1
|
Chen J, Tarantino G, Severgnini M, Baginska J, Giobbie-Hurder A, Weirather JL, Manos M, Russell JD, Pfaff KL, Rodig SJ, Huang AY, Brennick R, Nazzaro M, Hathaway E, Holovatska M, Manuszak C, Ranasinghe S, Liu D, Hodi FS. Circulating cytokine associations with clinical outcomes in melanoma patients treated with combination nivolumab plus ipilimumab. Oncoimmunology 2025; 14:2432723. [PMID: 39699928 DOI: 10.1080/2162402x.2024.2432723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Nivolumab plus ipilimumab (aCTLA-4/aPD-1) combination therapy has significantly improved clinical outcomes in patients with metastatic melanoma, with 50%-60% of patients responding to treatment, but predictors of response are poorly characterized. We hypothesized that circulating cytokines and peripheral white blood cells may predict response to therapy and evaluated 15 cytokines and complete blood counts (CBC with differentials) from 89 patients with advanced melanoma treated with combination therapy from three points in time: pre-treatment, one month and approximately three months after starting therapy. Clinical endpoints evaluated included durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS). A parsimonious predictive model was developed to identify cytokines predictors of response to combination therapy. In this study, we found that pre-treatment, patients with DCB had higher IL-23, lower CXCL6, and lower IL-10 levels. Lower NLR one month after starting therapy predicted better PFS and OS, primarily driven by an increase in absolute lymphocytes. A multivariate model demonstrated that baseline CXCL6, IL-10, IL-23 were independent predictors of therapy response, and the combined model has reached an area under the curve (AUC) of 0.79 in prediction of response to combination therapy. Our study identified baseline CXCL6, IL-23, and IL-10 as predictors of response to aCTLA4/aPD1 combination therapy among patients with metastatic melanoma. This study also provides a framework for identifying patients who are likely to respond to combination ICB, as well as a subset of patients with high risk of developing resistance and are thus in need of alternative therapeutic options, such as clinical trials.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joanna Baginska
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janice D Russell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Y Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan Brennick
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Nazzaro
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma Hathaway
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marta Holovatska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Claire Manuszak
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Srinika Ranasinghe
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
2
|
Enssle S, Sax A, May P, El Khawanky N, Soliman N, Perl M, Enssle JC, Krey K, Ruland J, Pichlmair A, Bassermann F, Poeck H, Heidegger S. Gasdermin E links tumor cell-intrinsic nucleic acid signaling to proinflammatory cell death for successful checkpoint inhibitor cancer immunotherapy. Oncoimmunology 2025; 14:2504244. [PMID: 40366863 PMCID: PMC12080277 DOI: 10.1080/2162402x.2025.2504244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Durable clinical responses to immune checkpoint inhibitors (ICI) are limited to a minority of patients, and molecular pathways that modulate their efficacy remain incompletely defined. We have recently shown that activation of the innate RNA-sensing receptor RIG-I and associated apoptotic tumor cell death can facilitate tumor immunosurveillance and -therapy, but the mechanism that drives its immunogenicity remained unclear. We here show that intratumoral activity of the pore-forming protein gasdermin E (GSDME) links active RIG-I signaling and apoptotic cell death in tumor cells to inflammatory pyroptosis. Activation of tumor-intrinsic RIG‑I triggered cleavage of GSDME, pore formation, loss of cell membrane integrity and leakage of cytosolic components from dying tumor cells. Tumor antigen cross-presentation by dendritic cells and subsequent expansion of cytotoxic T cells strongly relied on tumor-intrinsic GSDME activity. In preclinical murine cancer models, defective GSDME signaling rendered tumors resistant to ICI therapy. Epigenetic reprogramming with upregulation of Gdsme enhanced the susceptibility of tumor cells to inflammatory cell death and immunotherapy. In humans, transcriptome analysis of melanoma samples showed strong correlation between genetic activity of the RIG-I and pyroptosis pathways. In melanoma patients, high transcriptional activity of a pyroptosis gene set was associated with prolonged survival and beneficial response to ICI therapy. In summary, our data show that GSDME links RIG-I and apoptotic signaling to inflammatory cell death, thereby driving its immunogenicity and responsiveness to ICI. A deeper understanding of these pathways may allow for the development of novel combined modality approaches to improve ICI treatment responses in cancer patients.
Collapse
Affiliation(s)
- Stefan Enssle
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Sax
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Peter May
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nadia El Khawanky
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nardine Soliman
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Markus Perl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Julius C. Enssle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Karsten Krey
- Institute of Virology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jürgen Ruland
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Pichlmair
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Virology, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- Center for immunomedicine intransplantation and oncology (CITO), Regensburg, Germany
| | - Simon Heidegger
- Department of Medicine III, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Centerfor Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Xiao L, Hu R, Chen W, Gao J, Zhao Y, Wang Z, Du G, Tian Y, Lai L, Liu L, Su M. An antibody targeting an immune checkpoint molecule BTN2A2 enhances anti-tumor immunity. Neoplasia 2025; 65:101161. [PMID: 40262436 PMCID: PMC12053764 DOI: 10.1016/j.neo.2025.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
Tumors exploit immune checkpoints to evade immune responses. Therefore, targeting these checkpoints has become a key strategy in cancer immunotherapy. In this study, we have developed a novel immune checkpoint inhibitor (ICI) targeting the B7 family-related molecule BTN2A2. The human BTN2A2 protein, which was highly expressed in some tumor tissues and activated antigen-presenting cells (APCs), can inhibit T cell activation and proliferation. The anti-BTN2A2 monoclonal antibody (mAb) can neutralize the inhibitory effect of BTN2A2 on T cells. In mouse models of pancreatic cancer and glioma, compared to the control group, the anti-BTN2A2 treatment group exhibited tumor shrinkage of 35.8 % (P < 0.05) and 51.2 % (P < 0.01), respectively, along with increased CD8+ tumor-infiltrating lymphocytes (TILs) by 1.7-fold (P < 0.001) and 2.2-fold (P < 0.001), respectively. In addition, anti-BTN2A2 mAb also increased the infiltration of B cells, M1 macrophages, and the expression of inflammatory cytokines in T cells, while reducing the infiltration of M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Thus, anti-hBTN2A2 mAb normalizes the immunodeficient tumor microenvironment (TME) and inhibits tumor growth. Our results suggest that targeting the BTN2A2 immune checkpoint may represent a novel strategy for cancer treatment, especially in immunosuppressive 'cold' tumors.
Collapse
Affiliation(s)
- Li Xiao
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Rong Hu
- Translotional Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Wei Chen
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Jie Gao
- Translotional Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Youbo Zhao
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Zuli Wang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Guangshi Du
- Translotional Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Yishen Tian
- Translotional Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Lu Liu
- The Public Health Clinical Center of Guiyang City, 6 Daying Road, Guiyang City, Guizhou, China, 550004
| | - Min Su
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113; Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, China, 561113.
| |
Collapse
|
4
|
Sun Q, Wang Y, Ren H, Hou S, Niu K, Wang L, Liu S, Ye J, Cui C, Qi X. Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Adv Healthc Mater 2025; 14:e2405124. [PMID: 40109122 DOI: 10.1002/adhm.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
In the tumor immunosuppressive microenvironment (TIME), regulatory T cells (Tregs) critically suppress anticancer immunity, characterized by high expression of glucocorticoid-induced TNF receptor (GITR) expression and sensitivity to reactive oxygen species (ROS). This study develops a near-infrared (NIR)-responsive hollow nanocomplex (HPDA-OPC/DTA-1) using hollow polydopamine nanoparticles (HPDA), endowed with thermogenic and antioxidative properties, specifically targeting Tregs to activate antitumor immunity. The GITR agonist DTA-1, combined with the antioxidant oligomeric proanthocyanidins (OPC) to deplete Tregs. However, Tregs depletion alone may not sufficiently trigger robust immune responses. The HPDA nanocarrier enhances thermogenic and antioxidative capacities, supporting photothermal immunotherapy. The HPDA-OPC/DTA-1 demonstrates NIR responsiveness for both photothermal therapy (PTT) and OPC release, while facilitating Tregs depletion via DTA-1 and reducing ROS levels, thereby reviving antitumor immunity. Notably, intratumoral CD4+CD25+FOXP3+ Tregs exhibited a 4.08-fold reduction alongside a 49.11-fold increase in CD8+ T cells/Tregs relative to controls. Enhanced dendritic cells (DCs) maturation and immunogenic cell death (ICD) induction further demonstrate that HPDA-OPC/DTA-1 alleviates immunosuppression and activates antitumor immunity. Ultimately, the observed tumor inhibitory effect (tumor volume: 6.75-fold versus the control) and an over 80% survival rate highlight the therapeutic potential of combining Tregs targeting, antioxidant strategy, and photothermal immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Yuyan Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Hetian Ren
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Shiyuan Hou
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Kaiyi Niu
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Liu Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Jingyi Ye
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
5
|
Wilczak M, Surman M, Jankowska U, Skupien-Rabian B, Przybyło M. MGAT3 and MGAT5 overexpression alters the protein cargo of extracellular vesicles released by metastatic melanoma cells. Biochem Biophys Res Commun 2025; 762:151749. [PMID: 40199132 DOI: 10.1016/j.bbrc.2025.151749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are potential non-invasive diagnostic, prognostic and therapeutic tools. Additionally, they are important contributors to tumorigenesis. Glycosylation has been found to modulate the composition of the EV proteome. Increased amounts of β1,6-branched N-glycans, synthesized by N-acetylglucosaminyltransferase V (GnT-V), are most commonly observed in melanoma and are associated with decreased cell adhesion and increased metastasis. The opposite effect is caused by the addition of bisecting GlcNAc by N-acetylglucosaminyltransferase III (GnT-III). To date, the impact of these enzymes on EV cargo in melanoma remains unexplored. Flow cytometry was used to study the surface glycosylation of genetic variants of WM266-4 melanoma cells with induced overexpression of GnT-III or GnT-V encoding genes (MGAT3 or MGAT5) and EVs released by these cells. LC-MS/MS proteomics was applied to analyze the effect of altered glycosylation on the proteome of released EVs, followed by detailed bioinformatic analysis. Flow cytometry analysis revealed dynamic changes in the surface glycosylation of EVs derived from melanoma cells overexpressing MGAT3 or MGAT5. Induced overexpression of MGAT3 or MGAT5 also caused significant changes in the proteome of EVs. The proteomic analysis identified a total of 1770 microvesicular and 704 exosomal proteins that play different roles in melanoma progression, including those with established diagnostic/prognostic potential and those closely associated with melanoma onset. Proteomic profiling of EVs derived from cells overexpressing MGAT3 and MGAT5 revealed functional changes in EV protein content driven by glycosylation modifications. The study presented a potential multifaced application of melanoma-derived EVs for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Krakow, Poland.
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
6
|
Hsu CY, Chandramoorthy HC, Mohammed JS, Al-Hasnaawei S, Yaqob M, Kundlas M, Samikan K, Sahoo S, Sunori SK, Abbas ZA. Exosomes as key mediators in immune and cancer cell interactions: insights in melanoma progression and therapy. Arch Dermatol Res 2025; 317:729. [PMID: 40252131 DOI: 10.1007/s00403-025-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
Exosomes (30-150 nm) are small extracellular vesicles that are secreted by cells into the extracellular environment and are known to mediate cell-to-cell communication. Exosomes contain proteins, lipids, and RNA molecules in relative abundance, capable of modifying the activity of target cells. Melanoma-derived exosomes (MEXs) promote the transfer of oncogenic signals and immunosuppressive factors into immune cells, resulting in a bias of the immune response towards tumor-promoting processes. MEXs could suppress the activation and proliferation of T cells and dendritic cells and induce differentiation of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). They can induce apoptosis of antigen-specific CD8 + T cells and promote the transfer of tumor antigens, resulting in immune evasion. Specifically, MEXs can shuttle cytokines like interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) to immune cells or express programmed death-ligand 1 (PD-L1 or CD274), creating an immune-suppressive microenvironment that promotes tumorigenesis. Since exosomes preferentially accumulate in melanoma tissues, this targeted delivery could enhance the bioavailability of treatments while limiting side effects. Here, we review the molecular composition of melanoma-derived exosomes, their mechanisms of action, and their potential as therapeutic targets or biomarkers in melanoma. The summarizations of these mechanisms to appropriately influence exosome-mediated interactions could yield new tactics to elicit anti-melanoma immunity or augment the therapeutic effects of current therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ, 85004, USA.
| | - Harish C Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine and Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | | | - Shaker Al-Hasnaawei
- College of Pharmacy, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Mohammed Yaqob
- Department of Biology, Mazaya University College, Dhiqar, Iraq
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Krishnakumar Samikan
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - S K Sunori
- Graphic Era Hill University, Bhimtal, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Zainab Ahmed Abbas
- College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
7
|
Zhang C, Wang H, Li X, Jiang Y, Sun G, Yu H. Enhancing antitumor immunity: the role of immune checkpoint inhibitors, anti-angiogenic therapy, and macrophage reprogramming. Front Oncol 2025; 15:1526407. [PMID: 40260303 PMCID: PMC12009726 DOI: 10.3389/fonc.2025.1526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Cancer treatment has long been hindered by the complexity of the tumor microenvironment (TME) and the mechanisms that tumors employ to evade immune detection. Recently, the combination of immune checkpoint inhibitors (ICIs) and anti-angiogenic therapies has emerged as a promising approach to improve cancer treatment outcomes. This review delves into the role of immunostimulatory molecules and ICIs in enhancing anti-tumor immunity, while also discussing the therapeutic potential of anti-angiogenic strategies in cancer. In particular, we highlight the critical role of endoplasmic reticulum (ER) stress in angiogenesis. Moreover, we explore the potential of macrophage reprogramming to bolster anti-tumor immunity, with a focus on restoring macrophage phagocytic function, modulating hypoxic tumor environments, and targeting cytokines and chemokines that shape immune responses. By examining the underlying mechanisms of combining ICIs with anti-angiogenic therapies, we also review recent clinical trials and discuss the potential of biomarkers to guide and predict treatment efficacy.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuxin Jiang
- Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Varney SD, Erkes DA, Mersky GL, Mustafa MU, Chua V, Chervoneva I, Purwin TJ, Alnemri E, Aplin AE. Metabolic Inhibition Induces Pyroptosis in Uveal Melanoma. Mol Cancer Res 2025; 23:350-362. [PMID: 39670827 PMCID: PMC11961327 DOI: 10.1158/1541-7786.mcr-24-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Few treatment options are available for patients with metastatic uveal melanoma. Although the bispecific tebentafusp is FDA approved, immunotherapy has largely failed, likely given the poorly immunogenic nature of uveal melanoma. Treatment options that improve the recognition of uveal melanoma by the immune system may be key to reducing disease burden. We investigated whether uveal melanoma has the ability to undergo pyroptosis, a form of immunogenic cell death. Publicly available patient data and cell line analysis showed that uveal melanoma expressed the machinery needed for pyroptosis, including gasdermins D and E (GSDMD and E), caspases 1, 3, 4, and 8, and ninjurin-1. We induced cleavage of GSDMs in uveal melanoma cell lines treated with metabolic inhibitors. In particular, the carnitine palmitoyltransferase 1 (CPT1) inhibitor, etomoxir, induced propidium iodide uptake, caspase 3 cleavage, and the release of HMGB1 and IL-1β, indicating that the observed cleavage of GSDMs led to pyroptosis. Importantly, a gene signature reflecting CPT1A activity correlated with poor prognosis in patients with uveal melanoma and knockdown of CPT1A also induced pyroptosis. Etomoxir-induced pyroptosis was dependent on GSDME but not on GSDMD, and a pyroptosis gene signature correlated with immune infiltration and improved response to immune checkpoint blockade in a set of patients with uveal melanoma. Together, these data show that metabolic inhibitors can induce pyroptosis in uveal melanoma cell lines, potentially offering an approach to enhance inflammation-mediated immune targeting in patients with metastatic uveal melanoma. Implications: Induction of pyroptosis by metabolic inhibition may alter the tumor immune microenvironment and improve the efficacy of immunotherapy in uveal melanoma.
Collapse
Affiliation(s)
- Scott D. Varney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Dan A. Erkes
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Glenn L. Mersky
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Manal U. Mustafa
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Emad Alnemri
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
9
|
Guo H, Liu C, Wu K, Li Y, Zhang Z, Chen F. Single-cell RNA sequencing reveals an IL1R2+Treg subset driving immunosuppressive microenvironment in HNSCC. Cancer Immunol Immunother 2025; 74:159. [PMID: 40131478 PMCID: PMC11936857 DOI: 10.1007/s00262-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Regulatory T cells (Tregs) play an immunosuppressive role in tumor microenvironment (TME) in various of cancer types. However, how different Treg subsets influence and effect on head and neck squamous cell carcinoma (HNSCC) remain unclear. Here, using single-cell RNA sequencing (scRNA-seq), we identified an IL1R2+Treg subset which promoted the progression of HNSCC. Via tissue microassay (TMA) and enzyme-linked immunosorbent assay (ELISA), we verified the clinical diagnostic value of the IL1R2+Treg and soluble IL1R2 (sIL1R2). In addition, we constructed tumor-bearing mouse models to explore the antitumor effects of combined targeting IL1R2 and CTLA4. For mechanism, we found IL-1β promoted the expression of IL1R2 and CTLA4 in Tregs, and upregulated CTLA4 though NR4A1 translocation. These results revealed that IL1R2+Treg and serum IL1R2 level had potential diagnostic and prognostic value of HNSCC and combined targeting of IL1R2 and CTLA4 might be an effective strategy to inhibit tumor progression.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zhu T, Li Y, Wang Y, Li D. The Application of Dendritic Cells Vaccines in Tumor Therapy and Their Combination with Biomimetic Nanoparticles. Vaccines (Basel) 2025; 13:337. [PMID: 40333202 PMCID: PMC12031636 DOI: 10.3390/vaccines13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
Dendritic cells (DCs) act as a bridge between innate and adaptive immunity by presenting antigens to effector immune cells and have shown broad application potential in tumor immunotherapy. However, the clinical translation of DC vaccines encounters significant challenges, such as the immunosuppressive tumor microenvironment (TME) and the sub-optimal DC function and vaccine efficacy in vivo. In this review, our investigation has uncovered the latest developments in DC vaccines and their potential in cancer immunotherapy, with a special emphasis on the integration of nanotechnology. Several types of nanomaterials, including protein cage nanoparticles (NPs), biomimetic NPs, and targeted multifunctional NPs, have been developed to enhance the antigen presentation ability of DCs and their stimulatory effects on T cells. In addition, we have also summarized the synergistic anti-cancer effects of DC vaccines with immune checkpoint inhibitors, chemotherapy, and radiotherapy. In addition, recent advances in nanotechnology have made it possible to develop novel biomarkers that can enhance the antigen presentation capacity of DCs and stimulate T cells. These biomarkers not only improve the accuracy and precision of DC vaccine design but also provide new insights into understanding the mechanisms of the DC-mediated immune response. Despite challenges pertaining to technical complexities and individual adaptation in the design and production of DC vaccines, personalized immunotherapy based on DCs is expected to become an important part of cancer treatment with rapid developments in biotechnology and immunology. This review provides new perspectives and potential solutions for the optimal design and application of DC vaccines in cancer therapy.
Collapse
Affiliation(s)
- Tong Zhu
- Panjin Central Hospital, Panjin 124010, China;
| | - Yuexin Li
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150081, China;
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Danyang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
11
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
12
|
Hu Y, Yang R, Ni S, Song Z. Bibliometric analysis of targeted immunotherapy for osteosarcoma-current knowledge, hotspots and future perspectives. Front Immunol 2025; 15:1485053. [PMID: 39995821 PMCID: PMC11847827 DOI: 10.3389/fimmu.2024.1485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis on examining the current condition, areas of interest, and rising trends of immunotherapy for osteosarcoma (ITFOS), as well as its importance in associated research domains. Methods An extensive collection of academic papers on the use of ITFOS was obtained from the Web of Science between January 1, 2000 and October 20, 2023. Then, using a variety of tools like HisCite, VOSviewer, CiteSpace, and the bibliometrix package, a bibliometric study was carried out. This study included the collection of information on country, institution, author, journal, and keywords. Results A comprehensive analysis was undertaken on a total of 616 publications obtained from 247 journals, encompassing the contributions of 3725 authors affiliated with 831 institutes spanning across 43 countries/regions. Notably, China exhibited the highest quantity of published 277 (44.99%) articles on ITFOS. The most productive institution was Zhejiang University, with 26 (4.22%) publications. The author with the highest publication output was Tsukahara, Tomohide from Japan with 15 (2.44%) publications. The article with the most citation was "DOI: 10.1200/JCO.2014.58.0225". Frontiers in Immunology demonstrated the highest level of productivity, having published a total of 31 (5.03%) articles. The most frequently used were "osteosarcoma," "immunotherapy," and "cancer,". Meanwhile, "sequencing", "prognostic signature" and "immune microenvironment" have been identified as the research frontiers for the forthcoming years. Conclusion This paper provides a thorough evaluation of current research trends and advancements in ITFOS. It includes relevant research findings and emphasizes collaborative efforts among authors, institutions, and countries.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
13
|
Lu X, Vano YA, Su X, Verkarre V, Sun CM, Cheng W, Xu L, Yan F, Kotti S, Fridman WH, Sautes-Fridman C, Oudard S, Malouf GG. Stratification system with dual human endogenous retroviruses for predicting immunotherapy efficacy in metastatic clear-cell renal cell carcinoma. J Immunother Cancer 2025; 13:e010386. [PMID: 39848689 PMCID: PMC11784120 DOI: 10.1136/jitc-2024-010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/05/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored. METHODS This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial. ERV expression was quantified using the ERVmap algorithm from RNA sequencing data. Our primary objective was to correlate ERV expression with progression-free survival, with overall survival and time-to-second-treatment survival as secondary endpoints. We used bootstrap methods with univariate Cox regression on 666 substantially expressed ERVs to evaluate their prognostic significance and stability. RESULTS Our analysis centered on two ERVs, E4421_chr17 and E1659_chr4, which consistently exhibited opposing prognostic impacts across both cohorts. We developed a stratification system based on their median expression levels, categorizing patients into four ERV subgroups. These subgroups were further consolidated into a three-tier risk model that significantly correlated with ICI treatment outcomes. The most responsive ERV risk category showed enhanced endothelial cell infiltration, whereas the resistant category was characterized by higher levels of myeloid dendritic cells, regulatory T cells, myeloid-derived suppressor cells, and markers of T-cell exhaustion. Notably, this ERV-based classification outperformed traditional transcriptomic signatures in predicting ICI efficacy and showed further improvement when combined with epigenetic DNA methylation markers. CONCLUSIONS Our findings introduce a dual ERV-based stratification system that effectively categorizes patient risk and predicts clinical outcomes for ccRCC patients undergoing ICI therapy. Beyond enhancing the predictive precision of existing transcriptomic models, this system paves the way for more targeted and individualized approaches in the realm of precision oncology.
Collapse
Affiliation(s)
- Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
| | - Yann-Alexandre Vano
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP, Université Paris Cité, Paris, France
- Centre de Recherche Cordeliers, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP, Université Paris Cité, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche Cordeliers, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Wenxuan Cheng
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
| | - Li Xu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Salma Kotti
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP, Université Paris Cité, Paris, France
| | - Wolf Hervé Fridman
- Centre de Recherche Cordeliers, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche Cordeliers, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Stéphane Oudard
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, APHP, Université Paris Cité, Paris, France
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg (ICANS), Strasbourg, France
| |
Collapse
|
14
|
Lawal B, Wang Y, Lotfinejad P, Sharma R, Yang C, Annasamudram A, Wang XS. NFATC2 target gene signature correlates with immune checkpoint blockade resistance in melanoma. Am J Cancer Res 2025; 15:311-321. [PMID: 39949941 PMCID: PMC11815363 DOI: 10.62347/eyml2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/10/2024] [Indexed: 02/16/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-PD-1 and anti-CTLA-4, have significantly advanced melanoma treatment by reactivating the immune system to target cancer cells. However, a substantial portion of patients do not respond or develop resistance, highlighting the need for more effective predictive biomarkers. Dysregulation of transcriptional programs has been implicated in cancer progression and immune evasion, with transcription factors (TFs) playing a crucial role. In this study, we investigated transcriptional gene signatures (TGSs) for their potential to predict ICI resistance in melanoma by analyzing two independent clinical trial datasets. Among the identified TFs, NFATC2 (Nuclear Factor of Activated T Cells 2) was observed to be a promising marker for resistance to anti-PD-1 therapy. NFATC2, a regulator of T cell activation, may be co-opted by melanoma cells to evade immune surveillance. Our analysis indicated that elevated NFATC2 TGS scores were associated with ICI resistance and poorer survival outcomes across multiple melanoma cohorts. Validation in independent datasets further suggested NFATC2's potential predictive value, particularly in patients without liver metastasis or with prior anti-CTLA-4 therapy. Elevated NFATC2 TGS scores also correlated with reduced immune cell infiltration, specifically of CD8+ T cells, increased markers of T cell exhaustion, and higher tumor purity. These findings support NFATC2 TGS as a candidate biomarker for stratifying melanoma patients and potentially informing ICI therapy response. Further research into NFATC2-associated immune evasion mechanisms may offer insights for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Bashir Lawal
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Yue Wang
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Parisa Lotfinejad
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Renu Sharma
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Chuang Yang
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Anusha Annasamudram
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of PittsburghPittsburgh, PA 15213, USA
- Department of Pathology, University of PittsburghPittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Xu H, Xue S, Sun Y, Ma J, Li S, Wang Y, Mao T, Ge W, Yue M, Shentu D, Lu W, Wang Y, Hu J, Cui J, Zhang X, Cai L, Wang Y, Wang L. CREB3L1 facilitates pancreatic tumor progression and reprograms intratumoral tumor-associated macrophages to shape an immunotherapy-resistance microenvironment. J Immunother Cancer 2025; 13:e010029. [PMID: 39762079 PMCID: PMC11749327 DOI: 10.1136/jitc-2024-010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect. METHODS We tested UPR signaling including CREB3L1 in Thapsigargin-treated PDAC cells. Subsequently, we defined CREB3L1 expression and further analyzed its expression with clinical characteristics in PDAC. Then, we established gene-modified cells to determine whether CREB3L1 functions in cell proliferation and migration capacity. Besides, we constructed subcutaneously and orthotopically transplanted mice models to verify their progrowing function and pulmonary metastasis models to prove their proinvasion role. What's more, RNAseq, qPCR, Western blotting, immunohistochemistry and multicolor flow cytometry experiments were used to explore the mechanism of how CREB3L1 worked in PDAC. Lastly, CREB3L1 expression correlation with PDAC immunotherapy outcome and immune cell signatures were explored in the patients with advanced PDAC who received PD-1 antibody therapy. RESULTS We first confirmed CREB3L1 could be induced by endoplasmic reticulum stressor and found its aberrant activation was associated with poorer overall survival in PDAC patients indicating the protumor function of the new UPR sensor. Functionally, we confirmed CREB3L1 contributing to PDAC malignant progression including growth and metastasis by multiple in in vitro and in vivo models. Mechanistically, CREB3L1 upregulated COL3A1 and promoted dense stroma formation for facilitating PDAC and knocking down COL3A1 disrupted CREB3L1 protumor function. Furthermore, CREB3L1-induced TAM polarization toward an M2 phenotype and reduced the infiltration of CD8+ T cells. Clinically, CREB3L1 correlated with immune cell signatures as well as immune checkpoint blockade (ICB) treatment response and outcome that CREB3L1aberrant activation indicated poorer efficacy and worse prognosis than the low in PDAC which might empower clinical decision. CONCLUSIONS Collectively, this study revealed CREB3L1 facilitated PDAC progression, shaped an immune exclude tumor microenvironment and distinguished therapy response and outcome of ICB therapy indicating CREB3L1 could be a promising novel molecular target and biomarker for PDAC treatment.
Collapse
Affiliation(s)
- Haiyan Xu
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengbai Xue
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyu Ma
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Li
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wang
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yue
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiyuan Shentu
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Lu
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiong Hu
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Zhang
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cai
- Department of Infectious Diseases, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yu Wang
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Timis T, Buruiana S, Dima D, Nistor M, Muresan XM, Cenariu D, Tigu AB, Tomuleasa C. Advances in Cell and Immune Therapies for Melanoma. Biomedicines 2025; 13:98. [PMID: 39857682 PMCID: PMC11761552 DOI: 10.3390/biomedicines13010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The incidence rate of cutaneous melanoma is on the rise worldwide, due to increased exposure to UV radiation, aging populations, and exposure to teratogen agents. However, diagnosis is more precise, and the increased number of new cases is related to the improved diagnosis tools. Despite better early diagnosis and better therapies, melanoma has remained a significant public health challenge because of its aggressive behavior and high potential for metastasis. In 2020, cutaneous melanoma constituted approximately 1.3% of all cancer deaths that occurred within the European Union, thereby highlighting the necessity for effective prevention, timely diagnosis, and sustainable treatment measures, especially as a growing number of cases occur among younger patients. Melanoma is regarded as one of the most inflamed cancers due to its high immune cell presence and strong response to immunotherapy, fueling the need for development of immune-driven innovative treatments. Approved therapies, including immune checkpoint inhibitors (e.g., anti-PD-1 and anti-CTLA-4), have notably improved survival rates in melanoma. However, the limitations of the PD-1/PD-L1 and CTLA-4 axes inhibitors, such as low response rates, treatment resistance, and toxicity, have driven the need for continued research and advancements in treatment strategies. Current clinical trials are exploring various combinations of immune checkpoint inhibitors with costimulatory receptor agonists, chemotherapy, targeted therapies, and other immunotherapies, with the goal of improving outcomes and reducing side effects for melanoma patients. Emerging approaches, including adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) and oncolytic virotherapy, are showing promise. While CAR-T cell therapy has been less successful in melanoma compared to blood cancers, ongoing research is addressing challenges like the tumor microenvironment and antigen specificity. This review provides an overview of the requirement for advances in these medications, to mark a significant step forward in melanoma management, set to bring a fresh breath of hope for patients.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Oncology, Bistrița Emergency Hospital, 420094 Bistrița, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemițanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Egea‐Rodriguez S, Váraljai R, Nordmann TM, Lubis R, Philip M, Rambow F, Roesch A, Flaig M, Horn S, Stoll R, Zhao F, Paschen A, Klebl B, Hickson ID, Schadendorf D, Mann M, Helfrich I. RECQL4 affects MHC class II-mediated signalling and favours an immune-evasive signature that limits response to immune checkpoint inhibitor therapy in patients with malignant melanoma. Clin Transl Med 2025; 15:e70094. [PMID: 39812592 PMCID: PMC11734436 DOI: 10.1002/ctm2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear. METHODS We analysed whole exome and bulk RNA sequencing data from a pan-cancer cohort of 25 775 patients and cutaneous melanoma cohorts (untreated: n = 471, anti-progressive disease [PD]-1 treated: n = 212). RECQL4 copy number variations and expression levels were assessed for patient outcomes. We performed gene set enrichment analysis to identify RECQL4-dependent signalling pathways and explored the association between RECQL4 levels and immunoscores. We evaluated the interplay of ICI response and RECQL4 expression in melanoma cohorts of 95 responders and 85 non-responders prior to and after ICI-targeted therapy and tested the prognostic power of RECQL4. Finally, we generated genetically engineered RECQL4 variants and conducted comprehensive multi-omic profiling, employing techniques such as liquid chromatography with tandem mass spectrometry, to elucidate mechanistic insights. RESULTS We identified RECQL4 as a critical negative regulator of poor prognosis and response to ICI therapy, but also demonstrated its suitability as an independent biomarker in melanoma. High tumour purity and limited signatures of tumour immunogenicity associated with response to anti-PD-1 correlated with high RECQL4 activity. We found alterations in the secretion profile of immune regulatory factors and immune-related pathways robustly suppressed in tumours with high RECQL4 levels, underscoring its crucial role in fostering immune evasion. Mechanistically, we identified RECQL4-mediated regulation of major histocompatibility complex class II molecule expression and uncovered class II major histocompatibility complex transactivator as a mediator bridging this regulation. CONCLUSIONS Our findings unraveled the pivotal role of RECQL4 in immune modulation and its potential as both a predictive biomarker and therapeutic target for optimising immunotherapeutic strategies across various cancer types. HIGHLIGHTS High RECQL4 expression limits survival and can act as an independent prognostic factor in melanoma patients. RECQL4 has the potential to act as a negative feedback mediator of immune checkpoint-targeted therapy by limiting signatures associated with therapeutic efficacy. RECQL4 favours an immune-evasive phenotype by downregulating major histocompatibility complex class II molecules.
Collapse
Affiliation(s)
- Sara Egea‐Rodriguez
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
- German Cancer Consortium (DKTK)Partner Site MunichMunichGermany
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
| | - Renáta Váraljai
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Thierry M. Nordmann
- Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Manuel Philip
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Florian Rambow
- Department of Applied Computational Cancer ResearchInstitute for AI in Medicine (IKIM)University Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Alexander Roesch
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Michael Flaig
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Susanne Horn
- Rudolf Schönheimer Institute of BiochemistryMedical Faculty of the University of LeipzigLeipzigGermany
- Present address:
Research Center for Environmental HealthHelmholtz Center MunichIngolstädter Landstraße 1Neuherberg85764Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospecNMR, Faculty of Chemistry and BiochemistryRuhr University of BochumBochumGermany
| | - Fang Zhao
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Annette Paschen
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Bert Klebl
- Lead Discovery Center GmbHDortmundGermany
| | - Ian D. Hickson
- Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagen NDenmark
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
- German Cancer Consortium (DKTK)Partner Site Essen/DüsseldorfEssenGermany
| | - Matthias Mann
- Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Iris Helfrich
- Department of Dermatology and AllergyUniversity Hospital of MunichLudwig‐Maximilian‐UniversityMunichGermany
- German Cancer Consortium (DKTK)Partner Site MunichMunichGermany
- Skin Cancer Unit of the Dermatology DepartmentMedical FacultyWest German Cancer CenterUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
18
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
19
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Tünbekici S, Çelebi G, Karaca B. Efficacy and prognostic factors of anti-PD1 and nivolumab-ipilimumab therapy in advanced melanoma patients resistant to prior ICI treatment. Discov Oncol 2024; 15:813. [PMID: 39704850 DOI: 10.1007/s12672-024-01702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have significantly improved the five-year survival rate for advanced melanoma. However, many patients exhibit resistance to ICI therapy. This study evaluated the efficacy and prognostic factors of anti-PD-1 (Group A) and nivolumab-ipilimumab (Group B) therapy in patients with advanced melanoma who were resistant to prior ICI therapy. We conducted a retrospective analysis of 56 patients with advanced melanoma who had previously shown resistance to ICI therapy. In the Group A (who have previously shown resistance to anti-CTLA-4, n = 28), the objective response rate (ORR) was 42.9%, with a disease control rate (DCR) of 53%. In the Group B (previously shown resistance to anti-PD-1, n = 28), the ORR was 17.9%, and the DCR was 25%. The ORR was lower in two subgroups: patients who showed progression or relapse in the the initial radiological assessment of prior ICI therapy (ORR 10.5%) and patients who had previously received ICI in the adjuvant setting (ORR 8.3%). A Royal Marsden Hospital (RMH) score of 2-3 was a predictor of OS in both groups (Group A: HR 3.789, 95% CI 1.356-10.589, p = 0.011; Group B: HR 4.281, 95% CI 1.490-12.300, p = 0.007) and for PFS in the Group B (HR 3.167, 95% CI 1.062-9.442, p = 0.039). Anti-PD-1 therapy demonstrated efficacy following resistance to anti-CTLA-4, whereas combination ICI therapy showed lower response rates in patients resistant to anti-PD-1. Further studies are needed to confirm the RMH scores and other prognostic markers and to evaluate subgroups with lower efficacy of nivolumab-ipilimumab therapy.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey.
| | - Haydar Çağatay Yüksel
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gökhan Şahin
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Fatma Pinar Açar
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Salih Tünbekici
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| | - Gülçin Çelebi
- Department of Internal Medicine, Ege University Medical Faculty, Izmir, Turkey, 35100
| | - Burçak Karaca
- Division of Medical Oncology, Department of Internal Medicine, Ege University Medical Faculty, Izmir, 35100, Turkey
| |
Collapse
|
20
|
Zhong M, Yu Z, Wu Q, Lu B, Sun P, Zhang X, Yang L, Wu H. PCDHGA10 as a potential prognostic biomarker and correlated with immune infiltration in gastric cancer. Front Immunol 2024; 15:1500478. [PMID: 39687617 PMCID: PMC11647002 DOI: 10.3389/fimmu.2024.1500478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors and is associated with poor prognosis. To improve the prognosis of GC patients, an effective immune-related prognostic biomarker is urgent. Here, we aim to explore the correlation between the expression of procalcitonin gamma subfamily A, 10 (PCDHGA10) and clinicopathological characteristics, especially its relation with tumor-infiltrating immune cells (TILs) in GC. Methods The differential mRNA expression of PCDHGA10 between GC tissues and normal gastric mucosa and prognostic potential were assessed from The Cancer Genome Atlas (TCGA). Then, based on tissue microarrays (TMAs) with multiplex immunohistochemistry (mIHC) from GC patients, we statistically assess the correlation between PCDHGA10 protein expression and the clinical profiles and prognosis of the patients. Additionally, with IHC and mIHC, we applied the machine-learning algorithms to evaluate the localization and expression levels of TILs and immune checkpoints in the tumor microenvironment. We analyzed the relationship between PCDHGA10 protein expression and TILs and immune checkpoints. Results Through the database and TMA analysis, the expression of PCDHGA10 was significantly higher in GC tissues compared with normal tissues. High PCDHGA10 expression independently predicted poor prognosis in GC. Additionally, elevated PCDHGA10 expression was positively associated with the number of CD8+ T cells, CD68+ macrophages, Foxp3+ T cells, and CD4+ T cells in GC tissues and the stromal region. Besides, the expression of PCDHGA10 was positively correlated with immune checkpoints, including CTLA-4, LAG3, and PD-L1. Conclusions PCDHGA10 might be a potential prognostic marker and an immunological therapeutic target for GC.
Collapse
Affiliation(s)
- Mingyang Zhong
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhuoqun Yu
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qianqian Wu
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - PingPing Sun
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaojing Zhang
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Chand D, Savitsky DA, Krishnan S, Mednick G, Delepine C, Garcia-Broncano P, Soh KT, Wu W, Wilkens MK, Udartseva O, Vincent S, Joshi B, Keith JG, Manrique M, Marques M, Tanne A, Levey DL, Han H, Ng S, Ridpath J, Huber O, Morin B, Galand C, Bourdelais S, Gombos RB, Ward R, Qin Y, Waight JD, Costa MR, Sebastian-Yague A, Rudqvist NP, Pupecka-Swider M, Venkatraman V, Slee A, Patel JM, Grossman JE, Wilson NS, Von Hoff DD, Stebbing J, Curiel TJ, Buell JS, O’Day SJ, Stein RB. Botensilimab, an Fc-Enhanced Anti-CTLA-4 Antibody, Is Effective against Tumors Poorly Responsive to Conventional Immunotherapy. Cancer Discov 2024; 14:2407-2429. [PMID: 39083809 PMCID: PMC11609826 DOI: 10.1158/2159-8290.cd-24-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
SIGNIFICANCE This study reveals that Fc-enhanced anti-CTLA-4 harnesses novel mechanisms to overcome the limitations of conventional anti-CTLA-4, effectively treating poorly immunogenic and treatment-refractory cancers. Our findings support the development of a new class of immuno-oncology agents, capable of extending clinical benefit to patients with cancers resistant to current immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wu
- Agenus Inc, Lexington, Massachusetts
| | | | | | | | | | | | | | | | | | | | - Haiyong Han
- The Translational Genomics Research Institute, Phoenix, Arizona
| | - Serina Ng
- The Translational Genomics Research Institute, Phoenix, Arizona
| | | | | | | | | | | | | | | | - Yu Qin
- Agenus Inc, Lexington, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | - Tyler J. Curiel
- Agenus Inc, Lexington, Massachusetts
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Jennifer S. Buell
- Agenus Inc, Lexington, Massachusetts
- MiNK Therapeutics, Lexington, Massachusetts
| | | | - Robert B. Stein
- Agenus Inc, Lexington, Massachusetts
- MiNK Therapeutics, Lexington, Massachusetts
| |
Collapse
|
22
|
Palmer T, Kessler MD, Shao XM, Balan A, Yarchoan M, Zaidi N, Lopez-Vidal TY, Saeed AM, Gore J, Azad NS, Jaffee EM, Favorov AV, Anagnostou V, Karchin R, Gaykalova DA, Fertig EJ, Danilova L. SpliceMutr Enables Pan-Cancer Analysis of Splicing-Derived Neoantigen Burden in Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:3137-3150. [PMID: 39470352 PMCID: PMC11648103 DOI: 10.1158/2767-9764.crc-23-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
SIGNIFICANCE SpliceMutr shows that splicing antigenicity changes in response to ICI therapies and that native modulation of the splicing machinery through mutations increases the contribution of splicing to the neoantigen load of some The Cancer Genome Atlas cancer subtypes. Future studies of the relationship between splicing antigenicity and immune checkpoint inhibitor response pan-cancer are essential to establish the interplay between antigen heterogeneity and immunotherapy regimen on patient response.
Collapse
Affiliation(s)
- Theron Palmer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michael D. Kessler
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoshan M. Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Archana Balan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Neeha Zaidi
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Tamara Y. Lopez-Vidal
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali M. Saeed
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jessica Gore
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nilofer S. Azad
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M. Jaffee
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Alexander V. Favorov
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, Russia
| | - Valsamo Anagnostou
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Daria A. Gaykalova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland
| | - Ludmila Danilova
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Tarantino G, Ricker CA, Wang A, Ge W, Aprati TJ, Huang AY, Madha S, Chen J, Shi Y, Glettig M, Feng CH, Frederick DT, Freeman S, Holovatska MM, Manos MP, Zimmer L, Rösch A, Zaremba A, Livingstone E, Jameson JC, Saghafian S, Lee A, Zhao K, Morris LG, Reardon B, Park J, Elmarakeby HA, Schilling B, Giobbie-Hurder A, Vokes NI, Buchbinder EI, Flaherty KT, Haq R, Wu CJ, Boland GM, Hodi FS, Van Allen EM, Schadendorf D, Liu D. Genomic heterogeneity and ploidy identify patients with intrinsic resistance to PD-1 blockade in metastatic melanoma. SCIENCE ADVANCES 2024; 10:eadp4670. [PMID: 39602539 PMCID: PMC11601251 DOI: 10.1126/sciadv.adp4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
The introduction of immune checkpoint blockade (ICB) has markedly improved outcomes for advanced melanoma. However, many patients develop resistance through unknown mechanisms. While combination ICB has improved response rate and progression-free survival, it substantially increases toxicity. Biomarkers to distinguish patients who would benefit from combination therapy versus aPD-1 remain elusive. We analyzed whole-exome sequencing of pretreatment tumors from four cohorts (n = 140) of ICB-naïve patients treated with aPD-1. High genomic heterogeneity and low ploidy robustly identified patients intrinsically resistant to aPD-1. To establish clinically actionable predictions, we optimized and validated a predictive model using ploidy and heterogeneity to confidently identify (90% PPV) patients with intrinsic resistance to and worse survival on aPD-1. We further observed that three of seven (43%) patients predicted to be intrinsically resistant to single-agent PD-1 ICB responded to combination ICB, suggesting that these patients may benefit disproportionately from combination ICB. These findings highlight the importance of heterogeneity and ploidy, nominating an approach toward clinical actionability.
Collapse
Affiliation(s)
- Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cora A. Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Tyler J. Aprati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Y. Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shariq Madha
- Worcester Polytechnic Institute, Worcester, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jiajia Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yingxiao Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc Glettig
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine H. Feng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marta M. Holovatska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Lisa Zimmer
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - Alexander Rösch
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | | | - Jacob C. Jameson
- Interfaculty Initiative in Health Policy, Harvard University, Cambridge, MA, USA
| | | | - Andrew Lee
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karena Zhao
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G.T. Morris
- Department of Surgery and Cancer Immunogenomics Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Haitham A. Elmarakeby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Al-Azhar University, Cairo, Egypt
| | - Bastian Schilling
- Department of Dermatology, University HospitalEssen, Essen, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | | | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University HospitalEssen, Essen, Germany
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
24
|
Zhou Q, Dian Y, He Y, Yao L, Su H, Meng Y, Sun Y, Li D, Xiong Y, Zeng F, Liang X, Liu H, Chen X, Deng G. Propafenone facilitates mitochondrial-associated ferroptosis and synergizes with immunotherapy in melanoma. J Immunother Cancer 2024; 12:e009805. [PMID: 39581704 PMCID: PMC11590812 DOI: 10.1136/jitc-2024-009805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite the successful application of immunotherapy, both innate and acquired resistance are typical in melanoma. Ferroptosis induction appears to be a potential strategy to enhance the effectiveness of immunotherapy. However, the relationship between the status of ferroptosis and the effectiveness of immunotherapy, as well as viable strategies to augment ferroptosis, remains unclear. METHODS A screening of 200 cardiovascular drugs obtained from the Food and Drug Administration-approved drug library was conducted to identify the potential ferroptosis sensitizer. In vitro and in vivo experiments explored the effects of propafenone on ferroptosis in melanoma. Animal models and transcriptomic analyses evaluated the therapeutic effects and survival benefits of propafenone combined with immune checkpoint blockades (ICBs). The relationship between propafenone targets and the efficacy of ICBs was validated using the Xiangya melanoma data set and publicly available clinical data sets. RESULTS Through large-scale drug screening of cardiovascular drugs, we identified propafenone, an anti-arrhythmia medication, as capable of synergizing with ferroptosis inducers in melanoma. Furthermore, we observed that propafenone, in combination with glutathione peroxidase 4 inhibitor RSL3, collaboratively induces mitochondrial-associated ferroptosis. Mechanistically, propafenone transcriptionally upregulates mitochondrial heme oxygenase 1 through the activation of the Jun N-terminal kinase (JNK)/JUN signaling pathway under RSL3 treatment, leading to overloaded ferrous iron and reactive oxygen species within the mitochondria. In xenograft models, the combination of propafenone and ferroptosis induction led to nearly complete tumor regression and prolonged survival. Consistently, propafenone enhances immunotherapy-induced tumorous ferroptosis and antitumor immunity in tumor-bearing mice. Significantly, patients exhibiting high levels of ferroptosis/JUN/HMOX1 exhibited improved efficacy of immunotherapy and prolonged progression-free survival. CONCLUSIONS Taken together, our findings suggest that propafenone holds promise as a candidate drug for enhancing the efficacy of immunotherapy and other ferroptosis-targeted therapies in the treatment of melanoma.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Yixiao Xiong
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaowei Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan Province, China
- Furong Laboratory, Changsha, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Mekers V, de Visser M, Suijkerbuijk K, Bos C, Moonen C, Deckers R, Adema G. Mechanical HIFU and immune checkpoint inhibition: toward clinical implementation. Int J Hyperthermia 2024; 41:2430333. [PMID: 39566471 DOI: 10.1080/02656736.2024.2430333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Objective: Immune checkpoint inhibition (ICI) has significantly advanced the field of immuno-oncology, yet not all patients benefit from this therapy. Combining ICI with other therapeutic modalities, including tumor ablation, is currently being explored as a method to enhance ICI efficacy. Mechanical High-Intensity Focused Ultrasound (M-HIFU) represents a promising tumor ablative therapy, inducing cavitation within the tumor, resulting in tumor cell destruction and the release of danger signals and tumor antigens, two key factors contributing to anti-tumor immune responses. Methods/Results: Preclinical studies on the impact of M-HIFU on the anti-tumor immune response are guiding the translational application of this technique in the clinical setting. This review provides a comprehensive overview of the current understanding of the effects of M-HIFU on the immune system. We report on the effect of M-HIFU on soluble immune modulators and immune cells in different preclinical models, and potential contributions to the anti-tumor immune response. We discuss clinical studies applying M-HIFU and studies that have combined ICI with other ablative therapies to draw parallels to clinical implementation of M-HIFU. Further, we will highlight essential questions that should be addressed in future clinical trials exploring the combination of M-HIFU and ICI in the clinical setting. Conclusion: Overall, this review offers guidance for the clinical implementation of combining M-HIFU with ICI and highlights key questions that remain to be addressed in first clinical studies.
Collapse
Affiliation(s)
- Vera Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mirjam de Visser
- Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Karijn Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Clemens Bos
- Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chrit Moonen
- Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, Netherlands
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Roel Deckers
- Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Huang AY, Burke KP, Porter R, Meiger L, Fatouros P, Yang J, Robitschek E, Vokes N, Ricker C, Rosado V, Tarantino G, Chen J, Aprati TJ, Glettig MC, He Y, Wang C, Fu D, Ho LL, Galani K, Freeman GJ, Buchbinder EI, Stephen Hodi F, Kellis M, Boland GM, Sharpe AH, Liu D. Stratified analysis identifies HIF-2 α as a therapeutic target for highly immune-infiltrated melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620300. [PMID: 39554029 PMCID: PMC11565796 DOI: 10.1101/2024.10.29.620300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
While immune-checkpoint blockade (ICB) has revolutionized treatment of metastatic melanoma over the last decade, the identification of broadly applicable robust biomarkers has been challenging, driven in large part by the heterogeneity of ICB regimens and patient and tumor characteristics. To disentangle these features, we performed a standardized meta-analysis of eight cohorts of patients treated with anti-PD-1 (n=290), anti-CTLA-4 (n=175), and combination anti-PD-1/anti-CTLA-4 (n=51) with RNA sequencing of pre-treatment tumor and clinical annotations. Stratifying by immune-high vs -low tumors, we found that surprisingly, high immune infiltrate was a biomarker for response to combination ICB, but not anti-PD-1 alone. Additionally, hypoxia-related signatures were associated with non-response to anti-PD-1, but only amongst immune infiltrate-high melanomas. In a cohort of scRNA-seq of patients with metastatic melanoma, hypoxia also correlated with immunosuppression and changes in tumor-stromal communication in the tumor microenvironment (TME). Clinically actionable targets of hypoxia signaling were also uniquely expressed across different cell types. We focused on one such target, HIF-2α, which was specifically upregulated in endothelial cells and fibroblasts but not in immune cells or tumor cells. HIF-2α inhibition, in combination with anti-PD-1, enhanced tumor growth control in pre-clinical models, but only in a more immune-infiltrated melanoma model. Our work demonstrates how careful stratification by clinical and molecular characteristics can be leveraged to derive meaningful biological insights and lead to the rational discovery of novel clinical targets for combination therapy.
Collapse
Affiliation(s)
- Amy Y Huang
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kelly P Burke
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Porter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Meiger
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Fatouros
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
- Rutgers University, New Brunswick, NJ, USA
| | - Emily Robitschek
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natalie Vokes
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Cora Ricker
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Valeria Rosado
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jiajia Chen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler J Aprati
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc C Glettig
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- ETH Zürich, Zurich, Switzerland
| | - Yiwen He
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassia Wang
- Massachusetts Institute of Technology, Cambridge, USA
| | - Doris Fu
- Massachusetts Institute of Technology, Cambridge, USA
| | - Li-Lun Ho
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kyriakitsa Galani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - Genevieve M Boland
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Arlene H Sharpe
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Yu X, Song L, Cen L, Cao B, Tao R, Shen Y, Abate-Daga D, Rodriguez PC, Conejo-Garcia JR, Wang X. Pan-cancer γδ TCR analysis uncovers clonotype diversity and prognostic potential. Cell Rep Med 2024; 5:101764. [PMID: 39368482 PMCID: PMC11513832 DOI: 10.1016/j.xcrm.2024.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Gamma-delta T cells (γδ T cells) play a crucial role in both innate and adaptive immunity within tumors, yet their presence and prognostic value in cancer remain underexplored. This study presents a large-scale analysis of γδ T cell receptor (γδ TCR) reads from 11,000 tumor samples spanning 33 cancer types, utilizing the TRUST4 algorithm. Our findings reveal extensive diversity in γδ TCR clonality and gene expression, underscoring the potential of γδ T cells as prognostic biomarkers in various cancers. We further demonstrate the utility of TCR gamma (TRG) and delta (TRD) gene expression from standard RNA-sequencing (RNA-seq) data. This comprehensive dataset offers a valuable resource for advancing γδ T cell research, with implications for enhanced immunotherapy approaches or alternative therapeutic strategies. Additionally, our centralized database supports translational research into the therapeutic significance of γδ T cells.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Prognosis
- Clone Cells
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Gene Expression Regulation, Neoplastic
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ranran Tao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuanyuan Shen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Usset J, Rosendahl Huber A, Andrianova MA, Batlle E, Carles J, Cuppen E, Elez E, Felip E, Gómez-Rey M, Lo Giacco D, Martinez-Jimenez F, Muñoz-Couselo E, Siu LL, Tabernero J, Vivancos A, Muiños F, Gonzalez-Perez A, Lopez-Bigas N. Five latent factors underlie response to immunotherapy. Nat Genet 2024; 56:2112-2120. [PMID: 39266764 PMCID: PMC11525176 DOI: 10.1038/s41588-024-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Only a subset of patients treated with immune checkpoint inhibitors (CPIs) respond to the treatment, and distinguishing responders from non-responders is a major challenge. Many proposed biomarkers of CPI response and survival probably represent alternative measurements of the same aspects of the tumor, its microenvironment or the host. Thus, we currently ignore how many truly independent biomarkers there are. With an unbiased analysis of genomics, transcriptomics and clinical data of a cohort of patients with metastatic tumors (n = 479), we discovered five orthogonal latent factors: tumor mutation burden, T cell effective infiltration, transforming growth factor-beta activity in the microenvironment, prior treatment and tumor proliferative potential. Their association with CPI response and survival was observed across all tumor types and validated across six independent cohorts (n = 1,491). These five latent factors constitute a frame of reference to organize current and future knowledge on biomarkers of CPI response and survival.
Collapse
Affiliation(s)
- Joseph Usset
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, Netherlands
| | - Axel Rosendahl Huber
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria A Andrianova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Elez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marina Gómez-Rey
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Deborah Lo Giacco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Martinez-Jimenez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Hartwig Medical Foundation, Amsterdam, Netherlands
| | - Eva Muñoz-Couselo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology & Haematology, Princess Margaret Cancer Centre, University of Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Josep Tabernero
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
29
|
Dong H, Zhang Z, Ni M, Xu X, Luo Y, Wang Y, Zhang H, Chen J. The Trend of the Treatment of Advanced Hepatocellular Carcinoma: Combination of Immunotherapy and Targeted Therapy. Curr Treat Options Oncol 2024; 25:1239-1256. [PMID: 39259476 PMCID: PMC11485193 DOI: 10.1007/s11864-024-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
OPINION STATEMENT Hepatocellular carcinoma (HCC) is a common type of tumor worldwide. The development of systemic treatment of advanced HCC has remained stagnant for a considerable period. During the last years, a series of new treatment regimens based on the combination of immunotherapeutic drugs and targeted drugs have been gradually developed, increased the objective response rate (ORR), overall survival (OS), and progression free survival (PFS) of HCC patients. Among the different combination therapy groups, atezolizumab plus bevacizumab and sintilimab plus IBI-305 seem to have unique advantages, while head-to-head comparisons are still needed. A comprehensive understanding of the developments, the ongoing clinical trials and the mechanisms of combination of immunotherapy and targeted therapy might lead to the development of new combination strategies and solving current challenges such as the molecular biomarkers, the clinical administration order of drugs and the second-line treatments after combination therapy.
Collapse
Affiliation(s)
- Heng Dong
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Zhengguo Zhang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Mengjie Ni
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Xiaoyun Xu
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Yifeng Luo
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Yaru Wang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Haiyun Zhang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China.
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.
| |
Collapse
|
30
|
Claeys A, Van den Eynden J. MHC class II genotypes are independent predictors of anti-PD1 immunotherapy response in melanoma. COMMUNICATIONS MEDICINE 2024; 4:184. [PMID: 39349759 PMCID: PMC11443121 DOI: 10.1038/s43856-024-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade is a highly successful anti-cancer immunotherapy. Both CTLA4 and PD1 checkpoint blockers are clinically available for melanoma treatment, with anti-PD1 therapy reaching response rates of 35-40%. These responses, which are mediated via neoantigen presentation by the polymorphic MHC complex, are hard to predict and the tumor mutation burden is currently one of the few available biomarkers. While MHC genotypes are expected to determine therapy responses, association studies have remained largely elusive. METHODS We developed an overall MHC genotype binding score (MGBS), indicative of a patient's MHC class I (MHC-I) and class II (MHC-II) neoantigen binding capacity and solely based on the germline MHC-I (MGBS-I) and MHC-II (MGBS-II) genotypes. These scores were then correlated to survival and clinical responses following anti-PD1 immunotherapy in a previously published dataset of 144 melanoma patients. RESULTS We demonstrate that MGBS scores are TMB-independent predictors of anti-PD1 immunotherapy responses in melanoma. Opposite outcomes were found for both MHC classes, with high MGBS-I and MGBS-II predicting good and bad outcomes, respectively. Interestingly, high MGBS-II is mainly associated with treatment response failure in a subgroup of anti-CTLA4 pretreated patients. CONCLUSIONS Our results suggest that MGBS, calculated solely from the MHC genotype, has clinical potential as a non-invasive and tumor-independent biomarker to guide anti-cancer immunotherapy in melanoma.
Collapse
Affiliation(s)
- Arne Claeys
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Unit of Anatomy and Embryology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
32
|
Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8 + T cells. Cancer Cell 2024; 42:1582-1597.e10. [PMID: 39214097 PMCID: PMC11387127 DOI: 10.1016/j.ccell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Combination checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies has shown promising efficacy in melanoma. However, the underlying mechanism in humans remains unclear. Here, we perform paired single-cell RNA and T cell receptor (TCR) sequencing across time in 36 patients with stage IV melanoma treated with anti-PD-1, anti-CTLA-4, or combination therapy. We develop the algorithm Cyclone to track temporal clonal dynamics and underlying cell states. Checkpoint blockade induces waves of clonal T cell responses that peak at distinct time points. Combination therapy results in greater magnitude of clonal responses at 6 and 9 weeks compared to single-agent therapies, including melanoma-specific CD8+ T cells and exhausted CD8+ T cell (TEX) clones. Focused analyses of TEX identify that anti-CTLA-4 induces robust expansion and proliferation of progenitor TEX, which synergizes with anti-PD-1 to reinvigorate TEX during combination therapy. These next generation immune profiling approaches can guide the selection of drugs, schedule, and dosing for novel combination strategies.
Collapse
Affiliation(s)
- Kevin Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulina Coutifaris
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Guanning Wang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tarek Azar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sabrina Solis
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Ajeya Nandi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaneaka Anderson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Minke Lucas
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sangeeth George
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick K Yan
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie W Kier
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy I Laughlin
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn Kothari
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reem Ghinnagow
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecile Alanio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Clinical Immunology and Immunomonitoring Laboratory, Institut Curie, Paris, France
| | - Ahron Flowers
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xiaowei Xu
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus Buggert
- Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Christian Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden 2333 ZA, the Netherlands; Department of Hematology and Oncology, University Clinic of Regensburg (UKR), 93053 Regensburg, Germany
| | - Jeffrey S Weber
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Tara Miller Melanoma Center, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Yu X, Song L, Cen L, Cao B, Tao R, Shen Y, Abate-Daga D, Rodriguez PC, Conejo-Garcia JR, Wang X. A pan-cancer gamma delta T cell repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604205. [PMID: 39091790 PMCID: PMC11291071 DOI: 10.1101/2024.07.18.604205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This report presents the largest collection of gamma-delta T cell receptor (γδ TCR) reads in human cancer to date, analyzing about 11,000 patient tumor samples across 33 cancer types using the TRUST4 algorithm. Despite γδ T cells being a small fraction of the T cell population, they play a key role in both innate and adaptive immunity. Our comprehensive analysis reveals their significant presence across all cancer types, specifically highlighting the diverse spectrum and clonality patterns of their γδ receptors. This research highlights the complex roles of γδ T cells in tumor tissues and their potential as prognostic biomarkers. We also demonstrate the utility of T cell receptor gamma (TRG) and delta (TRD) gene expression values from standard RNA-seq data. Ultimately, our work establishes a fundamental resource for future tumor-infiltrating γδ T cell research and may facilitate the development of novel γδ-T-cell-based therapeutic strategies. Together, we demonstrate the strong diversity and prognostic potential of γδ T cells in multiple cancer types.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Current: Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ranran Tao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuanyuan Shen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel Abate-Daga
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C. Rodriguez
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, FL 33612, USA
| |
Collapse
|
34
|
Zemek RM, Anagnostou V, Pires da Silva I, Long GV, Lesterhuis WJ. Exploiting temporal aspects of cancer immunotherapy. Nat Rev Cancer 2024; 24:480-497. [PMID: 38886574 DOI: 10.1038/s41568-024-00699-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Many mechanisms underlying an effective immunotherapy-induced antitumour response are transient and critically time dependent. This is equally true for several immunological events in the tumour microenvironment induced by other cancer treatments. Immune checkpoint therapy (ICT) has proven to be very effective in the treatment of some cancers, but unfortunately, with many cancer types, most patients do not experience a benefit. To improve outcomes, a multitude of clinical trials are testing combinations of ICT with various other treatment modalities. Ideally, those combination treatments should take time-dependent immunological events into account. Recent studies have started to map the dynamic cellular and molecular changes that occur during treatment with ICT, in the tumour and systemically. Here, we overlay the dynamic ICT response with the therapeutic response following surgery, radiotherapy, chemotherapy and targeted therapies. We propose that by combining treatments in a time-conscious manner, we may optimally exploit the interactions between the individual therapies.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Willem Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Xiong J, Zhu L, Fu Y, Ye Z, Deng C, Wang X, Chen Y. Prognostic and therapeutic roles of SETD2 in cutaneous melanoma. Aging (Albany NY) 2024; 16:9692-9708. [PMID: 38843391 PMCID: PMC11210245 DOI: 10.18632/aging.205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is an aggressive form of skin cancer with limited treatment options for advanced stages. Prognostic markers that accurately predict patients' outcomes and guide therapeutic strategies are crucial for improving melanoma management. SETD2 (SET Domain-Containing Protein 2), a histone methyltransferase involved in chromatin remodeling and gene regulation, has recently emerged as a tumor suppressor. Its dysfunction is involved in oncogenesis in some cancers, but little is known about its functions in progression and therapeutic response of melanoma. METHODS RNA-seq and clinical data from public database were used to evaluate the survival analysis, gene set enrichment, IC50 of therapeutics and immunotherapy response. SETD2 knock-out A375 cell line (A375SETD2ko) was developed by Crispr/cas9 and CCK-8 analysis and nude mice used to evaluate the proliferation and invasion of melanoma cells in vitro and in vivo, while Western blotting tested the MMR-related protein. RESULTS SETD2 was commonly down-regulated in melanoma samples which demonstrated an unfavorable survival. Cells without SETD2 expression tend to have a more progressive and invasive behavior, with resistance to chemotherapy. However, they are more sensitive to tyrosine kinase inhibitors (TKIs). They also exhibit inflamed features with lower TIDE (Tumor Immune Dysfunction and Exclusion) score and higher tumor mutation burden (TMB), showing that these patients may benefit from immunotherapy. CONCLUSIONS This study revealed that SETD2 dysfunction in melanoma implied a poor prognosis and chemotherapy resistance, but highly sensitive to TKIs and immunotherapy, highlighting the prognostic and therapeutic value of SETD2 in cutaneous melanoma.
Collapse
Affiliation(s)
- Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yunrong Fu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Cuimin Deng
- Department of Pharmacology, QuanZhou Women’s and Children’s Hospital, Quanzhou, Fujian, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
36
|
Bell HN, Zou W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu Rev Immunol 2024; 42:521-550. [PMID: 38382538 PMCID: PMC11213679 DOI: 10.1146/annurev-immunol-101819-024752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.
Collapse
Affiliation(s)
- Hannah N Bell
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
| | - Weiping Zou
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Medical School, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA; ,
- Graduate Programs in Cancer Biology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Song L, Yang Y, Tian X. Current knowledge about immunotherapy resistance for melanoma and potential predictive and prognostic biomarkers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:17. [PMID: 38835341 PMCID: PMC11149101 DOI: 10.20517/cdr.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Melanoma still reaches thousands of new diagnoses per year, and its aggressiveness makes recovery challenging, especially for those with stage III/IV unresectable melanoma. Immunotherapy, emerging as a beacon of hope, stands at the forefront of treatments for advanced melanoma. This review delves into the various immunotherapeutic strategies, prominently featuring cytokine immunotherapy, adoptive cell therapy, immune checkpoint inhibitors, and vaccinations. Among these, immune checkpoint inhibitors, notably anti-programmed cell death-1 (PD-1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibodies, emerge as the leading strategy. However, a significant subset of melanoma patients remains unresponsive to these inhibitors, underscoring the need for potent biomarkers. Efficient biomarkers have the potential to revolutionize the therapeutic landscape by facilitating the design of personalized treatments for patients with melanoma. This comprehensive review highlights the latest advancements in melanoma immunotherapy and potential biomarkers at the epicenter of recent research endeavors.
Collapse
Affiliation(s)
- Lanni Song
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Bio-pharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, Zhejiang, China
| |
Collapse
|
38
|
Dyikanov D, Zaitsev A, Vasileva T, Wang I, Sokolov AA, Bolshakov ES, Frank A, Turova P, Golubeva O, Gantseva A, Kamysheva A, Shpudeiko P, Krauz I, Abdou M, Chasse M, Conroy T, Merriam NR, Alesse JE, English N, Shpak B, Shchetsova A, Tikhonov E, Filatov I, Radko A, Bolshakova A, Kachalova A, Lugovykh N, Bulahov A, Kilina A, Asanbekov S, Zheleznyak I, Skoptsov P, Alekseeva E, Johnson JM, Curry JM, Linnenbach AJ, South AP, Yang E, Morozov K, Terenteva A, Nigmatullina L, Fastovetz D, Bobe A, Balabanian L, Nomie K, Yong ST, Davitt CJH, Ryabykh A, Kudryashova O, Tazearslan C, Bagaev A, Fowler N, Luginbuhl AJ, Ataullakhanov RI, Goldberg MF. Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer. Cancer Cell 2024; 42:759-779.e12. [PMID: 38744245 DOI: 10.1016/j.ccell.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer M Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph M Curry
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alban J Linnenbach
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - EnJun Yang
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adam J Luginbuhl
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
39
|
Staebler S, Hoechst S, Thongmao A, Schneider N, Bosserhoff AK, Kuphal S. The Role of T-Cadherin (CDH13) in Treatment Options with Garcinol in Melanoma. Cancers (Basel) 2024; 16:1853. [PMID: 38791932 PMCID: PMC11119778 DOI: 10.3390/cancers16101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Targeted therapies with chemotherapeutic agents and immunotherapy with checkpoint inhibitors are among the systemic therapies recommended in the guidelines for clinicians to treat melanoma. Although there have been constant improvements in the treatment of melanoma, resistance to the established therapies continues to occur. Therefore, the purpose of this study was to explore the function of garcinol with regards to specific cancer properties such as proliferation and apoptosis. Garcinol, a natural compound isolated from the plant also known as mangosteen (Garcinia mangostana), is a newly discovered option for cancer treatment. Numerous pharmaceutical substances are derived from plants. For example, the derivates of camptothecin, extracted from the bark of the Chinese tree of happiness (Camptotheca acuminate), or paclitaxel, extracted from the bark of the Western yew tree (Taxus brevifolia), are used as anti-cancer drugs. Here, we show that garcinol reduced proliferation and induced apoptosis in melanoma cell lines. In addition, we found that those cells that are positive for the expression of the cell-cell adhesion molecule T-cadherin (CDH13) respond more sensitively to treatment with garcinol. After knock-down experiments with an siRNA pool against T-cadherin, the sensitivity to garcinol decreased and proliferation and anti-apoptotic behavior of the cells was restored. We conclude that patients who are T-cadherin-positive could especially benefit from a therapy with garcinol.
Collapse
Affiliation(s)
| | | | | | | | | | - Silke Kuphal
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany; (S.S.); (S.H.); (A.T.); (N.S.); (A.-K.B.)
| |
Collapse
|
40
|
Cui S, Sun X, Gao J. Efficacy and safety of nivolumab plus ipilimumab versus nivolumab alone in patients with advanced melanoma: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:283-291. [PMID: 38532600 DOI: 10.1080/14737140.2024.2336106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Annual melanoma incidence in the US is escalating. OBJECTIVE Comprehensive evaluation of nivolumab alone or with ipilimumab for advanced melanoma treatment. RESEARCH DESIGN AND METHODS A systematic search was conducted across PubMed, Embase, Web of Science, and Cochrane databases, extending until August 2023. A range of outcomes were evaluated, encompassing overall survival (OS), recurrence-free survival (RFS), progression-free survival (PFS), disease-free survival (DFS), adverse events (both any and serious), complete response rate, mortality rate, and recurrence rate in patients with advanced melanoma. RESULTS This analysis was conducted on seven relevant studies, involving 2,885 patients. The baseline characteristics of both groups were found to be comparable across all outcomes, with the exception of tumor size. The pooled analysis did not reveal any significant disparities, except for PFS, where the nivolumab-ipilimumab treatment group demonstrated a significantly longer PFS compared to the nivolumab group. However, there was a notable discrepancy in any adverse events (Odds Ratio (OR): 2.69; 95% Confidence Interval (CI): 1.96, 3.69; p < 0.00001) and serious adverse events (OR: 3.59; 95% CI: 2.88, 4.49, p < 0.00001) between the two groups, suggesting that the safety profile of nivolumab combined with ipilimumab was inferior. CONCLUSIONS Given diversity and potential biases, oncologists should base immunotherapy decisions on professional expertise and patient characteristics. REGISTRATION PROSPERO registration number: CRD42023453484.
Collapse
Affiliation(s)
| | | | - Junxi Gao
- Department of Abdominal Ultrasound Diagnosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
41
|
Li Y, Wu Y, Fang Z, Zhang Y, Ding H, Ren L, Zhang L, Gong Q, Gu Z, Luo K. Dendritic Nanomedicine with Boronate Bonds for Augmented Chemo-Immunotherapy via Synergistic Modulation of Tumor Immune Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307263. [PMID: 37743633 DOI: 10.1002/adma.202307263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Unsatisfied tumor accumulation of chemotherapeutic drugs and a complicated immunosuppressive microenvironment diminish the immune response rate and the therapeutic effect. Surface modification of these drugs with target ligands can promote their cellular internalization, but the modified drugs may be subjected to unexpected immune recognition and clearance. Herein, a phenylboronic acid (PBA) group-shieldable dendritic nanomedicine that integrates an immunogenic cell death (ICD)-inducing agent (epirubicin, Epi) and an indoleamine 2,3-dioxgenase 1 (IDO1) inhibitor (NLG919) is reported for tumor chemo-immunotherapy. This NLG919-loaded Epi-conjugated PEGylated dendrimers bridged with boronate bonds (NLG919@Epi-DBP) maintains a stable nanostructure during circulation. Under a moderate acidic condition, the PBA group exposes to the sialic acid residue on the tumor cell membrane to enhance the internalization and penetration of NLG919@Epi-DBP. At pH 5.0, NLG919@Epi-DBP rapidly disassembles to release the incorporated Epi and NLG919. Epi triggers robust ICD of tumor cells that evokes strong immune response. In addition, inhibition of the IDO1 activity downregulates the metabolism of L-tryptophan to kynurenine, leading to a reduction in the recruitment of immunosuppressive cells and modulation of the tumor immune microenvironment. Collectively, this promising strategy has been demonstrated to evoke robust immune response as well as remodel the immunosuppressive microenvironment for an enhanced chemo-immunotherapeutic effect.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahui Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zaixiang Fang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Long Ren
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Metabolomics and Proteomics Technology Platform, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
42
|
Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J, Waddell N. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol 2024; 21:28-46. [PMID: 37907723 DOI: 10.1038/s41571-023-00830-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
- Venkateswar Addala
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Felicity Newell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John V Pearson
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alec Redwood
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Torrejon DY, Galvez M, Abril-Rodriguez G, Campbell KM, Medina E, Vega-Crespo A, Kalbasi A, Comin-Anduix B, Ribas A. Antitumor Immune Responses in B2M-Deficient Cancers. Cancer Immunol Res 2023; 11:1642-1655. [PMID: 37801341 PMCID: PMC10842455 DOI: 10.1158/2326-6066.cir-23-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
β2-microglobulin (B2M) is a critical component of the MHC class I molecule and is required to present tumor antigens to T cells. Its loss results in acquired resistance to immune checkpoint blockade (ICB) therapies. However, there have been well-documented cases of B2M-inactivated tumors responding to ICB, justifying investigation of how an antitumor immune response can be generated to tumors without surface MHC class I. We knocked out B2M in three murine models with varying baseline MHC class I expression and sensitivity to anti-programmed death receptor (PD-1) therapy and analyzed the immune responses. MC38 and YUMMER2.1 without B2M responded to anti-PD-1 alone or with an IL2 agonist, and this was mediated by CD4+ T cells and natural killer (NK) cells. The more aggressive B16 without B2M expression only partially responded to the IL2 agonist, and this was dependent on NK cells. When analyzing nearly 300 pretreatment biopsies from patients with melanoma receiving PD-1 blockade-based therapies, we found infrequent B2M mutations or homozygous loss but more frequent LOH or copy-number gains. B2M LOH was enriched in biopsies from patients without response to therapy, and these biopsies were more frequently infiltrated by activated NK cells. We conclude that in the absence of B2M, activation of CD4+ T cells and NK cells can mediate responses to murine models of PD-1 blockade therapy. In addition, in human melanoma, the intratumoral presence of activated NK cells upon partial B2M loss likely selects against tumor escape through low surface MHC class I expression.
Collapse
Affiliation(s)
- Davis Y. Torrejon
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | | | - Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
- Department of Molecular and Medical Pharmacology, UCLA
| | - Katie M. Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | - Agustin Vega-Crespo
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
| | | | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, UCLA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA)
- Department of Molecular and Medical Pharmacology, UCLA
- Department of Surgery, Division of Surgical Oncology, UCLA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
44
|
Lu X, Vano YA, Su X, Helleux A, Lindner V, Mouawad R, Spano JP, Rouprêt M, Compérat E, Verkarre V, Sun CM, Bennamoun M, Lang H, Barthelemy P, Cheng W, Xu L, Davidson I, Yan F, Fridman WH, Sautes-Fridman C, Oudard S, Malouf GG. Silencing of genes by promoter hypermethylation shapes tumor microenvironment and resistance to immunotherapy in clear-cell renal cell carcinomas. Cell Rep Med 2023; 4:101287. [PMID: 37967556 PMCID: PMC10694769 DOI: 10.1016/j.xcrm.2023.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The efficacy of immune checkpoint inhibitors varies in clear-cell renal cell carcinoma (ccRCC), with notable primary resistance among patients. Here, we integrate epigenetic (DNA methylation) and transcriptome data to identify a ccRCC subtype characterized by cancer-specific promoter hypermethylation and epigenetic silencing of Polycomb targets. We develop and validate an index of methylation-based epigenetic silencing (iMES) that predicts primary resistance to immune checkpoint inhibition (ICI) in the BIONIKK trial. High iMES is associated with VEGF pathway silencing, endothelial cell depletion, immune activation/suppression, EZH2 activation, BAP1/SETD2 deficiency, and resistance to ICI. Combination therapy with hypomethylating agents or tyrosine kinase inhibitors may benefit patients with high iMES. Intriguingly, tumors with low iMES exhibit increased endothelial cells and improved ICI response, suggesting the importance of angiogenesis in ICI treatment. We also develop a transcriptome-based analogous system for extended applicability of iMES. Our study underscores the interplay between epigenetic alterations and tumor microenvironment in determining immunotherapy response.
Collapse
Affiliation(s)
- Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Yann-Alexandre Vano
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP, Université Paris Cité, Paris, France; Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandra Helleux
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Véronique Lindner
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Roger Mouawad
- Department of Medical Oncology, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Philippe Spano
- Department of Medical Oncology, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgan Rouprêt
- Sorbonne University, GRC 5 P, UKredictive Onco-Uro, AP-HP, Urology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Eva Compérat
- Department of Pathology, Sorbonne University, AP-HP, Hôpital Tenon, Paris, France
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP, Université Paris Cité, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Mostefa Bennamoun
- Department of Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Hervé Lang
- Department of Urology, Strasbourg University Hospital, Strasbourg, France
| | - Philippe Barthelemy
- Department of Medical Oncology, Strasbourg University, Institut de Cancérologie de Strasbourg, Strasbourg, France
| | - Wenxuan Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Li Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Irwin Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Wolf Hervé Fridman
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Stéphane Oudard
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France; Department of Medical Oncology, Strasbourg University, Institut de Cancérologie de Strasbourg, Strasbourg, France.
| |
Collapse
|
45
|
Wong CW, Huang YY, Hurlstone A. The role of IFN-γ-signalling in response to immune checkpoint blockade therapy. Essays Biochem 2023; 67:991-1002. [PMID: 37503572 PMCID: PMC10539948 DOI: 10.1042/ebc20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy. Here, we highlight the paradoxical role of the cytokine interferon-γ (IFN-γ) in ICBT response: on the one hand induction of IFN-γ signalling in the tumour microenvironment correlates with good ICBT response as it drives the cellular immune responses required for tumour destruction; nonetheless, IFN-γ signalling is implicated in ICBT acquired resistance. We address the negative feedback and immunoregulatory effects of IFN-γ signalling that promote immune evasion and resistance to ICBT and discuss how these can be targeted pharmacologically to restore sensitivity or circumvent resistance.
Collapse
Affiliation(s)
- Chun Wai Wong
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Yang Yu Huang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
| | - Adam Hurlstone
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, U.K
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|