1
|
El-Demerdash AA, Darwish SF, El-Derany MO, El-Demerdash E. Dapagliflozin targets the crosstalk between apoptosis, autophagy, and Hedgehog signaling pathways through AMPK activation in the adjuvant-induced arthritic rat model. Inflammopharmacology 2025:10.1007/s10787-025-01750-w. [PMID: 40350466 DOI: 10.1007/s10787-025-01750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
Rheumatoid arthritis is a long-term autoimmune disorder, causes joint capsule, cartilage, and bone damage. Dapagliflozin, a novel antidiabetic drug, demonstrated promising effects against different disorders. Herein, we aimed to detect the dose-dependent antiarthritic impact of dapagliflozin alone and in combination with methotrexate standard treatment. Complete Freund's adjuvant-induced arthritic rats were treated with three doses of dapagliflozin (1, 5, or 10 mg/kg/day, p.o.) for 3 weeks, in which 10 mg dose showed eminent anti-arthritic effects according to gait score, paw diameter, arthritic index (AI), morphological and histological results. To reveal dapagliflozin mechanism, locomotor, biochemical, and histological measures were assessed in dapagliflozin (10 mg/kg/day) and/or methotrexate (0.75 mg/kg/week, i.p.)-treated arthritic rats. Radiography and histology confirmed the prominent anti-arthritic effect of dapagliflozin via reduced RF, MMP-1, and MMP-3, and improved gait score, ankle diameter, and AI. Anti-inflammatory impact was confirmed by the downregulation of TNF-α, IL-1β, IL-6, and NF-κb p65 expression. Upregulation of autophagy was detected through; Beclin-1, ULK-1, and ATG-7, in dapagliflozin treated arthritic rats. Furtherly, dapagliflozin stimulated apoptotic activity, by boosting articular levels of CASP-3, CASP-9, cartilage gene expression of p53, and Bax/Bcl2 ratio. Interestingly, dapagliflozin upregulates p-AMPK/t-AMPK articular activity. Additionally, dapagliflozin inhibited the Hedgehog signaling pathway, through the downregulation of cartilage Shh, ptch1, Smo, and Gli-1 expression. Dapagliflozin/methotrexate combination therapy exhibited greater anti-arthritic benefits compared to methotrexate alone. These data highlight dapagliflozin as an anti-rheumatic drug, either alone or with methotrexate.
Collapse
Affiliation(s)
- Aya A El-Demerdash
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Marwa O El-Derany
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Abasia,, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Liu Y, Kong X, Sun Q, Cui T, Xu S, Ding C. Identification and validation of the common pathogenesis and hub biomarkers in Papillary thyroid carcinoma complicated by rheumatoid arthritis. PLoS One 2025; 20:e0317369. [PMID: 40063597 PMCID: PMC11892850 DOI: 10.1371/journal.pone.0317369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/19/2024] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Papillary thyroid carcinoma coexisting with rheumatoid arthritis is frequently observed in clinical patients, yet its pathogenesis has not been fully elucidated. This investigation sought to further explore the molecular underpinnings of these two diseases. METHODS Gene expression profiles for thyroid papillary carcinoma and rheumatoid arthritis patients were obtained from the Comprehensive Gene Expression Database (GEO). Following the discovery of shared differentially expressed genes (DEGs) between these two conditions, three separate analyses were conducted. These included functional annotation, the establishment of a protein‒protein interaction (PPI) network and module, and the identification of hub genes via coexpression analysis. The final step involved the validation of target genes via clinical specimens. RESULTS This study analyzed datasets from four GEO databases and identified 64 common DEGs. Functional enrichment analysis revealed that these genes are predominantly associated with pathways related to immunity and signal transduction. Protein‒protein interaction (PPI) network analysis revealed complex interactions among these differentially expressed genes and highlighted several genes that may play pivotal roles in shared pathological mechanisms, namely, CCR5, CD4, IL6, CXCL13, FOXM1, CXCL9, and CXCL10. CONCLUSION Our study highlights the shared pathogenesis between papillary thyroid cancer and rheumatoid arthritis. Shared pathways and crucial genes could offer novel perspectives for subsequent investigations into the mechanisms of these diseases.
Collapse
MESH Headings
- Humans
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/complications
- Thyroid Cancer, Papillary/pathology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Protein Interaction Maps/genetics
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/complications
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Databases, Genetic
- Transcriptome
Collapse
Affiliation(s)
- Yingming Liu
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangjun Kong
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianshu Sun
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianxing Cui
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengnan Xu
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Ding
- General Surgery Ward four, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Basheer HA, Salman NM, Abdullah RM, Elsalem L, Afarinkia K. Metformin and glioma: Targeting metabolic dysregulation for enhanced therapeutic outcomes. Transl Oncol 2025; 53:102323. [PMID: 39970627 DOI: 10.1016/j.tranon.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Glioma, a highly aggressive form of brain cancer, continues to pose significant therapeutic challenges in the field of medicine. Its invasive nature and resistance to traditional treatments make it particularly difficult to combat. This review examines the potential of metformin, a commonly prescribed antidiabetic medication, as a promising new treatment option for glioma. The potential of metformin to target crucial metabolic pathways in cancer cells presents an encouraging approach to improve therapeutic outcomes. The review explores the complexities of metabolic reprogramming in glioma and metformin's role in inhibiting these metabolic pathways. Preclinical studies demonstrate metformin's efficacy in reducing tumor growth and enhancing the sensitivity of glioma cells to chemotherapy and radiotherapy. Furthermore, clinical studies highlight metformin's potential in improving progression-free survival and overall survival rates in glioma patients. The review also addresses the synergistic effects of combining metformin with other therapeutic agents, such as temozolomide and radiotherapy, to overcome drug resistance and improve treatment efficacy. Despite the promising findings, the review acknowledges the need for further clinical trials to establish optimal dosing regimens, understand the molecular mechanisms underlying metformin's antitumor effects, and identify patient populations that would benefit the most from metformin-based therapies. Additionally, the potential side effects and the long-term impact of metformin on Glioma patients require careful evaluation. In conclusion, this review underscores the potential of metformin as a repurposed drug in glioma treatment, emphasizing its multifaceted role in targeting metabolic dysregulation. Metformin holds promise as part of a combination therapy approach to improve the therapeutic landscape of glioma and offers hope for better patient outcomes.
Collapse
Affiliation(s)
- Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.
| | - Nadeem M Salman
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Rami M Abdullah
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Lina Elsalem
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Kamyar Afarinkia
- School of Medicine and Biosciences, University of West London, London W5 5RF, UK
| |
Collapse
|
4
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Baran B, Derua R, Janssens V, Niewiadomski P. PP2A phosphatase regulatory subunit PPP2R3C is a new positive regulator of the hedgehog signaling pathway. Cell Signal 2024; 123:111352. [PMID: 39173855 DOI: 10.1016/j.cellsig.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.
Collapse
Affiliation(s)
- Brygida Baran
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
6
|
Wang X, Di W, Wang Z, Qi P, Liu Z, Zhao H, Ding W, Di S. Cadmium stress alleviates lipid accumulation caused by chiral penthiopyrad through regulating endoplasmic reticulum stress and mitochondrial dysfunction in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135560. [PMID: 39173367 DOI: 10.1016/j.jhazmat.2024.135560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The coexistence of cadmium (Cd) can potentiate (synergism) or reduce (antagonism) the pesticide effects on organisms, which may change with chiral pesticide enantiomers. Previous studies have reported the toxic effects of chiral penthiopyrad on lipid metabolism in zebrafish (Danio rerio) liver. The Cd effects and toxic mechanism on lipid accumulation were investigated from the perspective of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The coexistence of Cd increased the concentrations of penthiopyrad and its metabolites in zebrafish. Penthiopyrad exposure exhibited significant effects on lipid metabolism and mitochondrial function-related indicators, which were verified by lipid droplets and mitochondrial damage in subcellular structures. Moreover, penthiopyrad activated the genes of ER unfolded protein reaction (UPR) and Ca2+ permeable channels, and S-penthiopyrad exhibited more serious effects on ER stress with ER hyperplasia than R-penthiopyrad. As a mitochondrial uncoupler, the coexistence of Cd could decrease lipid accumulation by alleviating ER stress and mitochondrial dysfunction, and these effects were the most significant for R-penthiopyrad. There were antagonistic effects between Cd and penthiopyrad, which could reduce the damage caused by penthiopyrad in zebrafish, thus increasing the bioaccumulation of penthiopyrad in zebrafish. These findings highlighted the importance and necessity of evaluating the ecological risks of metal-chiral pesticide mixtures.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Weixuan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China; College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Wei Ding
- College of Plant Protection, Northeast agricultural university, Harbin 150030, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Wu C, Zhu H, Zhang Y, Ding L, Wang J. Interference with mitochondrial metabolism could serve as a potential therapeutic strategy for advanced prostate cancer. PLoS One 2024; 19:e0290753. [PMID: 38598542 PMCID: PMC11006138 DOI: 10.1371/journal.pone.0290753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/15/2023] [Indexed: 04/12/2024] Open
Abstract
Metabolic reprogramming has been defined as a hallmark of malignancies. Prior studies have focused on the single nucleotide polymorphism (SNP) of POLG2 gene, which is reportedly responsible for encoding mitochondrial DNA genes and is implicated in the material and energy metabolism of tumor cells, whereas its function in prostate cancer has been elusive. Gene expression profile matrix and clinical information were downloaded from TCGA (The Cancer Genome Atlas) data portal, and GSE3325 and GSE8511 were retrieved from GEO (Gene Expression Omnibus) database. We conducted analysis of the relative expression of POLG2, clinical characterization, survival analysis, GO / KEGG and GSEA (Gene Set Enrichment Analysis) enrichment analysis in R and employed STRING portal to acquaint ourselves with the protein-protein interaction (PPI). IHC (Immunohistochemical) profiles of POLG2 protein between normal and cancerous tissues were consulted via HPA (Human protein atlas) database and the immunohistochemical POLG2 were verified between para-cancerous and cancerous tissues in tissue array. At the cellular level, Mitochondrial dysfunction assay, DNA synthesis test, wound healing assay, and invasion assay were implemented to further validate the phenotype of POLG2 knockdown in PCa cell lines. RT-qPCR and western blotting were routinely adopted to verify variations of molecular expression within epithelial mesenchymal transition (EMT). Results showed that POLG2 was over-expressed in most cancer types, and the over-expression of POLG2 was correlated with PCa progression and suggested poor OS (Overall Survival) and PFI (Progress Free Interval). Multivariate analysis showed that POLG2 might be an independent prognostic factor of prostate cancer. We also performed GO/KEGG, GSEA analysis, co-expression genes, and PPI, and observed the metabolism-related gene alterations in PCa. Furthermore, we verified that POLG2 knockdown had an inhibitory effect on mitochondrial function, proliferation, cell motility, and invasion, we affirmed POLG2 could affect the prognosis of advanced prostate cancer via EMT. In summary, our findings indicate that over-expressed POLG2 renders poor prognosis in advanced prostate cancer. This disadvantageous factor can serve as a potential indicator, making it possible to target mitochondrial metabolism to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Chuang Wu
- Department of Urology, Jiangsu Province Geriatric Hospital, Nanjing, Jiangsu, China
| | - Huihuang Zhu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Zhang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Ding
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junqi Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Zeng LH, Tang C, Yao M, He Q, Qv M, Ren Q, Xu Y, Shen T, Gu W, Xu C, Zou C, Ji X, Wu X, Wang J. Phosphorylation of human glioma-associated oncogene 1 on Ser937 regulates Sonic Hedgehog signaling in medulloblastoma. Nat Commun 2024; 15:987. [PMID: 38307877 PMCID: PMC10837140 DOI: 10.1038/s41467-024-45315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China.
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Minli Yao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Meiyu Qv
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianlei Ren
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weizhong Gu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chengyun Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang, Province, Hangzhou City University School of Medicine, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Department of Orthopaedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jirong Wang
- Department of Geriatrics, Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
10
|
Malawsky DS, Dismuke T, Liu H, Castellino E, Brenman J, Dasgupta B, Tikunov A, Gershon TR. Chronic AMPK inactivation slows SHH medulloblastoma progression by inhibiting mTORC1 signaling and depleting tumor stem cells. iScience 2023; 26:108443. [PMID: 38094249 PMCID: PMC10716552 DOI: 10.1016/j.isci.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/28/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
We show that inactivating AMPK in a genetic medulloblastoma model depletes tumor stem cells and slows progression. In medulloblastoma, the most common malignant pediatric brain tumor, drug-resistant stem cells co-exist with transit-amplifying cells and terminally differentiated neuronal progeny. Prior studies show that Hk2-dependent glycolysis promotes medulloblastoma progression by suppressing neural differentiation. To determine how the metabolic regulator AMPK affects medulloblastoma growth and differentiation, we inactivated AMPK genetically in medulloblastomas. We bred conditional Prkaa1 and Prkaa2 deletions into medulloblastoma-prone SmoM2 mice and compared SmoM2-driven medulloblastomas with intact or inactivated AMPK. AMPK-inactivation increased event-free survival (EFS) and altered cellular heterogeneity, increasing differentiation and decreasing tumor stem cell populations. Surprisingly, AMPK-inactivation decreased mTORC1 activity and decreased Hk2 expression. Hk2 deletion similarly depleted medulloblastoma stem cells, implicating reduced glycolysis in the AMPK-inactivated phenotype. Our results show that AMPK inactivation disproportionately impairs medulloblastoma stem cell populations typically refractory to conventional therapies.
Collapse
Affiliation(s)
- Daniel Shiloh Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Taylor Dismuke
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ethan Castellino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Brenman
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Biplab Dasgupta
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey Tikunov
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Center for Neurosciences Research, Children’s Hospital of Atlanta, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Kanhai AA, Sánchez-López E, Kuipers TB, van Klinken JB, Dijkstra KL, van der Veen I, Baelde HJ, Song X, Pei Y, Mei H, Leonhard WN, Mayboroda OA, Peters DJ. Short salsalate administration affects cell proliferation, metabolism, and inflammation in polycystic kidney disease. iScience 2023; 26:108278. [PMID: 38026227 PMCID: PMC10665819 DOI: 10.1016/j.isci.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.
Collapse
Affiliation(s)
- Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Sánchez-López
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B. Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan B. van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Laboratory Genetic Metabolic Diseases of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kyra L. Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge van der Veen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J. Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorien J.M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Zheng M, Li Y, Dong Z, Zhang Y, Xi Z, Yuan M, Xu H. Korean red ginseng formula attenuates non-alcoholic fatty liver disease in oleic acid-induced HepG2 cells and high-fat diet-induced rats. Heliyon 2023; 9:e21846. [PMID: 38027623 PMCID: PMC10658318 DOI: 10.1016/j.heliyon.2023.e21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease. We have developed a Korean Red Ginseng Formula (KRGF) containing extracts of Korean Red Ginseng (KRG), Crataegus Fructus, and Cassiae Semen. In this study, our aims were to investigate the therapeutic potential and underpinning mechanisms of KRGF in NAFLD complicated by hyperlipidemia. Methods In the in vitro assays, HepG2 cells were treated with KRGF for 24 h in the presence or absence of oleic acid (OA). To assess the in vivo protective effect of KRGF against NAFLD, rats fed a high-fat diet (HFD) were given intragastric administration for 30 days. Results KRGF exerted protective effects against NAFLD by reducing lipid accumulation and steatosis in OA-stimulated HepG2 cells and HFD-fed rats. In HFD-fed rats, KRGF effectively decreased triglyceride levels in both blood and liver tissue and modulated the expression of key regulators of lipogenesis and fatty acid oxidation. KRGF downregulated the expression of lipogenesis factors, namely C/EBPα, FAS, SREBP-1c, and PPARγ, while upregulating the expression of PPARα and CPT-1, thus promoting fatty acid oxidation. Additionally, KRGF intensified the phosphorylation of AMPK and ACC, which are two enzymes that suppress fatty acid synthesis and promote fatty acid oxidation. KRGF effectively decreased total cholesterol (TC) levels in both blood and liver tissue, and it modulated the expression of major enzymes related to TC metabolism, namely apoB, ACAT2, CYP7A1, and HMGCR. Conclusion In conclusion, KRGF mitigated NAFLD complicated by hyperlipidemia by modulating triglyceride and cholesterol metabolism, suggesting its potential for future development in the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
13
|
Salem GA, Mohamed AAR, Khater SI, Noreldin AE, Alosaimi M, Alansari WS, Shamlan G, Eskandrani AA, Awad MM, El-Shaer RAA, Nassan MA, Mostafa M, Khamis T. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023; 883:147670. [PMID: 37516284 DOI: 10.1016/j.gene.2023.147670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Non-alcoholic fatty liver (NAFL) is a prevalent hepatic disorder of global significance that can give rise to severe complications. This research endeavor delves into the potential of nano-liposomal formulated Lycopene (Lip-Lyco) in averting the development of obesity and insulin resistance, both of which are major underlying factors contributing to NAFL. The investigation further scrutinizes the impact of Lip-Lyco on intricate cellular pathways within the liver tissue of rats induced with NAFL, specifically focusing on the progression of steatosis and fibrosis. To establish an obesity-NAFL model, twenty rats were subjected to a high-fat diet (HFD) for a duration of twelve weeks, after which they received an oral treatment of Lip-Lyco (10mg/kg) for an additional eight weeks. Another group of sixteen non-obese rats were subjected to treatment with or without Lip-Lyco, serving as a control for comparison. Results: The rats on a hypercaloric diet had high body mass index (BMI) and insulin resistance, reflected in disturbed serum adipokines and lipid profiles. Oxidative stress, inflammation, and apoptosis were evident in hepatic tissue, and the autophagic process in hepatocytes was inhibited. Additionally, the hedgehog pathway was activated in the liver tissue of NAFL group. Lip-Lyco was found to counteract all these aspects of NAFL pathogenesis. Lip-Lyco exhibited antioxidant, anti-inflammatory, hypoglycemic, antiapoptotic, autophagy-inducing, and Hedgehog signaling inhibitory effects. This study concludes that Lip-Lyco, a natural compound, has promising therapeutic potential in combating NAFLdisease. However, more experimental and clinical studies are required to confirm the effectiveness of lycopene in treating NAFLdisease.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
14
|
Pu M, Zheng W, Zhang H, Wan W, Peng C, Chen X, Liu X, Xu Z, Zhou T, Sun Q, Neculai D, Liu W. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell 2023; 14:653-667. [PMID: 37707322 PMCID: PMC10501187 DOI: 10.1093/procel/pwac063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 09/15/2023] Open
Abstract
Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.
Collapse
Affiliation(s)
- Maomao Pu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wenhui Zheng
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Hongtao Zhang
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wei Wan
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuebo Chen
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xinchang Liu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zizhen Xu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Tianhua Zhou
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Qiming Sun
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Dante Neculai
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wei Liu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto, Hangzhou 310058, China
| |
Collapse
|
15
|
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, Tyler B. The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies. Cancers (Basel) 2023; 15:3889. [PMID: 37568705 PMCID: PMC10417410 DOI: 10.3390/cancers15153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic profiles of each subtype. This review aims to delineate the progress that has been made in characterizing the neurodevelopmental and molecular features of each medulloblastoma subtype. It further delves into the implications that these characteristics have on the development of subgroup-specific targeted therapeutic agents. Furthermore, it highlights potential future avenues for combining multiple agents or strategies in order to obtain augmented effects and evade the development of treatment resistance in tumors.
Collapse
Affiliation(s)
- Hasan Slika
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Chad Caraway
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Eric M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (D.R.); (C.C.); (S.A.); (E.M.J.)
| |
Collapse
|
16
|
Baran B, Kosieradzka K, Skarzynska W, Niewiadomski P. MRCKα/β positively regulates Gli protein activity. Cell Signal 2023; 107:110666. [PMID: 37019250 DOI: 10.1016/j.cellsig.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Posttranslational modifications (PTMs) are key regulatory events for the majority of signaling pathways. Transcription factors are often phosphorylated on multiple residues, which regulates their trafficking, stability, or transcriptional activity. Gli proteins, transcription factors that respond to the Hedgehog pathway, are regulated by phosphorylation, but the sites and the kinases involved have been only partially described. We identified three novel kinases: MRCKα, MRCKβ, and MAP4K5 which physically interact with Gli proteins and directly phosphorylate Gli2 on multiple sites. We established that MRCKα/β kinases regulate Gli proteins, which impacts the transcriptional output of the Hedgehog pathway. We showed that double knockout of MRCKα/β affects Gli2 ciliary and nuclear localization and reduces Gli2 binding to the Gli1 promoter. Our research fills a critical gap in our understanding of the regulation of Gli proteins by describing their activation mechanisms through phosphorylation.
Collapse
|
17
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
18
|
Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer. Arch Biochem Biophys 2023; 735:109500. [PMID: 36608915 DOI: 10.1016/j.abb.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The major cause of colorectal cancer (CRC) related mortality is due to its metastasis. Signaling pathways play a definite role in the development and progression of CRC. Recent studies demonstrate that the regulation of the sonic hedgehog (Shh) pathway is beneficial in the CRC treatment strategy. Also, 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a well-known regulator of metabolism and inflammation, making it a suitable treatment option for CRC. Consumption of a high-fat diet (HFD) is a significant cause of CRC genesis. Also, the lipids play an indispensable role in aberrant activation of the Shh pathway. This review explains in detail the interconnection between HFD consumption, Shh pathway activation, and the progression of CRC. According to recent studies and literature, AMPK is a potential regulator that can control the complexities of CRC and reduce lipid levels and may directly inhibit shh signalling. The review also suggests the possible risk elements of AMPK activation in CRC due to its context-dependent role. Also, the activation of AMPK in HFD-induced CRC may modulate cancer progression by regulating the Shh pathway and metabolism.
Collapse
Affiliation(s)
- T B Beena
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mathew A Jesil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| |
Collapse
|
19
|
Cai J, Wang Y, Wang X, Ai Z, Li T, Pu X, Yang X, Yao Y, He J, Cheng SY, Yu T, Liu C, Yue S. AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation. Cell Biosci 2023; 13:15. [PMID: 36683064 PMCID: PMC9867863 DOI: 10.1186/s13578-023-00963-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. Metastasis and relapse are the leading causes of death in MB patients. The initiation of the SHH subgroup of MB (SHH-MB) is due to the aberrant activation of Sonic Hedgehog (Shh) signaling. However, the mechanisms for its metastasis are still unknown. RESULTS AMP-dependent protein kinase (AMPK) restrains the activation of Shh signaling pathway, thereby impeding the proliferation of SHH-MB cells. More importantly, AMPK also hinders the growth and metastasis of SHH-MB cells by regulating NF-κB signaling pathway. Furthermore, Vismodegib and TPCA-1, which block the Shh and NF-κB pathways, respectively, synergistically restrained the growth, migration, and invasion of SHH-MB cells. CONCLUSIONS This work demonstrates that AMPK functions through two signaling pathways, SHH-GLI1 and NF-κB. AMPK-NF-κB axis is a potential target for molecular therapy of SHH-MB, and the combinational blockade of NF-κB and Shh pathways confers synergy for SHH-MB therapy.
Collapse
Affiliation(s)
- Jing Cai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xinfa Wang
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Zihe Ai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Tianyuan Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaohong Pu
- grid.428392.60000 0004 1800 1685Departments of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Yang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yixing Yao
- Department of Pathology, Suzhou Ninth People’s Hospital, Suzhou, 215200 China
| | - Junping He
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Steven Y. Cheng
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Tingting Yu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Chen Liu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Shen Yue
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
20
|
Bardwell AJ, Wu B, Sarin KY, Waterman ML, Atwood SX, Bardwell L. ERK2 MAP kinase regulates SUFU binding by multisite phosphorylation of GLI1. Life Sci Alliance 2022; 5:e202101353. [PMID: 35831023 PMCID: PMC9279676 DOI: 10.26508/lsa.202101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
Crosstalk between the Hedgehog and MAPK signaling pathways occurs in several types of cancer and contributes to clinical resistance to Hedgehog pathway inhibitors. Here we show that MAP kinase-mediated phosphorylation weakens the binding of the GLI1 transcription factor to its negative regulator SUFU. ERK2 phosphorylates GLI1 on three evolutionarily conserved target sites (S102, S116, and S130) located near the high-affinity binding site for SUFU; these phosphorylations cooperate to weaken the affinity of GLI1-SUFU binding by over 25-fold. Phosphorylation of any one, or even any two, of the three sites does not result in the level of SUFU release seen when all three sites are phosphorylated. Tumor-derived mutations in R100 and S105, residues bordering S102, also diminish SUFU binding, collectively defining a novel evolutionarily conserved SUFU affinity-modulating region. In cultured mammalian cells, GLI1 variants containing phosphomimetic substitutions of S102, S116, and S130 displayed an increased ability to drive transcription. We conclude that multisite phosphorylation of GLI1 by ERK2 or other MAP kinases weakens GLI1-SUFU binding, thereby facilitating GLI1 activation and contributing to both physiological and pathological crosstalk.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Beibei Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
21
|
Fang H, Wang L, Yu L, Shen F, Yang Z, Yang Y, Li S, Dai H, Tan F, Lin J, Sheng H. Effects of metformin on Sonic hedgehog subgroup medulloblastoma progression: In vitro and in vivo studies. Front Pharmacol 2022; 13:928853. [PMID: 36278239 PMCID: PMC9585190 DOI: 10.3389/fphar.2022.928853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Metformin is a first-line drug for type 2 diabetes, and its anticancer effects have also been widely studied in recent years. The Sonic hedgehog (Shh) signaling pathway is involved in the initiation and progression of medulloblastoma. In order to develop a new treatment strategy for medulloblastoma (MB), this study investigated the inhibitory effect of metformin on MB and the underlying mechanism of metformin on the Shh signaling pathway. The effect of metformin on proliferation was evaluated by the cell counting kit-8 (CCK-8) test and colony formation experiment. The effect of metformin on metastasis was assessed by the scratch-wound assay and transwell invasion assay. Cell cycle and apoptosis were evaluated by flow cytometry, and the associated proteins were examined by western blotting. The mRNA and protein expression levels related to the Shh pathway were measured by quantitative PCR, western blotting, and immunofluorescence staining. The xenograft murine model was carried out to evaluate the anticancer effect of metformin on medulloblastoma in vivo. Metformin inhibited proliferation and metastasis of the Shh subgroup MB cell line, and the inhibitory effect on proliferation was related to apoptosis and the block of the cell cycle at the G0/G1 phase. Animal experiments showed that metformin inhibits medulloblastoma growth in vivo. Moreover, metformin decreased mRNA and protein expression levels of the Shh pathway, and this effect was reversed by the AMP-activated protein kinase (AMPK) siRNA. Furthermore, the pro-apoptotic and cell cycle arrest effects of metformin on Daoy cells could be reversed by the Shh pathway activators. Our findings demonstrated that metformin could inhibit medulloblastoma progression in vitro and in vivo, and this effect was associated with AMPK-mediated inhibition of the Shh signaling pathway in vitro studies.
Collapse
Affiliation(s)
- Huangyi Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lingfei Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Shen
- Department of Surgery, Box Hill Hospital Eastern Health, VIC, Australia
| | - Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shize Li
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haipeng Dai
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feng Tan, ; Jian Lin, ; Hansong Sheng,
| |
Collapse
|
22
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
23
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
24
|
Angelini A, Ortiz-Urbina J, Trial J, Reddy AK, Malovannaya A, Jain A, Entman ML, Taffet GE, Cieslik KA. Sex-specific phenotypes in the aging mouse heart and consequences for chronic fibrosis. Am J Physiol Heart Circ Physiol 2022; 323:H285-H300. [PMID: 35714177 PMCID: PMC9273262 DOI: 10.1152/ajpheart.00078.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
The incidence of diastolic dysfunction increases with age in both humans and mice. This is characterized by increased passive stiffness and slower relaxation of the left ventricle. The stiffness arises at least partially from progressively increased interstitial collagen deposition because of highly secretory fibroblasts. In the past, we demonstrated that AMPK activation via the drug 5-aminoimidazole-4-carboxamide riboside (AICAR) in middle-aged mice reduced adverse remodeling after myocardial infarction. Therefore, as an attempt to normalize the fibroblast phenotype, we used 21-mo-old male and female mice and treated them with AICAR (0.166 mg/g body wt) where each mouse was followed in a functional study over a 3-mo period. We found sex-related differences in extracellular matrix (ECM) composition as well as heart function indices at baseline, which were further accentuated by AICAR treatment. AICAR attenuated the age-related increase in left atrial volume (LAV, an indicator of diastolic dysfunction) in female but not in male hearts, which was associated with reduced collagen deposition in the old female heart, and reduced the transcription factor Gli1 expression in cardiac fibroblasts. We further demonstrated that collagen synthesis was dependent on Gli1, which is a target of AMPK-mediated degradation. By contrast, AICAR had a minor impact on cardiac fibroblasts in the old male heart because of blunted AMPK phosphorylation. Hence, it did not significantly improve old male heart function indices. In conclusion, we demonstrated that male and female hearts are phenotypically different, and sex-specific differences need to be considered when analyzing the response to pharmacological intervention.NEW & NOTEWORTHY The aging heart develops diastolic dysfunction because of increased collagen deposition. We attempted to reduce collagen expression in the old heart by activating AMPK using AICAR. An improvement of diastolic function and reduction of cardiac fibrosis was found only in the female heart and correlated with decreased procollagen expression and increased degradation of the transcription factor Gli1. Male hearts display blunted AICAR-dependent AMPK activation and therefore this treatment had no benefits for the male mice.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jesus Ortiz-Urbina
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
| | - George E Taffet
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Katarzyna A Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
25
|
Hantel F, Liu H, Fechtner L, Neuhaus H, Ding J, Arlt D, Walentek P, Villavicencio-Lorini P, Gerhardt C, Hollemann T, Pfirrmann T. Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. J Cell Sci 2022; 135:jcs259209. [PMID: 35543157 PMCID: PMC9264362 DOI: 10.1242/jcs.259209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.
Collapse
Affiliation(s)
- Friederike Hantel
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Lisa Fechtner
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Herbert Neuhaus
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Danilo Arlt
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Christoph Gerhardt
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| |
Collapse
|
26
|
Liu J, Qian B, Zhou L, Shen G, Tan Y, Liu S, Zhao Z, Shi J, Qi W, Zhou T, Yang X, Gao G, Yang Z. IL25 Enhanced Colitis-Associated Tumorigenesis in Mice by Upregulating Transcription Factor GLI1. Front Immunol 2022; 13:837262. [PMID: 35359953 PMCID: PMC8963976 DOI: 10.3389/fimmu.2022.837262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Interleukin-25 (IL17E/IL25) plays a critical role in colitis and intestinal homeostasis. However, the expression and biological role of IL25 in colorectal cancer is not properly understood. In this study, we show that IL25 is mainly expressed by cancer stem cells in the colorectal cancer microenvironment. Genetic deletion of IL25 inhibited tumor formation and growth and prolonged survival in AOM/DSS-treated mice. IL25 stimulated cancer organoid and cancer cells sphere formation and prevented the tumor from chemotherapy-induced apoptosis. Mechanistically, IL25 upregulated stem cell genes LGR5, CD133, and ABC transporters via activating the Hedgehog signaling pathway. IL25 inhibited phosphorylation of AMPK and promoted GLI1 accumulation to maintain cancer stem cells. Moreover, IL25 expression was associated with poor survival in patients with metastatic colorectal cancer. Taken together, our work reveals an immune-associated mechanism that intrinsically confers cancer cell stemness properties. Our results first demonstrated that IL25, as a new potent endogenous Hedgehog pathway agonist, could be an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Junxi Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bingxiu Qian
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lin Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Gang Shen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Siqi Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zewei Zhao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jianglin Shi
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Conod A, Silvano M, Ruiz i Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022; 38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
How metastatic cells arise is unclear. Here, we search for the induction of recently characterized pro-metastatic states as a surrogate for the origin of metastasis. Since cell-death-inducing therapies can paradoxically promote metastasis, we ask if such treatments induce pro-metastatic states in human colon cancer cells. We find that post-near-death cells acquire pro-metastatic states (PAMEs) and form distant metastases in vivo. These PAME ("let's go" in Greek) cells exhibit a multifactorial cytokine storm as well as signs of enhanced endoplasmic reticulum (ER) stress and nuclear reprogramming, requiring CXCL8, INSL4, IL32, PERK-CHOP, and NANOG. PAMEs induce neighboring tumor cells to become PAME-induced migratory cells (PIMs): highly migratory cells that re-enact the storm and enhance PAME migration. Metastases are thus proposed to originate from the induction of pro-metastatic states through intrinsic and extrinsic cues in a pro-metastatic tumoral ecosystem, driven by an impending cell-death experience involving ER stress modulation, metastatic reprogramming, and paracrine recruitment via a cytokine storm.
Collapse
Affiliation(s)
- Arwen Conod
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
28
|
Uprety B, Abrahamse H. Targeting Breast Cancer and Their Stem Cell Population through AMPK Activation: Novel Insights. Cells 2022; 11:576. [PMID: 35159385 PMCID: PMC8834477 DOI: 10.3390/cells11030576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Despite some significant advancements, breast cancer has become the most prevalent cancer in the world. One of the main reasons for failure in treatment and metastasis has been attributed to the presence of cancer initiating cells-cancer stem cells. Consequently, research is now being focussed on targeting cancer cells along with their stem cell population. Non-oncology drugs are gaining increasing attention for their potent anticancer activities. Metformin, a drug commonly used to treat type 2 diabetes, is the best example in this regard. It exerts its therapeutic action by activating 5' adenosine monophosphate-activated protein kinase (AMPK). Activated AMPK subsequently phosphorylates and targets several cellular pathways involved in cell growth and proliferation and the maintenance of stem-like properties of cancer stem cells. Therefore, AMPK is emerging as a target of choice for developing effective anticancer drugs. Vanadium compounds are well-known PTP inhibitors and AMPK activators. They find extensive applications in treatment of diabetes and obesity via PTP1B inhibition and AMPK-mediated inhibition of adipogenesis. However, their role in targeting cancer stem cells has not been explored yet. This review is an attempt to establish the applications of insulin mimetic vanadium compounds for the treatment of breast cancer by AMPK activation and PTP1B inhibition pathways.
Collapse
Affiliation(s)
- Bhawna Uprety
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| | | |
Collapse
|
29
|
Hu A, Hu Z, Ye J, Liu Y, Lai Z, Zhang M, Ji W, Huang L, Zou H, Chen B, Zhong J. Metformin exerts anti-tumor effects via Sonic hedgehog signaling pathway by targeting AMPK in HepG2 cells. Biochem Cell Biol 2022; 100:142-151. [PMID: 34990285 DOI: 10.1139/bcb-2021-0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metformin, a traditional first-line pharmacologic treatment for type 2 diabetes, has recently been shown to impart anti-cancer effects on hepatocellular carcinoma (HCC). However, the molecular mechanism of metformin on its antitumor activity is still not completely clear. The Sonic hedgehog (Shh) signaling pathway is closely associated with the initiation and progression of HCC. Therefore, the aim of the current study was to investigate the effects of metformin on the biological behavior of HCC and the underlying functional mechanism of metformin on the Shh pathway. The HCC cellular was induced in HepG2 cells by recombinant human Shh (rhShh). The effects of metformin on proliferation and metastasis were evaluated by proliferation, wound healing and invasion assays in vitro. The mRNA and protein expression levels of proteins related to the Shh pathway were measured by western blotting, quantitative PCR and immunofluorescence staining. Metformin inhibited rhShh-induced proliferation and metastasis. Furthermore, metformin decreased mRNA and protein expression of components of the Shh pathway including Shh, Ptch, Smo and Gli-1. Silencing of AMPK in the presence of metformin revealed that metformin could exert its inhibitory effect via AMPK. Our findings demonstrate that metformin can suppress the migration and invasion of HepG2 cells via AMPK-mediated inhibition of the Shh pathway.
Collapse
Affiliation(s)
- Ang Hu
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Zeming Hu
- First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China;
| | - Jianming Ye
- First Affiliated Hospital of Gannan Medical University, 477808, Ganzhou, Jiangxi, China;
| | - Yuwen Liu
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Zhonghong Lai
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Mi Zhang
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Weichao Ji
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Lili Huang
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Haohong Zou
- Gannan Medical University, 74554, Ganzhou, Jiangxi, China;
| | - Bin Chen
- First Affiliated Hospital of Gannan Medical University, 477808, Ganzhou, Jiangxi, China;
| | - Jianing Zhong
- Gannan Medical University, 74554, Ganzhou, China, 341000;
| |
Collapse
|
30
|
Zhang Q, Jiang J. Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. Int J Mol Sci 2021; 22:ijms222413338. [PMID: 34948134 PMCID: PMC8703657 DOI: 10.3390/ijms222413338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (Q.Z.); (J.J.)
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.Z.); (J.J.)
| |
Collapse
|
31
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
32
|
Pottie L, Van Gool W, Vanhooydonck M, Hanisch FG, Goeminne G, Rajkovic A, Coucke P, Sips P, Callewaert B. Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genet 2021; 17:e1009603. [PMID: 34143769 PMCID: PMC8244898 DOI: 10.1371/journal.pgen.1009603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/30/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
The inability to maintain a strictly regulated endo(lyso)somal acidic pH through the proton-pumping action of the vacuolar-ATPases (v-ATPases) has been associated with various human diseases including heritable connective tissue disorders. Autosomal recessive (AR) cutis laxa (CL) type 2C syndrome is associated with genetic defects in the ATP6V1E1 gene and is characterized by skin wrinkles or loose redundant skin folds with pleiotropic systemic manifestations. The underlying pathological mechanisms leading to the clinical presentations remain largely unknown. Here, we show that loss of atp6v1e1b in zebrafish leads to early mortality, associated with craniofacial dysmorphisms, vascular anomalies, cardiac dysfunction, N-glycosylation defects, hypotonia, and epidermal structural defects. These features are reminiscent of the phenotypic manifestations in ARCL type 2C patients. Our data demonstrates that loss of atp6v1e1b alters endo(lyso)somal protein levels, and interferes with non-canonical v-ATPase pathways in vivo. In order to gain further insights into the processes affected by loss of atp6v1e1b, we performed an untargeted analysis of the transcriptome, metabolome, and lipidome in early atp6v1e1b-deficient larvae. We report multiple affected pathways including but not limited to oxidative phosphorylation, sphingolipid, fatty acid, and energy metabolism together with profound defects on mitochondrial respiration. Taken together, our results identify complex pathobiological effects due to loss of atp6v1e1b in vivo. Cutis laxa syndromes are pleiotropic disorders of the connective tissue, characterized by skin redundancy and variable systemic manifestations. Cutis laxa syndromes are caused by pathogenic variants in genes encoding structural and regulatory components of the extracellular matrix or in genes encoding components of cellular trafficking, metabolism, and mitochondrial function. Pathogenic variants in genes coding for vacuolar-ATPases, a multisubunit complex responsible for the acidification of multiple intracellular vesicles, cause type 2 cutis laxa syndromes, a group of cutis laxa subtypes further characterized by neurological, skeletal, and rarely cardiopulmonary manifestations. To investigate the pathomechanisms of vacuolar-ATPase dysfunction, we generated zebrafish models that lack a crucial subunit of the vacuolar-ATPases. The mutant zebrafish models show morphological and functional features reminiscent of the phenotypic manifestations in cutis laxa patients carrying pathogenic variants in ATP6V1E1. In-depth analysis at multiple -omic levels identified biological signatures that indicate impairment of signaling pathways, lipid metabolism, and mitochondrial respiration. We anticipate that these data will contribute to a better understanding of the pathogenesis of cutis laxa syndromes and other disorders involving defective v-ATPase function, which may eventually improve patient treatment and management.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wouter Van Gool
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food technology, Safety and Health, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
33
|
Responsiveness to Hedgehog Pathway Inhibitors in T-Cell Acute Lymphoblastic Leukemia Cells Is Highly Dependent on 5'AMP-Activated Kinase Inactivation. Int J Mol Sci 2021; 22:ijms22126384. [PMID: 34203724 PMCID: PMC8232330 DOI: 10.3390/ijms22126384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5′AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.
Collapse
|
34
|
Inhibition of the sonic hedgehog pathway activates TGF-β-activated kinase (TAK1) to induce autophagy and suppress apoptosis in thyroid tumor cells. Cell Death Dis 2021; 12:459. [PMID: 33966040 PMCID: PMC8106679 DOI: 10.1038/s41419-021-03744-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
The sonic hedgehog (Shh) pathway is highly activated in a variety of malignancies and plays important roles in tumorigenesis, tumor growth, drug resistance, and metastasis. Our recent study showed that the inhibitors of the Shh pathway such as cyclopamine (CP), a Smothened (SMO) inhibitor, and GANT61, a Gli1 inhibitor, have modest inhibitory effects on thyroid tumor cell proliferation and tumor growth. The objective of this study was to determine whether autophagy was induced by inhibition of the Shh pathway and could negatively regulate GANT61-induced apoptosis. Here we report that inhibition of the Shh pathway by Gli1 siRNA or by cyclopamine and GANT61 induced autophagy in SW1736 and KAT-18 cells, two anaplastic thyroid cancer cell lines; whereas Gli1 overexpression suppressed autophagy. Mechanistic investigation revealed that inhibition of the Shh pathway activated TAK1 and its two downstream kinases, the c-Jun-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). GANT61-induced autophagy was blocked by TAK1 siRNA and the inhibitors of TAK1 (5Z-7-oxozeaenol, 5Z), JNK (SP600125), and AMPK (Compound C, CC). Inhibition of autophagy by chloroquine and 5Z and by TAK1 and Beclin-1 siRNA enhanced GANT61-induced apoptosis and its antiproliferative activity. Our study has shown that inhibition of the Shh pathway induces autophagy by activating TAK1, whereas autophagy in turn suppresses GANT61-induced apoptosis. We have uncovered a previously unrecognized role of TAK1 in Shh pathway inhibition-induced autophagy and apoptosis.
Collapse
|
35
|
Molinari F, Feraco A, Mirabilii S, Saladini S, Sansone L, Vernucci E, Tomaselli G, Marzolla V, Rotili D, Russo MA, Ricciardi MR, Tafuri A, Mai A, Caprio M, Tafani M, Armani A. SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes. Cells 2021; 10:cells10051126. [PMID: 34066961 PMCID: PMC8148511 DOI: 10.3390/cells10051126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity.
Collapse
Affiliation(s)
- Francesca Molinari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Serena Saladini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Enza Vernucci
- Department of Cardiovascular, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giada Tomaselli
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Matteo A. Russo
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
- MEBIC Consortium, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
- Hematology, “Sant’ Andrea” University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
36
|
Gampala S, Zhang G, Chang CJ, Yang JY. Activation of AMPK sensitizes medulloblastoma to Vismodegib and overcomes Vismodegib-resistance. FASEB Bioadv 2021; 3:459-469. [PMID: 34124601 PMCID: PMC8171304 DOI: 10.1096/fba.2020-00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023] Open
Abstract
Vismodegib, a Smoothened antagonist, is clinically approved for treatment of human basal cell carcinoma (BCC), in the clinical trials of medulloblastoma (MB) and other cancers. However, a significant proportion of these tumors fail to respond to Vismodegib after a period of treatment. Here, we find that AMPK agonists, A769662, and Metformin, can inhibit GLI1 activity and synergize with Vismodegib to suppress MB cell growth invitro and invivo. Furthermore, combination of AMPK agonists with Vismodegib is effective in overcoming Vismodegib‐resistant MB. This is the first report demonstrating that combining AMPK agonist (Metformin) and SHH pathway inhibitor (Vismodegib) confers synergy for MB treatment and provides an effective chemotherapeutic regimen that can be used to overcome resistance to Vismodegib in SHH‐driven cancers.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics Herman B Wells Center for Pediatric Research Indiana University School of Medicine Indianapolis IN USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology Purdue University College of Veterinary Medicine West Lafayette IN USA
| | - Chun Ju Chang
- Department of Medicine Division of Translational Research Roswell Park Comprehensive Cancer Center Buffalo NY USA.,Graduate Institute of Biomedical Sciences College of Medicine Research Center for Cancer Biology China Medical University Taichung City Taiwan
| | - Jer-Yen Yang
- Department of Medicine Division of Translational Research Roswell Park Comprehensive Cancer Center Buffalo NY USA.,Graduate Institute of Biomedical Sciences College of Medicine Research Center for Cancer Biology China Medical University Taichung City Taiwan
| |
Collapse
|
37
|
Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, Canettieri G. Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep 2021; 30:1735-1752.e7. [PMID: 32049007 DOI: 10.1016/j.celrep.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
The antidiabetic drug phenformin displays potent anticancer activity in different tumors, but its mechanism of action remains elusive. Using Shh medulloblastoma as model, we show here that at clinically relevant concentrations, phenformin elicits a significant therapeutic effect through a redox-dependent but complex I-independent mechanism. Phenformin inhibits mitochondrial glycerophosphate dehydrogenase (mGPD), a component of the glycerophosphate shuttle, and causes elevations of intracellular NADH content. Inhibition of mGPD mimics phenformin action and promotes an association between corepressor CtBP2 and Gli1, thereby inhibiting Hh transcriptional output and tumor growth. Because ablation of CtBP2 abrogates the therapeutic effect of phenformin in mice, these data illustrate a biguanide-mediated redox/corepressor interplay, which may represent a relevant target for tumor therapy.
Collapse
Affiliation(s)
- Laura Di Magno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Simona Manni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Cairoli
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Manolo Sambucci
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Paola Infante
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Marta Moretti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carmine Nicoletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Battistini
- IRCCS Santa Lucia Foundation, Neuroimmunology Unit, 00143 Rome, Italy
| | - Bianca Maria Goffredo
- Division of Metabolism and Research Unit of metabolic Biochemistry, Children's Hospital and Research Institute Bambino Gesù IRCCS, 00146 Rome, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; International Polyamines Foundation-ONLUS, 00159 Rome, Italy.
| |
Collapse
|
38
|
Geleta B, Park KC, Jansson PJ, Sahni S, Maleki S, Xu Z, Murakami T, Pajic M, Apte MV, Richardson DR, Kovacevic Z. Breaking the cycle: Targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma. FASEB J 2021; 35:e21347. [PMID: 33484481 DOI: 10.1096/fj.202002279r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PaCa) is characterized by dense stroma that hinders treatment efficacy, with pancreatic stellate cells (PSCs) being a major contributor to this stromal barrier and PaCa progression. Activated PSCs release hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1) that induce PaCa proliferation, metastasis and resistance to chemotherapy. We demonstrate for the first time that the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is a potent inhibitor of the PaCa-PSC cross-talk, leading to inhibition of HGF and IGF-1 signaling. NDRG1 also potently reduced the key driver of PaCa metastasis, namely GLI1, leading to reduced PSC-mediated cell migration. The novel clinically trialed anticancer agent, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which upregulates NDRG1, potently de-sensitized PaCa cells to ligands secreted by activated PSCs. DpC and NDRG1 also inhibited the PaCa-mediated activation of PSCs via inhibition of sonic hedgehog (SHH) signaling. In vivo, DpC markedly reduced PaCa tumor growth and metastasis more avidly than the standard chemotherapy for this disease, gemcitabine. Uniquely, DpC was selectively cytotoxic against PaCa cells, while "re-programming" PSCs to an inactive state, decreasing collagen deposition and desmoplasia. Thus, targeting NDRG1 can effectively break the oncogenic cycle of PaCa-PSC bi-directional cross-talk to overcome PaCa desmoplasia and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Drug Resistance Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanaz Maleki
- Histopathology Laboratory, Department of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Zaklina Kovacevic
- Cancer Metastasis and Tumour Microenvironment Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2020; 133:110909. [PMID: 33227701 DOI: 10.1016/j.biopha.2020.110909] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and Cancer stem-like cells (CSCs) are major factors contributing to the metastasis of cancer cells. Consequently, the signaling pathways involved in both processes are appropriate therapeutic targets in the treatment of metastasis. Autophagy is another process that has recently attracted the attention of many researchers; depending on the type of cancer and tissue and the stage of cancer, this process can play a dual role in the development of cancer cells. Studies on cancer cells have shown that different signaling pathways are involved in all three processes, namely, cancer stem cells, autophagy, and EMT. The purpose of this study was to investigate and elucidate the relationship between the effective signaling pathways in all three processes, which could play an effective role in determining appropriate therapeutic goals.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Nasrin Zare Zavieyh Jaghi
- Department of Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran
| |
Collapse
|
40
|
Sun L, Yang X, Huang X, Yao Y, Wei X, Yang S, Zhou D, Zhang W, Long Z, Xu X, Zhu X, He S, Su X. 2-Hydroxylation of Fatty Acids Represses Colorectal Tumorigenesis and Metastasis via the YAP Transcriptional Axis. Cancer Res 2020; 81:289-302. [PMID: 33203703 DOI: 10.1158/0008-5472.can-20-1517] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Alteration in lipid composition is an important metabolic adaptation by cancer cells to support tumorigenesis and metastasis. Fatty acid 2-hydroxylase (FA2H) introduces a chiral hydroxyl group at the second carbon of fatty acid (FA) backbones and influences lipid structures and metabolic signaling. However, the underlying mechanisms through which FA 2-hydroxylation is coupled to metabolic adaptation and tumor growth remain elusive. Here, we show that FA2H regulates specific metabolic reprogramming and oncogenic signaling in the development of colorectal cancer. FA2H is highly expressed in normal colorectal tissues. Assessments through deciphering both published high-throughput data and curated human colorectal cancer samples revealed significant suppression of FA2H in tumors, which is correlated with unfavorable prognosis. Experiments with multiple models of genetic manipulation or treatment with an enzymatic product of FA2H, (R)-2-hydroxy palmitic acid, demonstrated that FA 2-hydroxylation inhibits colorectal cancer cell proliferation, migration, epithelial-to-mesenchymal transition progression, and tumor growth. Bioinformatics analysis suggested that FA2H functions through AMP-activated protein kinase/Yes-associated protein (AMPK/YAP) pathway, which was confirmed in colorectal cancer cells, as well as in tumors. Lipidomics analysis revealed an accumulation of polyunsaturated fatty acids in cells with FA2H overexpression, which may contribute to the observed nutrient deficiency and AMPK activation. Collectively, these data demonstrate that FA 2-hydroxylation initiates a metabolic signaling cascade to suppress colorectal tumor growth and metastasis via the YAP transcriptional axis and provides a strategy to improve colorectal cancer treatment. SIGNIFICANCE: These findings identify a novel metabolic mechanism regulating the tumor suppressor function of FA 2-hydroxylation in colorectal cancer.
Collapse
Affiliation(s)
- Liang Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiaoqin Yang
- Department of Bioinformatics, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Yizhou Yao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiangyu Wei
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Shugao Yang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China
| | - Diyuan Zhou
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China.,Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Wei Zhang
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Zhimin Long
- Shanghai Sciex Analytical Instrument Trading Co., Shanghai, P.R. China
| | - Xiaoyan Xu
- Shanghai Sciex Analytical Instrument Trading Co., Shanghai, P.R. China
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China.
| | - Songbing He
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, P.R. China. .,Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
41
|
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020; 9:cells9102316. [PMID: 33081032 PMCID: PMC7603200 DOI: 10.3390/cells9102316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and mTOR signaling, essential for embryonic development and cellular metabolism, are both coordinated by the primary cilium. Observations from cancer cells strongly indicate crosstalk between Hh and mTOR signaling. This hypothesis is supported by several studies: Evidence points to a TGFβ-mediated crosstalk; Increased PI3K/AKT/mTOR activity leads to increased Hh signaling through regulation of the GLI transcription factors; increased Hh signaling regulates mTORC1 activity positively by upregulating NKX2.2, leading to downregulation of negative mTOR regulators; GSK3 and AMPK are, as members of both signaling pathways, potentially important links between Hh and mTORC1 signaling; The kinase DYRK2 regulates Hh positively and mTORC1 signaling negatively. In contrast, both positive and negative regulation of Hh has been observed for DYRK1A and DYRK1B, which both regulate mTORC1 signaling positively. Based on crosstalk observed between cilia, Hh, and mTORC1, we suggest that the interaction between Hh and mTORC1 is more widespread than it appears from our current knowledge. Although many studies focusing on crosstalk have been carried out, contradictory observations appear and the interplay involving multiple partners is far from solved.
Collapse
|
42
|
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24:1159-1181. [PMID: 32990091 DOI: 10.1080/14728222.2020.1823967] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. AREAS COVERED This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. EXPERT OPINION Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising.
Collapse
Affiliation(s)
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University of Rome La Sapienza, 00185 , Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza , 00161, Rome, Italy
| |
Collapse
|
43
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
44
|
Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol 2020; 94:JVI.02177-19. [PMID: 32102879 DOI: 10.1128/jvi.02177-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Lipoxin A4 (LXA4) is an endogenous lipid mediator with compelling anti-inflammatory and proresolution properties. Studies done to assess the role of arachidonic acid pathways of the host in Kaposi's sarcoma-associated herpesvirus (KSHV) biology helped discover that KSHV infection hijacks the proinflammatory cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) pathways and concurrently reduces anti-inflammatory LXA4 secretion to maintain KSHV latency in infected cells. Treatment of KSHV-infected cells with LXA4 minimizes the activation of inflammatory and proliferative signaling pathways, including the NF-κB, AKT, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, but the exact mechanism of action of LXA4 remains unexplored. Here, using mass spectrometry analysis, we identified components from the minichromosome maintenance (MCM) protein and chromatin-remodeling complex SMARCB1 and SMARCC2 to be LXA4-interacting host proteins in KSHV-infected cells. We identified a higher level of nuclear aryl hydrocarbon receptor (AhR) in LXA4-treated KSHV-infected cells than in untreated KSHV-infected cells, which probably facilitates the affinity interaction of the nucleosome complex protein with LXA4. We demonstrate that SMARCB1 regulates both replication and transcription activator (RTA) activity and host hedgehog (hh) signaling in LXA4-treated KSHV-infected cells. Host hedgehog signaling was modulated in an AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-S6 kinase-dependent manner in LXA4-treated KSHV-infected cells. Since anti-inflammatory drugs are beneficial as adjuvants to conventional and immune-based therapies, we evaluated the potential of LXA4 treatment in regulating programmed death-ligand 1 (PD-L1) on KSHV-carrying tumor cells. Overall, our study identified LXA4-interacting host factors in KSHV-infected cells, which could help provide an understanding of the mode of action of LXA4 and its therapeutic potential against KSHV.IMPORTANCE The latent-to-lytic switch in KSHV infection is one of the critical events regulated by the major replication and transcription activator KSHV protein called RTA. Chromatin modification of the viral genome determines the phase of the viral life cycle in the host. Here, we report that LXA4 interacts with a host chromatin modulator, especially SMARCB1, which upregulates the KSHV ORF50 promoter. SMARCB1 has also been recognized to be a tumor suppressor protein which controls many tumorigenic events associated with the hedgehog (hh) signaling pathway. We also observed that LXA4 treatment reduces PD-L1 expression and that PD-L1 expression is an important immune evasion strategy used by KSHV for its survival and maintenance in the host. Our study underscores the role of LXA4 in KSHV biology and emphasizes that KSHV is strategic in downregulating LXA4 secretion in the host to establish latency. This study also uncovers the therapeutic potential of LXA4 and its targetable receptor, AhR, in KSHV's pathogenesis.
Collapse
|
45
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
46
|
Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, Cao X. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 2019; 383:111512. [PMID: 31356817 DOI: 10.1016/j.yexcr.2019.111512] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongdu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
47
|
Park M, Yoo JH, Lee YS, Park EJ, Lee HJ. Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice. J Ginseng Res 2019; 44:350-361. [PMID: 32148418 PMCID: PMC7031749 DOI: 10.1016/j.jgr.2019.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator–activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea
| | - Jeong-Hyun Yoo
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, Republic of Korea
| | - You-Suk Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
48
|
Israeli E, Adler Berken N, Gover O, Waechtershaeuser E, Graeve L, Schwartz B. Recombinant ostreolysin (rOly) inhibits the anti-adipogenic Hedgehog (Hh) signaling pathway in 3T3-L1 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
49
|
Valli A, Morotti M, Zois CE, Albers PK, Soga T, Feldinger K, Fischer R, Frejno M, McIntyre A, Bridges E, Haider S, Buffa FM, Baban D, Rodriguez M, Yanes O, Whittington HJ, Lake HA, Zervou S, Lygate CA, Kessler BM, Harris AL. Adaptation to HIF1α Deletion in Hypoxic Cancer Cells by Upregulation of GLUT14 and Creatine Metabolism. Mol Cancer Res 2019; 17:1531-1544. [PMID: 30885992 DOI: 10.1158/1541-7786.mcr-18-0315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/28/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor 1α is a key regulator of the hypoxia response in normal and cancer tissues. It is well recognized to regulate glycolysis and is a target for therapy. However, how tumor cells adapt to grow in the absence of HIF1α is poorly understood and an important concept to understand for developing targeted therapies is the flexibility of the metabolic response to hypoxia via alternative pathways. We analyzed pathways that allow cells to survive hypoxic stress in the absence of HIF1α, using the HCT116 colon cancer cell line with deleted HIF1α versus control. Spheroids were used to provide a 3D model of metabolic gradients. We conducted a metabolomic, transcriptomic, and proteomic analysis and integrated the results. These showed surprisingly that in three-dimensional growth, a key regulatory step of glycolysis is Aldolase A rather than phosphofructokinase. Furthermore, glucose uptake could be maintained in hypoxia through upregulation of GLUT14, not previously recognized in this role. Finally, there was a marked adaptation and change of phosphocreatine energy pathways, which made the cells susceptible to inhibition of creatine metabolism in hypoxic conditions. Overall, our studies show a complex adaptation to hypoxia that can bypass HIF1α, but it is targetable and it provides new insight into the key metabolic pathways involved in cancer growth. IMPLICATIONS: Under hypoxia and HIF1 blockade, cancer cells adapt their energy metabolism via upregulation of the GLUT14 glucose transporter and creatine metabolism providing new avenues for drug targeting.
Collapse
Affiliation(s)
- Alessandro Valli
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christos E Zois
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrick K Albers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Katharina Feldinger
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin Frejno
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan McIntyre
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Bridges
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Syed Haider
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dilair Baban
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel Rodriguez
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders-CIBERDEM, Madrid, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders-CIBERDEM, Madrid, Spain
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 2019; 10:556. [PMID: 31244888 PMCID: PMC6581679 DOI: 10.3389/fgene.2019.00556] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sinforosa Gagliardi
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| |
Collapse
|