1
|
Li C, Ji H, Zhuang S, Xie X, Cui D, Zhang C. Update on the correlation between mitochondrial function and osteonecrosis of the femoral head osteocytes. Redox Rep 2025; 30:2491846. [PMID: 40249372 PMCID: PMC12010656 DOI: 10.1080/13510002.2025.2491846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Mitochondrial health is maintained in a steady state through mitochondrial dynamics and autophagy processes. Recent studies have identified healthy mitochondria as crucial regulators of cellular function and survival. This process involves adenosine triphosphate (ATP) synthesis by mitochondrial oxidative phosphorylation (OXPHOS), regulation of calcium metabolism and inflammatory responses, and intracellular oxidative stress management. In the skeletal system, they participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes, and osteocytes to external stimuli. Indeed, mitochondrial damage or dysfunction occurs in the development of a few bone diseases. For example, mitochondrial damage may lead to an imbalance in osteoblasts and osteoclasts, resulting in osteoporosis, osteomalacia, or poor bone production, and chondrocyte death and inflammatory infiltration in osteoarthritis are the main causes of cartilage degeneration due to mitochondrial damage. However, the opposite exists for osteosarcoma, where overactive mitochondrial metabolism is able to accelerate the proliferation and migration of osteosarcoma cells, which is a major disease feature. Bone is a dynamic organ and osteocytes play a fundamental role in all regions of bone tissue and are involved in regulating bone integrity. This review examines the impact of mitochondrial physiological function on osteocyte health and summarizes the microscopic molecular mechanisms underlying its effects. It highlights that targeted therapies focusing on osteocyte mitochondria may be beneficial for osteocyte survival, providing a new insight for the diagnosis, prevention, and treatment of diseases associated with osteocyte death.
Collapse
Affiliation(s)
- Chengming Li
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Hangyu Ji
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Suyang Zhuang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Xinhui Xie
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| | - Daping Cui
- Department of Orthopedics, Shenzhen Bao’an District Central Hospital, Shenzhen, People’s Republic of China
| | - Cong Zhang
- Department of Orthopedics, Zhongda Hospital Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Zhang D, Xing Y, Liu L, Zhang X, Ma C, Xu M, Li R, Wei H, Zhao Y, Xu B, Mei S. Prognostic signature based on mitochondria- and angiogenesis-related genes associated with immune microenvironment of multiple myeloma. Hematology 2025; 30:2456649. [PMID: 39873160 DOI: 10.1080/16078454.2025.2456649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Mitochondria and angiogenesis play key roles in multiple myeloma (MM) development, but their interrelated genes affecting MM prognosis are under-studied. METHODS We analyzed TCGA_MMRF and GSE4581 datasets to identify four genes - CCNB1, CDC25C, HSP90AA1, and PARP1 - that significantly correlate with MM prognosis, with high expression indicating poor outcomes. RESULTS A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the latter showing better survival. The signature was validated as an independent prognostic factor. Biological function analysis revealed differences in cell cycle processes between risk groups, and immune microenvironment analysis showed distinct immune cell infiltration patterns. CONCLUSION This mitochondria- and angiogenesis-related prognostic signature could enhance MM prognosis assessment and offer new therapeutic insights.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Yu Xing
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Lu Liu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Xiaoqing Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Cong Ma
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - MengYao Xu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Ruiqi Li
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - HanJing Wei
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Yan Zhao
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Bingxin Xu
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Shuhao Mei
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
- XuChang Key Laboratory of Hematology, XuChang, People's Republic of China
| |
Collapse
|
3
|
Ren KX, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Zhong CB, Zhou XQ, Jiang WD. Mitigation of the toxic effects of nitrite: Role and mechanism of isoleucine in mitigating mitochondrial DNA leakage-induced inflammation in grass carp (Ctenopharyngodon idella) under nitrite exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138016. [PMID: 40147124 DOI: 10.1016/j.jhazmat.2025.138016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The physiological and growth processes of fish are closely associated with their surrounding environment. This study investigated the role and underlying mechanisms of isoleucine (Ile) in alleviating mitochondrial DNA (mtDNA) leakage-induced inflammation in grass carp under nitrite exposure. Grass carp were fed six experimental diets containing different Ile levels (0.00, 3.00, 6.00, 9.00, 12.00 and 15.00 g/kg) for 9 weeks, followed by a 96-hour nitrite exposure trial. Ile supplementation mitigated the deterioration of blood parameters including glutamic oxaloacetic transaminase (GOT), glutamic alanine transaminase (GPT), glucose, cortisol and lactate dehydrogenase (LDH) induced by nitrite exposure. Additionally, Ile enhanced its transport to the liver and mitochondria, as well as increased metabolism of Ile in mitochondria. Histological analyses revealed that Ile mitigated nitrite exposure-induced liver damage and mitochondrial cristae disruption. Furthermore, Ile preserved the mitochondrial cristae homeostasis by upregulating key proteins involved in mitochondrial structure maintenance, while inhibiting mtDNA leakage. Mechanistically, Ile attenuated mtDNA leakage-induced inflammation under nitrite exposure associated with the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathways. These findings highlight the protective role of Ile in reducing inflammation triggered by environmental nitrite exposure, offering new insights into aquatic toxicology, and determined that Ile concentration of 11.13 g/kg diet could be optimal for mitigating nitrite-induced stress in grass carp, providing a theoretical basis for formulating anti- nitrite stress diets in aquaculture.
Collapse
Affiliation(s)
- Kai-Xuan Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co.Ltd, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
4
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
She H, Zheng J, Zhao G, Du Y, Tan L, Chen ZS, Wu Y, Li Y, Liu Y, Sun Y, Hu Y, Zuo D, Mao Q, Liu L, Li T. Arginase 1 drives mitochondrial cristae remodeling and PANoptosis in ischemia/hypoxia-induced vascular dysfunction. Signal Transduct Target Ther 2025; 10:167. [PMID: 40425583 PMCID: PMC12117058 DOI: 10.1038/s41392-025-02255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Ischemic/hypoxic injury significantly damages vascular function, detrimentally impacting patient outcomes. Changes in mitochondrial structure and function are closely associated with ischemia/hypoxia-induced vascular dysfunction. The mechanism of this process remains elusive. Using rat models of ischemia and hypoxic vascular smooth muscle cells (VSMCs), we combined transmission electron microscopy, super-resolution microscopy, and metabolic analysis to analyze the structure and function change of mitochondrial cristae. Multi-omics approaches revealed arginase 1 (Arg1) upregulation in ischemic VSMCs, confirmed by in vivo and in vitro knockout models showing Arg1's protective effects on mitochondrial cristae, mitochondrial and vascular function, and limited the release of mtDNA. Mechanistically, Arg1 interacting with Mic10 led to mitochondrial cristae remodeling, together with hypoxia-induced VDAC1 lactylation resulting in the opening of MPTP and release of mtDNA of VSMCs. The released mtDNA led to PANoptosis of VSMCs via activation of the cGAS-STING pathway. ChIP-qPCR results demonstrated that lactate-mediated Arg1 up-regulation was due to H3K18la upregulation. VSMCs targeted nano-material PLGA-PEI-siRNA@PM-α-SMA (NP-siArg1) significantly improved vascular dysfunction. This study uncovers a new mechanism of vascular dysfunction following ischemic/hypoxic injury: a damaging positive feedback loop mediated by lactate-regulated Arg1 expression between the nucleus and mitochondria, leading to mitochondria cristae disorder and mtDNA release, culminating in VSMCs PANoptosis. Targeting VSMCs Arg1 inhibition offers a potential therapeutic strategy to alleviate ischemia/hypoxia-induced vascular impairments.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yiyan Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yue Sun
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
- Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Lee C, Xiao Z, Lim I, Wang T, Aghaei P, Burke PJ, Rao J. Copper Chelation Induces Morphology Change in Mitochondria of Triple-Negative Breast Cancer. JACS AU 2025; 5:2102-2113. [PMID: 40443881 PMCID: PMC12117420 DOI: 10.1021/jacsau.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 06/02/2025]
Abstract
Recent studies implicate mitochondria playing a key role in the cellular response to copper depletion therapy; however, evidence has been indirect and downstream, and the initial target of chelation remains to be defined. Here, we show, using super-resolution voltage and structure imaging microscopy, that copper chelation directly affects mitochondria morphology (causing fragmentation of the filamentous network) and ultrastructure (causing internal cristae remodeling). When triple-negative breast cancer cells are treated with a mitochondria-targeting copper chelator, mitochondria undergo an irreversible change in morphology from tubular to spherical. This process can be prevented by the addition of exogenous copper during the treatment. We find that a tailor-designed chelating agent with positive charges to target mitochondrial electrostatics localizes inside the mitochondrial cristae in a voltage-dependent manner. On pharmacological induction of membrane potential collapse, the chelator is dispersed while the mitochondrial cristae structure is preserved. These results indicate that voltage-dependent localization/targeting of the copper chelator in mitochondrial cristae plays a key role in its cytotoxicity.
Collapse
Affiliation(s)
- ChiaHung Lee
- Department
of Biomedical Engineering, University of
California, Irvine, California92697, United States
| | - Zhen Xiao
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California94305, United States
| | - Irene Lim
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California94305, United States
| | - Ting Wang
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California94305, United States
| | - Parisa Aghaei
- Department
of Electrical Engineering and Computer Science, University of California, Irvine, California92697, United States
| | - Peter J. Burke
- Department
of Biomedical Engineering, University of
California, Irvine, California92697, United States
- Department
of Electrical Engineering and Computer Science, University of California, Irvine, California92697, United States
| | - Jianghong Rao
- Department
of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California94305, United States
| |
Collapse
|
7
|
Verhezen T, Wouters A, Smits E, De Waele J. Powering immunity: mitochondrial dynamics in natural killer cells. Trends Mol Med 2025:S1471-4914(25)00106-6. [PMID: 40393875 DOI: 10.1016/j.molmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for eliminating malignant and infected cells, and have significant therapeutic potential against cancer and viral infections. However, their functionality is often impaired under pathological conditions. Emerging evidence identifies mitochondria as key regulators of NK cell metabolism, fitness, and fate. This review examines how mitochondrial dysfunction impacts on NK cell activity in cancer, viral infections, and inflammatory disorders. We discuss strategies to target mitochondrial architecture, dynamics, and function as potential therapies to restore NK cell fitness. Finally, we highlight unanswered questions and future directions to better understand mitochondrial regulation in NK cells and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
8
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
9
|
de Smalen LM, Handschin C. Mitochondrial Maintenance in Skeletal Muscle. Cold Spring Harb Perspect Biol 2025; 17:a041514. [PMID: 39433393 PMCID: PMC7617582 DOI: 10.1101/cshperspect.a041514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Skeletal muscle is one of the tissues with the highest range of variability in metabolic rate, which, to a large extent, is critically dependent on tightly controlled and fine-tuned mitochondrial activity. Besides energy production, other mitochondrial processes, including calcium buffering, generation of heat, redox and reactive oxygen species homeostasis, intermediate metabolism, substrate biosynthesis, and anaplerosis, are essential for proper muscle contractility and performance. It is thus not surprising that adequate mitochondrial function is ensured by a plethora of mechanisms, aimed at balancing mitochondrial biogenesis, proteostasis, dynamics, and degradation. The fine-tuning of such maintenance mechanisms ranges from proper folding or degradation of individual proteins to the elimination of whole organelles, and in extremis, apoptosis of cells. In this review, the present knowledge on these processes in the context of skeletal muscle biology is summarized. Moreover, existing gaps in knowledge are highlighted, alluding to potential future studies and therapeutic implications.
Collapse
Affiliation(s)
- Laura M. de Smalen
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056, Basel, Switzerland
| |
Collapse
|
10
|
Shang Y, Li Y, Han D, Deng K, Gao W, Wu M. LRRC4 Deficiency Drives Premature Ovarian Insufficiency by Disrupting Metabolic Homeostasis in Granulosa Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417717. [PMID: 40317712 DOI: 10.1002/advs.202417717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Premature ovarian insufficiency (POI), defined by early loss of ovarian activity before the age of 40 years, is the leading cause of infertility and systematic aging in women, posing a public health challenge worldwide. However, its molecular etiology and therapeutic options are still lacking. Here, leucine-rich repeat containing 4 (LRRC4) is identified as a critical regulator of folliculogenesis expressed in granulosa cells (GCs), which contributes to ovarian reserve maintenance. LRRC4 deficiency triggers defective oocyte maturation and excessive follicular atresia through inhibition of GC differentiation and ultimately leads to POI. Mechanistically, LRRC4 balances mitochondrial fission and fusion to inhibit excessive mitophagy by promoting the K48-linked ubiquitination degradation of Yes-associated protein (YAP), thereby maintaining the metabolic homeostasis of mitochondrial aerobic respiration and glycolysis. Importantly, targeting LRRC4 normalized follicular development and ovarian function in POI model mice. In conclusion, these data reveal the novel pathogenesis of POI and suggest that LRRC4 is a potential target for the diagnosis and treatment of POI.
Collapse
Affiliation(s)
- Yujie Shang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410000, China
- School of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430060, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yunjun Li
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Di Han
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Kun Deng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
| | - Wei Gao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
| | - Minghua Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410000, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
11
|
Li XQ, Xiao ZZ, Ma K, Liu XY, Liu HH, Hu B, Zhao Q, Li HY, Chen RC, Meng Y, Yin LH. Angiotensin-Converting Enzyme-Dependent Intrarenal Angiotensin II Contributes to CTP: Phosphoethanolamine Cytidylyltransferase Downregulation, Mitochondrial Membranous Disruption, and Reactive Oxygen Species Overgeneration in Diabetic Tubulopathy. Antioxid Redox Signal 2025; 42:767-786. [PMID: 39495586 DOI: 10.1089/ars.2024.0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Aims: The limited therapeutic options for diabetic tubulopathy (DT) in early diabetic kidney disease (DKD) reflect the difficulty of targeting renal tubular compartment. While renin-angiotensin-aldosterone system (RAS) inhibitors are commonly utilized in the management of DKD, how intrarenal RAS contributes to diabetic tubular injury is not fully understood. Mitochondrial disruption and reactive oxygen species (ROS) overgeneration have been involved in diabetic tubular injury. Herein, we aim to test the hypothesis that angiotensin-converting enzyme (ACE)-dependent intrarenal angiotensin II (AngII) disrupts tubular mitochondrial membranous homeostasis and causes excessive ROS generation in DT. Results: Mice suffered from renal tubular mitochondrial disruption and ROS overgeneration following high-fat diet/streptozocin-type 2 diabetic induction. Intrarenal AngII generation is ACE-dependent in DT. Local AngII accumulation in renal tissues was achieved by intrarenal artery injection. ACE-dependent intrarenal AngII-treated mice exhibit markedly elevated levels of makers of tubular injury. CTP: Phosphoethanolamine cytidylyltransferase (PCYT2), the primary regulatory enzyme for the biosynthesis of phosphatidylethanolamine, was enriched in renal tubules according to single-cell RNA sequencing. ACE-dependent intrarenal AngII-induced tubular membranous disruption, ROS overgeneration, and PCYT2 downregulation. The diabetic ambiance deteriorated the detrimental effect of ACE-dependent intrarenal AngII on renal tubules. Captopril, the ACE inhibitor (ACEI), showed efficiency in partially ameliorating ACE-dependent intrarenal AngII-induced tubular deterioration pre- and post-diabetic induction. Innovation and Conclusion: This study uncovers a critical role of ACE-dependent intrarenal AngII in mitochondrial membranous disruption, ROS overgeneration, and PCYT2 deficiency in diabetic renal tubules, providing novel insight into DT pathogenesis and ACEI-combined therapeutic targets. Antioxid. Redox Signal. 42, 767-786.
Collapse
Affiliation(s)
- Xia-Qing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Zhang-Zhang Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, Houjie Hospital of Dongguan, Dongguan, China
| | - Ke Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Xia-Yun Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Huan-Huan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qian Zhao
- Department of Infectious Diseases and Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Yue Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Rui-Chang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Liang-Hong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Huangpu Institute of Materials, Guangzhou, China
| |
Collapse
|
12
|
Hanna DA, Chen B, Shah YM, Khalimonchuk O, Cunniff B, Banerjee R. H 2S remodels mitochondrial ultrastructure and destabilizes respiratory supercomplexes. J Biol Chem 2025; 301:108433. [PMID: 40120684 PMCID: PMC12022479 DOI: 10.1016/j.jbc.2025.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Mitochondrial form and function are intimately interconnected, responding to cellular stresses and changes in energy demand. Hydrogen sulfide, a product of amino acid metabolism, has dual roles as an electron transport chain substrate and complex IV (CIV) inhibitor, leading to a reductive shift, which has pleiotropic metabolic consequences. Luminal sulfide concentration in the colon is high due to microbial activity, and in this study, we demonstrate that chronic sulfide exposure of colonocyte-derived cells leads to lower Mic60 and Mic19 expression that is correlated with a profound loss of cristae and lower mitochondrial networking. Sulfide-induced depolarization of the inner mitochondrial membrane activates Oma1-dependent cleavage of Opa1 and is associated with a profound loss of CI and CIV activities associated with respirasomes. Our study reveals a potential role for sulfide as an endogenous modulator of mitochondrial dynamics and suggests that this regulation is corrupted in hereditary or acquired diseases associated with elevated sulfide.
Collapse
Affiliation(s)
- David A Hanna
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of Cellular and Molecular Biology Program, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, Michigan, USA; Department of internal Medicine (Division of Gastroenterology), Michigan Medicine, Ann Arbor, Michigan, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Zhang C, Pang B, Luo Y, Cao Z, Qiao P, Zhu Z, Fang H, Yang J, Dang E, Shen S, Kang P, Jiao Q, Hasegawa A, Abe R, Qiao H, Wang G, Fu M. Targeting the Galectin-7/TRPM2/Zn 2+/DRP-1 Signaling Pathway: A Potential Therapeutic Intervention in the Pathogenesis of SJS/TEN. Allergy 2025; 80:1358-1376. [PMID: 40042066 DOI: 10.1111/all.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) represent a spectrum of severe drug-induced cutaneous reactions. These conditions are characterized by widespread and confluent keratinocyte apoptosis, which differentiates them from erythema multiforme (EM). Mounting evidence has implicated the mitochondrial-dependent apoptosis pathway in the pathogenesis of SJS/TEN, but the potential roles and specific mechanisms of these pathways in SJS/TEN remain largely unexplored. METHODS Proteomic analyses were conducted to investigate differential protein expression in blister fluid (BF)-derived exosomes from suction surgery in healthy individuals (Con Exo) or patients with EM (EM Exo) or SJS/TEN (TEN Exo). Further analysis involved glutathione S-transferase (GST) pull-down assay, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and validation of MS results through proximity ligation assay (PLA) and coimmunoprecipitation (co-IP). Phenotypic and mechanistic analyses were performed using immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), western blotting, reverse transcription-polymerase chain reaction (RT-PCR), co-IP, CCK-8 assay, adenosine triphosphate (ATP) level measurements, and flow cytometry. RESULTS Galectin-7 was markedly upregulated in BF-derived exosomes from SJS/TEN patients and showed a correlation with disease severity. Further analysis confirmed the interaction between galectin-7 and transient receptor potential (melastatin) 2 (TRPM2). BF-derived exosomes from SJS/TEN patients induced an imbalance in mitochondrial dynamics via galectin-7/TRPM2 upregulation. Activation of TRPM2 led to an elevation in mitochondrial Zn2+, which facilitated the recruitment of the fission factor dynamin-related protein-1 (DRP-1) to mitochondria to trigger mitochondrial fission in the keratinocyte. In addition, the recruitment of DRP-1-dependent mitochondrial fission via the voltage-dependent anion channel 1 (VDAC1)/hexokinase 2 (HK2)-mediated opening of the mitochondrial permeability transition pore (mPTP)-triggered cytochrome c release. These effects ultimately induce activation of the intrinsic mitochondrial apoptotic pathway and contribute to the pathogenesis of SJS/TEN. CONCLUSIONS Targeting the galectin-7/TRPM2/Zn2+/DRP-1 signaling pathway in keratinocytes presents a prospective therapeutic strategy for mitigating SJS/TEN in the future.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - BingYu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - YiXin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zipeng Cao
- Department of Health Education and Management and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ZhenLai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - JianKang Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ErLe Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ShengXian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qingqing Jiao
- Department.of Dermatology, The First Affiliated Hospital of Soochow University Central Research Laboratory, Suzhou, China
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - HongJiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Castro Sepulveda M, Lagarrigue S, Amati F. The association of mitochondrial morphology and supercomplex redistribution with skeletal muscle oxidative capacity in older adults. Physiol Rep 2025; 13:e70359. [PMID: 40343403 PMCID: PMC12059264 DOI: 10.14814/phy2.70359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Skeletal muscle maximal oxidative capacity (ATPmax) is a key component of age-related sarcopenia and muscle health. The contribution of mitochondrial morphology and electron transport chain supercomplex (SC) assemblies to ATPmax has yet to be determined in human muscle. ATPmax measured in vivo by 31phosphorus magnetic resonance spectroscopy in the quadriceps femoris of nine volunteers (65.5 ± 3.3 years old) was correlated with muscle biopsy outcomes before and after 4 months of supervised exercise. Mitochondrial morphology was assessed in electron micrographs, and SCs were measured by blue native gel electrophoresis. In the sedentary conditions, ATPmax was positively associated with complex (C) I and CIII in SC I+III2+IVn and negatively associated with CI and CIII in SC I+III2. Regarding mitochondrial morphology, ATPmax was positively associated with markers of mitochondrial elongation. Exercise training-induced increases in ATPmax were accompanied by mitochondrial elongation and by the redistribution of free complex III. Indicators of mitochondrial elongation were associated with the redistribution of specific complexes to SC I+III2+IVn. Higher skeletal muscle oxidative capacity in older adults is associated with mitochondrial elongation and the redistribution of electron transport chain complexes into higher rank SCs in the same muscle. Further, we provide evidence that mitochondrial elongation favors mitochondrial SC assembly.
Collapse
Affiliation(s)
- Mauricio Castro Sepulveda
- Aging and Muscle Metabolism Laboratory, Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Laboratory, Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Laboratory, Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
- Service of Endocrinology, Diabetology, and Metabolism, Department of MedicineLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
15
|
Fu H, Cheng J, Hu L, Heng BC, Zhang X, Deng X, Liu Y. Mitochondria-targeting materials and therapies for regenerative engineering. Biomaterials 2025; 316:123023. [PMID: 39708774 DOI: 10.1016/j.biomaterials.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The hemostatic, inflammatory, proliferative, and remodeling phases of healing require precise spatiotemporal coordination and orchestration of numerous biological processes. As the primary energy generators in the cell, mitochondria play multifunctional roles in regulating metabolism, stress reactions, immunity, and cell density during the process of tissue regeneration. Mitochondrial dynamics involves numerous crucial processes, fusion, fission, autophagy, and translocation, which are all necessary for preserving mitochondrial function, distributing energy throughout cells, and facilitating cellular signaling. Tissue regeneration is specifically associated with mitochondrial dynamics due to perturbations of Ca2+, H2O2 and ROS levels, which can result in mitochondrial malfunction. Increasing evidence from multiple models suggests that clinical interventions or medicinal drugs targeting mitochondrial dynamics could be a promising approach. This review highlights significant advances in the understanding of mitochondrial dynamics in tissue regeneration, with specific attention on mitochondria-targeting biomaterials that accelerate multiple tissues' regeneration by regulating mitochondrial metabolism. The innovations in nanomaterials and nanosystems enhance mitochondrial-targeting therapies are critically examined with the prospects of modulating mitochondrial dynamics for new therapies in regenerative engineering.
Collapse
Affiliation(s)
- Hongying Fu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Jingrong Cheng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Le Hu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Xuliang Deng
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Yang Liu
- Department of Dental Materials & Dental Medical Devices Testing Center & NMPA Key Laboratory for Dental Materials & Beijing Key Laboratory of Digital Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & National Center for Stomatology & National Clinical Research Center for Oral Diseases & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Pathak T, Benson JC, Tang PW, Trebak M, Hempel N. Crosstalk between calcium and reactive oxygen species signaling in cancer revisited. Cell Calcium 2025; 127:103014. [PMID: 40139005 DOI: 10.1016/j.ceca.2025.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The homeostasis of cellular reactive oxygen species (ROS) and calcium (Ca2+) are intricately linked. ROS signaling and Ca2+ signaling are reciprocally regulated within cellular microdomains and are crucial for transcription, metabolism and cell function. Tumor cells often highjack ROS and Ca2+ signaling mechanisms to ensure optimal cell survival and tumor progression. Expression and regulation of Ca2+ channels and transporters at the plasma membrane, endoplasmic reticulum, mitochondria and other endomembranes are often altered in tumor cells, and this includes their regulation by ROS and reactive nitrogen species (RNS). Likewise, alterations in cellular Ca2+ levels influence the generation and scavenging of oxidants and thus can alter the redox homeostasis of the cell. This interplay can be either beneficial or detrimental to the cell depending on the localization, duration and levels of ROS and Ca2+ signals. At one end of the spectrum, Ca2+ and ROS/RNS can function as signaling modules while at the other end, lethal surges in these species are associated with cell death. Here, we highlight the interplay between Ca2+ and ROS in cancer progression, emphasize the impact of redox regulation on Ca2+ transport mechanisms, and describe how Ca2+ signaling pathways, in turn, can regulate the cellular redox environment.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla W Tang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Nadine Hempel
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Zhang K, Zhang W, Zhang L, Hou X, Tian R, Hu Z, Yin L, Hu Z. OPA1 mutations in dominant optic atrophy: domain-specific defects in mitochondrial fusion and apoptotic regulation. J Transl Med 2025; 23:471. [PMID: 40275276 PMCID: PMC12020257 DOI: 10.1186/s12967-025-06471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Autosomal dominant optic atrophy (ADOA), a leading common inherited optic neuropathy, arises from progressive retinal ganglion cell degeneration, often linked to OPA1 mutations. OPA1, a mitochondrial GTPase, regulates mitochondrial fusion, crista structure, and apoptosis. While GTPase-related dysfunction is well-studied, the role of other OPA1 domains in ADOA pathology remains unclear. METHODS To investigate ADOA-linked OPA1 mutations, we assessed mitochondrial morphology, membrane potential, cytochrome c release, and cell viability in primary cortical neurons and N2a cells expressing OPA1 wild-type or mutant constructs. RNA sequencing and structural predictions (SWISS-MODEL) provided insights into molecular pathways and structural impacts. RESULTS Two ADOA-associated mutations were characterized: V465F (GTPase β-fold) and V560F (BSE α-helix). Both mutations impaired mitochondrial fusion and cell survival under apoptotic stimuli. Notably, the BSE-located V560F mutation caused greater deficits in membrane potential maintenance, earlier apoptosis, and distinct molecular pathway changes compared to V465F. CONCLUSIONS This study highlights the domain-specific impacts of OPA1 mutations on mitochondrial function and ADOA pathology, revealing unique roles of the BSE domain in apoptosis regulation and mitochondrial integrity. These findings provide insights into ADOA mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Kexuan Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
| | - Lin Zhang
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China
| | - Xiaorong Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Runyi Tian
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- Department of Ophthalmology, Shanghai First People's Hospital), Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Ophthalmology, Zunyi First People's Hospital, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Zhonghua Hu
- Department of Critical Care Medicine, Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, 410008, Hunan, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Gamal W, Mediavilla-Varela M, Kunta V, Sahakian E, Pinilla-Ibarz J. Impact of mitochondrial metabolism on T-cell dysfunction in chronic lymphocytic leukemia. Front Cell Dev Biol 2025; 13:1577081. [PMID: 40313718 PMCID: PMC12043688 DOI: 10.3389/fcell.2025.1577081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
T cells play a central role in anti-tumor immunity, yet their function is often compromised within the immunosuppressive tumor microenvironment, leading to cancer progression and resistance to immunotherapies. T-cell activation and differentiation require dynamic metabolic shifts, with mitochondrial metabolism playing a crucial role in sustaining their function. Research in cancer immunometabolism has revealed key mitochondrial abnormalities in tumor-infiltrating lymphocytes, including reduced mitochondrial capacity, depolarization, structural defects, and elevated reactive oxygen species. While these mitochondrial disruptions are well-characterized in solid tumors and linked to T-cell exhaustion, their impact on T-cell immunity in lymphoproliferative disorders remains underexplored. Chronic lymphocytic leukemia (CLL), the most prevalent chronic adult leukemia, is marked by profound T-cell dysfunction that limits the success of adoptive cell therapies. Emerging studies are shedding light on the role of mitochondrial disturbances in CLL-related T-cell dysfunction, but significant knowledge gaps remain. This review explores mitochondrial metabolism in T-cell exhaustion, emphasizing recent findings in CLL. We also discuss therapeutic strategies to restore T-cell mitochondrial function and identify key research gaps.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Vishaal Kunta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
19
|
Strachan EL, Dillon ET, Sullivan M, Glennon JC, Peyrel A, Sarniguet J, Dubois K, Delprat B, Kennedy BN, O'Sullivan NC. Novel in vivo models of autosomal optic atrophy reveal conserved pathological changes in neuronal mitochondrial structure and function. FASEB J 2025; 39:e70497. [PMID: 40202868 PMCID: PMC11981028 DOI: 10.1096/fj.202403271r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Autosomal optic atrophy (AOA) is a form of hereditary optic neuropathy characterized by the irreversible and progressive degermation of the retinal ganglion cells. Most cases of AOA are associated with a single dominant mutation in OPA1, which encodes a protein required for fusion of the inner mitochondrial membrane. It is unclear how loss of OPA1 leads to neuronal death, and despite ubiquitous expression appears to disproportionately affect the RGCs. This study introduces two novel in vivo models of OPA1-mediated AOA, including the first developmentally viable vertebrate Opa1 knockout (KO). These models allow for the study of Opa1 loss in neurons, specifically RGCs. Though survival is significantly reduced in Opa1 deficient zebrafish and Drosophila, both models permit the study of viable larvae. Moreover, zebrafish Opa1 KO larvae show impaired visual function but unchanged locomotor function, indicating that retinal neurons are particularly sensitive to Opa1 loss. Proteomic profiling of both models reveals marked disruption in protein expression associated with mitochondrial function, consistent with an observed decrease in mitochondrial respiratory function. Similarly, mitochondrial fragmentation and disordered cristae organization were observed in neuronal axons in both models highlighting Opa1's highly conserved role in regulating mitochondrial morphology and function in neuronal axons. Importantly, in Opa1 deficient zebrafish, mitochondrial disruption and visual impairment precede degeneration of RGCs. These novel models mimic key features of AOA and provide valuable tools for therapeutic screening. Our findings suggest that therapies enhancing mitochondrial function may offer a potential treatment strategy for AOA.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Eugene T. Dillon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| | - Mairéad Sullivan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | - Jeffrey C. Glennon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | - Amandine Peyrel
- MMDNUniversity of Montpellier, EPHE, INSERMMontpellierFrance
| | | | - Kevin Dubois
- MMDNUniversity of Montpellier, EPHE, INSERMMontpellierFrance
| | | | - Breandán N. Kennedy
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Niamh C. O'Sullivan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| |
Collapse
|
20
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
21
|
Park SJ, Cerella C, Kang JM, Byun J, Kum D, Orlikova-Boyer B, Lorant A, Schnekenburger M, Al-Mourabit A, Christov C, Lee J, Han BW, Diederich M. Tetrahydrobenzimidazole TMQ0153 targets OPA1 and restores drug sensitivity in AML via ROS-induced mitochondrial metabolic reprogramming. J Exp Clin Cancer Res 2025; 44:114. [PMID: 40197337 PMCID: PMC11974110 DOI: 10.1186/s13046-025-03372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis. METHOD This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways. RESULTS TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells. CONCLUSION TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Collapse
MESH Headings
- Humans
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/antagonists & inhibitors
- GTP Phosphohydrolases/genetics
- Reactive Oxygen Species/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Mice
- Benzimidazoles/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Oxidative Phosphorylation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Su Jung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin Mo Kang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - David Kum
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Roudeneck, 1, Boulevard du Jazz, Esch-sur-Alzette, L-4370, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-Sur-Yvette, 91190, France
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Juyong Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Rigoni G, Calvo E, Glytsou C, Carro-Alvarellos M, Noguchi M, Semenzato M, Quirin C, Caicci F, Meneghetti N, Sturlese M, Ishihara T, Moro S, Rampazzo C, Ishihara N, Bezzo F, Salviati L, Vazquez J, Sales G, Romualdi C, Enriquez JA, Scorrano L, Soriano ME. MARIGOLD and MitoCIAO, two searchable compendia to visualize and functionalize protein complexes during mitochondrial remodeling. Cell Metab 2025; 37:1024-1038.e8. [PMID: 39999845 DOI: 10.1016/j.cmet.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Mitochondrial proteins assemble dynamically in high molecular weight complexes essential for their functions. We generated and validated two searchable compendia of these mitochondrial complexes. Following identification by mass spectrometry of proteins in complexes separated using blue-native gel electrophoresis from unperturbed, cristae-remodeled, and outer membrane-permeabilized mitochondria, we created MARIGOLD, a mitochondrial apoptotic remodeling complexome database of 627 proteins. MARIGOLD elucidates how dynamically proteins distribute in complexes upon mitochondrial membrane remodeling. From MARIGOLD, we developed MitoCIAO, a mitochondrial complexes interactome tool that, by statistical correlation, calculates the likelihood of protein cooccurrence in complexes. MitoCIAO correctly predicted biologically validated interactions among components of the mitochondrial cristae organization system (MICOS) and optic atrophy 1 (OPA1) complexes. We used MitoCIAO to functionalize two ATPase family AAA domain-containing 3A (ATAD3A) complexes: one with OPA1 that regulates mitochondrial ultrastructure and the second containing ribosomal proteins that is essential for mitoribosome stability. These compendia reveal the dynamic nature of mitochondrial complexes and enable their functionalization.
Collapse
Affiliation(s)
- Giovanni Rigoni
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Christina Glytsou
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | | | - Masafumi Noguchi
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Martina Semenzato
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Charlotte Quirin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Federico Caicci
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Natascia Meneghetti
- CAPE-Lab, Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Mattia Sturlese
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 560-0043 Toyonaka, Japan
| | - Stefano Moro
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy
| | - Chiara Rampazzo
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, 560-0043 Toyonaka, Japan
| | - Fabrizio Bezzo
- CAPE-Lab, Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Department of Women's and Children's health, University of Padova and IRP Città della Speranza, 35127 Padova, Italy
| | - Jesùs Vazquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Gabriele Sales
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy; Veneto Institute of Molecular Medicine, 35129 Padova, Italy.
| | | |
Collapse
|
23
|
Hashimi H, Gahura O, Pánek T. Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion. Biol Rev Camb Philos Soc 2025; 100:920-935. [PMID: 39557625 PMCID: PMC11885689 DOI: 10.1111/brv.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Mitochondria are dynamic and plastic, undergoing continuous fission and fusion and rearrangement of their bioenergetic sub-compartments called cristae. These fascinating processes are best understood in animal and fungal models, which are taxonomically grouped together in the expansive Opisthokonta supergroup. In opisthokonts, crista remodelling and inner membrane fusion are linked by dynamin-related proteins (DRPs). Animal Opa1 (optical atrophy 1) and fungal Mgm1 (mitochondrial genome maintenance 1) are tacitly considered orthologs because their similar mitochondria-shaping roles are mediated by seemingly shared biochemical properties, and due to their presence in the two major opisthokontan subdivisions, Holozoa and Holomycota, respectively. However, molecular phylogenetics challenges this notion, suggesting that Opa1 and Mgm1 likely had separate, albeit convergent, evolutionary paths. Herein, we illuminate disparities in proteolytic processing, structure, and interaction network that may have bestowed on Opa1 and Mgm1 distinct mechanisms of membrane remodelling. A key disparity is that, unlike Mgm1, Opa1 directly recruits the mitochondrial phospholipid cardiolipin to remodel membranes. The differences outlined herein between the two DRPs could have broader impacts on mitochondrial morphogenesis. Outer and inner membrane fusion are autonomous in animals, which may have freed Opa1 to repurpose its intrinsic activity to remodel cristae, thereby regulating the formation of respiratory chain supercomplexes. More significantly, Opa1-mediated crista remodelling has emerged as an integral part of cytochrome c-regulated apoptosis in vertebrates, and perhaps in the cenancestor of animals. By contrast, outer and inner membrane fusion are coupled in budding yeast. Consequently, Mgm1 membrane-fusion activity is inextricable from its role in the biogenesis of fungal lamellar cristae. These disparate mitochondrial DRPs ultimately may have contributed to the different modes of multicellularity that have evolved within Opisthokonta.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology CentreCzech Academy of SciencesBranišovská 31České Budějovice370 05Czechia
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaBranišovská 31České Budějovice370 05Czechia
| | - Ondřej Gahura
- Institute of Parasitology, Biology CentreCzech Academy of SciencesBranišovská 31České Budějovice370 05Czechia
| | - Tomáš Pánek
- Department of Zoology, Faculty of ScienceCharles UniversityViničná 7Prague 2128 00Czechia
| |
Collapse
|
24
|
Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Romero-García N, Huete-Acevedo J, Dromant M, Cuervo AM, Borrás C, Viña J. Bcl-xL overexpression in T cells preserves muscle mitochondrial structure and function and prevents frailty in old mice. SCIENCE ADVANCES 2025; 11:eadr1378. [PMID: 40106552 PMCID: PMC11922028 DOI: 10.1126/sciadv.adr1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Our previous transcriptomic analysis revealed an up-regulation of the antiapoptotic protein B cell lymphoma-extra large (Bcl-xL) in centenarians relative to octogenarians or younger cohorts. In this study, we used Bcl-xL-overexpressing mice to assess its impact on successful aging. Our findings indicate that Bcl-xL overexpression modifies T cell subsets and improves their metabolism, apoptosis resistance, macroautophagy, and cytokine production during aging. This more resilient immune system reduces inflammation and preserves mitochondrial integrity and function in muscle tissue, thereby retarding the onset of frailty. These results underscore the important contribution of Bcl-xL to healthy aging, a phenomenon that is conserved across mammalian species.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Ana María Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
25
|
Zheng D, Qin L, Lv J, Che M, He B, Zheng Y, Lin S, Qi Y, Li M, Tang Z, Wang BC, Wu YL, Weinkove R, Carson G, Yao Y, Wong N, Lau J, Thiery JP, Qin D, Pan B, Xu K, Zhang Z, Li P. CD4 + anti-TGF-β CAR T cells and CD8 + conventional CAR T cells exhibit synergistic antitumor effects. Cell Rep Med 2025; 6:102020. [PMID: 40107245 PMCID: PMC11970399 DOI: 10.1016/j.xcrm.2025.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Transforming growth factor (TGF)-β1 restricts the expansion, survival, and function of CD4+ T cells. Here, we demonstrate that CD4+ but not CD8+ anti-TGF-β CAR T cells (T28zT2 T cells) can suppress tumor growth partly through secreting Granzyme B and interferon (IFN)-γ. TGF-β1-treated CD4+ T28zT2 T cells persist well in peripheral blood and tumors, maintain their mitochondrial form and function, and do not cause in vivo toxicity. They also improve the expansion and persistence of untransduced CD8+ T cells in vivo. Tumor-infiltrating CD4+ T28zT2 T cells are enriched with TCF-1+IL7R+ memory-like T cells, express NKG2D, and downregulate T cell exhaustion markers, including PD-1 and LAG3. Importantly, a combination of CD4+ T28zT2 T cells and CD8+ anti-glypican-3 (GPC3) or anti-mesothelin (MSLN) CAR T cells exhibits augmented antitumor effects in xenografts. These findings suggest that rewiring TGF-β signaling with T28zT2 in CD4+ T cells is a promising strategy for eradicating solid tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihui Che
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouheng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuekun Qi
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming Li
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Georgia Carson
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Pan
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
26
|
Zanfardino P, Amati A, Perrone M, Petruzzella V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules 2025; 15:433. [PMID: 40149969 PMCID: PMC11940761 DOI: 10.3390/biom15030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondrial dynamics, governed by fusion and fission, are crucial for maintaining cellular homeostasis, energy production, and stress adaptation. MFN2 and OPA1, key regulators of mitochondrial fusion, play essential roles beyond their structural functions, influencing bioenergetics, intracellular signaling, and quality control mechanisms such as mitophagy. Disruptions in these processes, often caused by MFN2 or OPA1 mutations, are linked to neurodegenerative diseases like Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy (ADOA). This review explores the molecular mechanisms underlying mitochondrial fusion, the impact of MFN2 and OPA1 dysfunction on oxidative phosphorylation and autophagy, and their role in disease progression. Additionally, we discuss the divergent cellular responses to MFN2 and OPA1 mutations, particularly in terms of proliferation, senescence, and metabolic signaling. Finally, we highlight emerging therapeutic strategies to restore mitochondrial integrity, including mTOR modulation and autophagy-targeted approaches, with potential implications for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare, 70124 Bari, Italy; (P.Z.); (A.A.); (M.P.)
| |
Collapse
|
27
|
Fogo GM, Raghunayakula S, Emaus KJ, Torres Torres FJ, Shangguan G, Wider JM, Hüttemann M, Sanderson TH. Mitochondrial dynamics and quality control regulate proteostasis in neuronal ischemia-reperfusion. Autophagy 2025:1-15. [PMID: 40016670 DOI: 10.1080/15548627.2025.2472586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Mitochondrial damage and dysfunction are hallmarks of neuronal injury during cerebral ischemia-reperfusion (I/R). Critical mitochondrial functions including energy production and cell signaling are perturbed during I/R, often exacerbating damage and contributing to secondary injury. The integrity of the mitochondrial proteome is essential for efficient function. Mitochondrial proteostasis is mediated by the cooperative forces of mitophagy and intramitochondrial proteolysis. The aim of this study was to elucidate the patterns of mitochondrial protein dynamics and their key regulators during an in vitro model of neuronal I/R injury. Utilizing the MitoTimer reporter, we quantified mitochondrial protein oxidation and turnover during I/R injury, highlighting a key point at 2 h reoxygenation for aged/oxidized protein turnover. This turnover was found to be mediated by both LONP1-dependent proteolysis and PRKN/parkin-dependent mitophagy. Additionally, the proteostatic response of neuronal mitochondria is influenced by both mitochondrial fusion and fission machinery. Our findings highlight the involvement of both mitophagy and intramitochondrial proteolysis in the response to I/R injury.Abbreviations: cKO: conditional knockout; CLPP: caseinolytic mitochondrial matrix peptidase proteolytic subunit; DIV: days in vitro; DNM1L/DRP1: dynamin 1 like; ETC: electron transport chain; hR: hours after reoxygenation; I/R: ischemia-reperfusion; LONP1: lon peptidase 1, mitochondrial; mtUPR: mitochondrial unfolded protein response; OGD: oxygen glucose deprivation; OGD/R: oxygen glucose deprivation and reoxygenation; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROI: region of interest; WT: wild-type.
Collapse
Affiliation(s)
- Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katlynn J Emaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary Shangguan
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph M Wider
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Thomas H Sanderson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Han T, Zhao Y, Jiao A, Sun Z, Zhang H, Zhao D, Wang H, Gao Q. OPA1 deficiency induces mitophagy through PINK1/Parkin pathway during bovine oocytes maturation. Theriogenology 2025; 234:51-63. [PMID: 39644522 DOI: 10.1016/j.theriogenology.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
In vitro embryo production (IVP) technology has been increasingly applied to beef cattle breeding. In vitro maturation (IVM) technology is the basis of IVP. However, the quality of in vitro-generated mature oocytes is still poor. Mitochondria are the energy factories of oocytes, so they are crucial for oocyte quality. OPA1 is a protein located on the mitochondrial inner membrane, and its main function is to mediate mitochondrial inner membrane fusion. This work demonstrated that OPA1 is expressed at different stages of meiosis in bovine oocytes. The inhibition of OPA1 activity resulted in a reduced rate of first polar body excretion from bovine oocytes and disruption of the spindle structure. OPA1 deficiency impacted mitochondria by leading to mitochondrial dysfunction, promoting mitochondrial fission, and inducing mitophagy through the PINK1/Parkin pathway. Taken together, our findings suggest that OPA1 is essential for bovine oocyte maturation and that OPA1 deficiency leads to mitochondrial dysfunction and promotes mitochondrial fission as well as mitophagy.
Collapse
Affiliation(s)
- Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China
| | - Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China
| | - Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China
| | - Dazhuo Zhao
- Yanbian Korean Nationality Autonomous Prefecture Animal Disease Prevention and Control Center, Yanji, 133002, China
| | - Haijun Wang
- Yanbian Korean Nationality Autonomous Prefecture Animal Husbandry Station, Yanji, 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji, 133002, China.
| |
Collapse
|
29
|
Wang X, Gao X, Deng C, Xu D, Chen Y, Huang J, Li X, Shi Y. Platelet-derived mitochondria attenuate muscle atrophy following rotator cuff tears in a rat model. J Shoulder Elbow Surg 2025:S1058-2746(25)00172-7. [PMID: 39986534 DOI: 10.1016/j.jse.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Rotator cuff tears (RCTs) often result in muscle atrophy, compromising surgical outcomes and recovery. Mitochondrial dysfunction is implicated in this process, suggesting potential for mitochondria-based therapies. This study aimed to investigate the effects of platelet-derived mitochondria (Plt-Mito) administration into the supraspinatus muscle (SSP) following RCTs. METHODS Seventy-two male Sprague-Dawley rats were allocated into 3 distinct groups: (1) a sham surgery group, (2) a group with RCTs treated with Plt-Mito, and (3) a group with RCTs treated with phosphate-buffered saline. Treatments were administered every 2 weeks. After 12 weeks, the SSPs were analyzed for wet muscle weight ratio, muscle fiber cross-sectional area, fibrosis, antioxidant activity, mitochondrial markers, capillary density, and mitochondrial structure. RESULTS Plt-Mito successfully incorporated into SSP, maintaining functional integrity. Compared to the phosphate-buffered saline group, Plt-Mito treatment significantly preserved wet muscle weight, increased mean muscle fiber cross-sectional area, promoted muscle regeneration, reduced fibrosis, enhanced antioxidant activity (increased superoxide dismutase activity and decreased malondialdehyde activity), improved muscle vascularity (increased platelet endothelial cell adhesion molecule-1 and α-smooth muscle actin), increased expression of mitochondrial markers (C oxidase subunit IV and uncoupling protein 1) and maintained mitochondrial density and structure. CONCLUSIONS Our findings demonstrated Plt-Mito administration effectively halted muscle atrophy and fibrosis, while attenuating mitochondrial damage and dysfunction following RCTs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Gao
- Animal Experimental Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xu
- Department of Orthopedic Surgery, Ningbo NO.6 Hospital, Ningbo, China
| | - Yuanyuan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Jiaqi Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Xiao Li
- Priority Medical Department, General Hospital of Central Theater Command, Wuhan, China.
| | - Yulong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R, Liu H, Yuan Y, Li W, Song Q, Liu J. Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies. Mol Med 2025; 31:61. [PMID: 39966707 PMCID: PMC11834690 DOI: 10.1186/s10020-025-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Abnormal glucose metabolism inevitably disrupts normal neuronal function, a phenomenon widely observed in Alzheimer's disease (AD). Investigating the mechanisms of metabolic adaptation during disease progression has become a central focus of research. Considering that impaired glucose metabolism is closely related to decreased insulin signaling and insulin resistance, a new concept "type 3 diabetes mellitus (T3DM)" has been coined. T3DM specifically refers to the brain's neurons becoming unresponsive to insulin, underscoring the strong link between diabetes and AD. Recent studies reveal that during brain insulin resistance, neurons exhibit mitochondrial dysfunction, reduced glucose metabolism, and elevated lactate levels. These findings suggest that impaired insulin signaling caused by T3DM may lead to a compensatory metabolic shift in neurons toward glycolysis. Consequently, this review aims to explore the underlying causes of T3DM and elucidate how insulin resistance drives metabolic reprogramming in neurons during AD progression. Additionally, it highlights therapeutic strategies targeting insulin sensitivity and mitochondrial function as promising avenues for the successful development of AD treatments.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130021, China
| | - Zhenhu Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Siyao Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ruihan Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Huimin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yiling Yuan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Wanrui Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qi Song
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
31
|
Su Y, Jin W, Niu J, Lyu X, Hao Q, Lyu Q, Sheng N, Liu Z, Yu X. Harnessing an MMP-Independent NIR Probe Unveiling the Different Mitochondrial Cristae Changes during Mitophagy and Ferroptosis under STED Microscopy. Anal Chem 2025; 97:2906-2913. [PMID: 39895264 DOI: 10.1021/acs.analchem.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondrial cristae remain dynamic structures in order to adapt various physiopathologic processes (e.g., mitophagy and ferroptosis); thus, visualizing and tracking different changes of cristae are crucial for a deeper understanding of these processes. Fluorescent probes that can realize long-term visualization of mitochondrial cristae under stimulated emission depletion (STED) microscopy are powerful tools for their in-depth research. However, there are few reports on such probes, and their constructions remain challenging. Here, we reported a robust squaraine probe (CSN) for visualizing and tracking the changes of mitochondrial cristae in various physiological and pathological processes using STED microscopy. The lipophilic unit of CSN enabled it to firmly immobilize in mitochondria via a hydrophobic interaction, which let the labeling ability of CSN independent of mitochondrial membrane potential (MMP). Using CSN, the mitochondrial cristae were clearly observed at a resolution of 52 nm under STED microscopy. Furthermore, CSN was successfully applied to track the destruction processes of mitochondrial cristae during autophagy and ferroptosis. Interestingly, we found that during mitophagy, mitochondria first underwent swelling and cristae rupture, and then partial vacuolization, and finally complete vacuolization, whereas during ferroptosis, mitochondria first underwent a gradual reduction in the number of cristae, and then partial fracture, and finally vacuolization. This work revealed the difference in mitochondrial cristae changes during mitophagy and ferroptosis, which provided insights into the two physiological and pathological processes. We believed that CSN could serve as a desirable tool to track cristae changes of intracellular activity processes.
Collapse
Affiliation(s)
- Yangang Su
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Jie Niu
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xingyu Lyu
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qiuhua Hao
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qing Lyu
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Nan Sheng
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
32
|
Sánchez-Melgar A, Vultaggio-Poma V, Falzoni S, Fructuoso C, Albasanz JL, Di Virgilio F, Martín M. Mitochondrial Localization and Function of Adenosine Receptors. Int J Biol Sci 2025; 21:1874-1893. [PMID: 40083698 PMCID: PMC11900819 DOI: 10.7150/ijbs.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/11/2025] [Indexed: 03/16/2025] Open
Abstract
G-protein coupled receptors (GPCRs) are typically expressed on the cell surface where they mediate extracellular signals from hormones, neurotransmitters and growth factors, among others. However, growing evidence support the intracellular localization of GPCRs, including mitochondria. In the present work, we assessed the presence and functionality of adenosine receptors in mitochondria by combining techniques such as western blotting, radioligand binding, electron microscopy, enzymatic activities determination, oxygen consumption measurement and 3D morphological analysis of mitochondrial networks. Our results demonstrate the mitochondrial localization of adenosine A1 and A2 receptors in pure mitochondria fractions isolated from mouse brain and liver, human brain, HeLa and SH-SY5Y cells. Adenylyl cyclase activity assays revealed that these receptors are functional in the mitochondria. Moreover, exposure of isolated mitochondria to selective A1, A2A and A2B receptors agonists revealed these receptors as potential modulators of mitochondrial energy metabolism, since ATP production and coupling efficiency increased in the presence of BAY 60-6583 (A2B agonist) whereas proton leak and acute response were higher with CGS 21680 (A2A agonist). Also, proton leak, ATP production, acute response and acute respiration were increased in the presence of CPA (A1 agonist). Interestingly, different mitochondrial morphological changes were detected in HeLa cells exposed to these receptors' agonists.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Medicine of Ciudad Real / Faculty of Chemical Sciences and Technologies. Institute of Biomedicine (IB-UCLM). IDISCAM. University of Castilla-La Mancha. Ciudad Real, Spain
| | | | - Simoneta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Clara Fructuoso
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Medicine of Ciudad Real / Faculty of Chemical Sciences and Technologies. Institute of Biomedicine (IB-UCLM). IDISCAM. University of Castilla-La Mancha. Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Medicine of Ciudad Real / Faculty of Chemical Sciences and Technologies. Institute of Biomedicine (IB-UCLM). IDISCAM. University of Castilla-La Mancha. Ciudad Real, Spain
| | | | - Mairena Martín
- Department of Inorganic, Organic Chemistry and Biochemistry. Faculty of Medicine of Ciudad Real / Faculty of Chemical Sciences and Technologies. Institute of Biomedicine (IB-UCLM). IDISCAM. University of Castilla-La Mancha. Ciudad Real, Spain
| |
Collapse
|
33
|
Fan S, Hu Y, Shi J. Role of ferroptosis in atrial fibrillation: a review. Front Pharmacol 2025; 16:1362060. [PMID: 39981174 PMCID: PMC11839810 DOI: 10.3389/fphar.2025.1362060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiovascular disease remains the leading cause of mortality, with atrial fibrillation emerging as one of the most common conditions encountered in clinical practice. However, its underlying mechanisms remain poorly understood, prompting ongoing research. Ferroptosis, a recently discovered form of regulated cell death characterized by lipid peroxidation and disrupted cellular redox balance leading to cell death due to iron overload, has attracted significant attention. Since its identification, ferroptosis has been extensively studied in various contexts, including cancer, stroke, myocardial ischemia/reperfusion injury, and heart failure. Growing evidence suggests that ferroptosis may also play a critical role in the onset and progression of atrial fibrillation, though research in this area is still limited. This article provides a concise overview of the potential mechanisms by which ferroptosis may contribute to the pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Shaowei Fan
- Lugouqiao Second Community Health Service Center, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Jingjing Shi
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
34
|
Rai NK, Venugopal H, Rajesh R, Ancha P, Venkatesh S. Mitochondrial complex-1 as a therapeutic target for cardiac diseases. Mol Cell Biochem 2025; 480:869-890. [PMID: 39033212 PMCID: PMC12076218 DOI: 10.1007/s11010-024-05074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Mitochondrial dysfunction is critical for the development and progression of cardiovascular diseases (CVDs). Complex-1 (CI) is an essential component of the mitochondrial electron transport chain that participates in oxidative phosphorylation and energy production. CI is the largest multisubunit complex (~ 1 Mda) and comprises 45 protein subunits encoded by seven mt-DNA genes and 38 nuclear genes. These subunits function as the enzyme nicotinamide adenine dinucleotide hydrogen (NADH): ubiquinone oxidoreductase. CI dysregulation has been implicated in various CVDs, including heart failure, ischemic heart disease, pressure overload, hypertrophy, and cardiomyopathy. Several studies demonstrated that impaired CI function contributes to increased oxidative stress, altered calcium homeostasis, and mitochondrial DNA damage in cardiac cells, leading to cardiomyocyte dysfunction and apoptosis. CI dysfunction has been associated with endothelial dysfunction, inflammation, and vascular remodeling, critical processes in developing atherosclerosis and hypertension. Although CI is crucial in physiological and pathological conditions, no potential therapeutics targeting CI are available to treat CVDs. We believe that a lack of understanding of CI's precise mechanisms and contributions to CVDs limits the development of therapeutic strategies. In this review, we comprehensively analyze the role of CI in cardiovascular health and disease to shed light on its potential therapeutic target role in CVDs.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Harikrishnan Venugopal
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ritika Rajesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Pranavi Ancha
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Sundararajan Venkatesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA.
| |
Collapse
|
35
|
Ritenis EJ, Padilha CS, Cooke MB, Stathis CG, Philp A, Camera DM. The acute and chronic influence of exercise on mitochondrial dynamics in skeletal muscle. Am J Physiol Endocrinol Metab 2025; 328:E198-E209. [PMID: 39441237 DOI: 10.1152/ajpendo.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements in skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptations that are seen with exercise. Exercise-induced mitochondrial adaptation dynamics that have been implicated are 1) increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes and 2) morphological changes to the three-dimensional (3-D) tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Furthermore, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains to be fully elucidated. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
Collapse
Affiliation(s)
- Elya J Ritenis
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Camila S Padilha
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew B Cooke
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Christos G Stathis
- College of Sport, Health and Engineering, Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Donny M Camera
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Fujimoto T, Goto H, Hida M, Tsuboi K, Suzuki T, Iida H, Fukada A, Shimizu S, Ebata Y, Nikai K, Ishii J, Takeda M, Ishiyama A, Shibuya S, Yazaki Y, Nakazawa-Tanaka N, Miyano G, Okazaki T, Yanai T, Urao M, Suzuki M, Koga H, Lane GJ, Yamataka A, Suda K. Liver Mitochondrial Morphology and Gene Expression as Markers of Liver Reserve: Prognostic Implications for Native Liver Survival in Biliary Atresia. J Pediatr Surg 2025; 60:161648. [PMID: 39187420 DOI: 10.1016/j.jpedsurg.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Hepatocyte mitochondrial morphology and gene expression were compared between biliary atresia (BA), infantile cholestasis (IC), and normal liver (NL) as prognostic indicators. METHODS Specimens of liver at portoenterostomy (PE) for BA, from intrahepatic bile duct paucity patients for IC, and from choledochal cyst or hepatoblastoma patients for NL were collected prospectively (P) beginning in 2021 (P-BA = 11, P-IC = 9, P-NL = 7) and retrospectively (R) from paraffin-embedded tissue going back to 1981 (R-BA = 25, R-IC = 9, R-NL = 4). The P-cohort had transmission electron microscopy (TEM) to image mitochondria, immunoblotting for heat shock protein 60 (HSP60), and quantitative PCR (qPCR) for HSP60 and mitochondrial functional genes. Both cohorts had immunofluorescence for HSP60 quantified as a ratio to albumin-positive hepatocytes (ALB) with HSP60/ALB<1.0 as a cutoff limit using ImageJ. RESULTS HSP60 was significantly lower in BA/IC than NL on qPCR (BA: p < 0.01, IC: p < 0.05) and lower in BA than IC/NL on immunoblotting (p < 0.05). HSP60/ALB was significantly lower in BA than NL/IC (p < 0.001). Despite BA subjects being matched for types of BA and ages at PE, HSP60/ALB did not correlate with jaundice clearance (JC; T-Bil<1.2 mg/dL) but was significantly higher in native liver survivors (NLS) after PE compared with liver transplant (LTx) cases (p < 0.05) and significantly lower in LTx cases achieving JC than NLS achieving JC (p < 0.05). TEM showed BA had significantly more mitochondrial inclusion bodies (p < 0.05) and significantly larger cristae (p < 0.01) than IC/NL. qPCR in BA showed significant repression of mitochondrial functional genes for mRNA stabilization and energy facilitation. CONCLUSION HSP60/ALB correlates with NLS after PE for BA. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Takashi Fujimoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroki Goto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masataka Hida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Tsuboi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takamasa Suzuki
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hisae Iida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayaka Fukada
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Sakika Shimizu
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Ebata
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koki Nikai
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Junya Ishii
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Takeda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Asuka Ishiyama
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Soichi Shibuya
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuta Yazaki
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Nana Nakazawa-Tanaka
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Go Miyano
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Tadaharu Okazaki
- Department of Pediatric Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshihiro Yanai
- Department of Pediatric Surgery, Ibaraki Children's Hospital, Ibaraki, Japan
| | - Masahiko Urao
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Geoffrey J Lane
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
37
|
Kraus F, He Y, Swarup S, Overmyer KA, Jiang Y, Brenner J, Capitanio C, Bieber A, Jen A, Nightingale NM, Anderson BJ, Lee C, Paulo JA, Smith IR, Plitzko JM, Gygi SP, Schulman BA, Wilfling F, Coon JJ, Harper JW. Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST. SCIENCE ADVANCES 2025; 11:eadu5787. [PMID: 39841834 PMCID: PMC11753374 DOI: 10.1126/sciadv.adu5787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in NPC1-/- and NPC2-/- mutants, where lysosomes accumulate cholesterol. Autophagic and endocytic cargo delivery failures correlated with elevated lysophosphatidylcholine species and multilamellar structures visualized by cryo-electron tomography. Loss of mitochondrial cristae, MICOS complex components, and OXPHOS components rich in iron-sulfur cluster proteins in NPC2-/- cells was largely alleviated when iron was provided through the transferrin system. This study reveals how lysosomal dysfunction affects mitochondrial homeostasis and underscores nMOST as a valuable discovery tool for identifying molecular phenotypes across LSDs.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yuchen He
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Sharan Swarup
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Cristina Capitanio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anna Bieber
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nicole M. Nightingale
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Benton J. Anderson
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chan Lee
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ian R. Smith
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen M. Plitzko
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - J. Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
38
|
Carteri RB. Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury. J Integr Neurosci 2025; 24:25292. [PMID: 39862005 DOI: 10.31083/jin25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials. Furthermore, mitochondrial metabolism produces signaling molecules such as reactive oxygen species (ROS), regulating calcium levels and controlling the expression profile of intrinsic pro-apoptotic effectors influenced by TBI. Hence, the set of these functions is widely referred to as 'mitochondrial function', although the complexity of the relationship between such components limits such a definition. In this review, we present mitochondria as a therapeutic target, focus on TBI, and discuss aspects of mitochondrial structure and function.
Collapse
Affiliation(s)
- Randhall Bruce Carteri
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Nutrition, Centro Universitário CESUCA, 94935-630 Cachoeirinha, Rio Grande do Sul (RS), Brazil
| |
Collapse
|
39
|
Zerbes RM, Colina-Tenorio L, Bohnert M, von der Malsburg K, Peikert CD, Mehnert CS, Perschil I, Klar RFU, de Boer R, Kram A, van der Klei I, Oeljeklaus S, Warscheid B, Rampelt H, van der Laan M. Coordination of cytochrome bc 1 complex assembly at MICOS. EMBO Rep 2025; 26:353-384. [PMID: 39623166 PMCID: PMC11772845 DOI: 10.1038/s44319-024-00336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The boundary and cristae domains of the mitochondrial inner membrane are connected by crista junctions. Most cristae membrane proteins are nuclear-encoded and inserted by the mitochondrial protein import machinery into the inner boundary membrane. Thus, they must overcome the diffusion barrier imposed by crista junctions to reach their final location. Here, we show that respiratory chain complexes and assembly intermediates are physically connected to the mitochondrial contact site and cristae organizing system (MICOS) that is essential for the formation and stability of crista junctions. We identify the inner membrane protein Mar26 (Fmp10) as a determinant in the biogenesis of the cytochrome bc1 complex (complex III). Mar26 couples a Rieske Fe/S protein-containing assembly intermediate to MICOS. Our data indicate that Mar26 maintains an assembly-competent Rip1 pool at crista junctions where complex III maturation likely occurs. MICOS facilitates efficient Rip1 assembly by recruiting complex III assembly intermediates to crista junctions. We propose that MICOS, via interaction with assembly factors such as Mar26, contributes to the spatial and temporal coordination of respiratory chain biogenesis.
Collapse
Affiliation(s)
- Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149, Münster, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany
| | - Christian D Peikert
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Bioinformatics Research & Development, BioNTech SE, 55131, Mainz, Germany
| | - Carola S Mehnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Rhena F U Klar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, 79104, Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Anita Kram
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Ida van der Klei
- Molecular Cell Biology, University of Groningen, 9700 CC, Groningen, The Netherlands
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
- Center for Molecular Signaling, PZMS, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
40
|
Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol 2025; 265:110-122. [PMID: 39624887 DOI: 10.1002/path.6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The pathogenesis of alcohol-related liver disease (ALD) is closely linked to mitochondrial dysfunction and impaired cellular energy metabolism. In this study, we explored how ethanol triggers inflammation, oxidative stress, and mitochondrial dysfunction in Kupffer cells, i.e.hepatic resident macrophages, primarily focusing on the mitochondrial unfolded protein response (UPRmt) using immortalized mouse Kupffer cells (ImKCs) and mouse primary KCs. The UPRmt is a cellular defense mechanism activated in response to the perturbation of mitochondrial proteostasis to maintain mitochondrial integrity and function by upregulating the expression of mitochondrial chaperones and proteases. We also determined whether nicotinamide riboside (NR), a NAD+ precursor, could mitigate ethanol-triggered cellular damage. When ImKCs were exposed to 80 mm ethanol for 72 h, they displayed inflammation, oxidative stress, and impaired mitochondrial function with decreased mitochondrial content and deformed mitochondrial crista structure. NR, however, counteracted the effects of ethanol. Furthermore, ethanol increased mRNA and protein levels of UPRmt genes, such as mitochondrial chaperones and proteases, which were attenuated by NR. Notably, the ethanol-induced shift in the entry of activating transcription factor 5 (ATF5), a putative transcriptional regulator of UPRmt, to the nucleus from the mitochondria was abolished by NR. The induction of UPRmt genes by ethanol was significantly repressed when Atf5 was knocked down, indicating the role of ATF5 in the induction of UPRmt genes in ImKCs exposed to ethanol. We also confirmed the induction of UPRmt gene expression in mouse and human livers exposed to alcohol. Our findings demonstrate the ability of NR to alleviate ethanol-induced oxidative stress, inflammation, and mitochondrial dysfunction, partly by modulating the ATF5-dependent UPRmt pathway in ImKCs, suggesting its potential for ALD therapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
41
|
Jolivet N, Bertolin G. Revealing mitochondrial architecture and functions with single molecule localization microscopy. Biol Cell 2025; 117:e2400082. [PMID: 39877953 PMCID: PMC11775716 DOI: 10.1111/boc.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Understanding the spatiotemporal organization of components within living systems requires the highest resolution possible. Microscopy approaches that allow for a resolution below 250 nm include electron and super-resolution microscopy (SRM). The latter combines advanced imaging techniques and the optimization of image processing methods. Over the last two decades, various SRM-related approaches have been introduced, especially those relying on single molecule localization microscopy (SMLM). To develop and apply SMLM approaches, mitochondria are an ideal cellular compartment due to their size, which is below the standard diffraction limit. Furthermore, mitochondria are a dynamic yet narrow compartment, and a resolution below 250 nm is required to study their composition and multifaceted functions. To this end, several SMLM technologies have been used to reveal mitochondrial composition. However, there is still room for improvement in existing techniques to study protein-protein interactions and protein dynamics within this compartment. This review aims to offer an updated overview of the existing SMLM techniques and probes associated with mitochondria to enhance their resolution at the nanoscale. Last, it paves the way for future SMLM improvements to better resolve mitochondrial dynamics and functions.
Collapse
Affiliation(s)
- Nicolas Jolivet
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| | - Giulia Bertolin
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| |
Collapse
|
42
|
Glytsou C. Electron Microscopy to Visualize and Quantify Mitochondrial Structure and Organellar Interactions in Cultured Cells During Senescence. Methods Mol Biol 2025; 2906:229-242. [PMID: 40082359 DOI: 10.1007/978-1-0716-4426-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mitochondria are multifunctional organelles that play a crucial role in numerous cellular processes, including oncogene-induced senescence. Recent studies have demonstrated that mitochondria undergo notable morphological and functional changes during senescence, with mitochondria dysregulation being a critical factor contributing to the induction of this state. To elucidate the intricate and dynamic structure of these organelles, high-resolution visualization techniques are imperative. Electron microscopy offers nanometer-scale resolution images, enabling the comprehensive study of organelles' architecture. This chapter provides a detailed guide for preparing fixed samples from cultured cells for electron microscopy imaging. It also describes various quantification methods to accurately assess organellar parameters, including morphometric measurements of mitochondrial shape, cristae structure, and mitochondria-endoplasmic reticulum contact sites. These analyses yield valuable insights into the status of subcellular organelles, advancing our understanding of their involvement in cellular senescence and disease.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Pediatrics at Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, USA.
| |
Collapse
|
43
|
Goedhart NB, Simon-Molas H. Metabolic Profiling of Tumor and Immune Cells Integrating Seahorse and Flow Cytometry. Methods Mol Biol 2025; 2930:103-126. [PMID: 40402451 DOI: 10.1007/978-1-0716-4558-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Studying metabolism in the different cellular compartments of the tumor microenvironment (TME) is crucial to identify the specific metabolic signatures that contribute to tumor progression. Additionally, TME-driven metabolic changes can disrupt the essential metabolic processes involved in immune cell function, hindering immunotherapy success. Extracellular flux analysis (Seahorse) is a well-established approach used to characterize cellular metabolism. When combined with flow cytometry-based measurements, it offers a comprehensive view of the metabolic signatures within the different cellular compartments of the TME. Here we provide a detailed description on the procedures of Seahorse analysis and complementary flow cytometry-based metabolic readouts on tumor cells and T cells in the context of cancer, which can also be applied to other physiological and pathological situations.
Collapse
Affiliation(s)
- Nienke B Goedhart
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
- Cancer Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Li W, Zhang Y, Wei Y, Ling G, Zhang Y, Li Y, Guo S, Tan N, Ma L, Li W, Sun Q, Wang W, Wang Y. New insights into mitochondrial quality control in anthracycline-induced cardiotoxicity: molecular mechanisms, therapeutic targets, and natural products. Int J Biol Sci 2025; 21:507-523. [PMID: 39781459 PMCID: PMC11705644 DOI: 10.7150/ijbs.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
Anthracyclines (ANTs) are widely used in cancer therapy, particularly for lymphoma, sarcoma, breast cancer, and childhood leukemia, and have become the cornerstone of chemotherapy for various malignancies. However, it is associated with fatal and dose-dependent cardiovascular complications, especially cardiotoxicity. Mitochondrial quality control mechanisms, encompassing mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, maintain mitochondrial homeostasis in the cardiovascular system. Recent studies have highlighted that mitochondrial quality control mechanisms play considerable roles in ANTs-induced cardiotoxicity (AIC). In addition, natural products targeting mitochondrial quality control mechanisms have emerged as potential therapeutic strategies to alleviate AIC. This review summarizes the types, incidence, prevention, treatment, and pathomechanism of AIC, delves into the molecular mechanisms of mitochondrial quality control in the pathogenesis of AIC, and explores natural products that target these mechanisms, so as to provide potential targets and therapeutic drugs for address the clinical challenges in AIC prevention and treatment, where no effective medicines are available.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yilin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shujuan Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Lin Ma
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| |
Collapse
|
45
|
Triolo M, Khacho M. Protocol to monitor live-cell, real-time, mitochondrial respiration in mouse muscle cells using the Resipher platform. STAR Protoc 2024; 5:103330. [PMID: 39305486 PMCID: PMC11459069 DOI: 10.1016/j.xpro.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024] Open
Abstract
Mitochondrial function is typically assessed by measuring oxygen consumption at a given time point. However, this approach cannot monitor respiratory changes that occur over time. Here, we present a protocol to measure mitochondrial respiration in freshly isolated muscle stem cells, primary skeletal muscle, and immortalized C2C12 myoblasts in real time using the Resipher platform. We describe steps for preparing and plating cells, performing media changes, setting up the software and device, and analyzing data. This method can be adapted to other cell types. For complete details on the use and execution of this protocol, please refer to Triolo et al.1.
Collapse
Affiliation(s)
- Matthew Triolo
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Center for Neuromuscular Disease (CNMD), Ottawa Institute of Systems Biology (OISB), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
46
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
47
|
Pan X, Zhao Y, Li Y, Chen J, Zhang W, Yang L, Xiong YZ, Ying Y, Xu H, Zhang Y, Gao C, Sun Y, Li N, Chen L, Chen Z, Lei K. Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance. Nat Commun 2024; 15:10681. [PMID: 39672898 PMCID: PMC11645412 DOI: 10.1038/s41467-024-54720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024] Open
Abstract
Tissue regeneration is a complex process involving large changes in cell proliferation, fate determination, and differentiation. Mitochondrial dynamics and metabolism play a crucial role in development and wound repair, but their function in large-scale regeneration remains poorly understood. Planarians offer an excellent model to investigate this process due to their remarkable regenerative abilities. In this study, we examine mitochondrial dynamics during planarian regeneration. We find that knockdown of the mitochondrial fusion gene, opa1, impairs both tissue regeneration and stem cell pluripotency. Interestingly, the regeneration defects caused by opa1 knockdown are rescued by simultaneous knockdown of the mitochondrial fission gene, drp1, which partially restores mitochondrial dynamics. Furthermore, we discover that Mitolow stem cells exhibit an enrichment of pluripotency due to their fate choices at earlier stages. Transcriptomic analysis reveals the delicate mitonuclear balance in metabolism and mitochondrial proteins in regeneration, controlled by mitochondrial dynamics. These findings highlight the importance of maintaining mitochondrial dynamics in large-scale tissue regeneration and suggest the potential for manipulating these dynamics to enhance stem cell functionality and regenerative processes.
Collapse
Affiliation(s)
- Xue Pan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yucong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jiajia Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenya Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Ling Yang
- HPC Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyi Zhou Xiong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yuqing Ying
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hao Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhan Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou, Zhejiang, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China.
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Gao L, Gao B, Ge W, Li S, Wang F. Stimulated Emission Depletion Imaging Reveals Mitochondrial Phenotypic Heterogeneity under Apoptosis Stimuli across Living Glioma Models. NANO LETTERS 2024; 24:15904-15911. [PMID: 39587402 DOI: 10.1021/acs.nanolett.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The mitochondrial phenotypes contribute to the understanding of disease mechanisms and treatments, which are typically characterized through the omics methods. However, the high dynamics and phenotypic heterogeneity of mitochondria require high-resolution characterization within individual living cells. Therefore, we introduce a fluorescence analysis method, based on two-color and fluorescence lifetime stimulated emission depletion (STED) super-resolution imaging, to explore mitochondrial phenotypic heterogeneity in human (U87) and mouse (GL261) glioma models. Furthermore, we used rotenone and etoposide to simulate the effects of antitumor drugs, inducing apoptosis through mitochondrial dysfunction, respectively. The two-color labeling introduces intracellular parameters to qualitatively visualize changes in mitochondrial morphology, while fluorescence lifetime reflects the status of mitochondria and their microenvironment from the perspective of probe characteristics. This method reveals mitochondria phenotypic heterogeneity induced by the apoptotic stimuli in human and mouse glioma models from a morphological perspective.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ge
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxian Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Chen L, Zhang H, Shang C, Hong Y. The Role and Applied Value of Mitochondria in Glioma-Related Research. CNS Neurosci Ther 2024; 30:e70121. [PMID: 39639571 PMCID: PMC11621238 DOI: 10.1111/cns.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondria, known as the "energy factory" of cells, are essential organelles with a double membrane structure and genetic material found in most eukaryotic cells. They play a crucial role in tumorigenesis and development, with alterations in mitochondrial structure and function in tumor cells leading to characteristics such as rapid proliferation, invasion, and drug resistance. Glioma, the most common brain tumor with a high recurrence rate and limited treatment options, has been linked to changes in mitochondrial structure and function. This review focuses on the bioenergetics, dynamics, metastasis, and autophagy of mitochondria in relation to glioma proliferation, as well as the potential use of mitochondria-targeting drugs in glioma treatment.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hui Zhang
- Department of Urology, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chao Shang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
| | - Yang Hong
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|