1
|
Karim M, Hasan MM, Kim SH, Azam Z, Wahab R, Islam T, Alam F, Kim YJ, Bae DJ, Roy S, Grippo P, Bishehsari F, Choi JU, Al-Hilal TA. Stromal fibrin shapes immune infiltration landscape of pancreatic ductal adenocarcinoma. Biomaterials 2025; 320:123280. [PMID: 40147113 DOI: 10.1016/j.biomaterials.2025.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), in-situ coagulation creates a thrombotic, crosslinked fibrin (x-fibrin)-rich tumor stroma (FibTS), whose impact on immune cell behavior remains unclear. We aimed to elucidate how FibTS in PDAC regulates immune cell infiltration, polarization, and crosstalk that favors immunosuppressive microenvironment and tumor growth. We assessed the spatial distribution of immune cells by multiplex immunostaining of human PDAC tissues, along with novel bioengineering and mouse tumor models. We investigated how FibTS influences the infiltration of tumor-associated macrophage (TAM) and T-cell subtypes and identified two distinct variants of PDAC, fibrin-high (Fibhi) and fibrin-low (Fiblow). Our findings reveal that PDAC cells secrete fibrinogen and thrombin to form FibTS, which acts as a physical barrier and biochemical niche that restricts CD8+ T-cell and TAM penetration into the tumor. The FibTS impeded immune cell penetration from the tumor stroma into the tumor parenchyma. Selective inhibition of FibTS formation by genetic and pharmacological tools altered the infiltration patterns of CD8+ T-cells and TAMs, decelerating PDAC growth. This study demonstrates that the barrier function of FibTS is crucial for immune evasion, particularly against macrophage and T-cell activity, presenting a potential therapeutic strategy to reshape the immune landscape within PDAC and slow tumor progression.
Collapse
Affiliation(s)
- Mazharul Karim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Seung Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453
| | - Zulfikar Azam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Riajul Wahab
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Tamanna Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Farzana Alam
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Yun-Jae Kim
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dong-Jun Bae
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sourav Roy
- Department of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Faraz Bishehsari
- Gastroenterology Research Center, Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Texas Houston, TX 77030, USA; MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, USA
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453.
| | - Taslim A Al-Hilal
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025; 22:439-456. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
3
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025; 25:399-425. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Carlson EG, Lopez JC, Yamaguchi Y, Gibson J, Priceman SJ, LaBarge MA. CD105 + fibroblasts support an immunosuppressive niche in women at high risk of breast cancer initiation. Breast Cancer Res 2025; 27:81. [PMID: 40375322 PMCID: PMC12079957 DOI: 10.1186/s13058-025-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Aging is the greatest risk factor for breast cancer, and although epithelial cells are the source of carcinomas, epithelial changes alone do not fully explain cancer susceptibility. Fibroblasts and macrophages are key stromal constituents around the cells of origin for cancer in breast tissue. With age, macrophages surrounding terminal ductal lobular units (TDLUs) become increasingly immunosuppressive. CD105+ fibroblasts intercalate within TDLUs, drive luminal differentiation, and give rise to immunosuppressive cancer-associated fibroblasts in other tissues. We propose that differences in fibroblasts are a crucial component of the stroma that shapes cancer susceptibility. METHODS Primary peri-epithelial fibroblast cultures were established from prophylactic and reduction mammoplasties from 30 women ranging in age from 16 to 70 years and from BRCA1 mutation carriers. Growth characteristics, transcriptional profiles, differentiation potential, and secreted proteins were profiled for fibroblast subtypes from diverse donors. Co-cultures with fibroblasts, macrophages, and T cells were used to ascertain the functional role played by CD105+ fibroblasts in immune cell modulation. RESULTS We found that peri-epithelial CD105+ fibroblasts are enriched in older women as well as women who carry BRCA1 mutations. These CD105+ fibroblasts exhibit robust adipogenesis and secrete factors related to macrophage polarization. Macrophages cocultured with fibroblasts better maintain or enhance polarization states than media alone. CD105+ fibroblasts increased expression of immunosuppressive macrophage genes. CD105+ fibroblasts supported anti-inflammatory macrophage-mediated suppression of T cell proliferation, whereas CD105- fibroblasts significantly reduced the suppressive effect of anti-inflammatory macrophages on T cell proliferation. CONCLUSIONS Establishment of a coculture system to dissect the molecular circuits between CD105+ fibroblasts and macrophages that drive immunosuppressive macrophage polarization has broad utility in understanding mammary gland development and events that precede cancer initiation. CD105+ fibroblasts and macrophages may coordinate to suppress immunosurveillance and increase breast cancer susceptibility.
Collapse
Affiliation(s)
- Eric G Carlson
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Jennifer C Lopez
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Zhao X, Zhu Y, He Y, Gu W, Zhou Q, Jin B, Chen S, Lin H. Unraveling the immune evasion mechanisms in the tumor microenvironment of head and neck squamous cell carcinoma. Front Immunol 2025; 16:1597202. [PMID: 40438103 PMCID: PMC12116449 DOI: 10.3389/fimmu.2025.1597202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by a complex tumor microenvironment (TME) that plays a pivotal role in tumor initiation, progression, and immune evasion. Recent advancements have highlighted the intricate interplay between immune cell infiltration patterns, immune checkpoint dysregulation, and metabolic reprogramming in driving HNSCC immune escape. Despite these insights, significant challenges remain, including the incomplete understanding of specific immune evasion pathways and the lack of personalized therapeutic strategies. To address these gaps, this review introduces a novel "Trinity" regulatory network of immune evasion in HNSCC, encompassing: (1) metabolic reprogramming-mediated immune checkpoint modulation, (2) stromal cell-driven immune dysfunction, and (3) epigenetic remodeling fostering immune tolerance. This framework provides a theoretical foundation for the development of multi-targeted combination therapies and offers innovative strategies to overcome immune evasion. Additionally, this review systematically synthesizes the current understanding of the relationship between the HNSCC microenvironment and immune escape, with a focus on emerging immunotherapeutic approaches such as PD-1/PD-L1 inhibitors and CAR-T cell therapy. Leveraging cutting-edge single-cell sequencing and spatial transcriptomics, we elucidate the spatiotemporal heterogeneity of the HNSCC immune landscape and propose a new paradigm of "lineage plasticity-driven immune adaptation." These insights not only advance our understanding of HNSCC biology but also pave the way for the development of precision immunotherapies aimed at improving patient survival and quality of life. By integrating multidisciplinary perspectives, this work underscores the importance of targeting the TME to achieve durable clinical responses and overcome immunotherapy resistance in HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenguo Chen
- Department of Stomatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haisheng Lin
- Department of Stomatology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
6
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
7
|
Mao Y, Li Y, Zheng Z, Xu Y, Ke M, He A, Liang F, Zhang K, Wang X, Gao W, Tian R. All-at-once spatial proteome profiling of complex tissue context with single-cell-type resolution by proximity proteomics. Cell Syst 2025:101291. [PMID: 40345200 DOI: 10.1016/j.cels.2025.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/01/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Spatial proteomics enables in-depth mapping of tissue architectures, mostly achieved by laser microdissection-mass spectrometry (LMD-MS) and antibody-based imaging. However, trade-offs among sampling precision, throughput, and proteome coverage still limit the applicability of these strategies. Here, we propose proximity labeling for spatial proteomics (PSPro) by combining precise antibody-targeted biotinylation and efficient affinity purification for all-at-once cell-type proteome capture with sub-micrometer resolution from single tissue slice. With fine-tuned labeling parameters, PSPro shows reliable performance in benchmarking against flow cytometry- and LMD-based proteomic workflows. We apply PSPro to tumor and spleen slices, enriching thousands of proteins containing known markers from ten cell types. We further incorporate LMD into PSPro to facilitate comparison of cell subpopulations from the same tissue slice, revealing spatial proteome heterogeneity of cancer cells and immune cells in pancreatic tumor. Collectively, PSPro converts the traditional "antibody-epitope" paradigm to an "antibody-cell-type proteome" for spatial biology in a user-friendly manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yiheng Mao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanfen Xu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mi Ke
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fuchao Liang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keren Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weina Gao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Shakiba M, Tuveson DA. Macrophages and fibroblasts as regulators of the immune response in pancreatic cancer. Nat Immunol 2025; 26:678-691. [PMID: 40263612 DOI: 10.1038/s41590-025-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancers that has yet to benefit from immunotherapies. This is primarily a result of its characteristic 'cold' tumor microenvironment composed of cancer-associated fibroblasts (CAFs), a dense network of extracellular matrix and several immune cell types, the most abundant of which are the tumor-associated macrophages (TAMs). Advances in single-cell and spatial technologies have elucidated the vast functional heterogeneity of CAFs and TAMs, their symbiotic relationship and their cooperative role in the tumor microenvironment. In this Review, we provide an overview of the heterogeneity of CAFs and TAMs, how they establish an immunosuppressive microenvironment and their collaboration in the remodeling of the extracellular matrix. Finally, we examine why the impact of immunotherapy in PDAC has been limited and how a detailed molecular and spatial understanding of the combined role of CAFs and TAMs is paramount to the design of effective therapies.
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
9
|
Leivonen S, Karihtala K, Pellinen T, Karjalainen‐Lindsberg M, Aoki T, Steidl C, Leppä S. Characterization of cancer-associated fibroblasts and their spatial architecture reveals heterogeneity and survival associations in classic Hodgkin lymphoma. Hemasphere 2025; 9:e70145. [PMID: 40433553 PMCID: PMC12107116 DOI: 10.1002/hem3.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 05/29/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of stromal cells, which modulate the immune system and can have both pro- and anti-tumorigenic effects. In classic Hodgkin lymphoma (cHL), the role of CAFs has remained largely undefined. We applied multiplexed immunofluorescence imaging and spatial analysis on tumor samples from two independent cHL patient cohorts (n = 131 and n = 148) to study CAFs and their interactions with Hodgkin Reed-Sternberg (HRS) and tumor microenvironment (TME) cells at the single-cell resolution. We show that higher proportions of CAFs are associated with favorable outcomes, independent of the clinical covariables. In contrast, a subset of CD45+ immune cells with strong fibroblast-activation protein positivity, classified as macrophages, was less abundant in nodular sclerosis subtype and associated with worse outcomes. Neighborhood analysis allowed for the identification of colocalization or regional exclusion of phenotypically defined cell types and recurrent cellular neighborhoods. Despite the positive impact of CAF proportions on survival, patients with enrichment of platelet-derived growth factor receptor beta (PDGFRB)-positive CAFs in the vicinity of HRS cells had worse survival in both cohorts, independent of the clinical determinants. Our findings distinguish various subsets of CAFs and macrophages impacting survival in cHL and underscore the importance of the spatial arrangements in the TME.
Collapse
Affiliation(s)
- Suvi‐Katri Leivonen
- Research Programs Unit, Applied Tumor Genomics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Kristiina Karihtala
- Research Programs Unit, Applied Tumor Genomics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM)HelsinkiFinland
| | | | - Tomohiro Aoki
- Centre for Lymphoid Cancer, BC CancerVancouverBritish ColumbiaCanada
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC CancerVancouverBritish ColumbiaCanada
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of OncologyHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| |
Collapse
|
10
|
Weber F, Reese KL, Pantel K, Smit DJ. Cancer-associated fibroblasts as a potential novel liquid biopsy marker in cancer patients. J Exp Clin Cancer Res 2025; 44:127. [PMID: 40259388 PMCID: PMC12010557 DOI: 10.1186/s13046-025-03387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are tissue residing cells within the tumor microenvironment (TME). Stromal CAFs have been shown to be associated with poor prognosis and tumor progression in several solid tumor entities. Although the molecular mechanisms are not fully understood yet, a critical role within the TME through direct interaction with the tumor cells as well as other cells has been proposed. While most studies on CAFs focus on stromal CAFs, recent reports highlight the possibility of detecting circulating CAFs (cCAFs) in the blood. In contrast to invasive tissue biopsies for stromal CAF characterization, liquid biopsy allows a minimally invasive isolation of cCAFs. Furthermore, liquid biopsy methods could enable continuous monitoring of cCAFs in cancer patients and therefore may present a novel biomarker for solid tumors. In this work, we present an overview of cCAF studies currently available and summarize the liquid biopsy techniques for cCAF isolation and detection. Moreover, the future research directions in the emerging field are highlighted and the potential applications of cCAFs as novel biomarkers for solid tumor patients discussed.
Collapse
Affiliation(s)
- Franziska Weber
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Lan X, Li W, Zhao K, Wang J, Li S, Zhao H. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16:1582532. [PMID: 40313969 PMCID: PMC12043473 DOI: 10.3389/fimmu.2025.1582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are integral components of the tumor microenvironment playing key roles in tumor progression, metastasis, and therapeutic resistance. However, challenges persist in understanding their heterogeneity, origin, and functional diversity. One major obstacle is the lack of standardized naming conventions for CAF subpopulations, with current systems failing to capture their full complexity. Additionally, the identification of CAFs is hindered by the absence of specific biomarkers, limiting the precision of diagnostic and therapeutic strategies. In vitro culture conditions often fail to maintain the in vivo characteristics of CAFs, which complicates their study and the translation of findings to clinical practice. Although current detection methods, such as antibodies, mRNA probes, and single-cell transcriptomics, offer insights into CAF biology, they lack standardization and fail to provide reliable quantitative measures. Furthermore, the dynamic interactions between CAFs, tumor cells, and immune cells within the TME remain insufficiently understood, and the role of CAFs in immune evasion and therapy resistance is an area of ongoing research. Understanding how CAFs influence drug resistance and the immune response is essential for developing more effective cancer therapies. This review aims to provide an in-depth analysis of the challenges in CAF research, propose future research directions, and emphasize the need for improved CAF-targeted therapeutic strategies. By addressing these gaps, it seeks to highlight the potential of CAFs as targets for overcoming therapeutic resistance and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Guo X, Chang M, Li W, Qian Z, Guo H, Xie C, Bi WL, Xing B, Zhang F, Huang Y. Immune atlas of pituitary neuroendocrine tumors highlights endocrine-driven immune signature and therapeutic implication. Cell Rep 2025; 44:115584. [PMID: 40244846 DOI: 10.1016/j.celrep.2025.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
Whether the tumor microenvironment is shaped by endocrine hormone secretion, as well as its cellular heterogeneity and therapeutic implications in pituitary neuroendocrine tumors (pitNETs), remains poorly understood. We demonstrate that pitNETs exhibit a sparse immune infiltration. Mass cytometry of 97,418 immune cells from 56 pitNETs establishes a high-resolution atlas, with macrophages and T cells comprising the predominant populations. Hormone secretion status dictates the immune composition and cellular phenotype. Functioning pitNETs are enriched with T cells, with robust expression of immune-suppressive markers CD38, programmed death (PD)-1, and PD-L1. The lymphoid-enriched microenvironment is associated with shorter progression-free survival in patients with pitNETs. Integrating PD-1 blockade with tumor-targeted therapy in functioning pitNETs demonstrates synergistic efficacy with enhanced apoptosis, induces cell-cycle arrest, and suppresses hormone secretion using patient-derived primary cell cultures. Altogether, our findings provide an extended resource on the cellular and functional heterogeneity of the pitNET immune microenvironment and offer a conceptual framework for rational therapeutic strategies.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhua Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Guo
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wenya Linda Bi
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fan Zhang
- Gastroenterology ICU, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yongsheng Huang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
13
|
Lloyd EG, Jihad M, Manansala JS, Li W, Cheng PS, Mucciolo G, Zaccaria M, Teles SP, Henríquez JA, Harish S, Brais R, Ashworth S, Luo W, Johnson PM, Veghini L, Vallespinos M, Corbo V, Biffi G. SMAD4 and KRAS Status Shapes Cancer Cell-Stromal Cross-Talk and Therapeutic Response in Pancreatic Cancer. Cancer Res 2025; 85:1368-1389. [PMID: 39841099 PMCID: PMC7617379 DOI: 10.1158/0008-5472.can-24-2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on preclinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase the understanding of malignant cell-stromal cell cross-talk in PDAC. In this study, we used single-cell RNA sequencing to analyze the cellular landscape of Trp53-mutant mouse models driven by KrasG12D or KrasG12V, in which Smad4 was wild type or deleted. KrasG12DSmad4-deleted PDAC developed a fibro-inflammatory rich stroma with increased malignant JAK/STAT cell signaling and enhanced therapeutic response to JAK/STAT inhibition. SMAD4 loss in KrasG12V PDAC differently altered the tumor microenvironment compared with KrasG12D PDAC, and the malignant compartment lacked JAK/STAT signaling dependency. Thus, malignant cell genotype affects cancer cell and stromal cell phenotypes in PDAC, directly affecting therapeutic efficacy. Significance: SMAD4 loss differentially impacts malignant cell-stromal cell signaling and treatment sensitivity of pancreatic tumors driven by KRASG12D or KRASG12V, highlighting the importance of understanding genotype-phenotype relationships for precision therapy.
Collapse
Affiliation(s)
- Eloise G. Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Muntadher Jihad
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Judhell S. Manansala
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Wenlong Li
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Priscilla S.W. Cheng
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Gianluca Mucciolo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Marta Zaccaria
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sara Pinto Teles
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Sneha Harish
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Rebecca Brais
- Histopathology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | - Sally Ashworth
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Weike Luo
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Paul M. Johnson
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Mireia Vallespinos
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson way, CB2 0RE, Cambridge, UK
| |
Collapse
|
14
|
Quemerais C, Jean C, Brunel A, Decaup E, Labrousse G, Audureau H, Raffenne J, Belhabib I, Cros J, Perraud A, Dusetti N, Nicolle R, Mathonnet M, Pyronnet S, Martineau Y, Fanjul M, Bousquet C. Unveiling FKBP7 as an early endoplasmic reticulum sentinel in pancreatic stellate cell activation, collagen remodeling and tumor progression. Cancer Lett 2025; 614:217538. [PMID: 39924075 DOI: 10.1016/j.canlet.2025.217538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), fibroblast activation leads to excessive secretion of extracellular matrix (ECM) and soluble factors that regulate tumor progression, prompting investigation into endoplasmic reticulum (ER)-resident proteins that may support this activation. We identified FKBP7, a peptidyl-prolyl isomerase in the ER, as overexpressed in PDAC stroma compared to cancer cells, and in patients with favorable prognosis. Analysis of single-cell RNA sequencing databases revealed FKBP7 expression in pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs). When analyzed by immunohistochemistry on PDAC patient tissues, FKBP7 emerged as an early activation marker in the preneoplastic stroma, preceding αSMA expression, and responding to FAK- and TGFβ-induced stiffening and pro-fibrotic programs in PSCs. Functional analyses revealed that FKBP7 knockdown in PSCs enhanced contractility, Rho/FAK signaling, and secretion of pro-inflammatory cytokines as well as remodeling of type I collagen, promoting an activated phenotype and accelerating tumor growth in vivo. Conversely, FKBP7 expression supported a tumor-restraining (i.e. encapsulating) ECM characterized by type IV collagen. Mechanistically, FKBP7 interacts with BiP, and blocking this interaction instead leads to increased PSC secretion of type I collagen. Thus, FKBP7 serves as a novel PSC marker and ER regulator in a complex with BiP of the secretion of specific collagen subtypes, highlighting its potential to mediate ECM normalization and constrain PDAC tumorigenesis.
Collapse
Affiliation(s)
- Christophe Quemerais
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Guillaume Labrousse
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Hippolyte Audureau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Raffenne
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital - Paris Diderot University, Clichy, France
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM UMR-1068, CNRS UMR-7258, Marseille, France
| | - Remy Nicolle
- Center of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Marjorie Fanjul
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France.
| |
Collapse
|
15
|
Maru SY, Wetzel M, Mitchell JT, Gross NE, Andaloori L, Howe K, Kartalia E, Mo G, Leatherman J, Ho WJ, Fertig EJ, Kagohara LT, Pearce EJ, Jaffee EM. Antigen-presenting cancer-associated fibroblasts in murine pancreatic tumors differentially control regulatory T cell phenotype and function via CXCL9 and CCL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645833. [PMID: 40236227 PMCID: PMC11996409 DOI: 10.1101/2025.03.27.645833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a complex tumor microenvironment (TME) including stromal cells that influence resistance to therapy. Recent studies have revealed that stromal cancer-associated fibroblasts (CAFs) are heterogeneous in origin, gene expression, and function. Antigen-presenting CAFs (apCAFs), are defined by major histocompatibility complex (MHC)-II expression and can activate effector CD4 + T cells that have the potential to contribute to the anti-cancer immune response, but also can induce regulatory T cell (Treg) differentiation. Whether apCAFs promote or restrain the antitumor response remains uncertain. Using tumor clones of the KPC murine PDAC model differing in sensitivity to immune checkpoint blockade (ICB), we found that immunosensitive (sKPC) tumors were characterized by higher immune cell and apCAF infiltration than resistant (rKPC) tumors. IMC analysis showed proximity of apCAFs and CD4 + T cells in both sKPC and rKPC tumors implicating interaction within the TME. apCAF-depleted sKPC tumor-bearing mice had diminished sensitivity to ICB. apCAFs from both sKPC and rKPC tumors activated tumor-infiltrating CD4 + T cells and induced Treg differentiation. However, transcriptomic analysis showed that Tregs induced by apCAFs were overexpressed for immunosuppressive genes in rKPCs relative to sKPCs, and that this is associated with differential chemokine signaling from apCAFs depending on tumor origin. Together these data implicate apCAFs as important mediators of the antitumor immune response, modulation of which could facilitate the development of more effective anti-tumor immune based approaches for PDAC patients.
Collapse
|
16
|
Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu D, Xiao D, Zhang Z, Wang Y, Yang S, Feng Y, Zhao T, Hao J. Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut 2025:gutjnl-2024-333638. [PMID: 40122596 DOI: 10.1136/gutjnl-2024-333638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are highly heterogeneous in the progression of pancreatic ductal adenocarcinoma (PDAC) and vasculogenic mimicry (VM) refers to a phenomenon in which cancer cells adopt endothelial-like characteristics. OBJECTIVE To identify a novel protumoural CAF subtype undertaking VM. DESIGN We used single-cell RNA sequencing and mIHC to identify FAPα+CD144+ endothelial-like CAFs (endoCAFs) and combined prospective and retrospective analyses to assess its clinical outcomes. Tube formation, proliferation and invasion assay were conducted on cell lines, organoids, the orthotopic tumour model and LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre (KPC) mouse model. Mechanically, we performed cytokine array assays, RNA-sequencing, IP-mass spectrometry, ChIP and luciferase analyses. Importantly, an siRNA delivery nanosystem was developed to precisely target FAPα+CD144+endoCAFs in vivo. RESULTS FAPα+CD144+endoCAFs were present in the tumour microenvironment of PDAC, and patients with a higher CD144+CAFs proportion displayed poor prognosis of PDAC. FAPα+CD144+endoCAFs not only acquired a VM phenotype to provide metastatic conduits but also promoted the proliferation and invasion of tumour cells in situ through paracrine signalling, thereby actively facilitating the metastasis of tumour cells. The CD144-β-catenin-STAT3 signalling axis was activated, and CD144 and downstream secreted cytokines were transcriptionally upregulated to maintain the dual roles of endoCAFs. A CAF-targeting siRNA delivery nanosystem, via loading FAPα and siCD144, was administered to precisely target FAPα+CD144+ endoCAFs, which substantially inhibited their protumoural roles in vivo. CONCLUSION FAPα+CD144+endoCAFs can promote metastasis of PDAC via undertaking VM and paracrine through activation of the CD144-β-catenin-STAT3 signalling axis. CAF-targeting siRNA delivery nanosystem can inhibit tumour progression by precisely targeting FAPα+CD144+endoCAFs.
Collapse
Affiliation(s)
- Xugang Sun
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenrun Cai
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Haorui Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chuntao Gao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xi Ma
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yu Guo
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Danqi Fu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Di Xiao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Shengyu Yang
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Yukuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Lan H, Zhu J, Hou H, Zhang C, Huo X, Zhang Y, Yang F, Zhou N, Zhang X. Combination therapy with Chicoric acid and PD-1/PD-L1 blockade improves the immunotherapy response in patient-derived ovarian cancer xenograft model. Cell Commun Signal 2025; 23:137. [PMID: 40087780 PMCID: PMC11909847 DOI: 10.1186/s12964-025-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE Limited treatment options exist for refractory ovarian cancer (OC) due to its poor response to immune therapies. Therefore, there is an urgent need to develop new effective treatment strategies. Chicoric acid (CA) is reported to have immune-enhancing properties, but its efficacy in cancer treatment is not well understood. We hypothesize that CA might improve the efficacy of PD-1/PD-L1 blockade immunotherapy in refractory OC patients. METHODS Patient-derived xenograft (PDX) models were constructed from chemoresistant advanced high-grade serous ovarian cancer patients. These models were treated with CA, aPD-1/aPD-L1 antibodies, or a combination of both. Single-cell RNA sequencing was performed to analyze the cellular composition of the tumor microenvironment (TME), evaluate treatment efficacy, and explore therapeutic mechanisms. Variations in peripheral blood lymphocytes were analyzed via fluorescence-activated cell sorting. Immunohistochemistry confirmed the variations in tumor-infiltrating lymphocytes and tumor cells. RESULTS Immunocompetent peripheral blood mononuclear cell (PBMC)-PDX models were successfully constructed using malignant ascites fluid and PBMCs. After treatment, 158,734 cells from 15 samples were categorized into epithelial cells, T lymphocytes, myeloid cells, fibroblasts, and endothelial cells. CA enhanced the antitumor ability of immune cells against OC cells. Notably, CA stimulated the proliferation of CD45 + and CD3 + cells and promoted the migration of CD8 + and CD4 + T cells from peripheral blood to infiltrate the TME. Additionally, CA enhanced the response of OCs to aPD-L1/aPD-1 treatment, strengthened the interaction between tumor and nontumor cells, and identified APP/CD74 as a critical ligand‒receptor pair. CHI3L1 was also found to be a potential marker for predicting immunotherapy efficacy in OC. CONCLUSION This study demonstrated that combination therapy with CA and aPD-1/aPD-L1 might be a promising strategy for treating OC effectively.
Collapse
Affiliation(s)
- Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Jingjuan Zhu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xingfa Huo
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
18
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
19
|
Loveless IM, Kemp SB, Hartway KM, Mitchell JT, Wu Y, Zwernik SD, Salas-Escabillas DJ, Brender S, George M, Makinwa Y, Stockdale T, Gartrelle K, Reddy RG, Long DW, Wombwell A, Clark JM, Levin AM, Kwon D, Huang L, Francescone R, Vendramini-Costa DB, Stanger BZ, Alessio A, Waters AM, Cui Y, Fertig EJ, Kagohara LT, Theisen B, Crawford HC, Steele NG. Human Pancreatic Cancer Single-Cell Atlas Reveals Association of CXCL10+ Fibroblasts and Basal Subtype Tumor Cells. Clin Cancer Res 2025; 31:756-772. [PMID: 39636224 PMCID: PMC11831110 DOI: 10.1158/1078-0432.ccr-24-2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) patients with tumors enriched for the basal-like molecular subtype exhibit enhanced resistance to standard-of-care treatments and have significantly worse overall survival compared with patients with classic subtype-enriched tumors. It is important to develop genomic resources, enabling identification of novel putative targets in a statistically rigorous manner. EXPERIMENTAL DESIGN We compiled a single-cell RNA sequencing (scRNA-seq) atlas of the human pancreas with 229 patient samples aggregated from publicly available raw data. We mapped cell type-specific scRNA-seq gene signatures in bulk RNA-seq (n = 744) and spatial transcriptomics (ST; n = 22) and performed validation using multiplex immunostaining. RESULTS Analysis of tumor cells from our scRNA-seq atlas revealed nine distinct populations, two of which aligned with the basal subtype, correlating with worse overall survival in bulk RNA-seq. Deconvolution identified one of the basal populations to be the predominant tumor subtype in nondissociated ST tissues and in vitro tumor cell and patient-derived organoid lines. We discovered a novel enrichment and spatial association of CXCL10+ cancer-associated fibroblasts with basal tumor cells. We identified that besides immune cells, ductal cells also express CXCR3, the receptor for CXCL10, suggesting a relationship between these cell types in the PDAC tumor microenvironment. CONCLUSIONS We show that our scRNA-seq atlas (700,000 cells), integrated with ST data, has increased statistical power and is a powerful resource, allowing for expansion of current subtyping paradigms in PDAC. We uncovered a novel signaling niche marked by CXCL10+ cancer-associated fibroblasts and basal tumor cells that could be explored for future targeted therapies.
Collapse
Affiliation(s)
- Ian M. Loveless
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
| | - Samantha B. Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kailee M. Hartway
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Samuel D. Zwernik
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel James Salas-Escabillas
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Sydney Brender
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Yetunde Makinwa
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Thais Stockdale
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Rohit G. Reddy
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Allison Wombwell
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Julie M. Clark
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Albert M. Levin
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - David Kwon
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Ling Huang
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ralph Francescone
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Alessio
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Department of Radiology, MSU, Michigan State University, East Lansing, Michigan
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Skip Viragh Center for Clinical and Translational Research, Baltimore, Maryland
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Brian Theisen
- Department of Pathology, Henry Ford Health, Detroit, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Chen SY, Kung HC, Espinoza B, Washington I, Chen K, Mu K, Zlomke H, Loycano M, Wang R, Burns WR, Fu J, Zheng L. Distinct response to IL-1β blockade in liver- and lung-specific metastasis mouse models of pancreatic cancer with heterogeneous tumor microenvironments. Exp Hematol Oncol 2025; 14:13. [PMID: 39948655 PMCID: PMC11823153 DOI: 10.1186/s40164-025-00607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a heterogeneous tumor microenvironment (TME). The mechanism by which this heterogeneity confers resistance against immunotherapy remains unclear. Interleukin- 1β (IL-1β) is a proinflammatory cytokine that regulates heterogeneous cancer associated fibroblast (CAF) phenotype and promotes an immunosuppressive TME. Anti-IL-1β monoclonal antibody significantly enhanced the anti-tumor activity of anti-PD-1 in a preclinical model of PDAC. However, clinical trials have shown limited activity of the anti-IL-1β and anti-PD-1 combination. Therefore, we hypothesize that anti-tumor immune response to the combination of anti-IL-1β and anti-PD-1 antibodies is context-dependent and would be affected by the TME heterogeneity in PDAC. METHODS Liver- and lung-specific metastasis mouse models of PDAC were used to investigate the antitumor activity of anti-IL-1β and anti-PD-1 antibodies alone or in combination by ultrasound examination and survival analysis. Their effects on the TME heterogeneity were assessed by flow cytometry and single nuclear RNA sequencing. RESULTS The combination of anti-IL-1β and anti-PD-1 antibodies does not slow primary tumor growth but prolongs overall survival and reduces lung metastasis rates in a PDAC orthotopic murine model with lung metastasis tropism. In contrast, combination therapy slows primary tumor growth and prolongs survival, but does not reduce liver metastasis rates in a PDAC murine orthotopic model with liver metastasis tropism. Flow cytometry analysis showed that the combination of anti-IL-1β and anti-PD-1 antibodies restores T cell activation negated by the monotherapies. Mechanistically, in the PDAC model with lung metastasis tropism, but not in the model with liver metastasis tropism, combination treatment reverses an increased trend of immunosuppressive myeloid cells as a result of monotherapy. Single-nuclear RNA sequencing analysis of both organ-specific tumor models demonstrated that anti-IL-1β treatment altered infiltration and function of CAF and immune cells differently. Furthermore, anti-IL-1β treatment modulated cytokine/chemokine ligand-receptor-receptor interactions in the models with different organ-specific metastasis distinctly. CONCLUSION This study reveals the differential responses of organ-specific metastasis mouse models of PDAC with distinct TMEs to anti-IL-1β and anti-PD-1 treatments, suggesting that treatment response is context-dependent and affected by TME heterogeneity.
Collapse
Affiliation(s)
- Sophia Y Chen
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng-Chung Kung
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Birginia Espinoza
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - India Washington
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Chen
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaiyi Mu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Zlomke
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Loycano
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rulin Wang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Burns
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Mays Cancer Center, University of Texas, 7979 Wurzbach Road, MC8026, San Antonio, TX, 78229, USA.
| |
Collapse
|
21
|
Craig-Schapiro R, Li G, Chen K, Gomez-Salinero JM, Nachman R, Kopacz A, Schreiner R, Chen X, Zhou Q, Rafii S, Redmond D. Single-cell atlas of human pancreatic islet and acinar endothelial cells in health and diabetes. Nat Commun 2025; 16:1338. [PMID: 39915484 PMCID: PMC11802906 DOI: 10.1038/s41467-024-55415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
Characterization of the vascular heterogeneity within the pancreas has previously been lacking. Here, we develop strategies to enrich islet-specific endothelial cells (ISECs) and acinar-specific endothelial cells (ASECs) from three human pancreases and corroborate these findings with three published pancreatic datasets. Single-cell RNA sequencing reveals the unique molecular signatures of ISECs, including structural genes COL13A1, ESM1, PLVAP, UNC5B, and LAMA4, angiocrine genes KDR, THBS1, BMPs and CXCR4, and metabolic genes ACE, PASK and F2RL3. ASECs display distinct signatures including GPIHBP1, CCL14, CD74, AQP1, KLF4, and KLF2, which may manage the inflammatory and metabolic needs of the exocrine pancreas. Ligand-receptor analysis suggests ISECs and ASECs interact with LUM+ fibroblasts and RGS5+ pericytes and smooth muscle cells via VEGF-A:VEGFR2, CXCL12:CXCR4, and LIF:LIFR pathways. Comparative expression and immunohistochemistry indicate disruption of endothelial-expressed CD74, ESM1, PLVAP, THBD, VWA1, and VEGF-A cross-talk among vascular and other cell types in diabetes. Thus, our data provide a single-cell vascular atlas of human pancreas, enabling deeper understanding of pancreatic pathophysiology in health and disease.
Collapse
Affiliation(s)
| | - Ge Li
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Chen
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus M Gomez-Salinero
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Nachman
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Aleksandra Kopacz
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Qiao Zhou
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - David Redmond
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Kowalewski KM, Adair SJ, Talkington A, Wieder JJ, Pitarresi JR, Perez-Vale K, Chu B, Dolatshahi S, Sears R, Stanger BZ, Bauer TW, Lazzara MJ. Hypoxia-induced histone methylation and NF-κB activation in pancreas cancer fibroblasts promote EMT-supportive growth factor secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635486. [PMID: 39974981 PMCID: PMC11838405 DOI: 10.1101/2025.01.30.635486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment contains hypoxic tissue subdomains and cancer-associated fibroblasts (CAFs) of multiple subtypes that play tumor-promoting and -restraining roles. Here, we demonstrate that hypoxia promotes an inflammatory-like CAF phenotype and that hypoxic CAFs selectively promote epithelial-mesenchymal transition (EMT) in PDAC cancer cells through growth factor-mediated cell crosstalk. By analyzing patient tumor single-cell transcriptomics and conducting an inhibitor screen, we identified IGF-2 and HGF as specific EMT-inducing growth factors produced by hypoxic CAFs. We further found that reactive oxygen species-activated NF-κB cooperates with hypoxia-dependent histone methylation to promote IGF-2 and HGF expression in hypoxic CAFs. In lineage-traced autochthonous PDAC mouse tumors, hypoxic CAFs resided preferentially near hypoxic, mesenchymal cancer cells. However, in subcutaneous tumors engineered with hypoxia fate-mapped CAFs, once-hypoxic re-oxygenated CAFs lacked a spatial correlation with mesenchymal cancer cells. Thus, hypoxia promotes reversible CAF-malignant cell interactions that drive EMT through druggable signaling pathways. One-sentence summary We show that hypoxic fibroblasts in pancreas cancer leverage histone methylation and ROS-mediated NF-κB activation to produce growth factors that drive epithelial-mesenchymal transition in malignant cells, demonstrating how tumor stromal features cooperate to initiate a signaling process for disease progression.
Collapse
|
23
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
24
|
Fincham REA, Periasamy P, Joseph CR, Meng J, Lim JCT, Wee F, Stasinos K, Goulart MR, Ye J, Chong LY, Au BV, Goh D, Yeong JPS, Kocher HM. The interplay between natural killer cells and pancreatic stellate cells in pancreatic ductal adenocarcinoma. Cancer Commun (Lond) 2025; 45:172-177. [PMID: 39654335 PMCID: PMC11833667 DOI: 10.1002/cac2.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 02/19/2025] Open
Affiliation(s)
- Rachel Elizabeth Ann Fincham
- Centre for Tumour BiologyBarts Cancer Institute‐a Cancer Research United Kingdom (CRUK) Centre of ExcellenceQueen Mary University of LondonLondonUK
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Parthiban Periasamy
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Jia Meng
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Felicia Wee
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Konstantinos Stasinos
- Centre for Tumour BiologyBarts Cancer Institute‐a Cancer Research United Kingdom (CRUK) Centre of ExcellenceQueen Mary University of LondonLondonUK
| | - Michelle Rodrigues Goulart
- Centre for Tumour BiologyBarts Cancer Institute‐a Cancer Research United Kingdom (CRUK) Centre of ExcellenceQueen Mary University of LondonLondonUK
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Li Yen Chong
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Bijin Veonice Au
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB)Agency of ScienceTechnology and Research (A*STAR)SingaporeSingapore
- Centre for Quantitative MedicineDuke‐National University of Singapore (NUS) Medical SchoolSingaporeSingapore
- Department of Anatomical PathologySingapore General HospitalSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Hemant Mahendrakumar Kocher
- Centre for Tumour BiologyBarts Cancer Institute‐a Cancer Research United Kingdom (CRUK) Centre of ExcellenceQueen Mary University of LondonLondonUK
- Barts and the London Hepato‐Pancreato‐Biliary (HPB) CentreThe Royal London HospitalBarts Health National Health Service TrustLondonUK
| |
Collapse
|
25
|
Ren F, Meng L, Zheng S, Cui J, Song S, Li X, Wang D, Li X, Liu Q, Bu W, Sun H. Myeloid cell-derived apCAFs promote HNSCC progression by regulating proportion of CD4 + and CD8 + T cells. J Exp Clin Cancer Res 2025; 44:33. [PMID: 39891284 PMCID: PMC11783918 DOI: 10.1186/s13046-025-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
It is well-known that cancer-associated fibroblasts (CAFs) are involved in the desmoplastic responses in Head and Neck Squamous Cell Carcinoma (HNSCC). CAFs are pivotal in the tumor microenvironment (TME) molding, and exert a profound influence on tumor development. The origin and roles of CAFs, however, are still unclear in the HNSCC, especially antigen-presenting cancer-associated fibroblasts (apCAFs). Our current study tried to explore the origin, mechanism, and function of the apCAFs in the HNSCC. Data from single-cell transcriptomics elucidated the presence of apCAFs in the HNSCC. Leveraging cell trajectory and Cellchat analysis along with robust lineage-tracing assays revealed that apCAFs were primarily derived from myeloid cells. This transdifferentiation was propelled by the macrophage migration inhibitory factor (MIF), which was secreted by tumor cells and activated the JAK/STAT3 signaling pathway. Analysis of the TCGA database has revealed that markers of apCAFs were inversely correlated with survival rates in patients with HNSCC. In vivo experiments have demonstrated that apCAFs could facilitate tumor progression. Furthermore, apCAFs could modulate ratio of CD4+ T cells/CD8+ T cells, such as higher ratio of CD4+ T cells/CD8+ T cells could promote tumor progression. Most importantly, data from in vivo assays revealed that inhibitors of MIF and p-STAT3 could significantly inhibit the OSCC growth. Therefore, our findings show potential innovative therapeutic approaches for the HNSCC.Significance: ApCAFs derived from myeloid cells promote the progression of HNSCC by increasing the ratio of CD4+/CD8+ cells, indicating potential novel targets to be used to treat the human HNSCC.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Lin Meng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Jiasen Cui
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Dandan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Qilin Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Götze J, Meißner K, Pereira-Veiga T, Belloum Y, Schneegans S, Kropidlowski J, Gorgulho J, Busch A, Honselmann KC, Schönrock M, Putscher A, Peine S, Nitschke C, Simon R, Spindler V, Izbicki JR, Hackert T, Bokemeyer C, Pantel K, Uzunoglu FG, Sinn M, Wikman H. Identification and characterization of tumor and stromal derived liquid biopsy analytes in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2025; 44:14. [PMID: 39815324 PMCID: PMC11737273 DOI: 10.1186/s13046-024-03262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The lack of predictive biomarkers contributes notably to the poor outcomes of patients with pancreatic ductal adenocarcinoma (PDAC). Cancer-associated fibroblasts (CAFs) are the key components of the prominent PDAC stroma. Data on clinical relevance of CAFs entering the bloodstream, known as circulating CAFs (cCAFs) are scarce. Here, we developed a combined liquid biopsy assay to detect cCAFs and circulating tumor cells (CTCs) in metastatic PDAC (mPDAC) and other metastatic gastrointestinal malignancies (mGI). In addition, we evaluated plasma hyaluronan (HA) levels as a complementary surrogate biomarker of the stromal extent in patients with PDAC. METHODS A sequential liquid biopsy assay based on a two step-enrichment, combining marker dependent and independent cell enrichment, was established for cCAF and CTC detection and validated in mPDAC and mGI patients. The enriched cells were identified by multiplex immunofluorescence. HA measurement was performed by ELISA on blood samples from healthy blood donors (HD), localized and late-stage PDAC patients. RESULTS cCAFs (≥ 1cCAFs/7.5 mL blood) were detected in 95.4% of mPDAC and in 78.2% of mGI patients, with significantly higher numbers in mPDAC compared to mGI patients (mean number 22.7 vs. 11.0; P = 0.0318). mPDAC patients with ≥ 15 cCAFs/7.5 mL blood had a significant shorter median overall survival (mOS 3.2 months (95% confidence interval (CI) 0.801-5.855) vs. 14.2 months (95% CI 6.055-22.332); P = 0.013), whereby CTC levels were not associated with mOS. In mGI neither cCAFs nor CTCs had a significant impact on OS. HA plasma levels in mPDAC patients were significantly higher compared to HD (mean 123.0 ng/mL vs. 74.45 ng/mL, P = 0.015). High HA in localized and late-stage PDAC were associated with a significantly shorter mOS (mOSlocalized PDAC: 12.6 months vs. 23.5 months (P = 0.008); mOSmPDAC: 1.8 months vs. 5.3 months (P = 0.004)). CONCLUSIONS Our liquid biopsy assay provides robust detection of cCAFs in mPDAC and mGI patients. The measurement of both circulatory stromal parameters, cCAFs and HA, adds valuable clinical information as they are associated with an unfavorable outcome in PDAC. These results highlight that stromal characteristics unique to PDAC could be leveraged to fill the current gap in discovering predictive biomarkers.
Collapse
Affiliation(s)
- Julian Götze
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany.
| | - Kira Meißner
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Thais Pereira-Veiga
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Yassine Belloum
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Svenja Schneegans
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Jolanthe Kropidlowski
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Alina Busch
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Kim Christin Honselmann
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Martin Schönrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Arne Putscher
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Spindler
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Robert Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany
| | - Faik Güntaç Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Sinn
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, Martinistr, 52, 20248, Hamburg, Germany.
| | - Harriet Wikman
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52, 20248, Hamburg, Germany.
| |
Collapse
|
27
|
Ying H, Kimmelman AC, Bardeesy N, Kalluri R, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2025; 39:36-63. [PMID: 39510840 PMCID: PMC11789498 DOI: 10.1101/gad.351863.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a grim prognosis for patients. Recent multidisciplinary research efforts have provided critical insights into its genetics and tumor biology, creating the foundation for rational development of targeted and immune therapies. Here, we review the PDAC genomic landscape and the role of specific oncogenic events in tumor initiation and progression, as well as their contributions to shaping its tumor biology. We further summarize and synthesize breakthroughs in single-cell and metabolic profiling technologies that have illuminated the complex cellular composition and heterotypic interactions of the PDAC tumor microenvironment, with an emphasis on metabolic cross-talk across cancer and stromal cells that sustains anabolic growth and suppresses tumor immunity. These conceptual advances have generated novel immunotherapy regimens, particularly cancer vaccines, which are now in clinical testing. We also highlight the advent of KRAS targeted therapy, a milestone advance that has transformed treatment paradigms and offers a platform for combined immunotherapy and targeted strategies. This review provides a perspective summarizing current scientific and therapeutic challenges as well as practice-changing opportunities for the PDAC field at this major inflection point.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA;
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
- The Cancer Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Raghu Kalluri
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, Texas 77030, USA;
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Gao B, Gou X, Feng C, Zhang Y, Gu H, Chai F, Wang Y, Ye Y, Hong N, Hu G, Sun B, Cheng J, Yang H. Identification of cancer-associated fibrolast subtypes and distinctive role of MFAP5 in CT-detected extramural venous invasion in gastric cancer. Transl Oncol 2025; 51:102188. [PMID: 39531783 PMCID: PMC11600027 DOI: 10.1016/j.tranon.2024.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Extramural venous invasion (EMVI) detected by computed tomography has been identified as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) are critical for remodeling the tumor microenvironment in GCs. Here, we report that MFAP5+ CAFs promote the formation of EMVI imaging in GC. We detected gene expression in pathological samples from 13 advanced GC patients with EMVI. Radiogenomics results showed the degree of CAFs infiltration was directly proportional to the EMVI score and EMT pathway in GC patients. Single-cell sequencing data analysis results showed that MFAP5+CAFs subtypes in GC were negatively correlated with patient prognosis and were enriched in tumor lactylation modification and EMT pathways. Immunohistochemistry results showed that the expression of MFAP5, L-lactyl and EMT markers in GC tissues was proportional to the EMVI score. CAF from gastric cancer tissue was extracted using collagenase method and co-cultured with GC cell line in vitro. After lentivirus knockdown of MFAP5 in CAFs, the levels of L-lactoyl and histone lactylation modifications were significantly reduced, and the sphere-forming and vascularization abilities of CAFs were significantly inhibited. Cell function experiments showed that MFAP5+ CAFs can affect the EMT, metastasis and invasion capabilities of GC cells. In vivo experimental results of the nude mouse in situ EMVI model suggest that MFAP5+ CAF may promote the formation of EMVI imaging features in GC by regulating lactylation modification. This innovative work may provide important new references for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Xinyi Gou
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yinli Zhang
- Department of Pathology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Huining Gu
- Department of Immunology, School of Basic Medical Sciences, Peking University and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China.
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
29
|
Zhao Z, Xiong S, Gao J, Zhang Y, Guo E, Huang Y. C3 + cancer-associated fibroblasts promote tumor growth and therapeutic resistance in gastric cancer via activation of the NF-κB signaling pathway. J Transl Med 2024; 22:1130. [PMID: 39707456 DOI: 10.1186/s12967-024-05939-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) remains one of the most lethal malignancies globally, with limited therapeutic options. Cancer-associated fibroblasts (CAFs), a diverse population of stromal cells within the tumor microenvironment (TME), play a central role in tumor progression and therapeutic resistance. However, the specific markers identifying tumor-promoting CAF subsets in GC have yet to be fully characterized. METHODS Through animal studies and RNA sequencing, complement C3 (C3) emerged as a key marker linked to tumor-promoting CAF subsets. Single-cell sequencing and multiplex immunofluorescence staining confirmed that C3 expression is predominantly localized within CAFs. Independent cohort analyses demonstrated a strong association between elevated levels of C3+ CAFs and poor clinical outcomes in GC patients. To further investigate, small interfering RNA (siRNA)-mediated knockdown of C3 in CAFs was employed in vitro, with subsequent experiments, including cell migration assays, cell viability assays, and immunofluorescence, revealing significant functional impacts. RESULTS C3 secreted by CAFs promoted Epithelial-mesenchymal transition (EMT) and accelerated cancer cell migration. Patients with minimal C3+ CAF infiltration exhibited a higher probability of deriving therapeutic benefit from adjuvant treatments. Furthermore, C3+ CAFs were associated with immunosuppressive effects and an immune-evasive microenvironment marked by CD8 + T cell dysfunction. A lower prevalence of C3+ CAFs correlated with improved responsiveness to immunotherapy in GC patients. Enrichment analysis highlighted pronounced activation of the NF-κB signaling pathway in C3+ CAFs relative to their C3- counterparts, supported by elevated phosphorylation levels of IKK, IκBα, and p65 in C3+ CAFs compared to both C3- CAFs and normal fibroblasts (NFs). Silencing p65 nuclear translocation in CAFs through siRNA significantly suppressed C3 secretion. CONCLUSIONS The study suggests that NF-κB pathway-mediated CAF activation enhances C3 secretion, driving EMT, migration, chemoresistance, and immune evasion in GC progression. Targeting the NF-κB/C3 signaling axis in CAFs may offer a viable therapeutic strategy for GC management.
Collapse
Affiliation(s)
- Zhenxiong Zhao
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjing Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
31
|
Zhang Y, Ling L, Maganti S, Hope JL, Galapate CM, Carrette F, Duong-Polk K, Bagchi A, Scott DA, Lowy AM, Bradley LM, Commisso C. Macropinocytosis controls metabolic stress-driven CAF subtype identity in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625709. [PMID: 39677772 PMCID: PMC11642790 DOI: 10.1101/2024.11.29.625709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors are deficient in glutamine, an amino acid that tumor cells and CAFs use to sustain their fitness. In PDAC, both cell types stimulate macropinocytosis as an adaptive response to glutamine depletion. CAFs play a critical role in sculpting the tumor microenvironment, yet how adaptations to metabolic stress impact the stromal architecture remains elusive. In this study, we find that macropinocytosis functions to control CAF subtype identity when glutamine is limiting. Our data demonstrate that metabolic stress leads to an intrinsic inflammatory CAF (iCAF) program driven by MEK/ERK signaling. Utilizing in vivo models, we find that blocking macropinocytosis alters CAF subtypes and reorganizes the tumor stroma. Importantly, these changes in stromal architecture can be exploited to sensitize PDAC to immunotherapy and chemotherapy. Our findings demonstrate that metabolic stress plays a role in shaping the tumor microenvironment, and that this attribute can be harnessed for therapeutic impact.
Collapse
Affiliation(s)
- Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Li Ling
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jennifer L. Hope
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Florent Carrette
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anindya Bagchi
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A. Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M. Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Linda M. Bradley
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Veghini L, Pasini D, Fang R, Delfino P, Filippini D, Neander C, Vicentini C, Fiorini E, Lupo F, D'Agosto SL, Carbone C, Agostini A, Piro G, Rosa D, Bevere M, Markus P, Behrens D, Luchini C, Lawlor RT, Scarpa A, Biffi G, Cheung PF, Siveke JT, Corbo V. Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer. Nat Commun 2024; 15:10534. [PMID: 39627211 PMCID: PMC11615044 DOI: 10.1038/s41467-024-54975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Fibroblast heterogeneity is increasingly recognised across cancer conditions. Given their important contribution to disease progression, mapping fibroblasts' heterogeneity is critical to devise effective anti-cancer therapies. Cancer-associated fibroblasts (CAFs) represent the most abundant cell population in pancreatic ductal adenocarcinoma (PDAC). Whether CAF phenotypes are differently specified by PDAC cell lineages remains to be elucidated. Here, we reveal an important role for the MAPK signalling pathway in defining PDAC CAF phenotypes. We show that epithelial MAPK activity promotes the myofibroblastic differentiation of CAFs by sustaining the expression and secretion of TGF-β1. We integrate single-cell profiling of post-perturbation transcriptional responses from mouse models with cellular and spatial profiles of human tissues to define a MAPKhigh CAF (mapCAF) phenotype. We show that this phenotype associates with basal-like tumour cells and reduced frequency of CD8+ T cells. In addition to elevated MAPK activity, this mapCAF phenotype is characterized by TGF-β signalling, hypoxia responsive signatures, and immunoregulatory gene programs. Furthermore, the mapCAF signature is enriched in myofibroblastic CAFs from various cancer conditions and correlates with reduced response to immune checkpoint inhibition in melanoma. Altogether, our data expand our knowledge on CAF phenotype heterogeneity and reveal a potential strategy for targeting myofibroblastic CAFs in vivo.
Collapse
Affiliation(s)
- Lisa Veghini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Davide Pasini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rui Fang
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dea Filippini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caterina Vicentini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Sabrina L D'Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Human Technopole, Milan, Italy
| | - Carmine Carbone
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Agostini
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Geny Piro
- Department of Medical and Surgical Sciences, Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Diego Rosa
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Peter Markus
- Department of General, Visceral, and Trauma Surgery, Elisabeth Hospital Essen, Essen, Germany
| | - Diana Behrens
- EPO-Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Phyllis F Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Spatiotemporal Tumor Heterogeneity, DKTK, Partner Site Essen, A Partnership Between DKFZ and University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
33
|
Dimitrieva S, Harrison JM, Chang J, Piquet M, Mino-Kenudson M, Gabriel M, Sagar V, Horn H, Lage K, Kim J, Li G, Weng S, Harris C, Kulkarni AS, Ting DT, Qadan M, Fagenholz PJ, Ferrone CR, Grauel AL, Laszewski T, Raza A, Riester M, Somerville T, Wagner JP, Dranoff G, Engelman JA, Kauffmann A, Leary R, Warshaw AL, Lillemoe KD, Fernández-del Castillo C, Ruddy DA, Liss AS, Cremasco V. Dynamic Evolution of Fibroblasts Revealed by Single-Cell RNA Sequencing of Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:3049-3066. [PMID: 39485038 PMCID: PMC11609929 DOI: 10.1158/2767-9764.crc-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Pancreatic cancer remains a high unmet medical need. Understanding the interactions between stroma and cancer cells in this disease may unveil new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jon M. Harrison
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Chang
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Millicent Gabriel
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Vivek Sagar
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Heiko Horn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie Kim
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Gang Li
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Shaobu Weng
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Cynthia Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter J. Fagenholz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R. Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Angelo L. Grauel
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Alina Raza
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Markus Riester
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tim Somerville
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Joel P. Wagner
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Oncology, Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Rebecca Leary
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew L. Warshaw
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D. Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - David A. Ruddy
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viviana Cremasco
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
34
|
Yumoto S, Horiguchi H, Kadomatsu T, Horino T, Sato M, Terada K, Miyata K, Moroishi T, Baba H, Oike Y. Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy. Cancer Sci 2024; 115:3846-3858. [PMID: 39321028 PMCID: PMC11611770 DOI: 10.1111/cas.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
Collapse
Affiliation(s)
- Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
35
|
McCabe IC, Peng XL, Kearney JF, Yeh JJ. CAFomics: convergence to translation for precision stroma approaches. Carcinogenesis 2024; 45:817-822. [PMID: 39514556 DOI: 10.1093/carcin/bgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
A noticeable characteristic of pancreatic ductal adenocarcinoma (PDAC) tumors is a dense tumor microenvironment with abundant and dense, desmoplastic stroma woven tightly with both cellular and matrix components. The high stromal density is associated with higher intratumor pressures which, until the last decade, was largely assumed to be tumor protective, confirmed by early studies demonstrating that altering the stroma was effective in genetically engineered models of PDAC. However, clinical trials using these approaches have been disappointing. There is increasing recognition that stroma heterogeneity is much greater than initially thought with an explosion of investigation into cancer-associated fibroblast (CAF) subpopulations led by experimental and single-cell transcriptomic studies. This review summarizes and attempts to harmonize the current transcriptomic data of CAF subpopulations. Understanding the heterogeneity of CAFs, the matrix, and other tumor microenvironment features will be critical to developing effective therapeutic approaches. Identifying model systems that best recapitulate the clinical behavior and treatment response of human PDAC will be important. Examining subpopulations as defined by clinical outcome will remain a critical step in defining clinically impactful CAF subtypes in larger clinical cohorts. The future of precision oncology in PDAC will depend on the integration of precision tumor epithelial and precision stroma approaches.
Collapse
Affiliation(s)
- Ian C McCabe
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Xianlu L Peng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Joseph F Kearney
- Department of Surgery, University of North Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, United States
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Department of Surgery, University of North Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, United States
| |
Collapse
|
36
|
Liang C, Wang M, Huang Y, Yam JWP, Zhang X, Zhang X. Recent Advances of Small Extracellular Vesicles for the Regulation and Function of Cancer-Associated Fibroblasts. Int J Mol Sci 2024; 25:12548. [PMID: 39684264 DOI: 10.3390/ijms252312548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population in the tumor microenvironment (TME) that critically affect cancer progression. Small extracellular vesicles (sEVs) act as information messengers by transmitting a wide spectrum of biological molecules, including proteins, nucleic acids, and metabolites, from donor cells to recipient cells. Previous studies have demonstrated that CAFs play important roles in tumor progression by regulating tumor cell proliferation, metastasis, therapeutic resistance, and metabolism via sEVs. In turn, tumor-derived sEVs can also regulate the activation and phenotype switch of CAFs. The dynamic crosstalk between CAFs and cancer cells via sEVs could ultimately determine cancer progression. In this review, we summarized the recent advance of the biological roles and underlying mechanisms of sEVs in mediating CAF-tumor cell interaction and its impact on cancer progression. We also reviewed the clinical applications of tumor- and CAF-derived sEVs, which could identify novel potential targets and biomarkers for cancer diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Chengdong Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
37
|
Chen X, Zhou Z, Yazgan Z, Xie L, Rossi F, Liu Y, Zhang B, Polanco PM, Zeh HJ, Kim AC, Huang H. Single-cell resolution spatial analysis of antigen-presenting cancer-associated fibroblast niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623232. [PMID: 39605724 PMCID: PMC11601292 DOI: 10.1101/2024.11.15.623232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent studies have identified a unique subtype of cancer-associated fibroblasts (CAFs) termed antigen-presenting CAFs (apCAFs), which remain the least understood CAF subtype. To gain a comprehensive understanding of the origin and function apCAFs, we construct a fibroblast molecular atlas across 14 types of solid tumors. Our integration study unexpectedly reveals two distinct apCAF lineages present in most cancer types: one associated with mesothelial-like cells and the other with fibrocytes. Using a high-resolution single-cell spatial imaging platform, we characterize the spatial niches of these apCAF lineages. We find that mesothelial-like apCAFs are located near cancer cells, while fibrocyte-like apCAFs are associated with tertiary lymphoid structures. Additionally, we discover that both apCAF lineages can up-regulate the secreted protein SPP1, which facilitates primary tumor formation and peritoneal metastasis. Taken together, this study offers an unprecedented resolution in analyzing apCAF lineages and their spatial niches.
Collapse
|
38
|
Song H, Lu T, Han D, Zhang J, Gan L, Xu C, Liu S, Li P, Zhang K, Hu Z, Li H, Li Y, Zhao X, Zhang J, Xing N, Shi C, Wen W, Yang F, Qin W. YAP1 Inhibition Induces Phenotype Switching of Cancer-Associated Fibroblasts to Tumor Suppressive in Prostate Cancer. Cancer Res 2024; 84:3728-3742. [PMID: 39137404 PMCID: PMC11565174 DOI: 10.1158/0008-5472.can-24-0932] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAF) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from protumorigenic to antitumor phenotypes and to enhance ICB efficacy in prostate cancer. Integration of four prostate cancer single-cell RNA sequencing datasets defined protumorigenic and antitumor CAFs, and RNA-seq, flow cytometry, and a prostate cancer organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an antitumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti-PD-1 treatment on prostate cancer. Overall, this study revealed a mechanism regulating CAF identity in prostate cancer and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB. Significance: YAP1 regulates cancer-associated fibroblast phenotypes and can be targeted to switch cancer-associated fibroblasts from a protumorigenic subtype that promotes extracellular matrix deposition to a tumor-suppressive subtype that stimulates antitumor immunity and immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongtao Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lunbiao Gan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhihao Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
39
|
Çorbacı K, Gurleyik MG, Gonultas A, Aker F, Gul MO, Tilki M. Evaluation of prognostic significance of histopathological characteristics and tumor-infiltrating lymphocytes for pancreatic cancer survival. Sci Rep 2024; 14:27392. [PMID: 39521901 PMCID: PMC11550438 DOI: 10.1038/s41598-024-79342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
With a 5-year survival of ˂ 10%, pancreatic cancer is one of the leading causes of cancer-related deaths. Given the role of the distribution of tumor-infiltrating lymphocyte (TILs) subtypes in the tumor and its microenvironment in predicting prognosis, the development of new targeted therapies based on T-cell adaptive response has gained considerable attention. This study aimed to examine the peritumoral spread of TILs and its relationship with other prognostic parameters and survival. This study included 60 patients with pancreatic cancer who had undergone surgery with follow-up between 2011 and 2021. Demographic characteristics, tumor histopathological features, peritumoral TILs counts, and intratumoral programmed cell death protein-1 (PD-1) and programmed death ligand - 1 (PD-L1) positivity were evaluated. Furthermore, overall survival and their efficacy in predicting survival according to TNM stage were analyzed. The number of cluster differentiation-3 positive (CD3 P) TILs increased with advancing pathological T stage. CD3 P and CD8 P TIL counts were higher in patients with peripancreatic fatty tissue invasion. Patients with PD-L1 positivity and higher TIL counts had better survival rates. PD-L1-negative patients with a low CD8 positive/total lymph node count (P/T) ratio had a longer survival. Moreover, patients with poorly differentiated tumors with low CD3 P/T and CD8 P/T ratios had a longer survival. The CD3 P/T and CD8 P/T ratios were compatible with the automatic and manual measurements. Age, tumor differentiation, N stage, and peritumoral TIL count and subtype, when evaluated together with the presence of PD-L1 in the tumor tissue, may have prognostic significance for survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Kadir Çorbacı
- General Surgery, Osmaneli Mustafa Selahattin Çetintaş State Hospital, Bilecik, Turkey.
| | - Meryem Gunay Gurleyik
- Department of General Surgery, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | | | - Fugen Aker
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Onur Gul
- Surgical Oncology, Malatya Training and Research Hospital, Malatya, Turkey
| | - Metin Tilki
- Department of General Surgery, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
40
|
Carpenter ES, Vendramini-Costa DB, Hasselluhn MC, Maitra A, Olive KP, Cukierman E, Pasca di Magliano M, Sherman MH. Pancreatic Cancer-Associated Fibroblasts: Where Do We Go from Here? Cancer Res 2024; 84:3505-3508. [PMID: 39283867 DOI: 10.1158/0008-5472.can-24-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic ductal adenocarcinoma is a deadly disease and is projected to become the second leading cause of cancer-related death by 2030. A major hallmark is the exuberant host response comprising the tumor microenvironment, of which, cancer-associated fibroblasts (CAF) are a prevalent component. Despite the gains in understanding of their heterogeneity and functionality from CAF studies in recent years, there are many unanswered questions surrounding this diverse population of cells. Here, we summarize the views of several experts in the field, focusing on the current understanding of CAFs and challenges to address.
Collapse
Affiliation(s)
- Eileen S Carpenter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Debora Barbosa Vendramini-Costa
- Department of Surgery, Henry Ford Health, Detroit, Michigan
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Marie C Hasselluhn
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mara H Sherman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
41
|
Wang H, Chen J, Chen X, Liu Y, Wang J, Meng Q, Wang H, He Y, Song Y, Li J, Ju Z, Xiao P, Qian J, Song Z. Cancer-Associated Fibroblasts Expressing Sulfatase 1 Facilitate VEGFA-Dependent Microenvironmental Remodeling to Support Colorectal Cancer. Cancer Res 2024; 84:3371-3387. [PMID: 39250301 DOI: 10.1158/0008-5472.can-23-3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAF) are a major component of the tumor stroma. Identifying the key molecular determinants for the protumor properties of CAFs could enable the development of more effective treatment strategies. In this study, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in patients with colorectal cancer. Colorectal cancer models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of VEGFA from heparan sulfate proteoglycan. The increased bioavailability of VEGFA initiated the deposition of extracellular matrix and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its histone deacetylase (HDAC) inhibitory activity. The insufficient butyrate production in patients with colorectal cancer increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC was dependent on SULF1 expression in CAFs, and patients with colorectal cancer with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in colorectal cancer and provide a strategy to stratify patients with colorectal cancer for HDAC inhibitor treatment. Significance: SULF1+ cancer-associated fibroblasts play a tumor-promoting role in colorectal cancer by stimulating extracellular matrix deposition and angiogenesis and can serve as a biomarker for the therapeutic response to HDAC inhibitors in patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Yingqiang Liu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Ying He
- Huzhou Key Laboratory of Translational Medicine, Huzhou, China
| | - Yujia Song
- Hangzhou No. 14 High School, Hangzhou, China
| | - Jingyun Li
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
42
|
Gao Y, Li J, Cheng W, Diao T, Liu H, Bo Y, Liu C, Zhou W, Chen M, Zhang Y, Liu Z, Han W, Chen R, Peng J, Zhu L, Hou W, Zhang Z. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 2024; 42:1764-1783.e10. [PMID: 39303725 DOI: 10.1016/j.ccell.2024.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Fibroblasts, known for their functional diversity, play crucial roles in inflammation and cancer. In this study, we conduct comprehensive single-cell RNA sequencing analyses on fibroblast cells from 517 human samples, spanning 11 tissue types and diverse pathological states. We identify distinct fibroblast subpopulations with universal and tissue-specific characteristics. Pathological conditions lead to significant shifts in fibroblast compositions, including the expansion of immune-modulating fibroblasts during inflammation and tissue-remodeling myofibroblasts in cancer. Within the myofibroblast category, we identify four transcriptionally distinct subpopulations originating from different developmental origins, with LRRC15+ myofibroblasts displaying terminally differentiated features. Both LRRC15+ and MMP1+ myofibroblasts demonstrate pro-tumor potential that contribute to the immune-excluded and immune-suppressive tumor microenvironments (TMEs), whereas PI16+ fibroblasts show potential anti-tumor functions in adjacent non-cancerous regions. Fibroblast-subtype compositions define patient subtypes with distinct clinical outcomes. This study advances our understanding of fibroblast biology and suggests potential therapeutic strategies for targeting specific fibroblast subsets in cancer treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jianan Li
- Changping Laboratory, Beijing 102206, China
| | - Wenfeng Cheng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tian Diao
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Huilan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Minmin Chen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanyuan Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weidong Han
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510180, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenhong Hou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, and School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
43
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
44
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
45
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
46
|
Küçükosmanoglu A, van der Borden CL, de Boer LEA, Verhaak R, Noske D, Wurdinger T, Radonic T, Westerman BA. Oncogenic composite mutations can be predicted by co-mutations and their chromosomal location. Mol Oncol 2024; 18:2407-2422. [PMID: 38757376 PMCID: PMC11459034 DOI: 10.1002/1878-0261.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/23/2023] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Genetic heterogeneity in tumors can show a remarkable selectivity when two or more independent genetic events occur in the same gene. This phenomenon, called composite mutation, points toward a selective pressure, which frequently causes therapy resistance to mutation-specific drugs. Since composite mutations have been described to occur in sub-clonal populations, they are not always captured through biopsy sampling. Here, we provide a proof of concept to predict composite mutations to anticipate which patients might be at risk for sub-clonally driven therapy resistance. We found that composite mutations occur in 5% of cancer patients, mostly affecting the PIK3CA, EGFR, BRAF, and KRAS genes, which are common precision medicine targets. Furthermore, we found a strong and significant relationship between the frequencies of composite mutations with commonly co-occurring mutations in a non-composite context. We also found that co-mutations are significantly enriched on the same chromosome. These observations were independently confirmed using cell line data. Finally, we show the feasibility of predicting compositive mutations based on their co-mutations (AUC 0.62, 0.81, 0.82, and 0.91 for EGFR, PIK3CA, KRAS, and BRAF, respectively). This prediction model could help to stratify patients who are at risk of developing therapy resistance-causing mutations.
Collapse
Affiliation(s)
- Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Carolien L van der Borden
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Lisanne E A de Boer
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Roel Verhaak
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
- Department of Computational Biology, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - David Noske
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Tom Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, The Netherlands
| |
Collapse
|
47
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
48
|
Carlomagno S, Setti C, Ortolani F, Sivori S. Pancreatic ductal adenocarcinoma microenvironment: Soluble factors and cancer associated fibroblasts as modulators of NK cell functions. Immunol Lett 2024; 269:106898. [PMID: 39019404 DOI: 10.1016/j.imlet.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the most frequent pancreatic cancer and represents one of the most aggressive human neoplasms. Typically identified at advance stage disease, most PDAC tumors are unresectable and resistant to standard therapies. The immunosuppressive microenvironment in PDAC impedes tumor control but a greater understanding of the complex stromal interactions within the tumor microenvironment (TME) and the development of strategies capable of restoring antitumor effector immune responses could be crucial to fight this aggressive tumor and its spread. Natural Killer (NK) cells play a crucial role in cancer immunosurveillance and represent an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. This review describes some crucial components of the PDAC TME (collagens, soluble factors and fibroblasts) that can influence the presence, phenotype and function of NK cells in PDAC patients tumor tissue. This focused overview highlights the therapeutic relevance of dissecting the complex stromal composition to define new strategies for NK cell-based immunotherapies to improve the treatment of PDAC.
Collapse
Affiliation(s)
- Simona Carlomagno
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy.
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy
| | - Fulvia Ortolani
- Department of Medicine (DMED), University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
49
|
Lei ZN, Teng QX, Koya J, Liu Y, Chen Z, Zeng L, Chen ZS, Fang S, Wang J, Liu Y, Pan Y. The correlation between cancer stem cells and epithelial-mesenchymal transition: molecular mechanisms and significance in cancer theragnosis. Front Immunol 2024; 15:1417201. [PMID: 39403386 PMCID: PMC11471544 DOI: 10.3389/fimmu.2024.1417201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025] Open
Abstract
The connections between cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) is critical in cancer initiation, progression, metastasis, and therapy resistance, making it a focal point in cancer theragnosis. This review provides a panorama of associations and regulation pathways between CSCs and EMT, highlighting their significance in cancer. The molecular mechanisms underlined EMT are thoroughly explored, including the involvement of key transcription factors and signaling pathways. In addition, the roles of CSCs and EMT in tumor biology and therapy resistance, is further examined in this review. The clinical implications of CSCs-EMT interplay are explored, including identifying mesenchymal-state CSC subpopulations using advanced research methods and developing targeted therapies such as inhibitors and combination treatments. Overall, understanding the reciprocal relationship between EMT and CSCs holds excellent potential for informing the development of personalized therapies and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yangruiyu Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhou Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Shuo Fang
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinxiang Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|