1
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
2
|
Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res 2024; 14:597-620. [PMID: 37747597 DOI: 10.1007/s13346-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant-assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.
Collapse
Affiliation(s)
- Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., No. 243, Gongyebei Road, Jinan, 250100, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
3
|
Dai L, Jing Z, Zhu Y, Deng K, Ma L. Genome-wide analysis of circulating tumor DNA methylation profiles in cerebrospinal fluid: a clinical trial of oncolytic virus for glioblastoma. Am J Cancer Res 2023; 13:5950-5965. [PMID: 38187045 PMCID: PMC10767359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma (GBM) is a common malignant tumor of the central nervous system with a poor prognosis and a short survival period. A novel tumor oncolytic virus, Ad-TD-nsIL-12, has manifested anti-tumor properties in preclinical studies. However, the genetic changes caused by Ad-TD-nsIL-12 after GBM treatment are unclear. Therefore, we collected cerebrospinal fluid and tumor tissues from patients injected with Ad-TD-nsIL-12 at different time points and analyzed the methylation and expression profiles of cerebrospinal fluid-derived circulating tumor DNA (ctDNA). The differential genes were screened using the least absolute selection and shrinkage operator (LASSO) and Cox regression analyses. The CIBERSORT algorithm was used to assess the abundance of glioma immune cell infiltration in The Cancer Genome Atlas (TCGA) dataset. The role of hub genes in the diagnosis, prognosis, and immune cell correlation was analyzed using R software, SPSS software, and GraphPad Prism. The results showed that after Ad-TD-nsIL-12 injection, 3631 differential methylation regions (DMRs) were up-regulated and 497 DMRs were down-regulated. The methylation levels of these DMRs recovered within 70 to 82 days. Combined with the TCGA dataset, 8 key genes were selected for the construction of diagnostic and prognostic models. There was a significant correlation between core genes and immune cells. The results revealed that the hub genes in CSF could be used as a biomarker for the diagnosis and prognosis of GBM and led us to speculate the effect of the hub gene on the immune mechanism underlying Ad-TD-nsIL-12.
Collapse
Affiliation(s)
- Lin Dai
- Department of Neurosurgery, Binzhou Medical University HospitalBinzhou 256603, Shandong, P. R. China
| | - Zixuan Jing
- Department of Neurosurgery, Binzhou Medical University HospitalBinzhou 256603, Shandong, P. R. China
| | - Yi Zhu
- Department of Neurosurgery, Binzhou Medical University HospitalBinzhou 256603, Shandong, P. R. China
| | - Kaihan Deng
- Department of Neurosurgery, Binzhou Medical University HospitalBinzhou 256603, Shandong, P. R. China
| | - Lixin Ma
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical UniversityBeijing 100093, P. R. China
| |
Collapse
|
4
|
Natalini A, Simonetti S, Favaretto G, Lucantonio L, Peruzzi G, Muñoz-Ruiz M, Kelly G, Contino AM, Sbrocchi R, Battella S, Capone S, Folgori A, Nicosia A, Santoni A, Hayday AC, Di Rosa F. Improved memory CD8 T cell response to delayed vaccine boost is associated with a distinct molecular signature. Front Immunol 2023; 14:1043631. [PMID: 36865556 PMCID: PMC9973452 DOI: 10.3389/fimmu.2023.1043631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Gabriele Favaretto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Lorenzo Lucantonio
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gavin Kelly
- Bioinformatic and Biostatistics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Alfredo Nicosia
- CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom.,Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
5
|
Khare S, Niharika, Singh A, Hussain I, Singh NB, Singh S. SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Appl Biochem Biotechnol 2023; 195:1541-1573. [PMID: 36222988 PMCID: PMC9554396 DOI: 10.1007/s12010-022-04181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In the current scenario of the coronavirus pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), considerable efforts have been made to control the pandemic by the development of a strong immune system through massive vaccination. Just after the discovery of the genetic sequences of SARS-CoV-2, the development of vaccines became the prime focus of scientists around the globe. About 200 SARS-CoV-2 candidate vaccines have already been entered into preclinical and clinical trials. Various traditional and novel approaches are being utilized as a broad range of platforms. Viral vector (replicating and non-replicating), nucleic acid (DNA and RNA), recombinant protein, virus-like particle, peptide, live attenuated virus, an inactivated virus approaches are the prominent attributes of the vaccine development. This review article includes the current knowledge about the platforms used for the development of different vaccines, their working principles, their efficacy, and the impacts of COVID-19 vaccines on thrombosis. We provide a detailed description of the vaccines that are already approved by administrative authorities. Moreover, various strategies utilized in the development of emerging vaccines that are in the trial phases along with their mode of delivery have been discussed along with their effect on thrombosis and gastrointestinal disorders.
Collapse
Affiliation(s)
- Shubhra Khare
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Niharika
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Ajey Singh
- grid.411488.00000 0001 2302 6594Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Imtiyaz Hussain
- grid.412997.00000 0001 2294 5433Government Degree College, University of Ladakh, Dras, Ladakh India
| | - Narsingh Bahadur Singh
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Subhash Singh
- grid.16416.340000 0004 1936 9174The Institute of Optics, University of Rochester, Rochester, NY-14627 USA
| |
Collapse
|
6
|
Provine NM, Klenerman P. Adenovirus vector and mRNA vaccines: Mechanisms regulating their immunogenicity. Eur J Immunol 2022:10.1002/eji.202250022. [PMID: 36330560 PMCID: PMC9877955 DOI: 10.1002/eji.202250022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies.
Collapse
Affiliation(s)
- Nicholas M. Provine
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Paul Klenerman
- Translational Gastroenterology UnitNuffield Department of MedicineUniversity of OxfordOxfordUK,Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Baliu-Piqué M, Drylewicz J, Zheng X, Borkner L, Swain AC, Otto SA, de Boer RJ, Tesselaar K, Cicin-Sain L, Borghans JAM. Turnover of Murine Cytomegalovirus-Expanded CD8 + T Cells Is Similar to That of Memory Phenotype T Cells and Independent of the Magnitude of the Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:799-806. [PMID: 35091435 DOI: 10.4049/jimmunol.2100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.
Collapse
Affiliation(s)
- Mariona Baliu-Piqué
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xiaoyan Zheng
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arpit C Swain
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Sigrid A Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands; and
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research, Partner Site, Hannover-Braunschweig, Germany
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands;
| |
Collapse
|
9
|
Cao H, Mai J, Zhou Z, Li Z, Duan R, Watt J, Chen Z, Bandara RA, Li M, Ahn SK, Poon B, Christie-Holmes N, Gray-Owen SD, Banerjee A, Mossman K, Kozak R, Mubareka S, Rini JM, Hu J, Liu J. Intranasal HD-Ad vaccine protects the upper and lower respiratory tracts of hACE2 mice against SARS-CoV-2. Cell Biosci 2021; 11:202. [PMID: 34879865 PMCID: PMC8653804 DOI: 10.1186/s13578-021-00723-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Results Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. Conclusion Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00723-0.
Collapse
Affiliation(s)
- Huibi Cao
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Juntao Mai
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhichang Zhou
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rongqi Duan
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ziyan Chen
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ranmal Avinash Bandara
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ming Li
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Betty Poon
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Karen Mossman
- Department of Medicine Institute for Infectious Disease Research, McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
| | - Rob Kozak
- Sunnybrook Heath Sciences Centre, Toronto, ON, Canada
| | | | - James M Rini
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jim Hu
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Jun Liu
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Cupovic J, Ring SS, Onder L, Colston JM, Lütge M, Cheng HW, De Martin A, Provine NM, Flatz L, Oxenius A, Scandella E, Krebs P, Engeler D, Klenerman P, Ludewig B. Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8 + T cells. Nat Immunol 2021; 22:1042-1051. [PMID: 34267375 PMCID: PMC7611414 DOI: 10.1038/s41590-021-00969-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Collapse
Affiliation(s)
- Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia M Colston
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicholas M Provine
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Daniel Engeler
- Department of Urology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Chang J. Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Netw 2021; 21:e6. [PMID: 33728099 PMCID: PMC7937504 DOI: 10.4110/in.2021.21.e6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Adenovirus was originally used as a vector for gene therapy. In recent years, with the development of the next-generation vectors with increased safety and high immunogenicity to transgene products, its utility as a vaccine vector has continued to increase. Adenovirus-based vaccines are currently being tested not only to prevent various infectious diseases but also to be applied as cancer vaccines. In this review, I discuss the innate and adaptive aspects of the immunological characteristics of adenovirus vectors and further examine the current status of advanced adenovirus-based vaccine development. Various methods that can overcome the limitations of currently used adenoviruses as vaccine vehicles are also discussed. Through this study, I hope that vaccine development using adenovirus vectors will be expedited and more successful.
Collapse
Affiliation(s)
- Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
12
|
Canedo-Marroquín G, Saavedra F, Andrade CA, Berrios RV, Rodríguez-Guilarte L, Opazo MC, Riedel CA, Kalergis AM. SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Front Immunol 2020; 11:569760. [PMID: 33362758 PMCID: PMC7759609 DOI: 10.3389/fimmu.2020.569760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization (WHO) announced in March a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This new infectious disease was named Coronavirus Disease 19 (COVID-19), and at October 2020, more than 39,000,000 cases of SARS-CoV-2 have been detected worldwide leading to near 1,100,000 deaths. Clinically, COVID-19 is characterized by clinical manifestations, such as fever, dry cough, headache, and in more severe cases, respiratory distress. Moreover, neurological-, cardiac-, and renal-related symptoms have also been described. Clinical evidence suggests that migration of immune cells to the affected organs can produce an exacerbated release of proinflammatory mediators that contribute to disease and render the immune response as a major player during the development of the COVID-19 disease. Due to the current sanitary situation, the development of vaccines is imperative. Up to the date, 42 prototypes are being tested in humans in different clinical stages, with 10 vaccine candidates undergoing evaluation in phase III clinical trials. In the same way, the search for an effective treatment to approach the most severe cases is also in constant advancement. Several potential therapies have been tested since COVID-19 was described, including antivirals, antiparasitic and immune modulators. Recently, clinical trials with hydroxychloroquine-a promising drug in the beginning-were suspended. In addition, the Food and Drug Administration (FDA) approved convalescent serum administration as a treatment for SARS-CoV-2 patients. Moreover, monoclonal antibody therapy is also under development to neutralize the virus and prevent infection. In this article, we describe the clinical manifestations and the immunological information available about COVID-19 disease. Furthermore, we discuss current therapies under study and the development of vaccines to prevent this disease.
Collapse
Affiliation(s)
- Gisela Canedo-Marroquín
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Farides Saavedra
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berrios
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
van der Gracht ET, Schoonderwoerd MJ, van Duikeren S, Yilmaz AN, Behr FM, Colston JM, Lee LN, Yagita H, van Gisbergen KP, Hawinkels LJ, Koning F, Klenerman P, Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J Immunother Cancer 2020; 8:e001133. [PMID: 33293355 PMCID: PMC7725098 DOI: 10.1136/jitc-2020-001133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.
Collapse
Affiliation(s)
| | - Mark Ja Schoonderwoerd
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayse N Yilmaz
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Julia M Colston
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lian N Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gasteroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Capone S, Brown A, Hartnell F, Sorbo MD, Traboni C, Vassilev V, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E, Swadling L. Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. NPJ Vaccines 2020; 5:94. [PMID: 33083029 PMCID: PMC7550607 DOI: 10.1038/s41541-020-00240-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.
Collapse
Affiliation(s)
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cinzia Traboni
- ReiThera Srl, Via di Castel Romano, 100, 00128 Rome, Italy
- Present Address: Nouscom Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Baumleingasse 18, CH 4051 Basel, Switzerland
- CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present Address: Rayne Institute, University College London, London, UK
| |
Collapse
|
15
|
Davenport B, Eberlein J, Nguyen TT, Victorino F, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:2188-2206. [PMID: 32948682 DOI: 10.4049/jimmunol.2000254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Pathogen-specific memory T cells (TM) contribute to enhanced immune protection under conditions of reinfection, and their effective recruitment into a recall response relies, in part, on cues imparted by chemokines that coordinate their spatiotemporal positioning. An integrated perspective, however, needs to consider TM as a potentially relevant chemokine source themselves. In this study, we employed a comprehensive transcriptional/translational profiling strategy to delineate the identities, expression patterns, and dynamic regulation of chemokines produced by murine pathogen-specific TM CD8+TM, and to a lesser extent CD4+TM, are a prodigious source for six select chemokines (CCL1/3/4/5, CCL9/10, and XCL1) that collectively constitute a prominent and largely invariant signature across acute and chronic infections. Notably, constitutive CCL5 expression by CD8+TM serves as a unique functional imprint of prior antigenic experience; induced CCL1 production identifies highly polyfunctional CD8+ and CD4+TM subsets; long-term CD8+TM maintenance is associated with a pronounced increase of XCL1 production capacity; chemokines dominate the earliest stages of the CD8+TM recall response because of expeditious synthesis/secretion kinetics (CCL3/4/5) and low activation thresholds (CCL1/3/4/5/XCL1); and TM chemokine profiles modulated by persisting viral Ags exhibit both discrete functional deficits and a notable surplus. Nevertheless, recall responses and partial virus control in chronic infection appear little affected by the absence of major TM chemokines. Although specific contributions of TM-derived chemokines to enhanced immune protection therefore remain to be elucidated in other experimental scenarios, the ready visualization of TM chemokine-expression patterns permits a detailed stratification of TM functionalities that may be correlated with differentiation status, protective capacities, and potential fates.
Collapse
Affiliation(s)
- Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Welten SPM, Yermanos A, Baumann NS, Wagen F, Oetiker N, Sandu I, Pedrioli A, Oduro JD, Reddy ST, Cicin-Sain L, Held W, Oxenius A. Tcf1 + cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Commun 2020; 11:2295. [PMID: 32385253 PMCID: PMC7211020 DOI: 10.1038/s41467-020-16219-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cytomegalovirus-based vaccine vectors offer interesting opportunities for T cell-based vaccination purposes as CMV infection induces large numbers of functional effector-like cells that accumulate in peripheral tissues, a process termed memory inflation. Maintenance of high numbers of peripheral CD8 T cells requires continuous replenishment of the inflationary T cell pool. Here, we show that the inflationary T cell population contains a small subset of cells expressing the transcription factor Tcf1. These Tcf1+ cells resemble central memory T cells and are proliferation competent. Upon sensing viral reactivation events, Tcf1+ cells feed into the pool of peripheral Tcf1- cells and depletion of Tcf1+ cells hampers memory inflation. TCR repertoires of Tcf1+ and Tcf1- populations largely overlap, with the Tcf1+ population showing higher clonal diversity. These data show that Tcf1+ cells are necessary for sustaining the inflationary T cell response, and upholding this subset is likely critical for the success of CMV-based vaccination approaches.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Wagen
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Nathalie Oetiker
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
17
|
Colston JM, Hutchings C, Chinnakannan S, Highton A, Perez‐Shibayama C, Ludewig B, Klenerman P. Divergent memory responses driven by adenoviral vectors are impacted by epitope competition. Eur J Immunol 2019; 49:1356-1363. [PMID: 31106398 PMCID: PMC6772135 DOI: 10.1002/eji.201948143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 11/11/2022]
Abstract
Adenoviral vectors induce robust epitope-specific CD8+ T cell responses. Within the repertoire of responses generated both conventional memory evolution and the phenomenon of memory inflation are seen. The rules governing which epitopes inflate are not fully known, but may include a role for both antigen processing and competition. To investigate this, we looked at memory generated from vectors targeting the Gp33-41 (KAVYNFATC/K9C) epitope from the gp of lymphocytic choriomeningitis virus (LCMV) in mice. This well-described epitope has both the Gp33-41 and Gp34-41 epitopes embedded within it. Vaccination with a full-length gp or a minigene Ad-Gp33/K9C vector-induced conventional memory responses against the immunodominant Gp33/K9C epitope but a strong inflationary response against the Gp34/A8C epitope. These responses showed sustained in vivo function, with complete protection against LCMV infectious challenge. Given the unexpected competition between epitopes seen in the minigene model, we further tested epitope competition using the full-length Ad-LacZ (β-galactosidase) model. Generation of an Ad-LacZ vector with a single amino acid disruption of the inflationary β-gal96-103 /D8V epitope transformed the β-gal497-504 /I8V epitope from conventional to inflationary memory. This work collectively demonstrates the importance of epitope competition within adenoviral vector inserts and is of relevance to future studies using adenoviral vectored immunogens.
Collapse
Affiliation(s)
- Julia M Colston
- Nuffield Department of MedicinePeter Medawar Building for Pathogen Research, University of OxfordOxfordUK
- Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Claire Hutchings
- Nuffield Department of MedicinePeter Medawar Building for Pathogen Research, University of OxfordOxfordUK
| | - Senthil Chinnakannan
- Nuffield Department of MedicinePeter Medawar Building for Pathogen Research, University of OxfordOxfordUK
| | - Andrew Highton
- Nuffield Department of MedicinePeter Medawar Building for Pathogen Research, University of OxfordOxfordUK
| | | | - Burkhard Ludewig
- Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Paul Klenerman
- Nuffield Department of MedicinePeter Medawar Building for Pathogen Research, University of OxfordOxfordUK
| |
Collapse
|
18
|
Highton AJ, Zinser ME, Lee LN, Hutchings CL, De Lara C, Phetsouphanh C, Willberg CB, Gordon CL, Klenerman P, Marchi E. Single-cell transcriptome analysis of CD8 + T-cell memory inflation. Wellcome Open Res 2019; 4:78. [PMID: 31448339 PMCID: PMC6688724 DOI: 10.12688/wellcomeopenres.15115.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Persistent viruses such as murine cytomegalovirus (MCMV) and adenovirus-based vaccines induce strong, sustained CD8 + T-cell responses, described as memory "inflation". These retain functionality, home to peripheral organs and are associated with a distinct transcriptional program. Methods: To further define the nature of the transcriptional mechanisms underpinning memory inflation at different sites we used single-cell RNA sequencing of tetramer-sorted cells from MCMV-infected mice, analyzing transcriptional networks in virus-specific populations in the spleen and gut intra-epithelial lymphocytes (IEL). Results: We provide a transcriptional map of T-cell memory and define a module of gene expression, which distinguishes memory inflation in spleen from resident memory T-cells (T RM) in the gut. Conclusions: These data indicate that CD8 + T-cell memory in the gut epithelium induced by persistent viruses and vaccines has a distinct quality from both conventional memory and "inflationary" memory which may be relevant to protection against mucosal infections.
Collapse
Affiliation(s)
- Andrew J. Highton
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Madeleine E. Zinser
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Claire L. Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Catherine De Lara
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Chris B. Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX42PG, UK
| | - Claire L. Gordon
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX42PG, UK
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| |
Collapse
|
19
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
20
|
Marchi E, Lee LN, Klenerman P. Inflation vs. Exhaustion of Antiviral CD8+ T-Cell Populations in Persistent Infections: Two Sides of the Same Coin? Front Immunol 2019; 10:197. [PMID: 30894851 PMCID: PMC6414785 DOI: 10.3389/fimmu.2019.00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent virus infection can drive CD8+ T-cell responses which are markedly divergent in terms of frequency, phenotype, function, and distribution. On the one hand viruses such as Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 can drive T-cell "exhaustion", associated with upregulation of checkpoint molecules, loss of effector functions, and diminished control of viral replication. On the other, low-level persistence of viruses such as Cytomegalovirus and Adenoviral vaccines can drive memory "inflation," associated with sustained populations of CD8+ T-cells over time, with maintained effector functions and a distinct phenotype. Underpinning these divergent memory pools are distinct transcriptional patterns-we aimed to compare these to explore the regulation of CD8+ T-cell memory against persistent viruses at the level of molecular networks and address whether dysregulation of specific modules may account for the phenotype observed. By exploring in parallel and also merging existing datasets derived from different investigators we attempted to develop a combined model of inflation vs. exhaustion and investigate the gene expression networks that are shared in these memory pools. In such comparisons, co-ordination of a critical module of genes driven by Tbx21 is markedly different between the two memory types. These exploratory data highlight both the molecular similarities as well as the differences between inflation and exhaustion and we hypothesize that co-ordinated regulation of a key genetic module may underpin the markedly different resultant functions and phenotypes in vivo-an idea which could be tested directly in future experiments.
Collapse
Affiliation(s)
- Emanuele Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
21
|
Welten SPM, Sandu I, Baumann NS, Oxenius A. Memory CD8 T cell inflation vs tissue-resident memory T cells: Same patrollers, same controllers? Immunol Rev 2019; 283:161-175. [PMID: 29664565 DOI: 10.1111/imr.12649] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The induction of long-lived populations of memory T cells residing in peripheral tissues is of considerable interest for T cell-based vaccines, as they can execute immediate effector functions and thus provide protection in case of pathogen encounter at mucosal and barrier sites. Cytomegalovirus (CMV)-based vaccines support the induction and accumulation of a large population of effector memory CD8 T cells in peripheral tissues, in a process called memory inflation. Tissue-resident memory (TRM ) T cells, induced by various infections and vaccination regimens, constitute another subset of memory cells that take long-term residence in peripheral tissues. Both memory T cell subsets have evoked substantial interest in exploitation for vaccine purposes. However, a direct comparison between these two peripheral tissue-localizing memory T cell subsets with respect to their short- and long-term ability to provide protection against heterologous challenge is pending. Here, we discuss communalities and differences between TRM and inflationary CD8 T cells with respect to their development, maintenance, function, and protective capacity. In addition, we discuss differences and similarities between the transcriptional profiles of TRM and inflationary T cells, supporting the notion that they are distinct memory T cell populations.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Simonetti S, Natalini A, Folgori A, Capone S, Nicosia A, Santoni A, Di Rosa F. Antigen-specific CD8 T cells in cell cycle circulate in the blood after vaccination. Scand J Immunol 2019; 89:e12735. [PMID: 30488973 PMCID: PMC6850756 DOI: 10.1111/sji.12735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Although clonal expansion is a hallmark of adaptive immunity, the location(s) where antigen‐responding T cells enter cell cycle and complete it have been poorly explored. This lack of knowledge stems partially from the limited experimental approaches available. By using Ki67 plus DNA staining and a novel strategy for flow cytometry analysis, we distinguished antigen‐specific CD8 T cells in G0, in G1 and in S‐G2/M phases of cell cycle after intramuscular vaccination of BALB/c mice with antigen‐expressing viral vectors. Antigen‐specific cells in S‐G2/M were present at early times after vaccination in lymph nodes (LNs), spleen and, surprisingly, also in the blood, which is an unexpected site for cycling of normal non‐leukaemic cells. Most proliferating cells had high scatter profile and were undetected by current criteria of analysis, which under‐estimated up to 6 times antigen‐specific cell frequency in LNs. Our discovery of cycling antigen‐specific CD8 T cells in the blood opens promising translational perspectives.
Collapse
Affiliation(s)
- Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Basel, Switzerland.,CEINGE - Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Angela Santoni
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
23
|
Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, Capone S, Folgori A, Barnes E, Klenerman P. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8 + T Cells by Persistent Viruses and Vaccines. Cell Rep 2018; 23:768-782. [PMID: 29669283 PMCID: PMC5917822 DOI: 10.1016/j.celrep.2018.03.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8+ T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1int CD8+ T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans.
Collapse
Affiliation(s)
- Claire Louse Gordon
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Madeleine Zinser
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Andrew John Highton
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Stefania Capone
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- Reithera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX2 3SY, UK.
| |
Collapse
|
24
|
Baumann NS, Torti N, Welten SPM, Barnstorf I, Borsa M, Pallmer K, Oduro JD, Cicin-Sain L, Ikuta K, Ludewig B, Oxenius A. Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog 2018; 14:e1006993. [PMID: 29652930 PMCID: PMC5919076 DOI: 10.1371/journal.ppat.1006993] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) infection induces an atypical CD8 T cell response, termed inflationary, that is characterised by accumulation and maintenance of high numbers of effector memory like cells in circulation and peripheral tissues—a feature being successfully harnessed for vaccine purposes. Although stability of this population depends on recurrent antigen encounter, the requirements for prolonged survival in peripheral tissues remain unknown. Here, we reveal that murine CMV-specific inflationary CD8 T cells are maintained in an antigen-independent manner and have a half-life of 12 weeks in the lung tissue. This half-life is drastically longer than the one of phenotypically comparable inflationary effector cells. IL-15 alone, and none of other common γ-cytokines, was crucial for survival of inflationary cells in peripheral organs. IL-15, mainly produced by non-hematopoietic cells in lung tissue and being trans-presented, promoted inflationary T cell survival by increasing expression of Bcl-2. These results indicate that inflationary CD8 T cells are not just simply effector-like cells, rather they share properties of both effector and memory CD8 T cells and they appear to be long-lived cells compared to the effector cells from acute virus infections. A majority of the human population is infected with cytomegalovirus (CMV), which results in lifelong persistence due to viral latency. CMV induces remarkably strong and sustained effector memory-like CD8 T cell responses in circulation and peripheral tissues, also referred to as memory CD8 T cell "inflation". In tissues, these effector memory-like cells contribute to immunosurveillance and early control of CMV reactivation events. Due to the high numbers and effector-like functional properties of inflationary CD8 T cells in peripheral tissues, CMV-based vectors are gaining substantial interest in the context of T cell based vaccines that protect peripheral tissues against infections or tumors. Here, we investigated how the stable peripheral pool of inflationary CD8 T cells is maintained and show that inflationary CD8 T cells are long-lived T cells and have a markedly prolonged half-life compared to effector CD8 T cells. In peripheral organs such as lung, IL-15 cytokine is pivotal in promoting maintenance of inflationary cells by inducing expression of the anti-apoptotic molecule Bcl-2. We show that IL-15 is mainly expressed by non-hematopoietic cells in lung tissue and that IL-15 is trans-presented to the inflationary CD8 T cells in vivo. Thus, CMV-driven inflationary CD8 T cell responses represent a unique T cell subset in peripheral tissues that is regulated differently compared to TRM CD8 T cells emerging after vaccination or acute infections.
Collapse
Affiliation(s)
- Nicolas S. Baumann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Suzanne P. M. Welten
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jennifer D. Oduro
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Cicin-Sain L, Arens R. Exhaustion and Inflation at Antipodes of T Cell Responses to Chronic Virus Infection. Trends Microbiol 2017; 26:498-509. [PMID: 29249600 DOI: 10.1016/j.tim.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Viruses that have coevolved with their host establish chronic infections that are well tolerated by the host. Other viruses, that are partly adapted to their host, may induce chronic infections where persistent replication and viral antigen expression occur. The former induce highly functional and resilient CD8T cell responses called memory inflation. The latter induce dysfunctional and exhausted responses. The reasons compelling T cell responses towards inflationary or exhausted responses are only partly understood. In this review we compare the two conditions and describe mechanistic similarities and differences. We also provide a list of potential reasons why exhaustion or inflation occur in different virus infections. We propose that T cell-mediated transcriptional repression of viral gene expression provides a critical feature of inflation that allows peaceful virus and host coexistence. The virus is controlled, but its genome is not eradicated. If this mechanism is not available, as in the case of RNA viruses, the virus and the host are compelled to an arms race. If virus proliferation and spread proceed uncontrolled for too long, T cells are forced to strike a balance between viral control and tissue destruction, losing antiviral potency and facilitating virus persistence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute for Virology, Medical School Hannover, Hannover, Germany; German Center for Infection Research (DZIF), Partner site Hannover/Braunschweig, Germany.
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Lee LN, Bolinger B, Banki Z, de Lara C, Highton AJ, Colston JM, Hutchings C, Klenerman P. Adenoviral vaccine induction of CD8+ T cell memory inflation: Impact of co-infection and infection order. PLoS Pathog 2017; 13:e1006782. [PMID: 29281733 PMCID: PMC5760110 DOI: 10.1371/journal.ppat.1006782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/09/2018] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host's memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words).
Collapse
MESH Headings
- Adenovirus Infections, Human/immunology
- Adenovirus Infections, Human/prevention & control
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Human/pathogenicity
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Coinfection/immunology
- Coinfection/prevention & control
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Herpesviridae Infections/immunology
- Herpesviridae Infections/prevention & control
- Host-Pathogen Interactions/immunology
- Humans
- Immunologic Memory
- Lac Operon
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Muromegalovirus/genetics
- Muromegalovirus/immunology
- Muromegalovirus/pathogenicity
- Receptors, Interleukin-18/deficiency
- Receptors, Interleukin-18/genetics
- Receptors, Interleukin-18/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Lian N. Lee
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Beatrice Bolinger
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
- Schweizerischer Apothekerverband, pharmaSuisse, Bern, Switzerland
| | - Zoltan Banki
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Catherine de Lara
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Andrew J. Highton
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Julia M. Colston
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Claire Hutchings
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building and Translational Gastroenterology Unit, Oxford, United Kingdom
| |
Collapse
|
28
|
Rojas JM, Avia M, Pascual E, Sevilla N, Martín V. Vaccination with recombinant adenovirus expressing peste des petits ruminants virus-F or -H proteins elicits T cell responses to epitopes that arises during PPRV infection. Vet Res 2017; 48:79. [PMID: 29157291 PMCID: PMC5697415 DOI: 10.1186/s13567-017-0482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain.
| |
Collapse
|
29
|
Reeves PM, Sluder AE, Paul SR, Scholzen A, Kashiwagi S, Poznansky MC. Application and utility of mass cytometry in vaccine development. FASEB J 2017; 32:5-15. [PMID: 29092906 DOI: 10.1096/fj.201700325r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.
Collapse
Affiliation(s)
- Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | | | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| |
Collapse
|
30
|
Vitelli A, Folgori A, Scarselli E, Colloca S, Capone S, Nicosia A. Chimpanzee adenoviral vectors as vaccines - challenges to move the technology into the fast lane. Expert Rev Vaccines 2017; 16:1241-1252. [PMID: 29047309 DOI: 10.1080/14760584.2017.1394842] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In recent years, replication-defective chimpanzee-derived adenoviruses have been extensively evaluated as genetic vaccines. These vectors share desirable properties with human adenoviruses like the broad tissue tropism and the ease of large-scale manufacturing. Additionally, chimpanzee adenoviruses have the advantage to overcome the negative impact of pre-existing anti-human adenovirus immunity. Areas covered: Here the authors review current pre-clinical research and clinical trials that utilize chimpanzee-derived adenoviral vectors as vaccines. A wealth of studies are ongoing to evaluate different vector backbones and administration routes with the aim of improving immune responses. The challenges associated with the identification of an optimal chimpanzee vector and immunization strategies for different immunological outcomes will be discussed. Expert commentary: The demonstration that chimpanzee adenoviruses can be safely used in humans has paved the way to the use of a whole new array of vectors of different serotypes. However, so far no predictive signature of vector immunity in humans has been identified. The high magnitude of T cell responses elicited by chimpanzee adenoviruses has allowed dissecting the qualitative aspects that may be important for protective immunity. Ultimately, only the results from the most clinically advanced products will help establish the efficacy of the vaccine vector platform in the field of disease prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfredo Nicosia
- a ReiThera , Rome , Italy.,c CEINGE , Naples , Italy.,d Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Naples , Italy
| |
Collapse
|
31
|
Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, Barnes EJ, Sharpe AH, Haining WN, Yosef N. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res 2017; 45:e148. [PMID: 28934479 PMCID: PMC5766189 DOI: 10.1093/nar/gkx615] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV.
Collapse
Affiliation(s)
- Shaked Afik
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kevin Bi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Jernej Godec
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Ulrike Gerdemann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Leo Swadling
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Paul Klenerman
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Eleanor J Barnes
- Translational Gastroenterology Unit, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.,Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, USA.,Chan Zuckerberg Biohub
| |
Collapse
|
32
|
Abana CO, Pilkinton MA, Gaudieri S, Chopra A, McDonnell WJ, Wanjalla C, Barnett L, Gangula R, Hager C, Jung DK, Engelhardt BG, Jagasia MH, Klenerman P, Phillips EJ, Koelle DM, Kalams SA, Mallal SA. Cytomegalovirus (CMV) Epitope-Specific CD4 + T Cells Are Inflated in HIV + CMV + Subjects. THE JOURNAL OF IMMUNOLOGY 2017; 199:3187-3201. [PMID: 28972094 DOI: 10.4049/jimmunol.1700851] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Select CMV epitopes drive life-long CD8+ T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4+ T cells specific for human CMV (HCMV) are elevated in HIV+ HCMV+ subjects. To determine whether HCMV epitope-specific CD4+ T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4+ T cells in coinfected HLA-DR7+ long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4+ T cells were inflated among these HIV+ subjects compared with those from an HIV- HCMV+ HLA-DR7+ cohort or with HLA-DR7-restricted CD4+ T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4+ T cells consisted of effector memory or effector memory-RA+ subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX3CR1, CD38, or HLA-DR but less often coexpressed CD38+ and HLA-DR+ The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4+ T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.
Collapse
Affiliation(s)
- Chike O Abana
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark A Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Silvana Gaudieri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,School of Human Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Celestine Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Cindy Hager
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dae K Jung
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Brian G Engelhardt
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Madan H Jagasia
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Elizabeth J Phillips
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David M Koelle
- Department of Medicine, Laboratory Medicine, and Global Health, University of Washington, Seattle, WA 98195
| | - Spyros A Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
33
|
Di Rosa F, Watts TH. Editorial: Bone Marrow T Cells at the Center Stage in Immunological Memory. Front Immunol 2016; 7:596. [PMID: 28018359 PMCID: PMC5155117 DOI: 10.3389/fimmu.2016.00596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine, Sapienza University , Rome , Italy
| | - Tania H Watts
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
34
|
Swadling L, Halliday J, Kelly C, Brown A, Capone S, Ansari MA, Bonsall D, Richardson R, Hartnell F, Collier J, Ammendola V, Del Sorbo M, Von Delft A, Traboni C, Hill AVS, Colloca S, Nicosia A, Cortese R, Klenerman P, Folgori A, Barnes E. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 2016; 4:E27. [PMID: 27490575 PMCID: PMC5041021 DOI: 10.3390/vaccines4030027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were only induced by vaccination when there was a sequence mismatch between the autologous virus and the vaccine immunogen. However, these T-cells were not cross-reactive with the endogenous viral variant epitopes. Conversely, when there was complete homology between the immunogen and circulating virus at a given epitope T-cells were not induced. T-cell induction following vaccination had no significant impact on HCV viral load. In vitro T-cell culture experiments identified the presence of T-cells at baseline that could be expanded by vaccination; thus, HCV-specific T-cells may have been expanded from pre-existing low-level memory T-cell populations that had been exposed to HCV antigens during natural infection, explaining the partial T-cell dysfunction. In conclusion, vaccination with ChAd3-NSmut and MVA-NSmut prime/boost, a potent vaccine regimen previously optimized in healthy volunteers was unable to reconstitute HCV-specific T-cell immunity in HCV infected patients. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Stefania Capone
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Felicity Hartnell
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Jane Collier
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Virginia Ammendola
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | | | - Annette Von Delft
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Cinzia Traboni
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Adrian V S Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Stefano Colloca
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Alfredo Nicosia
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
- CEINGE, via Gaetano Salvatore 486, Naples 80145, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Antonella Folgori
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
35
|
Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AVS, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol 2016; 41:47-54. [DOI: 10.1016/j.coi.2016.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
36
|
Abstract
Human cytomegalovirus (HCMV) establishes a latent infection that generally remains asymptomatic in immune-competent hosts for decades but can cause serious illness in immune-compromised individuals. The long-term control of CMV requires considerable effort from the host immune system and has a lasting impact on the profile of the immune system. One hallmark of CMV infection is the maintenance of large populations of CMV-specific memory CD8(+) T cells - a phenomenon termed memory inflation - and emerging data suggest that memory inflation is associated with impaired immunity in the elderly. In this Review, we discuss the molecular triggers that promote memory inflation, the idea that memory inflation could be considered a natural pathway of T cell maturation that could be harnessed in vaccination, and the broader implications of CMV infection and the T cell responses it elicits.
Collapse
|
37
|
Di Rosa F. Commentary: Memory CD8(+) T cells colocalize with IL-7(+) stromal cells in bone marrow and rest in terms of proliferation and transcription. Front Immunol 2016; 7:102. [PMID: 27064670 PMCID: PMC4814761 DOI: 10.3389/fimmu.2016.00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, c/o Department of Molecular Medicine, Sapienza University , Rome , Italy
| |
Collapse
|
38
|
Colston JM, Bolinger B, Cottingham MG, Gilbert S, Klenerman P. Modification of Antigen Impacts on Memory Quality after Adenovirus Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 196:3354-63. [PMID: 26944930 DOI: 10.4049/jimmunol.1502687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022]
Abstract
The establishment of robust T cell memory is critical for the development of novel vaccines for infections and cancers. Classical memory generated by CD8(+)T cells is characterized by contracted populations homing to lymphoid organs. T cell memory inflation, as seen for example after CMV infection, is the maintenance of expanded, functional, tissue-associated effector memory cell pools. Such memory pools may also be induced after adenovirus vaccination, and we recently defined common transcriptional and phenotypic features of these populations in mice and humans. However, the rules that govern which epitopes drive memory inflation compared with classical memory are not fully defined, and thus it is not currently possible to direct this process. We used our adenoviral model of memory inflation to first investigate the role of the promoter and then the role of the epitope context in determining memory formation. Specifically, we tested the hypothesis that conventional memory could be converted to inflationary memory by simple presentation of the Ag in the form of minigene vectors. When epitopes from LacZ and murine CMV that normally induce classical memory responses were presented as minigenes, they induced clear memory inflation. These data demonstrate that, regardless of the transgene promoter, the polypeptide context of a CD8(+)T cell epitope may determine whether classical or inflating memory responses are induced. The ability to direct this process by the use of minigenes is relevant to the design of vaccines and understanding of immune responses to pathogens.
Collapse
Affiliation(s)
- Julia M Colston
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Beatrice Bolinger
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | | | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kindgom
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| |
Collapse
|