1
|
Collinson R, Tanos B. Primary cilia and cancer: a tale of many faces. Oncogene 2025; 44:1551-1566. [PMID: 40301543 PMCID: PMC12095056 DOI: 10.1038/s41388-025-03416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Cilia are microtubule-based sensory organelles which project from the cell surface, enabling detection of mechanical and chemical stimuli from the extracellular environment. It has been shown that cilia are lost in some cancers, while others depend on cilia or ciliary signaling. Several oncogenic molecules, including tyrosine kinases, G-protein coupled receptors, cytosolic kinases, and their downstream effectors localize to cilia. The Hedgehog pathway, one of the most studied ciliary-signaling pathways, is regulated at the cilium via an interplay between Smoothened (an oncogene) and Patched (a tumor suppressor), resulting in the activation of pro-survival programs. Interestingly, cilia loss can result in resistance to Smoothened-targeting drugs and increased cancer cell survival. On the other hand, kinase inhibitor-resistant and chemoresistant cancers have increased cilia and increased Hedgehog pathway activation, and suppressing cilia can overcome this resistance. How cilia regulate cancer is therefore context dependent. Defining the signaling output of cilia-localized oncogenic pathways could identify specific targets for cancer therapy, including the cilium itself. Increasing evidence implicates cilia in supporting several hallmarks of cancer, including migration, invasion, and metabolic rewiring. While cell cycle cues regulate the biogenesis of cilia, the absence of cilia has not been conclusively shown to affect the cell cycle. Thus, a complex interplay between molecular signals, phosphorylation events and spatial regulation renders this fascinating organelle an important new player in cancer through roles that we are only starting to uncover. In this review, we discuss recent advances in our understanding of cilia as signaling platforms in cancer and the influence this plays in tumor development.
Collapse
Affiliation(s)
- Rebecca Collinson
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK
| | - Barbara Tanos
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK.
| |
Collapse
|
2
|
Noh MY, Oh SI, Kim YE, Cha SJ, Sung W, Oh KW, Park Y, Mun JY, Ki CS, Nahm M, Kim SH. Mutations in NEK1 cause ciliary dysfunction as a novel pathogenic mechanism in amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:59. [PMID: 40389989 PMCID: PMC12090460 DOI: 10.1186/s13024-025-00848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Neuronal primary cilia, vital for signaling and cell-cycle regulation, have been implicated in maintaining neuronal identity. While a link between primary ciliary defects and neurodegenerative diseases is emerging, the precise pathological mechanisms remain unclear. METHODS We studied the genetic contribution of NEK1 to ALS pathogenesis by analyzing the exome sequences of 920 Korean patients with ALS. To understand the disease contribution of NEK1 variants in ALS, we performed a series of functional studies using patient fibroblasts focusing on primary cilia and microtubule-related phenotypes. In addition, these findings were validated in iPSC-derived motor neurons (iPSC-MNs). RESULTS NIMA-related kinase 1 (NEK1), a gene encoding a serine/threonine kinase involved in cell cycle regulation, has been identified as a risk gene for amyotrophic lateral sclerosis (ALS). Here, we report that mutations in NEK1 cause primary ciliary abnormality, cell cycle re-entry, and disrupted tubulin acetylation in ALS. We analyzed the whole-exome sequences of 920 Korean patients with sporadic ALS and identified 16 NEK1 variants in 23 patients. We found that two novel variants, p.E853Rfs*9 and p.M1?, reduced NEK1 expression, resulting in loss-of-function (LOF) and one synonymous splicing variant (p.Q132=) exhibited an aberrant isoform lacking exon 5. All three NEK1 variants exhibited abnormal primary ciliary structure, impaired sonic hedgehog signaling, and altered cell-cycle progression. Furthermore, the ALS-linked variants induced intracellular calcium overload followed by Aurora kinase A (AurA)-histone deacetylase (HDAC)6 activation, resulting in ciliary disassembly. These defects were restored by treatment with the intracellular Ca2+ chelator, BAPTA. We also found that NEK1 variants cause decreased α-tubulin acetylation, mitochondrial alteration, and impaired DNA damage response (DDR). Notably, drug treatment to inhibit HDAC6 restored the NEK1-dependent deficits in patient fibroblasts. And, we confirmed that data found in patient fibroblasts were reproduced in iPSC-MNs model. CONCLUSIONS Our results suggest that NEK1 contributes to ALS pathogenesis through the LOF mechanism, and HDAC6 inhibition provides an attractive therapeutic strategy for NEK1 variants associated ALS treatment.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sun Joo Cha
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yurim Park
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Seok Ki
- Green Cross Genome Corporation, Yongin, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chatzifrangkeskou M, Perdiou A, Kreouzou R, Zissimou GA, Flesariu DF, Koutentis PA, Skourides PA. Reversible Modulation of Motile Cilia by a Benzo[ e][1,2,4]triazinone: A Potential Non-Hormonal Approach to Male Contraception. Cells 2025; 14:688. [PMID: 40422191 DOI: 10.3390/cells14100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Motile cilia play essential roles in various physiological processes including fluid flow generation and sperm motility. In this study, we identified 1,3-diphenyl-6-(4-phenylpiperazin-1-yl)benzo[e][1,2,4]triazin-7(1H)-one as a potent and reversible modulator of ciliary function using the Xenopus laevis model. This benzotriazinone derivative inhibits ciliary-driven fluid flow by inducing cilia detachment without causing toxicity in developing embryos. Unlike traditional deciliation agents that rely on calcium signaling, this compound induces cilia loss through a shear stress-driven mechanism at the transition zone, without disrupting tissue morphology or the apical actin network. Importantly, it also induces flagellar loss and impairs sperm motility at picomolar concentrations. Our findings highlight the potential of this 6-(4-phenylpiperazin-1-yl)-substituted benzotriazinone as a non-hormonal male contraceptive and underscore a novel mechanism of cilia modulation that may have broader implications for the treatment of cilia-related disorders.
Collapse
Affiliation(s)
- Maria Chatzifrangkeskou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Alexandra Perdiou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Revekka Kreouzou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Georgia A Zissimou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Paris A Skourides
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
4
|
Chang M, Li Q, Shi Z, Zhuang S. The Role and Mechanisms of Aurora Kinases in Kidney Diseases. Clin Pharmacol Ther 2025; 117:1217-1225. [PMID: 39907556 DOI: 10.1002/cpt.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Aurora kinases are a family of serine/threonine kinases that includes Aurora kinase A, Aurora kinase B, and Aurora kinase C. These kinases play crucial roles in mitotic spindle formation and cell proliferation. Over the past several decades, extensive research has elucidated the multifaceted roles of Aurora kinases in cancer development and progression. Recent studies have also highlighted the significant involvement of Aurora kinases in various kidney diseases, such as renal cell carcinoma, diabetic nephropathy, chronic kidney disease, and polycystic kidney disease. The mechanisms by which Aurora kinases contribute to renal diseases are complex and influenced by both specific pathological conditions and environmental factors. In this review, we comprehensively summarize the role and mechanisms through which Aurora kinases operate in kidney diseases and discuss the efficacy and application of existing inhibitors targeting these kinases in managing renal disorders in animal models.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenwei Shi
- Department of Nephrology, The First Hospital of Tsinghua University, Beijing, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Short KL, Lao J, Lam R, Moreau JLM, Ng J, Piran M, Combes AN, Cottle DL, Cole TJ. Disrupted glucocorticoid receptor cell signalling causes a ciliogenesis defect in the fetal mouse renal tubule. EMBO Rep 2025:10.1038/s44319-025-00454-0. [PMID: 40247090 DOI: 10.1038/s44319-025-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Primary cilia are cell signalling and environment sensing organelles and have important roles during embryogenesis and homeostasis. We demonstrate glucocorticoid signalling is essential for normal cilia formation in mouse and human renal tubules. RNA sequencing of E18.5 kidneys from glucocorticoid receptor (GR) null mice identified significant reductions in key ciliogenesis-related genes including Ccp110, Cep97, Cep290 and Kif3a. Confocal microscopy reveals abnormal, stunted cilia on proximal tubules, podocytes, and collecting duct cells in mice with global or conditional deletion of GR. In contrast, activation of GR signalling with dexamethasone in human kidney organoids or mouse IMCD3 cells increases cilia length, an effect blocked by the GR antagonist RU486. Analysis of GR-null kidney extracts demonstrates reduced levels of pERK and SUFU identifying potential cell pathway crosstalk with GR signalling that coordinately regulate ciliogenesis in the renal tubule. Finally, dexamethasone reduces Aurora kinase A levels, a factor driving cilia disassembly and implicated in the pathogenesis of polycystic kidney disease.
Collapse
Affiliation(s)
- Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jianshen Lao
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel Lam
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Julie L M Moreau
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Judy Ng
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Mehran Piran
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
6
|
Li B, He YY, Yao WX, Jin DD, Luo HN, Li MY, Wu Y, Yang ZM. Primary cilia prevent activation of the cGAS-STING pathway during mouse decidualization. Commun Biol 2025; 8:607. [PMID: 40229503 PMCID: PMC11997147 DOI: 10.1038/s42003-025-08030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Primary cilia are antenna-like organelles that sense extracellular signals and function as signaling hubs essential for vertebrate development and homeostasis. Decidualization is crucial for pregnancy establishment and maintenance in both humans and mice. While primary cilia are present in endometrial stromal cells, their role in pregnancy remains unknown. Here, we identify TMEM67, a key component of the ciliary transition zone, as a critical regulator of mouse decidualization. Loss of primary cilia triggers RhoA-MLC2-dependent actomyosin contraction, which transmits mechanical forces to the nuclear lamina, leading to micronuclei formation. Within these micronuclei, double-stranded DNA (dsDNA) can directly bind to cyclic GMP-AMP synthase (cGAS) in situ, initiating downstream signaling. This activation of the cGAS-STING pathway reduces CCL6 production and impairs decidualization. Furthermore, pharmacological inhibition of actin polymerization or RhoA-ROCK signaling alleviates mechanical forces surrounding stromal cells, restores ciliogenesis, maintains nuclear integrity, suppresses the cGAS-STING pathway activation, and ultimately rescues decidualization. Our findings reveal a previously unrecognized mechanism by which primary cilia regulate the actin cytoskeleton to maintain nuclear integrity and prevent DNA leakage. This safeguards against aberrant activation of the cGAS-STING pathway, which would otherwise trigger detrimental immune signaling and impair decidualization.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dan-Dan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Galindo-Cabello N, Caballano-Infantes E, Benites G, Pastor-Idoate S, Diaz-Corrales FJ, Usategui-Martín R. Retinal Organoids: Innovative Tools for Understanding Retinal Degeneration. Int J Mol Sci 2025; 26:3263. [PMID: 40244125 PMCID: PMC11990004 DOI: 10.3390/ijms26073263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Retinal degenerative diseases (RDDs) comprise diverse genetic and phenotypic conditions that cause progressive retinal dysfunction and cell loss, leading to vision impairment or blindness. Most RDDs lack appropriate animal models for their study, which affects understanding their disease mechanisms and delays the progress of new treatment development. Recent advances in stem cell engineering, omics, and organoid technology are facilitating research into diseases for which there are no previously existing models. The development of retinal organoids produced from human stem cells has impacted the study of retinal development as well as the development of in vitro models of diseases, opening possibilities for applications in regenerative medicine, drug discovery, and precision medicine. In this review, we recapitulate research in the retinal organoid models for RDD, mentioning some of the main pathways underlying retinal neurodegeneration that can be studied in these new models, as well as their limitations and future challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Gregorio Benites
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
- Department of Ophthalmology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. Diaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| |
Collapse
|
8
|
Beyer T, Diwan GD, Leonhard T, Dahlke K, Klose F, Stehle IF, Seda M, Bolz S, Woerz F, Russell RB, Jenkins D, Ueffing M, Boldt K. Ciliopathy-Associated Missense Mutations in IFT140 are Tolerated by the Inherent Resilience of the IFT Machinery. Mol Cell Proteomics 2025; 24:100916. [PMID: 39880085 PMCID: PMC11907452 DOI: 10.1016/j.mcpro.2025.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/26/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Genotype-phenotype correlations of rare diseases are complicated by low patient number, high phenotype variability, and compound heterozygosity. Mutations may cause instability of single proteins, and affect protein complex formation or overall robustness of a specific process in a given cell. Ciliopathies offer an interesting case for studying genotype-phenotype correlations as they have a spectrum of severity and include diverse phenotypes depending on different mutations in the same protein. For instance, mutations in the intraflagellar transport protein IFT140 cause a vast spectrum of ciliopathies ranging from isolated retinal dystrophy to severe skeletal abnormalities and multi-organ diseases such as Mainzer-Saldino and Jeune syndrome. Here, the quantitative effects of 23 missense mutations in IFT140, which forms part of the crucial IFT-A complex of the ciliary machinery, were analyzed using affinity purification coupled with mass spectrometry (AP-MS). A subset of 10 mutations led to a significant and domain-specific reduction in IFT140-IFT-A complex interaction indicating complex formation issues and potentially hampering its molecular function. Knockout of IFT140 led to loss of cilia, as shown before. However, phenotypically only mild effects concerning cilia assembly were observed for two out of four tested IFT140 missense mutations. Therefore, our results demonstrate the utility of AP-MS in discerning pathogenic MMs from polymorphisms, and we postulate that reduced function is tolerated by the evolutionarily highly conserved IFT-A system.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Gaurav D Diwan
- BioQuant, University of Heidelberg, Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tobias Leonhard
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Katrin Dahlke
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabel F Stehle
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert B Russell
- BioQuant, University of Heidelberg, Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Laporte D, Sagot I. Microtubule Reorganization and Quiescence: an Intertwined Relationship. Physiology (Bethesda) 2025; 40:0. [PMID: 39378102 DOI: 10.1152/physiol.00036.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Quiescence is operationally defined as a reversible proliferation arrest. This cellular state is central to both organism development and homeostasis, and its dysregulation causes many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. Further, quiescent cell properties evolve with time, a process that is thought to be the origin of aging in multicellular organisms. Microtubules are found in all eukaryotes and are essential for cell proliferation as they support chromosome segregation and intracellular trafficking. Upon proliferation cessation and quiescence establishment, the microtubule cytoskeleton was shown to undergo significant remodeling. The purpose of this review is to examine the literature in search of evidence to determine whether the observed microtubule reorganizations are merely a consequence of quiescence establishment or if they somehow participate in this cell fate decision.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche ScientifiqueUniversité de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| |
Collapse
|
10
|
Yuan D, Bai N, Zhu Q, Song S, He A, Wang J, Chen Y. Hepatic HSD17B6 is dispensable for diet-induced fatty liver disease in mice. Biochem Biophys Rep 2025; 41:101924. [PMID: 39896111 PMCID: PMC11787692 DOI: 10.1016/j.bbrep.2025.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects up to a third of the global population, which causes huge both clinical and economic burdens. However, its therapeutic strategy is still limited. Steroid dysregulation plays a pivotal role in the homeostasis of lipid metabolism. 17-beta-hydroxysteroid dehydrogenase type 6 (HSD17B6)-one member of 17β-HSDs, encoded by the gene Hsd17b6, catalyzes the synthesis of androsterone and estrone-steroid hormones. However, whether the manipulation of HSD17B6 could ameliorate diet-induced fatty liver disease remains unknown. Here, we found that the expression of Hsd17b6 is enriched in the liver in both humans and mice. The data of single-cell RNA-seq suggests that Hsd17b6 appears to be exclusively expressed in hepatocytes-the parenchymal cells of the liver. Furthermore, the hepatic expression of Hsd17b6 is correlated with fatty liver disease. A mouse model with Hsd17b6 deletion in the liver (HLKO) is successfully generated via the administration of AAV8 expressing Cre recombinase (driven by TBG-a liver-specific promoter) and sgRNAs of Hsd17b6 to Cre-dependent Cas9 mice. Control and HLKO mice were challenged with the high-fat choline-deficient diet-a diet widely used for the model generation of fatty liver disease. Interestingly, the HLKO liver shows a special proteome signature, with the altered proteins enriched in the Golgi apparatus. However, the deletion of Hsd17b6 does not affect fatty liver disease in terms of fat accumulation, inflammation, and hepatic fibrosis. Taken together, our study suggests that the expression of Hsd17b6 is enriched in the liver and correlated with fatty liver disease but its hepatic deletion does not affect diet-induced fatty liver disease.
Collapse
Affiliation(s)
- Delong Yuan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Bai
- Department of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qihan Zhu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shaoxuan Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Anyuan He
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jianqing Wang
- Department of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yali Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
11
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Damodaran AP, Gavard O, Gagné JP, Rogalska ME, Behera AK, Mancini E, Bertolin G, Courtheoux T, Kumari B, Cailloce J, Mereau A, Poirier GG, Valcárcel J, Gonatopoulos-Pournatzis T, Watrin E, Prigent C. Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors. J Biol Chem 2025; 301:108000. [PMID: 39551136 PMCID: PMC11732490 DOI: 10.1016/j.jbc.2024.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
The cell cycle regulator Aurora-A kinase presents an attractive target for cancer therapies, though its inhibition is also associated with toxic side effects. To gain a more nuanced understanding of Aurora-A function, we applied shotgun proteomics to identify 407 specific protein partners, including several splicing factors. Supporting a role in alternative splicing, we found that Aurora-A localizes to nuclear speckles, the storehouse of splicing proteins. Aurora-A interacts with and phosphorylates splicing factors both in vitro and in vivo, suggesting that it regulates alternative splicing by modulating the activity of these splicing factors. Consistently, Aurora-A inhibition significantly impacts the alternative splicing of 505 genes, with RNA motif analysis revealing an enrichment for Aurora-A interacting splicing factors. Additionally, we observed a significant positive correlation between the splicing events regulated by Aurora-A and those modulated by its interacting splicing factors. An interesting example is represented by CLK1 exon 4, which appears to be regulated by Aurora-A through SRSF3. Collectively, our findings highlight a broad role of Aurora-A in the regulation of alternative splicing.
Collapse
Affiliation(s)
- Arun Prasath Damodaran
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Olivia Gavard
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Amit K Behera
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Giulia Bertolin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Thibault Courtheoux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA
| | - Justine Cailloce
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Agnès Mereau
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Quebec, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland, USA.
| | - Erwan Watrin
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France.
| | - Claude Prigent
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
13
|
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang X, Yang W, Asadikaram G, Li Z, Zhang K, Peng J, Li J, He J, Wang H. N 6-Methyladenosine Regulates Cilia Elongation in Cancer Cells by Modulating HDAC6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408488. [PMID: 39535388 PMCID: PMC11727115 DOI: 10.1002/advs.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Primary cilia are microtubule-based organelles that function as cellular antennae to address multiple metabolic and extracellular cues. The past decade has seen significant advances in understanding the pro-tumorigenic role of N6-methyladenosine (m6A) modification in tumorigenesis. Nevertheless, whether m6A modification modulates the cilia dynamics during cancer progression remains unclear. Here, the results show that m6A methyltransferase METTL3 regulates cilia length in cancer cells via HDAC6-dependent deacetylation of axonemal α-tubulin, thereby controlling cancer development. Mechanically, METTL3 positively regulates the translation of HDAC6 in an m6A-dependent manner, while m6A methylation of A3678 in the coding sequence (CDS) of HDAC6 ameliorates its translation efficiency via facilitating the binding with YTHDF3. The upregulation of HDAC6 induced by METTL3 over-expression is capable of inhibiting cilia elongation and acetylation of α-tubulin, thereby shortening cilia length and accelerating the progression of cervical cancer both in vitro and in vivo. Collectively, depletion of METTL3-mediated m6A modification leads to abnormally elongated cilia via suppressing HDAC6-dependent deacetylation of axonemal α-tubulin, ultimately attenuating cell growth and cervical cancer development.
Collapse
Affiliation(s)
- Yalan Rui
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Kangning Yu
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shiyao Qiao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Chenglin Gao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesMedical University CampusKerman7616913555Iran
| | - Zigang Li
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518067China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengdu Seventh People's HospitalAffiliated Cancer Hospital of Chengdu Medical CollegeSchool of Biological Sciences and TechnologyChengdu Medical CollegeChengdu610500China
| | - Jianxin Peng
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Junming He
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
14
|
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci U S A 2024; 121:e2408083121. [PMID: 39705308 DOI: 10.1073/pnas.2408083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Xun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amin Lim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
15
|
Je SY, Ko HW. Distinct roles of centriole distal appendage proteins in ciliary assembly and disassembly. Cell Commun Signal 2024; 22:607. [PMID: 39696441 DOI: 10.1186/s12964-024-01962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood. Here, we elucidate the precise role of DA proteins in ciliary assembly and disassembly. While Cep89 mutant cells exhibit normal ciliogenesis, the kinetics of ciliary disassembly is significantly delayed. Through siRNA-mediated knockdown of DA proteins, we identified two functional subgroups within DA proteins: CEP83, SCLT1, and CEP164, which are primarily essential for ciliary assembly and centriole docking, and CEP89 and FBF1, which specifically regulate ciliary disassembly. Notably, the depletion of CEP89 and FBF1 not only impedes ciliary disassembly but also disrupts the Aurora A kinase signaling pathway, leading to its downregulation and mislocalization at the basal body during serum-induced cell cycle re-entry. These findings suggest that DA components can be functionally categorized into two modules responsible for distinct aspects of ciliary dynamics, with broad implications for cellular signaling, homeostasis, and development.
Collapse
Affiliation(s)
- Su-Yeon Je
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
- Institute for Biomedical Convergence Science and Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024; 253:1076-1093. [PMID: 38958410 PMCID: PMC11611694 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
17
|
Guo Y, Dupart M, Irondelle M, Peraldi P, Bost F, Mazure NM. YAP1 modulation of primary cilia-mediated ciliogenesis in 2D and 3D prostate cancer models. FEBS Lett 2024; 598:3071-3086. [PMID: 39424416 DOI: 10.1002/1873-3468.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
The primary cilium, a non-motile organelle present in most human cells, plays a crucial role in detecting microenvironmental changes and regulating intracellular signaling. Its dysfunction is linked to various diseases, including cancer. We explored the role of ciliated cells in prostate cancer by using Gefitinib and Jasplakinolide compounds to induce ciliated cells in both normal and tumor-like prostate cell lines. We assessed GLI1 and IFT20 expression and investigated YAP1 protein's role, which is implicated in primary cilium regulation. Finally, we examined these compounds in 3D cell models, aiming to simulate in vivo conditions. Our study highlights YAP1 as a potential target for novel genetic models to understand the primary cilium's role in mediating resistance to anticancer treatments.
Collapse
Affiliation(s)
- Yingbo Guo
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Mathilde Dupart
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
- IRCAN, Université Côte d'Azur, Nice Cedex 02, France
| | - Marie Irondelle
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
| | - Pascal Peraldi
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Frederic Bost
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Nathalie M Mazure
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| |
Collapse
|
18
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
19
|
Samudra SP, Park S, Esser EA, McDonald TP, Borges AM, Eggenschwiler J, Menke DB. A new cell culture resource for investigations of reptilian gene function. Development 2024; 151:dev204275. [PMID: 39576177 DOI: 10.1242/dev.204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2024] [Indexed: 12/02/2024]
Abstract
The establishment of CRISPR/Cas9 gene editing in Anolis sagrei has positioned this species as a powerful model for studies of reptilian gene function. To enhance this model, we developed an immortalized lizard fibroblast cell line (ASEC-1) for the exploration of reptilian gene function in cellular processes. We demonstrate the use of this cell line by scrutinizing the role of primary cilia in lizard Hedgehog (Hh) signaling. Using CRISPR/Cas9 mutagenesis, we disrupted the ift88 gene, which is required for ciliogenesis in diverse organisms. We determined that loss of itf88 from lizard cells leads to an absence of primary cilia, a partial derepression of gli1 transcription, and an inability of the cells to respond to the Smoothened agonist, SAG. Through a cross-species analysis of SAG-induced transcriptional responses in cultured limb bud cells, we further determined that ∼46% of genes induced as a response to Hh pathway activation in A. sagrei are also SAG responsive in Mus musculus limb bud cells. Our results highlight conserved and diverged aspects of Hh signaling in anoles and establish a new resource for investigations of reptilian gene function.
Collapse
Affiliation(s)
- Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth A Esser
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Arianna M Borges
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Garcia CJC, Grisetti L, Tiribelli C, Pascut D. The ncRNA-AURKA Interaction in Hepatocellular Carcinoma: Insights into Oncogenic Pathways, Therapeutic Opportunities, and Future Challenges. Life (Basel) 2024; 14:1430. [PMID: 39598228 PMCID: PMC11595987 DOI: 10.3390/life14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major public health concern and ranks among the leading cancer-related mortalities globally. Due to the frequent late-stage diagnosis of HCC, therapeutic options remain limited. Emerging evidence highlights the critical role of non-coding RNAs (ncRNAs) in the regulation of Aurora kinase A (AURKA), one of the key hub genes involved in several key cancer pathways. Indeed, the dysregulated interaction between ncRNAs and AURKA contributes to tumor development, progression, and therapeutic resistance. This review delves into the interplay between ncRNAs and AURKA and their role in hepatocarcinogenesis. Recent findings underscore the involvement of the ncRNAs and AURKA axis in tumor development and progression. Furthermore, this review also discusses the clinical significance of targeting ncRNA-AURKA axes, offering new perspectives that could lead to innovative therapeutic strategies aimed at improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Clarissa Joy C. Garcia
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Grisetti
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| |
Collapse
|
21
|
Liu W, Luo G. NEDD9 is transcriptionally regulated by HDAC4 and promotes breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling pathway. Neoplasia 2024; 57:101059. [PMID: 39326322 PMCID: PMC11470473 DOI: 10.1016/j.neo.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
22
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Thuy PX, Jang TK, Moon EY. Vinblastine Resistance Is Associated with Nephronophthisis 3-Mediated Primary Cilia via Intraflagellar Transport Protein 88 and Apoptosis-Antagonizing Transcription Factor. Int J Mol Sci 2024; 25:10369. [PMID: 39408701 PMCID: PMC11477320 DOI: 10.3390/ijms251910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Primary cilia (PC) are microtubule-based organelles that function as cellular antennae to sense and transduce extracellular signals. Nephronophthisis 3 (NPHP3) is localized in the inversin compartment of PC. Mutations in NPHP3 are associated with renal-hepatic-pancreatic dysplasia. In this study, we investigated whether vinblastine (VBL), a microtubule destabilizer, induces anticancer drug resistance through NPHP3-associated PC formation in HeLa human cervical cancer cells. A considerable increase in PC frequency was observed in HeLa cells under serum-deprived (SD) conditions, which led to the inhibition of VBL-induced cell death. VBL-resistant cells were established by repetitive treatments with VBL and showed an increase in PC frequency. NPHP3 expression was also increased by VBL treatment under serum starvation as well as in VBL-resistant cells. NPHP3 expression and PC-associated resistance were positively correlated with apoptosis-antagonizing transcription factor (AATF) and negatively correlated with inhibition of NPHP3. In addition, AATF-mediated NPHP3 expression is associated with PC formation via the regulation of intraflagellar transport protein 88 (IFT88). VBL resistance ability was reduced by treating with ciliobrevin A, a well-known ciliogenesis inhibitor. Collectively, cancer cell survival following VBL treatment is regulated by PC formation via AATF-mediated expression of IFT88 and NPHP3. Our data suggest that the activation of AATF and IFT88 could be a novel regulator to induce anticancer drug resistance through NPHP3-associated PC formation.
Collapse
Affiliation(s)
| | | | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (P.X.T.); (T.-K.J.)
| |
Collapse
|
25
|
Jiang L, Yang S, Deng L, Luo J, Zhang X, Chen S, Dong Z. ARL13B promotes cell cycle through the sonic hedgehog signaling pathway to alleviate nerve damage during cerebral ischemia/reperfusion in rats. Biochem Pharmacol 2024; 227:116446. [PMID: 39038552 DOI: 10.1016/j.bcp.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Cerebral ischemia/reperfusion (CIRI) is a leading cause of death worldwide. A small GTPase known as ADP-ribosylation factor-like protein 13B (ARL13B) is essential in several illnesses. The role of ARL13B in CIRI remains unknown, though. A middle cerebral artery occlusion/reperfusion (MCAO/R) in rats as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) models in PC12 cells were constructed. The neuroprotective effects of ARL13B against MCAO/R were evaluated using neurological scores, TTC staining, rotarod testing, H&E staining, and Nissl staining. To detect the expression of proteins associated with the SHH pathway and apoptosis, western blotting and immunofluorescence were employed. Apoptosis was detected using TUNEL assays and flow cytometry. There was increased expression of ARL13B in cerebral ischemia/reperfusion models. However, ARL13B knockdown aggravated CIRI nerve injury by inhibiting the sonic hedgehog (SHH) pathway. In addition, the use of SHH pathway agonist (SAG) can increased ARL13B expression, reverse the effects of ARL13B knockdown exacerbating CIRI nerve injury. ARL13B alleviated cerebral infarction and pathological injury and played a protective role against MCAO/R. Furthermore, ARL13B significantly increased the expression of SHH pathway-related proteins and the anti-apoptotic protein BCL-2, while decreased the expression of pro-apoptotic protein BAX, thus reducing apoptosis. The results from the OGD/R model in PC12 cells were consistent with those obtained in vivo. Surprisingly, we demonstrated that ARL13B regulates the cell cycle to protect against CIRI nerve injury. Our findings indicate that ARL13B protects against CIRI by reducing apoptosis through SHH-dependent pathway activation, and suggest that ARL13B plays a crucial role in CIRI pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaonan Yang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ling Deng
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jingjing Luo
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaoling Zhang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Sha Chen
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhi Dong
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|
26
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Shields MA, Metropulos AE, Spaulding C, Alzahrani KA, Hirose T, Ohno S, Pham TND, Munshi HG. BET Inhibition Rescues Acinar-Ductal-Metaplasia and Ciliogenesis and Ameliorates Chronic Pancreatitis-Driven Changes in Mice With Loss of the Polarity Protein Par3. Cell Mol Gastroenterol Hepatol 2024; 18:101389. [PMID: 39128653 PMCID: PMC11437875 DOI: 10.1016/j.jcmgh.2024.101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas injury and regeneration are poorly understood. METHODS Cerulein-induced pancreatitis was induced in mice with conditional deletion of the polarity protein Par3 in the pancreas. The impact of Par3 loss on pancreas injury and regeneration was assessed by histologic analyses and transcriptional profiling by RNA sequencing. Mice were pretreated with the bromodomain and extraterminal domain (BET) inhibitor JQ1 before cotreatment with cerulein to determine the effect of BET inhibition on pancreas injury and regeneration. RESULTS Initially, we show that Par3 is increased in acinar-ductal metaplasia (ADM) lesions present in human and mouse chronic pancreatitis specimens. Although Par3 loss disrupts tight junctions, Par3 is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss exacerbates acute pancreatitis-induced injury and chronic pancreatitis-induced acinar cell loss, promotes pancreatic lipomatosis, and prevents regeneration. Par3 loss also results in suppression of chronic pancreatitis-induced ADM and primary ciliogenesis. Notably, targeting BET proteins attenuates chronic pancreatitis-induced loss of primary cilia and promotes ADM in mice lacking pancreatic Par3. Targeting BET proteins also attenuates cerulein-induced acinar cell loss and enhances recovery of acinar cell mass and body weight of mice lacking pancreatic Par3. CONCLUSIONS Combined, this study demonstrates how Par3 restrains chronic pancreatitis-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate regeneration.
Collapse
Affiliation(s)
- Mario A Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Khulood A Alzahrani
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan; Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Thao N D Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
28
|
Tang L, Xu S, Wei R, Fan G, Zhou J, Wei X, Xu X. Transcription factor 7 like 2 promotes metastasis in hepatocellular carcinoma via NEDD9-mediated activation of AKT/mTOR signaling pathway. Mol Med 2024; 30:108. [PMID: 39060928 PMCID: PMC11282612 DOI: 10.1186/s10020-024-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, and the exact mechanism of HCC is still unclear. Transcription factor 7 like 2 (TCF7L2) plays a pivotal role in cell proliferation and stemness maintenance. However, the exact mechanism of TCF7L2 in HCC remains unclear. METHODS Clinical samples and public databases were used to analyze the expression and prognosis of TCF7L2 in HCC. The function of TCF7L2 in HCC was studied in vitro and in vivo. ChIP and luciferase assays were used to explore the molecular mechanism of TCF7L2. The relationship between TCF7L2 and NEDD9 was verified in HCC clinical samples by tissue microarrays. RESULTS The expression of TCF7L2 was upregulated in HCC, and high expression of TCF7L2 was associated with poor prognosis of HCC patients. Overexpression of TCF7L2 promoted the metastasis of HCC in vitro and in vivo, while Knockdown of TCF7L2 showed the opposite effect. Mechanically, TCF7L2 activated neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) transcription by binding to the -1522/-1509 site of the NEDD9 promoter region, thereby increasing the phosphorylation levels of AKT and mTOR. The combination of TCF7L2 and NEDD9 could distinguish the survival of HCC patients. CONCLUSIONS This study demonstrated that TCF7L2 promotes HCC metastasis by activating AKT/mTOR pathway in a NEDD9-dependent manner, suggesting that potential of TCF7L2 and NEDD9 as prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Chinbold B, Kwon HM, Park R. TonEBP inhibits ciliogenesis by controlling aurora kinase A and regulating centriolar satellite integrity. Cell Commun Signal 2024; 22:348. [PMID: 38961488 PMCID: PMC11221002 DOI: 10.1186/s12964-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.
Collapse
Affiliation(s)
- Batchingis Chinbold
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
30
|
Baur K, Şan Ş, Hölzl-Wenig G, Mandl C, Hellwig A, Ciccolini F. GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation. Life Sci Alliance 2024; 7:e202302384. [PMID: 38719753 PMCID: PMC11077589 DOI: 10.26508/lsa.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Sorbonne University, Paris, France
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
31
|
Tian J, Mallinger JC, Shi P, Ling D, Deleyrolle LP, Lin M, Khoshbouei H, Sarkisian MR. Aurora kinase A inhibition plus Tumor Treating Fields suppress glioma cell proliferation in a cilium-independent manner. Transl Oncol 2024; 45:101956. [PMID: 38640786 PMCID: PMC11053227 DOI: 10.1016/j.tranon.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Tumor Treating Fields (TTFields) extend the survival of glioblastoma (GBM) patients by interfering with a broad range of tumor cellular processes. Among these, TTFields disrupt primary cilia stability on GBM cells. Here we asked if concomitant treatment of TTFields with other agents that interfere with GBM ciliogenesis further suppress GBM cell proliferation in vitro. Aurora kinase A (AURKA) promotes both cilia disassembly and GBM growth. Inhibitors of AURKA, such as Alisertib, inhibit cilia disassembly and increase ciliary frequency in various cell types. However, we found that Alisertib treatment significantly reduced GBM cilia frequency in gliomaspheres across multiple patient derived cell lines, and in patient biopsies treated ex vivo. This effect appeared glioma cell-specific as it did not reduce normal neuronal or glial cilia frequencies. Alisertib-mediated depletion of glioma cilia appears specific to AURKA and not AURKB inhibition, and attributable in part to autophagy pathway activation. Treatment of two different GBM patient-derived cell lines with TTFields and Alisertib resulted in a significant reduction in cell proliferation compared to either treatment alone. However, this effect was not cilia-dependent as the combined treatment reduced proliferation in cilia-depleted cell lines lacking, ARL13B, or U87MG cells which are naturally devoid of ARL13B+ cilia. Thus, Alisertib-mediated effects on glioma cilia may be a useful biomarker of drug efficacy within tumor tissue. Considering Alisertib can cross the blood brain barrier and inhibit intracranial growth, our data warrant future studies to explore whether concomitant Alisertib and TTFields exposure prolongs survival of brain tumor-bearing animals in vivo.
Collapse
Affiliation(s)
- Jia Tian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Julianne C Mallinger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ping Shi
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dahao Ling
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Min Lin
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
33
|
Deng X, Seguinot BO, Bradshaw G, Lee JS, Coy S, Kalocsay M, Santagata S, Mitchison T. STMND1 is a phylogenetically ancient stathmin which localizes to motile cilia and exhibits nuclear translocation that is inhibited when soluble tubulin concentration increases. Mol Biol Cell 2024; 35:ar82. [PMID: 38630521 PMCID: PMC11238091 DOI: 10.1091/mbc.e23-12-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal. Biochemistry and proximity labeling showed that STMND1 binds tubulin, and live imaging showed that tubulin binding inhibits translocation from cellular membranes to the nucleus. STMND1 is highly expressed in multiciliated epithelial cells, where it localizes to motile cilia. Overexpression in a model system increased the length of primary cilia. Our study suggests that the most ancient stathmins have cilium-related functions that involve sensing soluble tubulin.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Bryan O. Seguinot
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Ekka R, Gutierrez A, Johnson KA, Tan M, Sütterlin C. Chlamydia trachomatis induces disassembly of the primary cilium to promote the intracellular infection. PLoS Pathog 2024; 20:e1012303. [PMID: 38885287 PMCID: PMC11213297 DOI: 10.1371/journal.ppat.1012303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis is a clinically important bacterium that infects epithelial cells of the genitourinary and respiratory tracts and the eye. These differentiated cells are in a quiescent growth state and have a surface organelle called a primary cilium, but the standard Chlamydia cell culture infection model uses cycling cells that lack primary cilia. To investigate if these differences are relevant, we performed infections with host cells that have a primary cilium. We found that C. trachomatis caused progressive loss of the primary cilium that was prevented by disrupting Aurora A (AurA), HDAC6 or calmodulin, which are components of the cellular cilia disassembly pathway. Stabilization of the primary cilium by targeting this pathway caused a large reduction in infectious progeny although there were no changes in chlamydial inclusion growth, chlamydial replication or the ultrastructural appearance of dividing and infectious forms (RBs and EBs, respectively). Thus, the presence of a primary cilium interfered with the production of infectious EBs at a late step in the developmental cycle. C. trachomatis infection also induced quiescent cells to re-enter the cell cycle, as detected by EdU incorporation in S-phase, and Chlamydia-induced cilia disassembly was necessary for cell cycle re-entry. This study therefore describes a novel host-pathogen interaction in which the primary cilium limits a productive Chlamydia infection, and the bacterium counteracts this host cell defense by activating the cellular cilia disassembly pathway.
Collapse
Affiliation(s)
- Roseleen Ekka
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Abraham Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
- Department of Medicine, University of California, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
35
|
Kawasaki M, Al-Shama RFM, Nariswari FA, Fabrizi B, van den Berg NWE, Wesselink R, Neefs J, Meulendijks ER, Baalman SWE, Driessen AHG, de Groot JR. Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro. Sci Rep 2024; 14:12470. [PMID: 38816374 PMCID: PMC11139955 DOI: 10.1038/s41598-024-60298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.
Collapse
Affiliation(s)
- Makiri Kawasaki
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rushd F M Al-Shama
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Fransisca A Nariswari
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sarah W E Baalman
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Herwig A, Osterhof C, Keppner A, Maric D, Koay TW, Mbemba-Nsungi A, Hoogewijs D. Ectopic MYBL2-Mediated Regulation of Androglobin Gene Expression. Cells 2024; 13:826. [PMID: 38786048 PMCID: PMC11119863 DOI: 10.3390/cells13100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Androglobin (ADGB) is a highly conserved and recently identified member of the globin superfamily. Although previous studies revealed a link to ciliogenesis and an involvement in murine spermatogenesis, its physiological function remains mostly unknown. Apart from FOXJ1-dependent regulation, the transcriptional landscape of the ADGB gene remains unexplored. We, therefore, aimed to obtain further insights into regulatory mechanisms governing ADGB expression. To this end, changes in ADGB promoter activity were examined using luciferase reporter gene assays in the presence of a set of more than 475 different exogenous transcription factors. MYBL2 and PITX2 resulted in the most pronounced increase in ADGB promoter-dependent luciferase activity. Subsequent truncation strategies of the ADGB promoter fragment narrowed down the potential MYBL2 and PITX2 binding sites within the proximal ADGB promoter. Furthermore, MYBL2 binding sites on the ADGB promoter were further validated via a guide RNA-mediated interference strategy using reporter assays. Chromatin immunoprecipitation (ChIP)-qPCR experiments illustrated enrichment of the endogenous ADGB promoter region upon MYBL2 and PITX2 overexpression. Consistently, ectopic MYBL2 expression induced endogenous ADGB mRNA levels. Collectively, our data indicate that ADGB is strongly regulated at the transcriptional level and might have functions beyond ciliogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Hoogewijs
- Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland; (A.H.); (C.O.); (A.K.); (D.M.); (T.W.K.); (A.M.-N.)
| |
Collapse
|
37
|
Weijman JF, Vuolo L, Shak C, Pugnetti A, Mukhopadhyay AG, Hodgson LR, Heesom KJ, Roberts AJ, Stephens DJ. Roles for CEP170 in cilia function and dynein-2 assembly. J Cell Sci 2024; 137:jcs261816. [PMID: 38533689 PMCID: PMC11112123 DOI: 10.1242/jcs.261816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.
Collapse
Affiliation(s)
- Johannes F. Weijman
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anna Pugnetti
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Lorna R. Hodgson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony J. Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
38
|
Ma W, Wei L, Jin L, Ma Q, Zhang T, Zhao Y, Hua J, Zhang Y, Wei W, Ding N, Wang J, He J. YAP/Aurora A-mediated ciliogenesis regulates ionizing radiation-induced senescence via Hedgehog pathway in tumor cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167062. [PMID: 38342416 DOI: 10.1016/j.bbadis.2024.167062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Primary cilia are antenna-like organelles that play critical roles in sensing and responding to various signals. Nevertheless, the function of primary cilia in cellular response to ionizing radiation (IR) in tumor cells remains unclear. Here, we show that primary cilia are frequently expressed in tumor cells and tissues. Notably, IR promotes cilia formation and elongation in time- and dose-dependent manners. Mechanistic study shows that the suppression of YAP/Aurora A pathway contributes to IR-induced ciliogenesis, which is diminished by Aurora A overexpression. The ciliated tumor cells undergo senescence but not apoptosis in response to IR and the abrogation of cilia formation is sufficient to elevate the lethal effect of IR. Furthermore, we show that IR-induced ciliogenesis leads to the activation of Hedgehog signaling pathway to drive senescence and resist apoptosis, and its blockage enhances cellular radiosensitivity by switching senescence to apoptosis. In summary, this work shows evidence of primary cilia in coordinating cellular response to IR in tumor cells, which may help to supply a novel sensitizing target to improve the outcome of radiotherapy.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangliang Jin
- Department of Pathology, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730000, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongshan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
40
|
Li L, Zhao H, Li Z, Shi W, Jiao Z. SHCBP1 Overexpression Aggravates Pancreatitis by Triggering the Loss of Primary Cilia. DNA Cell Biol 2024; 43:141-151. [PMID: 38215233 DOI: 10.1089/dna.2023.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Primary cilia are microtubule-based organelles that mediate various biological processes. Pancreatic cells are typically ciliated; however, the role of primary cilia in acute pancreatitis (AP) is largely unknown. Here, we report that the loss of primary cilia, mediated by SHCBP1 (SHC1 binding protein), exerted a provocative effect on AP. Primary cilia are extensively lost in inflamed pancreatic cells in vitro and in mouse tissues with AP in vivo. Abrogation of primary cilia aggravated lipopolysaccharide (LPS)-induced inflammation in pancreatic cells. Mechanistically, AP induced the overexpression of SHCBP1 mitotic factor, which is localized to the base of primary cilia. SHCBP1 deficiency relieved LPS- and cerulein-induced pancreatitis by preventing the loss of primary cilia in vitro and in vivo. Collectively, we reveal that inflammation-induced loss of primary cilia aggravates AP. Furthermore, abrogating SHCBP1 to prevent primary cilia loss is an efficient strategy to combat AP.
Collapse
Affiliation(s)
- Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huiming Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhengyang Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuoyi Jiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
41
|
Lai YS, Chan TW, Nguyen TMH, Lin TC, Chao YY, Wang CY, Hung LY, Tsai SJ, Chiu WT. Store-operated calcium entry inhibits primary ciliogenesis via the activation of Aurora A. FEBS J 2024; 291:1027-1042. [PMID: 38050648 DOI: 10.1111/febs.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Wei Chan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chien Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Jayarajan RO, Chakraborty S, Raghu KG, Purushothaman J, Veleri S. Joubert syndrome causing mutation in C2 domain of CC2D2A affects structural integrity of cilia and cellular signaling molecules. Exp Brain Res 2024; 242:619-637. [PMID: 38231387 DOI: 10.1007/s00221-023-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.
Collapse
Affiliation(s)
- Roopasree O Jayarajan
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soura Chakraborty
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Kozhiparambil Gopalan Raghu
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayamurthy Purushothaman
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobi Veleri
- Drug Safety Division, National Institute of Nutrition, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Hyderabad, 500007, India.
| |
Collapse
|
43
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
44
|
Tran NV, Montanari MP, Gui J, Lubenets D, Fischbach LL, Antson H, Huang Y, Brutus E, Okada Y, Ishimoto Y, Tõnissoo T, Shimmi O. Programmed disassembly of a microtubule-based membrane protrusion network coordinates 3D epithelial morphogenesis in Drosophila. EMBO J 2024; 43:568-594. [PMID: 38263333 PMCID: PMC10897427 DOI: 10.1038/s44318-023-00025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Ngan Vi Tran
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Martti P Montanari
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Jinghua Gui
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Dmitri Lubenets
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | | | - Hanna Antson
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Yunxian Huang
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Erich Brutus
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Yasushi Okada
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Departments of Cell Biology and Physics, University of Tokyo, Tokyo, Japan
| | - Yukitaka Ishimoto
- Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Akita, 015-0055, Japan
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia.
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
45
|
Guo H, Lan M, Zhang Q, Liu Y, Zhang Y, Zhang Q, Chen W. [Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:67-73. [PMID: 38322536 PMCID: PMC10839480 DOI: 10.12182/20240160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/08/2024]
Abstract
Objective To investigate how substrate stiffness regulates the morphology of primary cilia in chondrocytes and to illustrate how Piezo1 mediates the morphology regulation of primary cilia by substrate stiffness. Methods Polydimethylsiloxane (PDMS) curing agent and the main agent (Dow Corning, Beijing, China) were mixed at the ratio of 1∶10 (stiff), 1∶50 (medium stiffness), and 1∶70 (soft), respectively, to prepare substrate films with the thickness of 1 mm at different levels of stiffness, including stiff substrate of (2.21±0.12) MPa, medium-stiffness substrate of (54.47±6.06) kPa, and soft substrate of (2.13±0.10) kPa. Chondrocytes were cultured with the substrates of three different levels of stiffness. Then, the cells were treated with Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6), Piezo1 activator Yoda1, and inhibitor GsMTx4, respectively. The effects of HDAC6, Yoda1, and GsMTx4 on chondrocyte morphology and the length of primary cilia were analyzed through immunofluorescence staining. Results The stiff substrate increased the spread area of the chondrocytes. Immunofluorescence assays showed that the cytoskeleton and the nuclear area of the cells on the stiff substrate were significantly increased (P<0.05) and the primary cilia were significantly extended (P<0.05) compared with those on the medium-stiffness and soft substrates. However, the presence rate of primary cilia was not affected. The HDAC6 activity of chondrocytes increased with the decrease in substrate stiffness. When the activity of HDAC6 was inhibited, the cytoskeletal area, the nuclei area, and the primary cilium length were increased more significantly on the stiff substrate (P<0.05). Further testing showed that Piezo1 activator and inhibitor could regulate the activity of HDAC6 in chondrocytes, and that the length of primary cilia was significantly increased after treatment with the activator Yoda1 (P<0.05). On the other hand, the length of primary cilia was significantly shortened on the stiff substrate after treatment with the inhibitor GsMTx4 (P<0.05). Conclusion Both substrate stiffness and Piezo1 may affect the morphology of chondrocyte primary cilia by regulating HDAC6 activity.
Collapse
Affiliation(s)
- Huaqing Guo
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Minhua Lan
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanli Liu
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanjun Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Quanyou Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Weiyi Chen
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
46
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
47
|
Lee C, Yi J, Park J, Ahn B, Won YW, Jeon J, Lee BJ, Cho WJ, Park JW. Hedgehog signalling is involved in acquired resistance to KRAS G12C inhibitors in lung cancer cells. Cell Death Dis 2024; 15:56. [PMID: 38225225 PMCID: PMC10789740 DOI: 10.1038/s41419-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, Texas, USA
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - JiHeung Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
48
|
Tham MS, Cottle DL, Zylberberg AK, Short KM, Jones LK, Chan P, Conduit SE, Dyson JM, Mitchell CA, Smyth IM. Deletion of Aurora kinase A prevents the development of polycystic kidney disease in mice. Nat Commun 2024; 15:371. [PMID: 38191531 PMCID: PMC10774271 DOI: 10.1038/s41467-023-44410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Aurora Kinase A (AURKA) promotes cell proliferation and is overexpressed in different types of polycystic kidney disease (PKD). To understand AURKA's role in regulating renal cyst development we conditionally deleted the gene in mouse models of Autosomal Dominant PKD (ADPKD) and Joubert Syndrome, caused by Polycystin 1 (Pkd1) and Inositol polyphosphate-5-phosphatase E (Inpp5e) mutations respectively. We show that while Aurka is dispensable for collecting duct development and homeostasis, its deletion prevents cyst formation in both disease models. Cross-comparison of transcriptional changes implicated AKT signaling in cyst prevention and we show that (i) AURKA and AKT physically interact, (ii) AURKA regulates AKT activity in a kinase-independent manner and (iii) inhibition of AKT can reduce disease severity. AKT activation also regulates Aurka expression, creating a feed-forward loop driving renal cystogenesis. We find that the AURKA kinase inhibitor Alisertib stabilises the AURKA protein, agonizing its cystogenic functions. These studies identify AURKA as a master regulator of renal cyst development in different types of PKD, functioning in-part via AKT.
Collapse
Affiliation(s)
- Ming Shen Tham
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Denny L Cottle
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Allara K Zylberberg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Perkin Chan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
49
|
Tian Z, Li X, Yu X, Yan S, Sun J, Ma W, Zhu X, Tang Y. The role of primary cilia in thyroid diseases. Front Endocrinol (Lausanne) 2024; 14:1306550. [PMID: 38260150 PMCID: PMC10801159 DOI: 10.3389/fendo.2023.1306550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.
Collapse
Affiliation(s)
- Zijiao Tian
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xinlin Li
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Yan
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Zhang K, Zou Y, Shan M, Pan Z, Ju J, Liu J, Ji Y, Sun S. Arf1 GTPase Regulates Golgi-Dependent G2/M Transition and Spindle Organization in Oocyte Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303009. [PMID: 38014604 PMCID: PMC10811507 DOI: 10.1002/advs.202303009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Indexed: 11/29/2023]
Abstract
ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.
Collapse
Affiliation(s)
- Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yuan‐Jing Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Meng‐Meng Shan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|