1
|
Kar N, Caruso AP, Prokopiou N, Abrenica A, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal-to-amoeboid transition in confined environments. Curr Biol 2025; 35:1791-1804.e5. [PMID: 40120583 PMCID: PMC12014357 DOI: 10.1016/j.cub.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/09/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
To invade tissues, cells may undergo a mesenchymal-to-amoeboid transition (MAT). However, the mechanisms regulating this transition are poorly defined. In melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1-dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light-chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 promotes de-adhesion, which in turn facilitates migration across micropatterned surfaces. Thus, we reveal a novel Piezo1/Ca2+/INF2 signaling cascade that regulates MAT, enabling cancer cells to adapt their migration mode in response to varying mechanochemical environments.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alexa P Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alleah Abrenica
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
2
|
Faure LM, Venturini V, Roca-Cusachs P. Cell compression - relevance, mechanotransduction mechanisms and tools. J Cell Sci 2025; 138:jcs263704. [PMID: 40145202 DOI: 10.1242/jcs.263704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells are often compressed during physiological and pathological processes, triggering major cell responses. Cell compression can be observed in vivo but also controlled in vitro through tools such as micro-channels or planar confinement assays. Such tools have recently become commercially available, allowing a broad research community to tackle the role of cell compression in a variety of contexts. This has led to the discovery of conserved compression-triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. In this Review, we will first address the different ways in which cells can be compressed and their biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing pathways that cells activate in response to compression. Finally, we will describe the different in vitro systems that have been engineered to compress cells.
Collapse
Affiliation(s)
- Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
4
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Townson J, Progida C. The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction. J Cell Sci 2025; 138:JCS263503. [PMID: 39976266 DOI: 10.1242/jcs.263503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Cells are continuously subjected to physical and chemical cues from the extracellular environment, and sense and respond to mechanical cues via mechanosensation and mechanotransduction. Although the role of the cytoskeleton in these processes is well known, the contribution of intracellular membranes has been long neglected. Recently, it has become evident that various organelles play active roles in both mechanosensing and mechanotransduction. In this Review, we focus on mechanosensitive roles of the endoplasmic reticulum (ER), the functions of which are crucial for maintaining cell homeostasis. We discuss the effects of mechanical stimuli on interactions between the ER, the cytoskeleton and other organelles; the role of the ER in intracellular Ca2+ signalling via mechanosensitive channels; and how the unfolded protein response and lipid homeostasis contribute to mechanosensing. The expansive structure of the ER positions it as a key intracellular communication hub, and we additionally explore how this may be leveraged to transduce mechanical signals around the cell. By synthesising current knowledge, we aim to shed light on the emerging roles of the ER in cellular mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jonathan Townson
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
6
|
Wu X, Fei W, Shen T, Ye L, Li C, Chu S, Liu M, Cheng X, Qin J. Unveiling the potential of biomechanics in pioneering innovative strategies for cancer therapy. Theranostics 2025; 15:2903-2932. [PMID: 40083943 PMCID: PMC11898300 DOI: 10.7150/thno.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 03/16/2025] Open
Abstract
Mechanical force transmission is pivotal in tumor biology, profoundly affecting cancer cell behaviors such as proliferation, metastasis, and resistance to therapy. To explore novel biomechanical-based therapeutic strategies for cancer treatment, this paper deciphers the advances in biomechanical measurement approaches and the impact of biomechanical signals on fundamental oncological processes such as tumor microenvironment remodeling, angiogenesis, metastasis, and drug resistance. Then, the mechanisms of biomechanical signal transduction of tumor cells are demonstrated to identify novel targets for tumor therapy. Additionally, this study proposes a novel tumor treatment strategy, the biomechanical regulation tumor nanotherapeutics, including smart biomaterials designed to disturb mechanical signaling pathways and innovative nanodrugs that interfere transduction of biomechanical signals to improve tumor therapeutic outcomes. These methods mark a departure from conventional pharmacological therapies to novel strategies that utilize mechanical forces to impede tumor progression and enhance tumor responsiveness to treatment. In general, this review highlights the critical role of biomechanical signals in cancer biology from a holistic perspective and underscores the potential of biomechanical interventions as a transformative class of therapeutics. By integrating mechanobiology into the development of cancer treatments, this paper paves the way for more precise and effective strategies that leverage the inherent physical properties of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Tao Shen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lei Ye
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Siran Chu
- Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| | - Jiale Qin
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, 310006, China
- Zhejiang Provincial Clinical Research Center for Gynecological Diseases, Hangzhou, 310006, China
| |
Collapse
|
7
|
Ma Y, Hui KL, Ambaw YA, Walther TC, Farese RV, Lengyel M, Gelashvili Z, Lu D, Niethammer P. DHRS7 Integrates NADP +/NADPH Redox Sensing with Inflammatory Lipid Signalling via the Oxoeicosanoid Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636725. [PMID: 39975387 PMCID: PMC11839141 DOI: 10.1101/2025.02.05.636725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During the innate immune response at epithelial wound sites, oxidative stress acts microbicidal and-mechanistically less well understood-as an immune and resilience signal. The reversible sulfhydryl (SH) oxidation of kinases, phosphatases, and transcription factors constitute the perhaps best-known redox signalling paradigm, whereas mechanisms that transduce metabolic redox cues, such as redox cofactor balance, remain little explored. Here, using mammalian cells, microsomes, and live zebrafish, we identify DHRS7, a short-chain fatty acid dehydrogenase/reductase (SDR), as conserved, 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under oxidative stress, DHRS7 consumes NADP+ to convert arachidonic acid (AA)-derived 5(S)-HETE into the inflammatory lipid 5-KETE, which activates leukocyte chemotaxis via the OXER1 receptor. While Dhrs7 acts as a NADPH-dependent 5-KETE sink in unstressed, healthy tissue, it promotes rapid, 5-KETE dependent leukocytic inflammation in wounded zebrafish skin. Thus, DHRS7 epitomizes an underappreciated mode of redox signalling-beyond classic SH oxidation-that leverages NADPH metabolism to generate or quench a paracrine lipid signal. Metabolic redox sensors like DHRS7 might be promising therapeutic targets in diseases characterized by disturbed redox balance.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yohannes A. Ambaw
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias C. Walther
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Robert V. Farese
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
9
|
Ayushman M, Mikos G, Tong X, Sinha S, Lopez-Fuentes E, Jones S, Cai PC, Lee HP, Morrison AJ, Spakowitz A, Heilshorn SC, Sweet-Cordero A, Yang F. Cell tumbling enhances stem cell differentiation in hydrogels via nuclear mechanotransduction. NATURE MATERIALS 2025; 24:312-322. [PMID: 39487316 DOI: 10.1038/s41563-024-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.
Collapse
Affiliation(s)
- Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eunice Lopez-Fuentes
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Jones
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andrew Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Jin W, Liu Y, Lu Q, Huang J, Liu Z, Yu X. A novel small-molecule fluorescent probe caused by minimal structural modifications for specific staining of the cell nuclear membrane. Chem Commun (Camb) 2025; 61:2107-2110. [PMID: 39801375 DOI: 10.1039/d4cc06678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The nuclear membrane is a double-layered structure that physically protects the cell's DNA from the chemical reactions occurring in other parts of the cell. In this study, we present the first brand-new small-molecule fluorescent probe that selectively stains the nuclear membrane, allowing for the visualization of nuclear morphology without interfering with the DNA's activity.
Collapse
Affiliation(s)
- Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Yang Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250001, China.
| | - Qing Lu
- China Fire and Rescue Institute, Beijing 102202, China
| | - Jie Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
11
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
12
|
Lee S, Le Roux AL, Mors M, Vanni S, Roca‑Cusachs P, Bahmanyar S. Amphipathic helices sense the inner nuclear membrane environment through lipid packing defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623600. [PMID: 39605395 PMCID: PMC11601446 DOI: 10.1101/2024.11.14.623600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Amphipathic helices (AHs) are ubiquitous protein motifs that modulate targeting to organellar membranes by sensing differences in bulk membrane properties. However, the adaptation between membrane-targeting AHs and the nuclear membrane environment that surrounds the genome is poorly understood. Here, we computationally screened for candidate AHs in a curated list of characterized and putative human inner nuclear membrane (INM) proteins. Cell biological and in vitro experimental assays combined with computational calculations demonstrated that AHs detect lipid packing defects over electrostatics to bind to the INM, indicating that the INM is loosely packed under basal conditions. Membrane tension resulting from hypotonic shock further promoted AH binding to the INM, whereas cell-substrate stretch did not enhance recruitment of membrane tension-sensitive AHs. Together, our work demonstrates the rules driving lipid-protein interactions at the INM, and its implications in the response of the nucleus to different stimuli.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Mira Mors
- Department of Biology, University of Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Pere Roca‑Cusachs
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, 260 Whitney Ave, Yale Science Building 116, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Shan S, Jin R, Cheng X, He J, Luo X. Mechano-induced arachidonic acid metabolism promotes keratinocyte proliferation through cPLA2 activity regulation. FASEB J 2024; 38:e70226. [PMID: 39636236 DOI: 10.1096/fj.202402088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Mechano-induced keratinocyte hyperproliferation is reported to be associated with various skin diseases. Enhanced cell proliferation often requires the active metabolism of nutrients to produce energy. However, how keratinocytes adapt their cellular metabolism homeostasis to mechanical cues remains unclear. Here, we first found that mechanical stretched keratinocytes showed the accumulation of metabolic arachidonic acid by metabolomic analysis. Second, we found that mechanical stretch promoted keratinocyte proliferation through the activation of cytosolic calcium-dependent phospholipase A2 (cPLA2). Knockdown or inhibition of cPLA2 could reduce the release of arachidonic acid and inhibit the proliferation of stretched keratinocytes in vitro and in vivo. Third, by analyzing overlapping transcriptomes of stretched keratinocytes and arachidonic acid-stimulated keratinocytes, we identified the upregulation of hexokinase domain-containing protein 1 (HKDC1) expression, a novel gene involved in glucose metabolism, which was associated with arachidonic acid-induced keratinocyte proliferation during stretching. Our data reveal a metabolic regulation mechanism by which mechanical stretch induces keratinocyte proliferation, thereby coupling cellular metabolism to the mechanics of the cellular microenvironment. Strategies to change the metabolism process may lead to a new way to treat skin diseases that are related to biophysical forces.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Gelashvili Z, Shen Z, Ma Y, Jelcic M, Niethammer P. Perivascular Macrophages Convert Physical Wound Signals Into Rapid Vascular Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627538. [PMID: 39713421 PMCID: PMC11661168 DOI: 10.1101/2024.12.09.627538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Leukocytes detect distant wounds within seconds to minutes, which is essential for effective pathogen defense, tissue healing, and regeneration. Blood vessels must detect distant wounds just as rapidly to initiate local leukocyte extravasation, but the mechanism behind this immediate vascular response remains unclear. Using high-speed imaging of live zebrafish larvae, we investigated how blood vessels achieve rapid wound detection. We monitored two hallmark vascular responses: vessel dilation and serum exudation. Our experiments-including genetic, pharmacologic, and osmotic perturbations, along with chemogenetic leukocyte depletion-revealed that the cPla2 nuclear shape sensing pathway in perivascular macrophages converts a fast (~50 μm/s) osmotic wound signal into a vessel-permeabilizing, 5-lipoxygenase (Alox5a) derived lipid within seconds of injury. These findings demonstrate that perivascular macrophages act as physicochemical relays, bridging osmotic wound signals and vascular responses. By uncovering this novel type of communication, we provide new insights into the coordination of immune and vascular responses to injury.
Collapse
Affiliation(s)
- Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhouyang Shen
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Oncology, The Bunting Blaustein Cancer Research Bldg, Johns Hopkins School of Medicine, 1650 Orleans Street, Baltimore, MD, 2128
| | - Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Jelcic
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Fate Therapeutics, Inc., San Diego, CA, 92131, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
Yang W, Wang Y, Liu G, Wang Y, Wu C. TPM4 condensates glycolytic enzymes and facilitates actin reorganization under hyperosmotic stress. Cell Discov 2024; 10:120. [PMID: 39622827 PMCID: PMC11612400 DOI: 10.1038/s41421-024-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/20/2024] [Indexed: 12/06/2024] Open
Abstract
Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein tropomyosin 4 (TPM4). TPM4 condensates recruit glycolytic enzymes such as HK2, PFKM, and PKM2, while wetting actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filament assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impairs osmolarity-induced actin reorganization. At tissue level, colocalized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
Collapse
Affiliation(s)
- Wenzhong Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yuan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- International Cancer Institute, Peking University, Beijing, China.
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China.
| |
Collapse
|
16
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
18
|
Granero-Moya I, Venturini V, Belthier G, Groenen B, Molina-Jordán M, González-Martín M, Trepat X, van Rheenen J, Andreu I, Roca-Cusachs P. Nucleocytoplasmic transport senses mechanical forces independently of cell density in cell monolayers. J Cell Sci 2024; 137:jcs262363. [PMID: 39120491 PMCID: PMC11423809 DOI: 10.1242/jcs.262363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators, such as YAP (also known as YAP1). However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that NCT responds to mechanical forces but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks and to the inhibition of cell contractility. Furthermore, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP is sensitive to cell density, showing that the YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.
Collapse
Affiliation(s)
- Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Guillaume Belthier
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bart Groenen
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- Eindhoven University of Technology, Department of Biomedical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Miguel González-Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08014 Barcelona, Spain
| | - Jacco van Rheenen
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ion Andreu
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Sun Y, Yu Y, Ma S, Liao C, Yang J, Lyu Y, Zhang X, Zhang J, Tian W, Liao L. Nanotube topography rejuvenates the senescence of mesenchymal stem cells by activating YAP signalling. J Mater Chem B 2024; 12:6917-6926. [PMID: 38904147 DOI: 10.1039/d3tb02828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Improving the regenerative ability of senescent stem cells is a critical issue in combating aging. The destiny and function of senescent stem cells are controlled by the niche, including the physical architecture of the surface of the extracellular matrix (ECM). In this study, we explored the functions of TiO2 nanotube topography on mesenchymal stem cells (MSCs) under senescence, as well as its mechanical effects on senescence. First, we created different nanotube topographies on the titanium samples. Next, we cultured senescent mesenchymal stem cells (S-MSCs) on samples with various nanotube topographies to determine suitable parameters. We found nanotube with a diameter of 10 nm significantly alleviated the cellular senescence of S-MSCs and improved the osteogenic differentiation of S-MSCs in vitro. Using an ectopic periodontium regeneration model, we confirmed that specific nanotube topography could promote tissue regeneration of S-MSCs in vivo. Moreover, we demonstrated that nanotube topography activated YAP in S-MSCs and reformed nuclear-cytoskeletal morphology to inhibit senescence. Taken together, our study establishes a bridge linking between nano-topography, mechanics, and senescence, suggesting a potential strategy to improve tissue regeneration in aged individuals by providing optimized surface topography on biomaterials.
Collapse
Affiliation(s)
- Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yun Lyu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Li J, Chi H, Wu Y, Peng K, Wang J, Lin W. Sulfur dioxide-triggered visualization tool for auxiliary diagnosis of alcohol-induced "anti-inflammatory and pro-inflammatory" development process. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134685. [PMID: 38797075 DOI: 10.1016/j.jhazmat.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.
Collapse
Affiliation(s)
- Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yu Wu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kanghui Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
21
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
22
|
Alraies Z, Rivera CA, Delgado MG, Sanséau D, Maurin M, Amadio R, Maria Piperno G, Dunsmore G, Yatim A, Lacerda Mariano L, Kniazeva A, Calmettes V, Sáez PJ, Williart A, Popard H, Gratia M, Lamiable O, Moreau A, Fusilier Z, Crestey L, Albaud B, Legoix P, Dejean AS, Le Dorze AL, Nakano H, Cook DN, Lawrence T, Manel N, Benvenuti F, Ginhoux F, Moreau HD, P F Nader G, Piel M, Lennon-Duménil AM. Cell shape sensing licenses dendritic cells for homeostatic migration to lymph nodes. Nat Immunol 2024; 25:1193-1206. [PMID: 38834865 PMCID: PMC11224020 DOI: 10.1038/s41590-024-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKβ-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.
Collapse
Affiliation(s)
- Zahraa Alraies
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Claudia A Rivera
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Doriane Sanséau
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Mathieu Maurin
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aline Yatim
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Anna Kniazeva
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Vincent Calmettes
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Williart
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Henri Popard
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Gratia
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Aurélie Moreau
- Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, Nantes, France
| | - Zoé Fusilier
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
- INSERM U932, Immunity and Cancer, Institut Curie, Paris-Cité University, Paris, France
| | - Lou Crestey
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Patricia Legoix
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Anne S Dejean
- INSERM UMR1291, CNRS UMR5051, Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Université Toulouse III, Toulouse, France
| | - Anne-Louise Le Dorze
- INSERM UMR1291, CNRS UMR5051, Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Université Toulouse III, Toulouse, France
| | - Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, INSERM, CNRS, Université Aix-Marseille, Marseille, France
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Nicolas Manel
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Hélène D Moreau
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Guilherme P F Nader
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthieu Piel
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France.
| | | |
Collapse
|
23
|
Kar N, Caruso AP, Prokopiou N, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal to amoeboid transition in confined environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546346. [PMID: 37745412 PMCID: PMC10515767 DOI: 10.1101/2023.06.23.546346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
To invade heterogenous tissues, transformed cells may undergo a mesenchymal to amoeboid transition (MAT). However, the molecular mechanisms regulating this transition are poorly defined. In invasive melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1 dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 is found to promote de-adhesion, which in turn facilitates MAT. Using micropatterned surfaces, we demonstrate that cells require INF2 to effectively migrate in environments with challenging mechanochemical properties.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Alexa P. Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Jeremy S. Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| |
Collapse
|
24
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
25
|
Li A, Cao T, Feng L, Hu Y, Zhou Y, Yang P. Recent Advances in Metal-Hydride-Based Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5355-5367. [PMID: 38265885 DOI: 10.1021/acsami.3c16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In comparison to traditional antioxidant treatment methods, the use of hydrogen to eliminate reactive oxygen species from the body has the advantages of high biological safety, strong selectivity, and high clearance rate. As an energy storage material, metal hydrides have been extensively studied and used in transporting hydrogen as clean energy, which can achieve a high hydrogen load and controlled hydrogen release. Considering the antioxidant properties of hydrogen and the delivery ability of metal hydrides, metal-hydride-based disease treatment strategies have attracted widespread attention. Up to now, metal hydrides have been reported for the treatment of tumors and a range of inflammation-related diseases. However, limited by the insufficient investment, the use of metal hydrides in disease treatment still has many shortcomings, such as low targeting efficiency, limited therapeutic activity, and complex material preparation process. Particularly, metal hydrides have been found to have a series of optical, acoustic, and catalytic properties when scaled up to the nanoscale, and these properties are also widely used to promote disease treatment effects. From this new perspective, we comprehensively summarize the very recent research progress on metal-hydride-based disease treatment in this review. Ultimately, the challenges and prospects of such a burgeoning cancer theranostics modality are outlooked to provide inspiration for the further development and clinical translation of metal hydrides.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Tingting Cao
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yaoyu Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yaofeng Zhou
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| |
Collapse
|
26
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. J Clin Invest 2024; 134:e170317. [PMID: 38300705 PMCID: PMC10977986 DOI: 10.1172/jci170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.
Collapse
Affiliation(s)
| | - Chaojian Wang
- Department of Medicine
- Duke Cardiovascular Research Center
| | | | | | | | - Eda Yildirim
- Department of Cell Biology
- Duke Cancer Institute, Duke University Medical Center, and
| | - Paul Rosenberg
- Department of Medicine
- Duke Cardiovascular Research Center
- Duke Molecular Physiology Institute, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
27
|
Mellentine SQ, Brown HN, Ramsey AS, Li J, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. Front Cell Dev Biol 2024; 11:1257751. [PMID: 38283991 PMCID: PMC10811798 DOI: 10.3389/fcell.2023.1257751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. The border cells undergo a collective and invasive migration between the nurse cells; thus, the nurse cells are the substrate and microenvironment for the border cells. Prior work found PG signaling is required for on-time border cell migration and cluster cohesion. Methods: Confocal microscopy and quantitative image analyses of available mutant alleles and RNAi lines were used to define the roles of the PGE2 and PGF2α synthases in border cell migration. Results: We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B may regulate border cell migration and/or cluster cohesion is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Decreasing myosin activity overcomes the migration delays in both akr1B and cPGES mutants, indicating the changes in cellular stiffness contribute to the migration defects. Discussion: Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Ruef N, Martínez Magdaleno J, Ficht X, Purvanov V, Palayret M, Wissmann S, Pfenninger P, Stolp B, Thelen F, Barreto de Albuquerque J, Germann P, Sharpe J, Abe J, Legler DF, Stein JV. Exocrine gland-resident memory CD8 + T cells use mechanosensing for tissue surveillance. Sci Immunol 2023; 8:eadd5724. [PMID: 38134242 DOI: 10.1126/sciimmunol.add5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Collapse
Affiliation(s)
- Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Matthieu Palayret
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Petra Pfenninger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bettina Stolp
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, 8091 Zürich, Switzerland
| | | | - Philipp Germann
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
- Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, 3011 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
29
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
30
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
31
|
Gruber L, Jobst M, Kiss E, Karasová M, Englinger B, Berger W, Del Favero G. Intracellular remodeling associated with endoplasmic reticulum stress modifies biomechanical compliance of bladder cells. Cell Commun Signal 2023; 21:307. [PMID: 37904178 PMCID: PMC10614373 DOI: 10.1186/s12964-023-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 11/01/2023] Open
Abstract
Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.
Collapse
Affiliation(s)
- Livia Gruber
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna, 1090, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Martina Karasová
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
32
|
Jiao S, Li C, Guo F, Zhang J, Zhang H, Cao Z, Wang W, Bu W, Lin M, Lü J, Zhou Z. SUN1/2 controls macrophage polarization via modulating nuclear size and stiffness. Nat Commun 2023; 14:6416. [PMID: 37828059 PMCID: PMC10570371 DOI: 10.1038/s41467-023-42187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Alteration of the size and stiffness of the nucleus triggered by environmental cues are thought to be important for eukaryotic cell fate and function. However, it remains unclear how context-dependent nuclear remodeling occurs and reprograms gene expression. Here we identify the nuclear envelope proteins SUN1/2 as mechano-regulators of the nucleus during M1 polarization of the macrophage. Specifically, we show that LPS treatment decreases the protein levels of SUN1/2 in a CK2-βTrCP-dependent manner to shrink and soften the nucleus, therefore altering the chromatin accessibility for M1-associated gene expression. Notably, the transmembrane helix of SUN1/2 is solely required and sufficient for the nuclear mechano-remodeling. Consistently, SUN1/2 depletion in macrophages facilitates their phagocytosis, tissue infiltration, and proinflammatory cytokine production, thereby boosting the antitumor immunity in mice. Thus, our study demonstrates that, in response to inflammatory cues, SUN1/2 proteins act as mechano-regulators to remodel the nucleus and chromatin for M1 polarization of the macrophage.
Collapse
Affiliation(s)
- Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Chuanchuan Li
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 417 E 68th St, New York, NY, 10065, USA
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Jinjin Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhifa Cao
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mobin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200072, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Fan S, Jiang J, Zhang H, Wang C, Kong S, Zhao T, Meng L, Liu Y, Qin J, Rong X, He Z, He Q, He K, Chen K, Lei L, Hai X, Nie H, Ren C. Identification of histone deacetylase inhibitors as neutrophil recruitment modulators in zebrafish using a chemical library screen. Dis Model Mech 2023; 16:dmm050056. [PMID: 37728477 PMCID: PMC10621070 DOI: 10.1242/dmm.050056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Tissue injury-induced neutrophil recruitment is a prerequisite for the initiation and amplification of inflammatory responses. Although multiple proteases and enzymes involved in post-translational modification (PTM) of proteins regulate leukocyte recruitment, an unbiased functional screen of enzymes regulating inflammatory leukocyte recruitment has yet to be undertaken. Here, using a zebrafish tail fin amputation (TFA) model to screen a chemical library consisting of 295 compounds that target proteases and PTM enzymes, we identified multiple histone deacetylase (HDAC) inhibitors that modulate inflammatory neutrophil recruitment. AR-42, a pan-HDAC inhibitor, was shown to inhibit neutrophil recruitment in three different zebrafish sterile tissue injury models: a TFA model, a copper-induced neuromast damage and mechanical otic vesicle injury (MOVI) model, and a sterile murine peritonitis model. RNA sequencing analysis of AR-42-treated fish embryos revealed downregulation of neutrophil-associated cytokines/chemokines, and exogenous supplementation with recombinant human IL-1β and CXCL8 partially restored the defective neutrophil recruitment in AR-42-treated MOVI model fish embryos. We thus demonstrate that AR-42 non-cell-autonomously modulates neutrophil recruitment by suppressing transcriptional expression of cytokines/chemokines, thereby identifying AR-42 as a promising anti-inflammatory drug for treating sterile tissue injury-associated diseases.
Collapse
Affiliation(s)
- Sijia Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jinlong Jiang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Huan Zhang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Cuihong Wang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shang Kong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tingting Zhao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yang Liu
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Qin
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiuqin Rong
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenting He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qinke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ketong Chen
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ling Lei
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Hai
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hong Nie
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
34
|
Fredman G, Khan S. Specialized pro-resolving mediators enhance the clearance of dead cells. Immunol Rev 2023; 319:151-157. [PMID: 37787174 DOI: 10.1111/imr.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The failure to resolve inflammation underpins to several prevalent diseases, like atherosclerosis, and so identifying ways to boost resolution is unmet clinical needs. The resolution of inflammation is governed by several factors such as specialized pro-resolving mediators (SPMs) that counter-regulate pro-inflammatory pathways and promote tissue repair without compromising host defense. A major function of nearly all SPMs is to enhance the clearance of dead cells or efferocytosis. As such, phagocytes, such as macrophages, are essential cellular players in the resolution of inflammation because of their ability to rapidly and efficiently clear dead cells. This review highlights the role of SPMs in the clearance of apoptotic and necroptotic cells and offers insights into how targeting efferocytosis may provide new treatments for non-resolving diseases, like atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
35
|
de Freitas Nader GP, García-Arcos JM. Cell migration in dense microenvironments. C R Biol 2023; 346:89-93. [PMID: 37779383 DOI: 10.5802/crbiol.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
The nucleus has been viewed as a passenger during cell migration that functions merely to protect the genome. However, increasing evidence shows that the nucleus is an active organelle, constantly sensing the surrounding environment and translating extracellular mechanical inputs into intracellular signaling. The nuclear envelope has a large membrane reservoir which serves as a buffer for mechanical inputs as it unfolds without increasing its tension. In contrast, when cells cope with mechanical strain, such as migration through solid tumors or dense interstitial spaces, the nuclear envelope folds stretch, increasing nuclear envelope tension and sometimes causing rupture. Different degrees of nuclear envelope tension regulate cellular behaviors and functions, especially in cells that move and grow within dense matrices. The crosstalk between extracellular mechanical inputs and the cell nucleus is a critical component in the modulation of cell function of cells that navigate within packed microenvironments. Moreover, there is a link between regimes of nuclear envelope unfolding and different cellular behaviors, from orchestrated signaling cascades to cellular perturbations and damage.
Collapse
|
36
|
Lee S, Carrasquillo Rodríguez JW, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. J Cell Biol 2023; 222:e202304026. [PMID: 37382667 PMCID: PMC10309186 DOI: 10.1083/jcb.202304026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Lipid composition determines organelle identity; however, whether the lipid composition of the inner nuclear membrane (INM) domain of the ER contributes to its identity is not known. Here, we show that the INM lipid environment of animal cells is under local control by CTDNEP1, the master regulator of the phosphatidic acid phosphatase lipin 1. Loss of CTDNEP1 reduces association of an INM-specific diacylglycerol (DAG) biosensor and results in a decreased percentage of polyunsaturated containing DAG species. Alterations in DAG metabolism impact the levels of the resident INM protein Sun2, which is under local proteasomal regulation. We identify a lipid-binding amphipathic helix (AH) in the nucleoplasmic domain of Sun2 that prefers membrane packing defects. INM dissociation of the Sun2 AH is linked to its proteasomal degradation. We suggest that direct lipid-protein interactions contribute to sculpting the INM proteome and that INM identity is adaptable to lipid metabolism, which has broad implications on disease mechanisms associated with the nuclear envelope.
Collapse
Affiliation(s)
- Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Holly Merta
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
38
|
严 然, 陈 祥, 张 译, 王 梦, 李 顺, 刘 贻. [Advances in cell nuclear mechanobiology and its regulation mechanisms]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:617-624. [PMID: 37666750 PMCID: PMC10477395 DOI: 10.7507/1001-5515.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Indexed: 09/06/2023]
Abstract
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- 然 严
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - 祥燕 陈
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 译兮 张
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 梦 王
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 顺 李
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 贻尧 刘
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
39
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
40
|
Mellentine SQ, Ramsey AS, Li J, Brown HN, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546291. [PMID: 37425965 PMCID: PMC10327004 DOI: 10.1101/2023.06.23.546291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. Prior work shows PG signaling is required for on-time migration and cluster cohesion. We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B regulates border cell migration is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
41
|
Kennard AS, Sathe M, Labuz EC, Prinz CK, Theriot JA. Post-injury hydraulic fracturing drives fissure formation in the zebrafish basal epidermal cell layer. Curr Biol 2023:S0960-9822(23)00616-4. [PMID: 37290442 DOI: 10.1016/j.cub.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The skin epithelium acts as the barrier between an organism's internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic gradient across the epidermis. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here, we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. After the wound has sealed-preventing efflux of this external fluid-fissuring starts in the basal epidermal layer at the location nearest to the wound and then propagates at a constant rate through the tissue, spanning over 100 μm. During this process, the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in isotonic external media, suggesting that osmotic gradients are required for fissure formation. Additionally, fissuring partially depends on myosin II activity, as myosin II inhibition reduces the distance of fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1 to 10 μm2). We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse-string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mugdha Sathe
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ellen C Labuz
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
43
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539279. [PMID: 37205564 PMCID: PMC10187192 DOI: 10.1101/2023.05.03.539279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.
Collapse
|
44
|
Li K, Wang M, Huang ZH, Wang M, Sun WY, Kurihara H, Huang RT, Wang R, Huang F, Liang L, Li YF, Duan WJ, He RR. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharmacol Res 2023:106779. [PMID: 37121496 DOI: 10.1016/j.phrs.2023.106779] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Oxidative disruption of dopaminergic neurons is regarded as a crucial pathogenesis in Parkinson's disease (PD), eventually causing neurodegenerative progression. (-)-Clausenamide (Clau) is an alkaloid isolated from plant Clausena lansium (Lour.), which is well-known as a scavenger of lipid peroxide products and exhibiting neuroprotective activities both in vivo and in vitro, yet with the in-depth molecular mechanism unrevealed. In this study, we evaluated the protective effects and mechanisms of Clau on dopaminergic neuron. Our results showed that Clau directly interacted with the Ser663 of ALOX5, the PKCα-phosphorylation site, and thus prevented the nuclear translocation of ALOX5, which was essential for catalyzing the production of toxic lipids 5-HETE. LC-MS/MS-based phospholipidomics analysis demonstrated that the oxidized membrane lipids were involved in triggering ferroptotic death in dopaminergic neurons. Furthermore, the inhibition of ALOX5 was found to significantly improving behavioral defects in PD mouse model, which was confirmed associated with the effects of attenuating the accumulation of lipid peroxides and neuronal damages. Collectively, our findings provide an attractive strategy for PD therapy by targeting ALOX5 and preventing ferroptosis in dopaminergic neurons.
Collapse
Affiliation(s)
- Kun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Zi-Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Min Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Rui-Ting Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
45
|
Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S, Freeman SA. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol 2023; 33:1282-1294.e5. [PMID: 36898371 DOI: 10.1016/j.cub.2023.02.060] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
The ongoing metabolic and microbicidal pathways that support and protect cellular life generate potentially damaging reactive oxygen species (ROS). To counteract damage, cells express peroxidases, which are antioxidant enzymes that catalyze the reduction of oxidized biomolecules. Glutathione peroxidase 4 (GPX4) is the major hydroperoxidase specifically responsible for reducing lipid peroxides; this homeostatic mechanism is essential, and its inhibition causes a unique type of lytic cell death, ferroptosis. The mechanism(s) that lead to cell lysis in ferroptosis, however, are unclear. We report that the lipid peroxides formed during ferroptosis accumulate preferentially at the plasma membrane. Oxidation of surface membrane lipids increased tension on the plasma membrane and led to the activation of Piezo1 and TRP channels. Oxidized membranes thus became permeable to cations, ultimately leading to the gain of cellular Na+ and Ca2+ concomitant with loss of K+. These effects were reduced by deletion of Piezo1 and completely inhibited by blocking cation channel conductance with ruthenium red or 2-aminoethoxydiphenyl borate (2-APB). We also found that the oxidation of lipids depressed the activity of the Na+/K+-ATPase, exacerbating the dissipation of monovalent cation gradients. Preventing the changes in cation content attenuated ferroptosis. Altogether, our study establishes that increased membrane permeability to cations is a critical step in the execution of ferroptosis and identifies Piezo1, TRP channels, and the Na+/K+-ATPase as targets/effectors of this type of cell death.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ruiqi Cai
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Allen Volchuk
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
47
|
Ma Y, Hui KL, Gelashvili Z, Niethammer P. Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish. Cell Rep 2023; 42:111974. [PMID: 36640321 PMCID: PMC9973399 DOI: 10.1016/j.celrep.2022.111974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
5-oxoETE is a bioactive lipid derived from arachidonic acid generated when phospholipase A2 activation coincides with oxidative stress. Through its G protein-coupled receptor OXER1, pure 5-oxoETE is a potent leukocyte chemoattractant. Yet, its physiological function has remained elusive owing to the unusual OXER1 conservation pattern. OXER1 is conserved from fish to primates but not in rodents, precluding genetic loss-of-function studies in mouse. To determine its physiological role, we combine transcriptomic, lipidomic, and intravital imaging assays with genetic perturbations of the OXER1 ortholog hcar1-4 in zebrafish. Pseudomonas aeruginosa infection induces the synthesis of 5-oxoETE and its receptor, along with other inflammatory pathways. Hcar1-4 deletion attenuates neutrophil recruitment and decreases post-infection survival, which could be rescued by ectopic expression of hcar1-4 or human OXER1. By revealing 5-oxoETE as dominant lipid regulator of the early antimicrobial response in a non-rodent vertebrate, our work expands the current, rodent-centric view of early inflammation.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
48
|
Mahalingam SS, Jayaraman S, Bhaskaran N, Schneider E, Faddoul F, Paes da Silva A, Lederman MM, Asaad R, Adkins-Travis K, Shriver LP, Pandiyan P. Polyamine metabolism impacts T cell dysfunction in the oral mucosa of people living with HIV. Nat Commun 2023; 14:399. [PMID: 36693889 PMCID: PMC9873639 DOI: 10.1038/s41467-023-36163-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Metabolic changes in immune cells contribute to both physiological and pathophysiological outcomes of immune reactions. Here, by comparing protein expression, transcriptome, and salivary metabolome profiles of uninfected and HIV+ individuals, we found perturbations of polyamine metabolism in the oral mucosa of HIV+ patients. Mechanistic studies using an in vitro human tonsil organoid infection model revealed that HIV infection of T cells also resulted in increased polyamine synthesis, which was dependent on the activities of caspase-1, IL-1β, and ornithine decarboxylase-1. HIV-1 also led to a heightened expression of polyamine synthesis intermediates including ornithine decarboxylase-1 as well as an elevated dysfunctional regulatory T cell (TregDys)/T helper 17 (Th17) cell ratios. Blockade of caspase-1 and polyamine synthesis intermediates reversed the TregDys phenotype showing the direct role of polyamine pathway in altering T cell functions during HIV-1 infection. Lastly, oral mucosal TregDys/Th17 ratios and CD4 hyperactivation positively correlated with salivary putrescine levels, which were found to be elevated in the saliva of HIV+ patients. Thus, by revealing the role of aberrantly increased polyamine synthesis during HIV infection, our study unveils a mechanism by which chronic viral infections could drive distinct T cell effector programs and Treg dysfunction.
Collapse
Affiliation(s)
- S S Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - S Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - E Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - F Faddoul
- Advanced Education in General Dentistry, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - A Paes da Silva
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - M M Lederman
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Cleveland, OH, 44106, USA
| | - R Asaad
- University Hospitals Cleveland Medical Center AIDS Clinical Trials Unit, Cleveland, OH, 44106, USA
| | - K Adkins-Travis
- Department of Chemistry, Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO, 63110, USA
| | - L P Shriver
- Department of Chemistry, Center for Metabolomics and Isotope Tracing, Washington University, Saint Louis, MO, 63110, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
49
|
Vargas JD. The Role of the LEMD2 p.L13R Mutation in Dilated Cardiomyopathy. Circ Res 2023; 132:185-186. [PMID: 36656966 DOI: 10.1161/circresaha.122.322352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jose D Vargas
- Washington DC VA Medical Center, WA, Veterans Affairs Medical Center, Washington DC
| |
Collapse
|
50
|
Chen R, Buchmann S, Kroth A, Arias-Loza AP, Kohlhaas M, Wagner N, Grüner G, Nickel A, Cirnu A, Williams T, Maack C, Ergün S, Frantz S, Gerull B. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ Res 2023; 132:e43-e58. [PMID: 36656972 DOI: 10.1161/circresaha.122.321929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.
Collapse
Affiliation(s)
- Ruping Chen
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Simone Buchmann
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Amos Kroth
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Anahi-Paula Arias-Loza
- Department of Nuclear Medicine, Comprehensive Heart Failure Center (A.-P.A.-L.), University Hospital Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Gianna Grüner
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Alexandra Cirnu
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Tatjana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Stefan Frantz
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Comprehensive Heart Failure Center (S.F.), University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| |
Collapse
|