cognition, Federal University of ABC (UFABC), Santo André, SP, Brazil
- * E-mail: (ASF); (DCMJ)
| |
Collapse
|