1
|
Boothman SM, Preston S, Minden J. Wolbachia infection confers post-translational modification of glutamic acid decarboxylase and other proteins in D. melanogaster. Microbiol Spectr 2025:e0246524. [PMID: 40293253 DOI: 10.1128/spectrum.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Wolbachia pipientis is a ubiquitous intracellular bacterium that is known for its manipulation of reproduction in arthropod hosts. Wolbachia has also been shown to colonize virtually all somatic tissues, including the brain, but little is known about the interaction between host and bacterium in these locations. To this end, we studied the effects of Wolbachia infection on the brain of Drosophila melanogaster. Using comparative proteomics, we uncovered the post-translational modification of many proteins within the Drosophila head and body upon infection, with glutamic acid decarboxylase being modified within the head only. Given this enzyme's role in neurotransmitter synthesis, we next tested how Wolbachia infection impacts host behaviors and gamma aminobutyric acid (GABA) production within Drosophila. We discovered an improved response to yeast odors in Wolbachia-infected, mated females compared with their uninfected counterparts. Gross measurements of GABA in whole brains showed no detectable change in GABA abundance upon infection. Treatments with a GABA antagonist indicated that the behavioral change was not GABA-dependent, leaving the mechanism behind Wolbachia-mediated changes in behavior obscure. Given the multiple protein changes in the Drosophila head upon infection, we propose a model in which Wolbachia drives the modification of glutamic acid decarboxylase and several metabolic proteins to increase survival in the specialized niche of the brain. These results give rise to new questions about the Wolbachia-Drosophila relationship, and future work will focus on the mechanism through which Wolbachia confers these protein changes.IMPORTANCEIn order to fully understand the biology of an organism, we must understand its interactions with its resident microbes. Wolbachia is commonly used to study such interactions, but the molecular interactions this bacterium has with its hosts are not well understood, especially within somatic tissues. Here, we address this knowledge gap by characterizing the changes in host proteins within Drosophila melanogaster upon Wolbachia infection. Our results provide the first description of post-translational modifications induced by Wolbachia infection within a host, unveiling a new level of regulation in the Wolbachia-host relationship. The modification of glutamic acid decarboxylase within the Drosophila head was not shown to be connected to changes in GABA production or host behavior, indicating another role for this enzyme during Wolbachia infection within the brain. Altogether, these results provide more information about Wolbachia's infection of somatic tissue and spark new inquiries into the host-bacterium relationship.
Collapse
Affiliation(s)
- Sarah M Boothman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah Preston
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:267-277. [PMID: 39053576 PMCID: PMC11754533 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Li X, Wang X, Shang Z, Yang S, Tang Y, Xu W. Non-Immune Functions of Innate Immunity Acting on Physiological Processes: Insights from Drosophila. Int J Mol Sci 2025; 26:1087. [PMID: 39940855 PMCID: PMC11817114 DOI: 10.3390/ijms26031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
As the first line of host immune defense, innate immunity plays a key role in warding off foreign pathogens and damage. Drosophila melanogaster, as a classical model animal for more than 100 years, is an important research model for studying innate immunity. In recent years, scientists have made remarkable progress in the recognition mechanisms of innate immunity, the mechanisms of effector molecules, and the modes of their response at the cellular and tissue levels. However, the interaction between innate immunity and other physiological functions remains relatively novel and has yet to be systematically explored. Here, we first briefly discuss the link between the innate immunity system and physiological regulation, from several representative perspectives such as sleep, insulin, and brain function. Then, using Drosophila as a model, we provide an overview of the physiological system and specifically summarize the research on the regulation of physiology by innate immunity, covering sleep, lipid metabolism, development, neurodegenerative diseases, memory, feeding, lifespan, movement, and antioxidation. This review provides valuable perspectives into how innate immunity influences other physiological processes, providing a deeper understanding of the complex roles underlying innate immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Avolio E, Olivito I, Leo A, De Matteo C, Guarnieri L, Bosco F, Mahata SK, Minervini D, Alò R, De Sarro G, Citraro R, Facciolo RM. Vasostatin-1 restores autistic disorders in an idiopathic autism model (BTBR T+ Itpr3 tf/J mice) by decreasing hippocampal neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111131. [PMID: 39209101 DOI: 10.1016/j.pnpbp.2024.111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chromogranin A (CgA), a ∼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Ilaria Olivito
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Antonio Leo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Claudia De Matteo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, La Jolla, CA 92093, United States of America
| | - Damiana Minervini
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Raffaella Alò
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| |
Collapse
|
5
|
Cencelli G, Pedini G, Ricci C, Rosina E, Cecchetti G, Gentile A, Aiello G, Pacini L, Garrone B, Ombrato R, Coletta I, Prati F, Milanese C, Bagni C. Early dysregulation of GSK3β impairs mitochondrial activity in Fragile X Syndrome. Neurobiol Dis 2024; 203:106726. [PMID: 39510449 DOI: 10.1016/j.nbd.2024.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
The finely tuned regulation of mitochondria activity is essential for proper brain development. Fragile X Syndrome (FXS), the leading cause of inherited intellectual disability, is a neurodevelopmental disorder in which mitochondrial dysfunction has been increasingly implicated. This study investigates the role of Glycogen Synthase Kinase 3β (GSK3β) in FXS. Several studies have reported the dysregulation of GSK3β in FXS, and its role in mitochondrial function is also well established. However, the link between disrupted GSK3β activity and mitochondrial dysfunction in FXS remains unexplored. Utilizing Fmr1 knockout (KO) mice and human cell lines from individuals with FXS, we uncovered a developmental window where dysregulated GSK3β activity disrupts mitochondrial function. Notably, a partial inhibition of GSK3β activity in FXS fibroblasts from young individuals rescues the observed mitochondrial defects, suggesting that targeting GSK3β in the early stages may offer therapeutic benefits for this condition.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Cecchetti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | | | | | | | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
6
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
7
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
8
|
Yin YQ, Liu LL, Jiang YT, Xing JC, Qi WB, Huang LH. SLC25A12 inhibits Japanese encephalitis virus replication by interacting with the NS1 and enhancing the type I interferon response. Vet Microbiol 2024; 297:110199. [PMID: 39096789 DOI: 10.1016/j.vetmic.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic orthoflavivirus causing human encephalitis and reproductive disorders in pigs. Cell-intrinsic antiviral restriction factors are the first line of defense that prevent a virus from establishing a productive infection, while the molecular mechanism of the virus-host interaction is still not fully understood. Our in vitro experiments demonstrated that the Solute Carrier Family 25 Member 12 (SLC25A12) interacted with the JEV nonstructural protein 1 (NS1) and inhibited JEV replication. Furthermore, we showed that knockdown or knockout of SLC25A12 promoted JEV replication, while overexpression of SLC25A12 repressed viral replication. Finally, we demonstrated that SLC25A12 increased IRF7 mRNA levels, which promoted IFN-β expression and subsequently induced antiviral effects. Collectively, our study revealed that SLC25A12 interacted with NS1, inhibiting viral RNA synthesis and transcription and enhancing type I interferon induction for antiviral effects.
Collapse
Affiliation(s)
- You-Qin Yin
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Le-le Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yu-Ting Jiang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jin-Chao Xing
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Wen-Bao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| | - Li-Hong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
9
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Jiménez-Padilla Y, Chan Y, Aletta MS, Lachance MA, Simon AF. The effect of microbiome on social spacing in Drosophila melanogaster depends on genetic background and sex. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001270. [PMID: 39381640 PMCID: PMC11461029 DOI: 10.17912/micropub.biology.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiome modulates many essential functions including metabolism, immunity, and behaviour. Specifically, within behaviour, social behaviours such as sociability, aggregation, mating preference, avoidance, oviposition, and aggression are known to be regulated in part by this host-microbiome relationship. Here, we show the microbiome's role in the determination of social spacing in a sex- and genotype-specific manner. Future work can be done on characterizing the microbiome in each of these fly strains to identify the species of microbes present as well as their abundance.
Collapse
Affiliation(s)
| | - Yen Chan
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | - M. Sol Aletta
- Biology Department, University of Western Ontario, London, Ontario, Canada
| | | | - Anne F Simon
- Biology Department, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Yuan G, Luo Y, Qian P, He N. Mitochondrial Labeling with Mulberrin-Cy3: A New Fluorescent Probe for Live Cell Visualization. BIOSENSORS 2024; 14:428. [PMID: 39329803 PMCID: PMC11429601 DOI: 10.3390/bios14090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Mitochondria, crucial intracellular organelles, are central to energy metabolism, signal transduction, apoptosis, calcium homeostasis, and a myriad of other biological processes, making them a focal point in diverse research fields. The capacity to fluorescently label and visually track mitochondria is crucial for understanding their biological roles. We present mulberrin-Cy3, a novel small molecule fluorescent probe that selectively labels mitochondria in animal cells, including cancer cells, with relative ease. This protocol details the synthesis of mulberrin-Cy3 and its use for visualizing mitochondria in living cells. The synthesis is straightforward and time-efficient, and the labeling method is more accessible than traditional approaches, providing a cost-effective option for mitochondrial visualization at room temperature. The labeling is rapid, with effective labeling achieved within 5 min of incubation. The fluorescent signal is stable and brighter, offering a significant advantage over existing methods. Mulberrin-Cy3 represents a promising mitochondrial labeling compound, providing researchers with a novel experimental tool to explore the complex biological functions of mitochondria. This innovation has the potential to significantly advance our comprehension of mitochondrial dynamics and their role in cellular health and disease.
Collapse
Affiliation(s)
- Gangxiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Peng Qian
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
14
|
Wang K, He L, Liu X, Wu M. Sodium p-perfluorinated noneoxybenzen sulfonate (OBS) induced neurotoxicity in zebrafish through mitochondrial dysfunction. CHEMOSPHERE 2024; 362:142651. [PMID: 38901702 DOI: 10.1016/j.chemosphere.2024.142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS)-one of the main alternatives to perfluorooctane sulfonate-has been increasingly detected in both aquatic environments and human bodies. Therefore, the pathogenic risks of OBS exposure warrant attention, especially its central nervous system toxicity mechanism under long-term exposure. In this study, the effects and mechanisms of OBS on the zebrafish brain at 40 days post exposure were examined. The results demonstrated that at 3.2 μg/L, OBS had no significant effect on the zebrafish brain, but 32 μg/L OBS caused depression or poor social behavior in zebrafish and reduced both their memory and survival ability. These changes were accompanied by histological damage and cell apoptosis. Furthermore, OBS caused the accumulation of excessive reactive oxygen species in the fish brain, leading to oxidative stress and subsequently cell apoptosis. Moreover, an imbalance of both inflammatory factors (IL-6, IL-1β, IL-10, TNF-α, and NF-κB) and neurotransmitters (GABA and Glu) led to neuroinflammation. Additionally, 32 μg/L OBS induced decreases in mitochondrial membrane potential and Na+-K+-ATPase activity, leading to both mitochondrial structural damage and the emergence of mitochondrial autophagosomes, partly explaining the neurotoxicity of OBS. These results help to analyze the target sites and molecular mechanisms of OBS neurotoxicity and provide a basis for the scientific evaluation of its health risks to humans.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China.
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Xiaoyu Liu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Mengfei Wu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| |
Collapse
|
15
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
16
|
Schneider Gasser EM, Schaer R, Mueller FS, Bernhardt AC, Lin HY, Arias-Reyes C, Weber-Stadlbauer U. Prenatal immune activation in mice induces long-term alterations in brain mitochondrial function. Transl Psychiatry 2024; 14:289. [PMID: 39009558 PMCID: PMC11251165 DOI: 10.1038/s41398-024-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland.
- Department of Pediatrics, Faculty of Medicine, Université Laval, Québec, QC, Canada.
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland.
| | - Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Alexandra C Bernhardt
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, and ETH, Zurich, 8057, Switzerland
| |
Collapse
|
17
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Kim Y, Ma R, Zhang Y, Kang HR, Kim US, Han K. Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice. Anim Cells Syst (Seoul) 2024; 28:294-302. [PMID: 38832126 PMCID: PMC11146249 DOI: 10.1080/19768354.2024.2360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
López-Molina L, Sancho-Balsells A, Al-Massadi O, Montalban E, Alberch J, Arranz B, Girault JA, Giralt A. Hippocampal Pyk2 regulates specific social skills: Implications for schizophrenia. Neurobiol Dis 2024; 194:106487. [PMID: 38552722 DOI: 10.1016/j.nbd.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.
Collapse
Affiliation(s)
- Laura López-Molina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Omar Al-Massadi
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; Translational Endocrinology Group, Servicio de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Enrica Montalban
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France; UMR 1286, NutriNeuro - INRAE / Université de Bordeaux / INP 146, rue Léo Saignat, 33076 Brodeaux cedex, France
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Belén Arranz
- Parc Sanitari Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France; Institut du Fer a Moulin, 75005 Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, Yang L, Zhang J, Shi L. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnology 2024; 22:190. [PMID: 38637808 PMCID: PMC11025283 DOI: 10.1186/s12951-024-02473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Collapse
Affiliation(s)
- Lusha Ye
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Gao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wucan Liao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yazhou Wang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changjiang Chen
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Yang
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
21
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
22
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
23
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Bordt EA, Moya HA, Jo YC, Ravichandran CT, Bankowski IM, Ceasrine AM, McDougle CJ, Carlezon WA, Bilbo SD. Gonadal hormones impart male-biased behavioral vulnerabilities to immune activation via microglial mitochondrial function. Brain Behav Immun 2024; 115:680-695. [PMID: 37972878 PMCID: PMC10996880 DOI: 10.1016/j.bbi.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
There is a strong male bias in the prevalence of many neurodevelopmental disorders such as autism spectrum disorder. However, the mechanisms underlying this sex bias remain elusive. Infection during the perinatal period is associated with an increased risk of neurodevelopmental disorder development. Here, we used a mouse model of early-life immune activation that reliably induces deficits in social behaviors only in males. We demonstrate that male-biased alterations in social behavior are dependent upon microglial immune signaling and are coupled to alterations in mitochondrial morphology, gene expression, and function specifically within microglia, the innate immune cells of the brain. Additionally, we show that this behavioral and microglial mitochondrial vulnerability to early-life immune activation is programmed by the male-typical perinatal gonadal hormone surge. These findings demonstrate that social behavior in males over the lifespan are regulated by microglia-specific mechanisms that are shaped by events that occur in early development.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Haley A Moya
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Young Chan Jo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Caitlin T Ravichandran
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; McLean Hospital, Belmont, MA 02478, USA
| | - Izabella M Bankowski
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Christopher J McDougle
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | | | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
25
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
26
|
Santos-Silva T, Hazar Ülgen D, Lopes CFB, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Transcriptomic analysis reveals mitochondrial pathways associated with distinct adolescent behavioral phenotypes and stress response. Transl Psychiatry 2023; 13:351. [PMID: 37978166 PMCID: PMC10656500 DOI: 10.1038/s41398-023-02648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses. Mitochondrial features in certain brain regions account for behavioral differences in adulthood. However, it remains unclear whether distinct adolescent behavioral phenotypes and the behavioral consequences of early adolescent stress exposure in rats are accompanied by changes in PFC mitochondria-related genes and mitochondria respiratory chain capacity. We performed a behavioral characterization during late adolescence (postnatal day, PND 47-50), including naïve animals and a group exposed to stress from PND 31-40 (10 days of footshock and 3 restraint sessions) by z-normalized data from three behavioral domains: anxiety (light-dark box tests), sociability (social interaction test) and cognition (novel-object recognition test). Employing principal component analysis, we identified three clusters: naïve with higher-behavioral z-score (HBZ), naïve with lower-behavioral z-score (LBZ), and stressed animals. Genome-wide transcriptional profiling unveiled differences in the expression of mitochondria-related genes in both naïve LBZ and stressed animals compared to naïve HBZ. Genes encoding subunits of oxidative phosphorylation complexes were significantly down-regulated in both naïve LBZ and stressed animals and positively correlated with behavioral z-score of phenotypes. Our network topology analysis of mitochondria-associated genes found Ndufa10 and Cox6a1 genes as central identifiers for naïve LBZ and stressed animals, respectively. Through high-resolution respirometry analysis, we found that both naïve LBZ and stressed animals exhibited a reduced prefrontal phosphorylation capacity and redox dysregulation. Our findings identify an association between mitochondrial features and distinct adolescent behavioral phenotypes while also underscoring the detrimental functional consequences of adolescent stress on the PFC.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Caio Fábio Baeta Lopes
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
27
|
Yang D, Ye Y, Huang Y, Huang H, Sun J, Wang JS, Tang L, Gao Y, Sun X. Effects of FB1 and HFB1 on Autonomous Exploratory and Spatial Memory and Learning Abilities in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16752-16762. [PMID: 37822021 DOI: 10.1021/acs.jafc.3c05501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.
Collapse
Affiliation(s)
- Diaodiao Yang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yaoguang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Heyang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Yahui Gao
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
28
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
29
|
Zhou J, He L, Liu M, Guo X, Du G, Yan L, Zhang Z, Zhong Z, Chen H. Sleep loss impairs intestinal stem cell function and gut homeostasis through the modulation of the GABA signalling pathway in Drosophila. Cell Prolif 2023; 56:e13437. [PMID: 36869584 PMCID: PMC10472530 DOI: 10.1111/cpr.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Sleep is essential for maintaining health. Indeed, sleep loss is closely associated with multiple health problems, including gastrointestinal disorders. However, it is not yet clear whether sleep loss affects the function of intestinal stem cells (ISCs). Mechanical sleep deprivation and sss mutant flies were used to generate the sleep loss model. qRT-PCR was used to measure the relative mRNA expression. Gene knock-in flies were used to observe protein localization and expression patterns. Immunofluorescence staining was used to determine the intestinal phenotype. The shift in gut microbiota was observed using 16S rRNA sequencing and analysis. Sleep loss caused by mechanical sleep deprivation and sss mutants disturbs ISC proliferation and intestinal epithelial repair through the brain-gut axis. In addition, disruption of SSS causes gut microbiota dysbiosis in Drosophila. As regards the mechanism, gut microbiota and the GABA signalling pathway both partially played a role in the sss regulation of ISC proliferation and gut function. The research shows that sleep loss disturbed ISC proliferation, gut microbiota, and gut function. Therefore, our results offer a stem cell perspective on brain-gut communication, with details on the effect of the environment on ISCs.
Collapse
Affiliation(s)
- Juanyu Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Li He
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Mengyou Liu
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoxin Guo
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Gang Du
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - La Yan
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zehong Zhang
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhendong Zhong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haiyang Chen
- Department of Neurology, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
30
|
Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry 2023; 28:3806-3815. [PMID: 37528226 PMCID: PMC10730412 DOI: 10.1038/s41380-023-02189-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Inflammation and social behavior deficits are associated with a number of neuropsychiatric disorders. Chronic stress, a major risk factor for depression and other mental health conditions is known to increase inflammatory responses and social behavior impairments. Disturbances in mitochondria function have been found in chronic stress conditions, however the mechanisms that link mitochondrial dysfunction to stress-induced social behavior deficits are not well understood. In this study, we found that chronic restraint stress (RS) induces significant increases in serum cell-free mitochondrial DNA (cf-mtDNA) levels in mice, and systemic Deoxyribonuclease I (DNase I) treatment attenuated RS-induced social behavioral deficits. Our findings revealed potential roles of mitophagy and Mitochondrial antiviral-signaling protein (MAVS) in mediating chronic stress-induced changes in cf-mtDNA levels and social behavior. Furthermore, we showed that inhibition of Toll-like receptor 9 (TLR9) attenuates mtDNA-induced social behavior deficits. Together, these findings show that cf-mtDNA-TLR9 signaling is critical in mediating stress-induced social behavior deficits.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alona Bartosh
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carl Whitehead
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
31
|
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023; 15:3754. [PMID: 37686785 PMCID: PMC10490067 DOI: 10.3390/nu15173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Myelination of the brain structures underlying social behavior in humans is a dynamic process that parallels the emergence of social-emotional development and social skills in early life. Of the many genetic and environmental factors regulating the myelination processes, nutrition is considered as a critical and modifiable early-life factor for establishing healthy social brain networks. However, the impact of nutrition on the longitudinal development of social brain myelination remains to be fully understood. This study examined the interplay between childhood nutrient intake and social brain development across the first 5 years of life. Myelin-sensitive neuroimaging and food-intake data were analyzed in 293 children, 0.5 to 5 years of age, and explored for dynamic patterns of nutrient-social brain myelin associations. We found three data-driven age windows with specific nutrient correlation patterns, 63 individual nutrient-myelin correlations, and six nutrient combinations with a statistically significant predictive value for social brain myelination. These results provide novel insights into the impact of specific nutrient intakes on early brain development, in particular social brain regions, and suggest a critical age-sensitive opportunity to impact these brain regions for potential longer-term improvements in socio-emotional development and related executive-function and critical-thinking skills.
Collapse
Affiliation(s)
- Alexandros K. Kanellopoulos
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sarah Costello
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Data Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin Street, Providence, RI 20903, USA
- Department of Radiology, Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02912, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
32
|
Zhang W, Zhang M, Xu Z, Yan H, Wang H, Jiang J, Wan J, Tang B, Liu C, Chen C, Meng Q. Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways. Nat Commun 2023; 14:5176. [PMID: 37620341 PMCID: PMC10449845 DOI: 10.1038/s41467-023-40861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Identifying genes whose expression is associated with schizophrenia (SCZ) risk by transcriptome-wide association studies (TWAS) facilitates downstream experimental studies. Here, we integrated multiple published datasets of TWAS, gene coexpression, and differential gene expression analysis to prioritize SCZ candidate genes for functional study. Convergent evidence prioritized Propionyl-CoA Carboxylase Subunit Beta (PCCB), a nuclear-encoded mitochondrial gene, as an SCZ risk gene. However, the PCCB's contribution to SCZ risk has not been investigated before. Using dual luciferase reporter assay, we identified that SCZ-associated SNPs rs6791142 and rs35874192, two eQTL SNPs for PCCB, showed differential allelic effects on transcriptional activities. PCCB knockdown in human forebrain organoids (hFOs) followed by RNA sequencing analysis revealed dysregulation of genes enriched with multiple neuronal functions including gamma-aminobutyric acid (GABA)-ergic synapse. The metabolomic and mitochondrial function analyses confirmed the decreased GABA levels resulted from inhibited tricarboxylic acid cycle in PCCB knockdown hFOs. Multielectrode array recording analysis showed that PCCB knockdown in hFOs resulted into SCZ-related phenotypes including hyper-neuroactivities and decreased synchronization of neural network. In summary, this study utilized hFOs-based multi-omics analyses and revealed that PCCB downregulation may contribute to SCZ risk through regulating GABAergic pathways, highlighting the mitochondrial function in SCZ.
Collapse
Affiliation(s)
- Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Ming Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhenhong Xu
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Hongye Yan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Huimin Wang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Jiamei Jiang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Juan Wan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, 410008, China.
| | - Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & School of Life Sciences, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
33
|
Rosenberg AM, Saggar M, Monzel AS, Devine J, Rogu P, Limoges A, Junker A, Sandi C, Mosharov EV, Dumitriu D, Anacker C, Picard M. Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat Commun 2023; 14:4726. [PMID: 37563104 PMCID: PMC10415311 DOI: 10.1038/s41467-023-39941-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Rogu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Limoges
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Dani Dumitriu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Christoph Anacker
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
34
|
Hartmann C, Kempf A. Mitochondrial control of sleep. Curr Opin Neurobiol 2023; 81:102733. [PMID: 37390796 DOI: 10.1016/j.conb.2023.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 07/02/2023]
Abstract
The function of sleep remains one of biology's biggest mysteries. A solution to this problem is likely to come from a better understanding of sleep homeostasis, and in particular of the cellular and molecular processes that sense sleep need and settle sleep debt. Here, we highlight recent work in the fruit fly showing that changes in the mitochondrial redox state of sleep-promoting neurons lie at the heart of a homeostatic sleep-regulatory mechanism. Since the function of homeostatically controlled behaviours is often linked to the regulated variable itself, these findings corroborate with the hypothesis that sleep serves a metabolic function.
Collapse
Affiliation(s)
- Celina Hartmann
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Anissa Kempf
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland.
| |
Collapse
|
35
|
Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: Mitochondria in social behaviour. Curr Opin Neurobiol 2023; 79:102675. [PMID: 36696841 DOI: 10.1016/j.conb.2022.102675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023]
Abstract
A central role of brain mitochondria in regulating and influencing social behaviour is emerging. In addition to its important roles as the "powerhouses" of the cell, mitochondria possess a plethora of cellular functions, such as regulating ion homeostasis, neurotransmitter levels, and lipid metabolism. Findings in the last decade are revealing an integral role for mitochondria in the regulation of behaviours, including those from the social domain. Here, we discuss recent evidence linking mitochondrial functions and dynamics to social behaviour and deficits, including examples in which social behaviours are modulated by stress in the context of mitochondrial changes, as well as potential therapeutic strategies and outstanding questions in the field.
Collapse
Affiliation(s)
- Doğukan Hazar Ülgen
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Silvie Rosalie Ruigrok
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Zhang W, Zhang M, Xu Z, Yan H, Wang H, Jiang J, Wan J, Tang B, Liu C, Chen C, Meng Q. Human forebrain organoids-based multi-omics analyses reveal PCCB's regulation on GABAergic system contributing to schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2674668. [PMID: 37034773 PMCID: PMC10081387 DOI: 10.21203/rs.3.rs-2674668/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Identifying genes whose expression is associated with schizophrenia (SCZ) risk by transcriptome-wide association studies (TWAS) facilitates downstream experimental studies. Here, we integrated multiple published datasets of TWAS (including FUSION, PrediXcan, summary-data-based Mendelian randomization (SMR), joint-tissue imputation approach with Mendelian randomization (MR-JTI)), gene coexpression, and differential gene expression analysis to prioritize SCZ candidate genes for functional study. Convergent evidence prioritized Propionyl-CoA Carboxylase Subunit Beta ( PCCB ), a nuclear-encoded mitochondrial gene, as an SCZ risk gene. However, the PCCB ’s contribution to SCZ risk has not been investigated before. Using dual luciferase reporter assay, we identified that SCZ-associated SNP rs35874192, an eQTL SNP for PCCB , showed differential allelic effects on transcriptional activities. PCCB knockdown in human forebrain organoids (hFOs) followed by RNA-seq revealed dysregulation of genes enriched with multiple neuronal functions including gamma-aminobutyric acid (GABA)-ergic synapse, as well as genes dysregulated in postmortem brains of SCZ patients or in cerebral organoids derived from SCZ patients. The metabolomic and mitochondrial function analyses confirmed the deceased GABA levels resulted from reduced tricarboxylic acid cycle in PCCB knockdown hFOs. Multielectrode array recording analysis showed that PCCB knockdown in hFOs resulted into SCZ-related phenotypes including hyper-neuroactivities and decreased synchronization of neural network. In summary, this study utilized hFOs-based multi-omics data and revealed that PCCB downregulation may contribute to SCZ risk through regulating GABAergic system, highlighting the mitochondrial function in SCZ.
Collapse
Affiliation(s)
- Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
| | - Ming Zhang
- School of Life Sciences, Central South University
| | - Zhenhong Xu
- The First Affiliated Hospital of University of South China
| | - Hongye Yan
- The First Affiliated Hospital of University of South China
| | - Huimin Wang
- The First Affiliated Hospital of University of South China
| | - Jiamei Jiang
- The First Affiliated Hospital of University of South China
| | - Juan Wan
- The First Affiliated Hospital of University of South China
| | | | | | | | - Qingtuan Meng
- The First Affiliated Hospital of University of South China
| |
Collapse
|
37
|
Long F, Zheng J, Zhou J, Hu P, Xiong B. Knockout of tanc2 causes autism-like behavior and sleep disturbance in zebrafish. Autism Res 2023; 16:524-534. [PMID: 36534563 DOI: 10.1002/aur.2880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Tanc2 is a large multi-domain postsynaptic scaffold protein mainly expressed in the brain. In humans, tanc2 mutations have been associated with autism spectrum disorder (ASD) and other related neurodevelopmental disorders. However, the role of tanc2 in neurodevelopment and in controlling behaviors are not fully understood. Here, we generated and characterized a tanc2 knockout allele in zebrafish. Loss of tanc2 increases the larval brain size and body length by promoting proliferation and inhibiting apoptosis. We observed that the glutamatergic neuron population is significantly increased in tanc2 mutants while the GABAergic and the glycinergic neurons are not affected, suggesting that an excitatory/inhibitory (E/I) imbalance. Indeed, the tanc2 knockout larvae exhibited increase sleep. In adult zebrafish, the mutants display anxiolytic-behavior, reduced aggression, and impaired social preference. The alterations in these behaviors are phenotypically similar to the ASD patients carrying tanc2 mutations. Therefore, the tanc2 knockout allele could serve as a valuable model to further study the role of tanc2 in the nervous system.
Collapse
Affiliation(s)
- Fei Long
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Children's Blood Diseases, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
39
|
The Crosstalk between Microbiome and Mitochondrial Homeostasis in Neurodegeneration. Cells 2023; 12:cells12030429. [PMID: 36766772 PMCID: PMC9913973 DOI: 10.3390/cells12030429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are highly dynamic organelles that serve as the primary cellular energy-generating system. Apart from ATP production, they are essential for many biological processes, including calcium homeostasis, lipid biogenesis, ROS regulation and programmed cell death, which collectively render them invaluable for neuronal integrity and function. Emerging evidence indicates that mitochondrial dysfunction and altered mitochondrial dynamics are crucial hallmarks of a wide variety of neurodevelopmental and neurodegenerative conditions. At the same time, the gut microbiome has been implicated in the pathogenesis of several neurodegenerative disorders due to the bidirectional communication between the gut and the central nervous system, known as the gut-brain axis. Here we summarize new insights into the complex interplay between mitochondria, gut microbiota and neurodegeneration, and we refer to animal models that could elucidate the underlying mechanisms, as well as novel interventions to tackle age-related neurodegenerative conditions, based on this intricate network.
Collapse
|
40
|
Ma R, Zhang Y, Li H, Kang HR, Kim Y, Han K. Cell-autonomous reduction of CYFIP2 is insufficient to induce Alzheimer's disease-like pathologies in the hippocampal CA1 pyramidal neurons of aged mice. Anim Cells Syst (Seoul) 2023; 27:93-101. [PMID: 36999135 PMCID: PMC10044167 DOI: 10.1080/19768354.2023.2192263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved multifunctional protein that regulates the neuronal actin cytoskeleton, mRNA translation and transport, and mitochondrial morphology and function. Supporting its critical roles in proper neuronal development and function, human genetic studies have repeatedly identified variants of the CYFIP2 gene in individuals diagnosed with neurodevelopmental disorders. Notably, a few recent studies have also suggested a mechanistic link between reduced CYFIP2 level and Alzheimer's disease (AD). Specifically, in the hippocampus of 12-month-old Cyfip2 heterozygous mice, several AD-like pathologies were identified, including increased levels of Tau phosphorylation and gliosis, and loss of dendritic spines in CA1 pyramidal neurons. However, detailed pathogenic mechanisms, such as cell types and their circuits where the pathologies originate, remain unknown for AD-like pathologies caused by CYFIP2 reduction. In this study, we aimed to address this issue by examining whether the cell-autonomous reduction of CYFIP2 in CA1 excitatory pyramidal neurons is sufficient to induce AD-like phenotypes in the hippocampus. We performed immunohistochemical, morphological, and biochemical analyses in 12-month-old Cyfip2 conditional knock-out mice, which have postnatally reduced CYFIP2 expression level in CA1, but not in CA3, excitatory pyramidal neurons of the hippocampus. Unexpectedly, we could not find any significant AD-like phenotype, suggesting that the CA1 excitatory neuron-specific reduction of CYFIP2 level is insufficient to lead to AD-like pathologies in the hippocampus. Therefore, we propose that CYFIP2 reduction in other neurons and/or their synaptic connections with CA1 pyramidal neurons may be critically involved in the hippocampal AD-like phenotypes of Cyfip2 heterozygous mice.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Kihoon Han
| |
Collapse
|
41
|
Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci 2022; 12:66. [PMID: 35590379 PMCID: PMC9121600 DOI: 10.1186/s13578-022-00805-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/01/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a pivotal role in energy generation and cellular physiological processes. These organelles are highly dynamic, constantly changing their morphology, cellular location, and distribution in response to cellular stress. In recent years, the phenomenon of mitochondrial transfer has attracted significant attention and interest from biologists and medical investigators. Intercellular mitochondrial transfer occurs in different ways, including tunnelling nanotubes (TNTs), extracellular vesicles (EVs), and gap junction channels (GJCs). According to research on intercellular mitochondrial transfer in physiological and pathological environments, mitochondrial transfer hold great potential for maintaining body homeostasis and regulating pathological processes. Multiple research groups have developed artificial mitochondrial transfer/transplantation (AMT/T) methods that transfer healthy mitochondria into damaged cells and recover cellular function. This paper reviews intercellular spontaneous mitochondrial transfer modes, mechanisms, and the latest methods of AMT/T. Furthermore, potential application value and mechanism of AMT/T in disease treatment are also discussed.
Collapse
|
42
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
44
|
Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci Biobehav Rev 2022; 142:104892. [PMID: 36181925 DOI: 10.1016/j.neubiorev.2022.104892] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
Abstract
Here we discuss the role of diverse environmental manipulations affecting cognition with special regard to psychiatric conditions. We present evidence supporting a direct causal correlation between the valence of the environmental stimulation and some psychopathological traits and how the environment influences brain structure and function with special regard to oxidative stress and mitochondrial activity. Increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. In this review we discuss the role of diverse environmental manipulations to affect cognition with special regard to psychiatric conditions. How the environment influences brain structure and function, and the interactions between rearing conditions, oxidative stress and mitochondrial activity are fundamental questions that are still poorly understood. As will be discussed, increasing experimental evidence supports a role for mitochondrial dysfunctions in neuropsychiatric disorders. Brain mitochondria are considered crucial mediators of allostasis, that is the capability to adapt to stress via a complex interaction between the autonomic, metabolic, and immune systems to maintain cellular homeostasis. In this process, mitochondria act as highly dynamic integrators by sensing and transducing stressors into adaptation mechanisms via metabolic stress mediators, such as glucocorticoids and catecholamines. Alterations in cellular homeostasis induced by chronic stress are thought to predispose to disease by triggering the so-called "mitochondrial allostatic load". This process is characterized by functional and structural changes of the mitochondria, ultimately leading to oxidative stress, inflammation, mitochondrial DNA damage and apoptosis. The brain requires considerable mitochondrial reserve not only to sustain basal neuronal needs but a also to provide increasing energy demands during stress. Consistently with these high energetic requirements, it is reasonable to hypothesise that the brain is particularly vulnerable to mitochondrial defects. Thus, even subtle metabolic alterations might have a substantial impact on cognitive functions. Over the last decade, several experimental evidence supported the hypothesis that a suboptimal mitochondrial function, which could be of genetic origin or acquired following adverse life events, is a key vulnerability factor for stress-related psychopathologies. Chronic psychological stress is a major promoter of anxiety as well as of oxidative damage, as shown in several studies. Recent evidence from mouse models harbouring mutations in mitochondrial genes demonstrated the role of mitochondria in modulating the response to acute psychological stress. However, it has yet to be determined whether mitochondrial dysfunctions are the cause or the consequence of anxiety. In this review, we discuss how adverse psychosocial environments can impact mitochondrial bioenergetics at the molecular level and we gather evidence from several studies linking energy metabolism and stress resilience/vulnerability. Moreover, we review recent findings supporting that metabolic dysfunction can underlie deficits in complex social behaviours. As will be discussed, aberrations in mitochondrial functionality have been found in the nucleus accumbens of highly anxious mice and mediate low social competitiveness. In addition, alterations in sociability can be reversed by enhancing mitochondrial functions. Recent evidence also demonstrated that a specific mutation in mitochondrial DNA, previously linked to autism spectrum disorder, produces autistic endophenotypes in mice by altering respiration chain and reactive oxygen species (ROS) production. Finally, we discuss a "Negative Enrichment" model that can explain some of the psychopathological conditions relevant to humans. Evidence of a direct causal correlation of valence of environmental stimulation and psychopathological traits will be presented, and possible molecular mechanisms that focus on oxidative stress. Collectively, the findings described here have been achieved with a wide set of behavioural and cognitive tasks with translational validity. Thus, they will be useful for future work aimed to elucidate the fine metabolic alterations in psychopathologies and devise novel approaches targeting mitochondria to alleviate these conditions.
Collapse
|
45
|
Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice. Mol Neurobiol 2022; 59:6874-6895. [PMID: 36048340 DOI: 10.1007/s12035-022-03018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Stress-induced neuroinflammation is a hallmark of modern society and has been linked to various emotional disorders, including anxiety. However, how microglia-associated neuroinflammation under chronic unpredictable mild stress (CUMS) alters mitochondrial function and subsequent medial prefrontal cortex-hippocampus (mPFC-HIPP) connectivity remains obscure. We speculated that CUMS might induce neuroinflammation, which involves altered mitochondrial protein levels, blockade of neuroinflammation by a microglial modulator, minocycline, protects against CUMS-induced alterations. Mice were exposed to CUMS for 3 weeks and received minocycline (50 mg/kg) intraperitoneally for 7 consecutive days during the 3rd week of CUMS. Novelty-suppressed feeding test and contextual anxiety test assessed anxiety-like behavior. Western blotting and immunofluorescent staining were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. In vivo dual-site extracellular recordings of local field potential (LFP) were conducted to evaluate the oscillatory activity and brain connectivity in mPFC-HIPP circuitry. We show that CUMS results in excessive microglial activation accompanied by aberrant levels of mitochondrial proteins, such as ATP-5A and the fission protein, Drp-1, increased oxidative stress indicated by elevated levels of nitrotyrosine, and decreased Nrf-2 levels. Furthermore, CUMS causes downregulation of α1 subunit of GABAAR, vesicular GABA transporter (Vgat), and glutamine synthetase (GS), leading to impaired LFP and connectivity of the mPFC-HIPP circuitry. Strikingly, blockage of microglial activation by minocycline ameliorates CUMS-induced aberrant levels of mitochondrial and GABAergic signaling proteins and prevents CUMS-induced anxiety-like behavior in mice. To the end, the study revealed that microglia is critically involved in stress-induced neuroinflammation, which may underlie the molecular mechanism of CUMS-induced anxiety behavior.
Collapse
|
46
|
Sun P, Chen HC, Lu S, Hai J, Guo W, Jing YH, Wang B. Simultaneous Sensing of H 2S and ATP with a Two-Photon Fluorescent Probe in Alzheimer's Disease: toward Understanding Why H 2S Regulates Glutamate-Induced ATP Dysregulation. Anal Chem 2022; 94:11573-11581. [PMID: 35943780 DOI: 10.1021/acs.analchem.2c01850] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energy deprivation and reduced levels of hydrogen sulfide (H2S) in the brain is closely associated with Alzheimer's disease (AD). However, there is currently no fluorescent probe for precise exploration of both H2S and adenosine triphosphate (ATP) to directly demonstrate their relationship and their dynamic pattern changes. Herein, we developed a two-photon fluorescent probe, named AD-3, to simultaneously image endogenous H2S and ATP from two emission channels of fluorescent signals in live rat brains with AD. The probe achieved excellent selectivity and good detection linearity for H2S in the 0-100 μM concentration range and ATP in the 2-5 mM concentration range, respectively, with a detection limit of 0.19 μM for H2S and 0.01 mM for ATP. Fluorescence imaging in live cells reveals that such probe could successfully apply for simultaneous imaging and accurate quantification of H2S and ATP in neuronal cells. Further using real-time quantitative polymerase chain reaction and Western blots, we confirmed that H2S regulates ATP synthesis by acting on cytochrome C, cytochrome oxidase subunit 3 of complex IV, and protein 6 of complex I in the mitochondrial respiratory chain. Subsequently, we constructed a high-throughput screening platform based on AD-3 probe to rapidly screen the potential anti-AD drugs to control glutamate-stimulated oxidative stress associated with abnormal H2S and ATP levels. Significantly, AD-3 probe was found capable of imaging of H2S and ATP in APP/PS1 mice, and the concentration of H2S and ATP in the AD mouse brain was found to be lower than that in wild-type mice.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
47
|
Zhang Y, Yuan F, Li P, Gu J, Han J, Ni Z, Liu F. Resveratrol inhibits HeLa cell proliferation by regulating mitochondrial function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113788. [PMID: 35738103 DOI: 10.1016/j.ecoenv.2022.113788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The beneficial roles of resveratrol (RES) in affecting proliferation of multiple cancer cells have attracted intensive attention. However, the underlying mechanism remains unclear. This study aims to bridge the knowledge gap by investigating RES-induced growth inhibition of HeLa cells. Our work focuses on the metergasis of mitochondria in the RES-exposed cells. Therefore, HeLa cells were treated with different concentrations of RES for 30 min and 24 h, respectively. As a result, concentration-dependent increases in cell growth inhibition, ROS (reactive oxygen species) triggering, and LC3-II (light chain 3-II) expression were detected in the HeLa cells exposed to RES for 24 h. Interestingly, a specific concentration-dependent effect was observed in the HeLa cells exposed to RES for 30 min, that is, low concentration RES (≤ 25 μmol/L) reduced ROS levels, inhibited transcription and expression levels of LC3-II, and stimulated mitochondrial respiratory capacities. In contrast, high concentration RES (50 and 100 μmol/L) induced ROS over-production and autophagy in the cells, resulting in decreased levels of mitochondrial membrane potential, mitochondrial DNA copy numbers, and mitochondrial respiratory capacities. Together, our data concluded that RES inhibited HeLa cell proliferation through perturbation of mitochondrial structure and function, and ROS-induced autophagy also played a critical role in the process.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Pei Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Junjun Han
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhihua Ni
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
48
|
Belal S, Goudenège D, Bocca C, Dumont F, Chao De La Barca JM, Desquiret-Dumas V, Gueguen N, Geffroy G, Benyahia R, Kane S, Khiati S, Bris C, Aranyi T, Stockholm D, Inisan A, Renaud A, Barth M, Simard G, Reynier P, Letournel F, Lenaers G, Bonneau D, Chevrollier A, Procaccio V. Glutamate-Induced Deregulation of Krebs Cycle in Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-Like Episodes (MELAS) Syndrome Is Alleviated by Ketone Body Exposure. Biomedicines 2022; 10:biomedicines10071665. [PMID: 35884972 PMCID: PMC9312837 DOI: 10.3390/biomedicines10071665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.
Collapse
Affiliation(s)
- Sophie Belal
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Cinzia Bocca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, University of Paris-Saclay, 92296 Châtenay-Malabry, France;
| | - Juan Manuel Chao De La Barca
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Valérie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Guillaume Geffroy
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Rayane Benyahia
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Salim Khiati
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, H-1519 Budapest, Hungary;
- Department of Molecular Biology, Semmelweis University of Medicine, H-1519 Budapest, Hungary
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France;
- Centre de Recherche Saint-Antoine, UMRS-938, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Aurore Inisan
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Aurélie Renaud
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Magalie Barth
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Gilles Simard
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Franck Letournel
- Department of Neurobiology-Neuropathology, Angers Hospital, 49933 Angers, France;
- UMR INSERM 1066-CNRS 6021, MINT Laboratory, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Service de Neurologie, CHU d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (S.B.); (D.G.); (C.B.); (J.M.C.D.L.B.); (V.D.-D.); (N.G.); (G.G.); (R.B.); (S.K.); (S.K.); (C.B.); (A.I.); (A.R.); (P.R.); (G.L.); (D.B.); (A.C.)
- Biochemistry and Genetics Department, University Hospital of Angers, 49933 Angers, France; (M.B.); (G.S.)
- Correspondence:
| |
Collapse
|
49
|
Zhu Y, Li Y, Zhang Q, Song Y, Wang L, Zhu Z. Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain. Front Microbiol 2022; 13:798917. [PMID: 35283843 PMCID: PMC8908256 DOI: 10.3389/fmicb.2022.798917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies shown that neurological diseases are associated with neural mitochondrial dysfunctions and microbiome composition alterations. Since mitochondria emerged from bacterial ancestors during endosymbiosis, mitochondria, and bacteria had analogous genomic characteristics, similar bioactive compounds and comparable energy metabolism pathways. Therefore, it is necessary to rationalize the interactions of intestinal microbiota with neural mitochondria. Recent studies have identified neural mitochondrial dysfunction as a critical pathogenic factor for the onset and progress of multiple neurological disorders, in which the non-negligible role of altered gut flora composition was increasingly noticed. Here, we proposed a new perspective of intestinal microbiota – neural mitochondria interaction as a communicating channel from gut to brain, which could help to extend the vision of gut-brain axis regulation and provide additional research directions on treatment and prevention of responsive neurological disorders.
Collapse
Affiliation(s)
- Yao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Liang Wang,
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Zuobin Zhu,
| |
Collapse
|
50
|
Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 2022; 119:2112852119. [PMID: 35165191 PMCID: PMC8872729 DOI: 10.1073/pnas.2112852119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
FOXP1 haploinsufficiency underlies cognitive and motor impairments in individuals with FOXP1 syndrome. Here, we show that mice lacking one Foxp1 copy exhibit similar behavioral deficits, which may be caused by striatal dysfunction. Indeed, Foxp1+/− striatal medium spiny neurons display reduced neurite branching, and we show altered mitochondrial biogenesis and dynamics; increased mitophagy; reduced mitochondrial membrane potential, structure, and motility; and elevated oxygen species in the striatum of these animals. As FOXP1 is highly conserved, our data strongly suggest that mitochondrial dysfunction and excessive oxidative stress contribute to the motor and cognitive impairments seen in individuals with FOXP1 syndrome. Thus, mitochondrial homeostasis is critical for normal development and can explain deficits in neurodevelopmental disorders. FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/− mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/− mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/− mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.
Collapse
|