1
|
Martinez B, Peplow PV. MicroRNAs as potential diagnostic biomarkers for bipolar disorder. Neural Regen Res 2025; 20:1681-1695. [PMID: 39104098 PMCID: PMC11688563 DOI: 10.4103/nrr.nrr-d-23-01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 08/07/2024] Open
Abstract
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in blood- and brain-based materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p, -30d-5p, -330-5p, -378a-5p, -21-3p, -330-3p, -345-5p in whole blood, miR-19b-3p, -1180-3p, -125a-5p, let-7e-5p in blood plasma, and miR-7-5p, -23b-5p, -142-3p, -221-5p, -370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptor-site binders (drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics (drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and -29c with miR-30e-3p and -526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p, -29a-3p, -106a-5p, -106b-5p, -107, -125a-3p, -125b-5p and of miR-107, -125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p, -107 was found for manic compared to euthymic patients. In two other studies using blood plasma, downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134, -152, -607, -633, -652, -155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a, -34b, -34c, -137, and -140-3p, -21-3p, -30d-5p, -330-5p, -378a-5p, -134, -19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Wang C, Uddin M, Wani A, Graham Z, Ratanatharathorn A, Aiello A, Koenen K, Maggio M, Wildman D. The relationship between social adversity, micro-RNA expression and post-traumatic stress in a prospective, community-based cohort. RESEARCH SQUARE 2025:rs.3.rs-5867503. [PMID: 40166034 PMCID: PMC11957190 DOI: 10.21203/rs.3.rs-5867503/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Epigenetics influence and are influenced by the impact of social and environmental challenges on biological outcomes. Therefore, pinpointing epigenetic factors associated with social adversity and traumatic stress enables understanding of the mechanisms underlying vulnerability and resilience. We hypothesized that micro-RNAs (miRNAs) expression may be associated with post-traumatic stress disorder symptom severity (i.e., PTSS) following exposure to social adversity. To test this hypothesis, we leveraged blood-derived RNA samples (n=632) and social adversity data from 483 unique participants in the Detroit Neighborhood Health Study, a community-based, prospective cohort of predominantly African Americans. Results identified 86 miRNAs that are associated with social adversities (financial difficulties, perceived discrimination, cumulative trauma) and PTSS. These miRNAs are primarily involved in the immune response, brain and neural function, as well as cell cycle and differentiation, and 22(25%) have previously been associated with conditions related to PTSD, including traumatic brain injury and stress response. Our findings offer a fresh perspective on understanding the epigenetic role of miRNA in the interaction between social adversity and traumatic stress.
Collapse
|
3
|
Mert A, Yucens B, Karagur ER, Akca H, Tumkaya S, Atesci FC. miRNAs in Major Depression: Possible Association of miR-17 and miR-92 with Childhood Traumas. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:133-143. [PMID: 39820119 PMCID: PMC11747731 DOI: 10.9758/cpn.24.1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 01/19/2025]
Abstract
Objective Psychosocial and genetic factors are considered to play roles in the etiological mechanisms of major depressive disorder (MDD). The involvement of miRNAs in the etiopathogenesis of depression and childhood traumas is still unclear. This study aims to reveal potential differences in miRNA levels between patients with depression and healthy individuals and assess their connection to childhood traumas. Methods This study included fifty patients with MDD and 33 healthy controls. The targeting of the 3'UTR regions of the BDNF, SLC6A4/SERT/5-HTT, HTR1a, and HTR2a genes by 8 miRNAs was analyzed to explore their potential involvement in depression and childhood traumas. The Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the Childhood Trauma Questionnaire-28 were administered to the participants. Results Patients with MDD exhibited significantly lower expression levels of miR-335 and miR-4775, as well as significantly higher expression levels of miR-15, miR-16, miR-17, miR-92, miR-182, and miR-206, when compared to healthy controls using the 2-(ΔΔCt) method. Only miR-17 and miR-92 were associated with childhood traumas in the patients with depression. Conclusion Our research reveals a possible involvement of miRNAs in the pathophysiology of depression and highlights a potential relationship between childhood traumas and specific miRNAs in depressed patients.
Collapse
Affiliation(s)
- Alper Mert
- Department of Psychiatry, Servergazi State Hospital, Denizli, Türkiye
| | - Bengu Yucens
- Department of Psychiatry, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Ege Riza Karagur
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Hakan Akca
- Department of Medical Genetics, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | - Selim Tumkaya
- Department of Psychiatry, Pamukkale University Faculty of Medicine, Denizli, Türkiye
| | | |
Collapse
|
4
|
Schmidt AT, Hicks SD, Bergquist BK, Maloney KA, Dennis VE, Bammel AC. Preliminary Evidence for Neuronal Dysfunction Following Adverse Childhood Experiences: An Investigation of Salivary MicroRNA Within a High-Risk Youth Sample. Genes (Basel) 2024; 15:1433. [PMID: 39596633 PMCID: PMC11593590 DOI: 10.3390/genes15111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Adverse childhood experiences (ACEs) are potent drivers of psychopathology and neurological disorders, especially within minoritized populations. Nonetheless, we lack a coherent understanding of the neuronal mechanisms through which ACEs impact gene expression and, thereby, the development of psychopathology. Methods: This observational pilot study used a novel marker of neuronal functioning (brain-derived micro ribonucleic acids, or miRNAs) collected via saliva to explore the connection between ACEs and neuronal gene expression in 45 adolescents with a collectively high ACE exposure (26 males and 19 females of diverse races/ethnicities, with six cumulative ACEs on average). We aimed to determine the feasibility of using salivary microRNA for probing neuronal gene expression with the goal of identifying cellular processes and genetic pathways perturbed by childhood adversity. Results: A total of 274 miRNAs exhibited reliable salivary expression (raw counts > 10 in > 10% of samples). Fourteen (5.1%) were associated with cumulative ACE exposure (p < 0.05; r's ≥ 0.31). ACE exposure correlated negatively with miR-92b-3p, 145a-5p, 31-5p, and 3065-5p, and positively with miR-15b-5p, 30b-5p, 30c-5p, 30e-3p, 199a-3p, 223-3p, 338-3p, 338-5p, 542-3p, and 582-5p. Most relations remained significant after controlling for multiple comparisons and potential retrospective bias in ACE reporting for miRNAs with particularly strong relations (p < 0.03). We examined KEGG pathways targeted by miRNAs associated with total ACE scores. Results indicated putative miRNA targets over-represented 47 KEGG pathways (adjusted p < 0.05) involved in neuronal signaling, brain development, and neuroinflammation. Conclusions: Although preliminary and with a small sample, the findings represent a novel contribution to the understanding of how childhood adversity impacts neuronal gene expression via miRNA signaling.
Collapse
Affiliation(s)
- Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Center for Translational Neuroscience and Therapeutics, TTUHSC, Lubbock, TX 79409, USA
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Becca K. Bergquist
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kelsey A. Maloney
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Victoria E. Dennis
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alexandra C. Bammel
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Park S, Raghunathan VK, Ramarapu R, Moshiri A, Yiu G, Casanova MI, Cosert K, McCorkell M, Leonard BC, Thomasy SM. Biomechanic, proteomic and miRNA transcriptional changes in the trabecular meshwork of primates injected with intravitreal triamcinolone. Vision Res 2024; 222:108456. [PMID: 38991466 DOI: 10.1016/j.visres.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Although biomechanical changes of the trabecular meshwork (TM) are important to the pathogenesis of glucocorticoids-induced ocular hypertension (GC-OHT), there is a knowledge gap in the underlying molecular mechanisms of the development of it. In this study, we performed intravitreal triamcinolone injection (IVTA) in one eye of 3 rhesus macaques. Following IVTA, we assessed TM stiffness using atomic force microscopy and investigated changes in proteomic and miRNA expression profiles. One of 3 macaques developed GC-OHT with a difference in intraocular pressure of 4.2 mmHg and a stiffer TM with a mean increase in elastic moduli of 0.60 kPa versus the non-injected control eye. In the IVTA-treated eyes, proteins associated with extracellular matrix remodeling, cytoskeletal rearrangement, and mitochondrial oxidoreductation were significantly upregulated. The significantly upregulated miR-29b and downregulated miR-335-5p post-IVTA supported the role of oxidative stress and mitophagy in the GC-mediated biomechanical changes in TM, respectively. The significant upregulation of miR-15/16 cluster post-IVTA may indicate a resultant TM cell apoptosis contributing to the increase in outflow resistance. Despite the small sample size, these results expand our knowledge of GC-mediated responses in the TM and furthermore, may help explain steroid responsiveness in clinical settings.
Collapse
Affiliation(s)
- Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | | | - Raneesh Ramarapu
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, 95817, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, 95817, USA
| | - M Isabel Casanova
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Krista Cosert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Michelle McCorkell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, 95817, USA; California National Primate Research Center, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Israel-Elgali I, Pan H, Oved K, Pillar N, Levy G, Barak B, Carneiro A, Gurwitz D, Shomron N. Impaired myelin ultrastructure is reversed by citalopram treatment in a mouse model for major depressive disorder. J Psychiatr Res 2023; 166:100-114. [PMID: 37757703 DOI: 10.1016/j.jpsychires.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Major depressive disorder (MDD) is the most common and widespread mental disorder. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD. The relation between the inhibition of serotonin reuptake in the central nervous system and remission from MDD remains controversial, as reuptake inhibition occurs rapidly, but remission from MDD takes weeks to months. Myelination-related deficits and white matter abnormalities were shown to be involved in psychiatric disorders such as MDD. This may explain the delay in remission following SSRI administration. The raphe nuclei (RN), located in the brain stem, consist of clusters of serotonergic (5-HT) neurons that project to almost all regions of the brain. Thus, the RN are an intriguing area for research of the potential effect of SSRI on myelination, and their involvement in MDD. MicroRNAs (miRNAs) regulate many biological features that might be altered by antidepressants. Two cohorts of chronic unpredictable stress (CUS) mouse model for depression underwent behavioral tests for evaluating stress, anxiety, and depression levels. Following application of the CUS protocol and treatment with the SSRI, citalopram, 48 mice of the second cohort were tested via magnetic resonance imaging and diffusion tensor imaging for differences in brain white matter tracts. RN and superior colliculus were excised from both cohorts and measured for changes in miRNAs, mRNA, and protein levels of candidate genes. Using MRI-DTI scans we found lower fractional anisotropy and axial diffusivity in brains of stressed mice. Moreover, both miR-30b-5p and miR-101a-3p were found to be downregulated in the RN following CUS, and upregulated following CUS and citalopram treatment. The direct binding of these miRNAs to Qki, and the subsequent effects on mRNA and protein levels of myelin basic protein (Mbp), indicated involvement of these miRNAs in myelination ultrastructure processes in the RN, in response to CUS followed by SSRI treatment. We suggest that SSRIs are implicated in repairing myelin deficits resulting from chronic stress that leads to depression.
Collapse
Affiliation(s)
- Ifat Israel-Elgali
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hope Pan
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Keren Oved
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Gurwitz
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Noam Shomron
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel; Tel Aviv University Innovation Laboratories (TILabs), Tel Aviv, Israel.
| |
Collapse
|
7
|
Rivi V, Rigillo G, Toscano Y, Benatti C, Blom JMC. Narrative Review of the Complex Interaction between Pain and Trauma in Children: A Focus on Biological Memory, Preclinical Data, and Epigenetic Processes. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1217. [PMID: 37508714 PMCID: PMC10378710 DOI: 10.3390/children10071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ylenia Toscano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna Maria Catharina Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
8
|
Krammer UDB, Lerch ML, Haslberger AG, Hippe B. MiR-10a, miR-15a, let-7a, and let-7g expression as stress-relevant biomarkers to assess acute or chronic psychological stress and mental health in human capillary blood. Mol Biol Rep 2023; 50:5647-5654. [PMID: 37193801 PMCID: PMC10289991 DOI: 10.1007/s11033-023-08467-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Psychological stress, as an important cofactor in the development of many acute and chronic diseases, is crucial for general health or well-being, and improved markers are needed to distinguish situations of progressive pathological development, such as depression, anxiety, or burnout, to be recognized at an early stage. Epigenetic biomarkers play an important role in the early detection and treatment of complex diseases such as cancer, and metabolic or mental disorders. Therefore, this study aimed to identify so-called miRNAs, which would be suitable as stress-related biomarkers. METHODS AND RESULTS In this study, 173 participants (36.4% males, and 63.6% females) were interviewed about stress, stress-related diseases, lifestyle, and diet to assess their acute and chronic psychological stress status. Using qPCR analysis, 13 different miRNAs (miR-10a-5p, miR-15a-5p, miR-16-5p, miR-19b-3p, miR-26b-5p, miR-29c-3p, miR-106b-5p, miR-126-3p, miR-142-3p, let-7a-5p, let-7g-5p, miR-21-5p, and miR-877-5p) were analyzed in dried capillary blood samples. Four miRNAs were identified, miR-10a-5p, miR-15a-5p, let-7a-5p, and let-7g-5p (p < 0.05), which could be used as possible candidates for measuring pathological forms of acute or chronic stress. Let-7a-5p, let-7g-5p, and miR-15a-5p (p < 0.05) were also significantly higher in subjects with at least one stress-related disease. Further, correlations were identified between let-7a-5p and meat consumption (p < 0.05) and between miR-15a-5p and coffee consumption (p < 0.05). CONCLUSION The examination of these four miRNAs as biomarkers using a minimally invasive method offers the possibility of detecting health problems at an early stage and counteracting them to maintain general and mental health.
Collapse
Affiliation(s)
- Ulrike D B Krammer
- Department of Nutritional Science, University of Vienna, 1090, Vienna, Austria
- HealthBioCare GmbH, 1090, Vienna, Austria
| | - Mariam L Lerch
- Department of Nutritional Science, University of Vienna, 1090, Vienna, Austria
| | | | - Berit Hippe
- Department of Nutritional Science, University of Vienna, 1090, Vienna, Austria.
- HealthBioCare GmbH, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
10
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
11
|
Cannabidiol Modulates Alterations in PFC microRNAs in a Rat Model of Depression. Int J Mol Sci 2023; 24:ijms24032052. [PMID: 36768376 PMCID: PMC9953518 DOI: 10.3390/ijms24032052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Cannabidiol (CBD) is a potential antidepressant agent. We examined the association between the antidepressant effects of CBD and alterations in brain microRNAs in the unpredictable chronic mild stress (UCMS) model for depression. UCMS male rats were injected with vehicle or CBD (10 mg/kg) and tested for immobility time in the forced swim test. Alterations in miRNAs (miR16, miR124, miR135a) and genes that encode for the 5HT1a receptor, the serotonergic transporter SERT, β-catenin, and CB1 were examined. UCMS increased immobility time in a forced swim test (i.e., depressive-like behavior) and altered the expression of miRNAs and mRNA in the ventromedial prefrontal cortex (vmPFC), raphe nucleus, and nucleus accumbens. Importantly, CBD restored UCMS-induced upregulation in miR-16 and miR-135 in the vmPFC as well as the increase in immobility time. CBD also restored the UCMS-induced decrease in htr1a, the gene that encodes for the serotonergic 5HT1a receptor; using a pharmacological approach, we found that the 5HT1a receptor antagonist WAY100135 blocked the antidepressant-like effect of CBD on immobility time. Our findings suggest that the antidepressant effects of CBD in a rat model for depression are associated with alterations in miR-16 and miR-135 in the vmPFC and are mediated by the 5HT1a receptor.
Collapse
|
12
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Ran LY, Kong YT, Xiang JJ, Zeng Q, Zhang CY, Shi L, Qiu HT, Liu C, Wu LL, Li YL, Chen JM, Ai M, Wang W, Kuang L. Serum extracellular vesicle microRNA dysregulation and childhood trauma in adolescents with major depressive disorder. Bosn J Basic Med Sci 2022; 22:959-971. [PMID: 35659238 PMCID: PMC9589301 DOI: 10.17305/bjbms.2022.7110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 07/20/2023] Open
Abstract
Major depressive disorder (MDD) seriously endangers adolescent mental and physical health. Extracellular vesicles (EVs) are mediators of cellular communication and are involved in many physiological brain processes. Although EV miRNAshave been implicated in adults with major psychiatric disorders, investigation into their effects in adolescent MDDremains scarce. In discovery set, we conducted a genome-wide miRNA sequencing of serum EVs from 9 untreated adolescents with MDD and 8 matched healthy controls (HCs), identifying 32 differentially expressed miRNAs (18 upregulated and 14 downregulated). In the validation set, 8 differentially expressed and highly enriched miRNAs were verified in independent samples using RT-PCR, with 4 (miR-450a-2-3p, miR-3691-5p, miR-556-3p, and miR-2115-3p) of the 8 miRNAs found to be significantly elevated in 34 untreated adolescents with MDD compared with 38 HCs and consistent with the sequencing results. After the Bonferroni correction, we found that three miRNAs (miR-450a-2-3p, miR-556-3p, and miR-2115-3p) were still significantly different. Among them, miR-450a-2-3p showed the most markeddifferential expression and was able to diagnose disease with 67.6% sensitivity and 84.2% specificity. Furthermore, miR-450a-2-3p partially mediated the associations between total childhood trauma, emotional abuse, and physical neglect and adolescent MDD. We also found that the combination of miR-450a-2-3p and emotional abuse could effectively diagnose MDD in adolescents with 82.4% sensitivity and 81.6% specificity. Our data demonstrate the association of serum EV miRNA dysregulation with MDD pathophysiology and, furthermore, show that miRNAs may mediate the relationship between early stress and MDD susceptibility. We also provide a valid integrated model for the diagnosis of adolescent MDD.
Collapse
Affiliation(s)
- Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Ting Kong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao-Jiao Xiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chen-Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Li Wu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Lan Li
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Mei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
FKBP51 in the Oval Bed Nucleus of the Stria Terminalis Regulates Anxiety-Like Behavior. eNeuro 2021; 8:ENEURO.0425-21.2021. [PMID: 34872938 PMCID: PMC8687485 DOI: 10.1523/eneuro.0425-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
The cochaperone FKBP51, encoded by the Fkbp5 gene, has been identified as central risk factor for anxiety-related disorders and stress system dysregulation. In the brain, the oval bed nucleus of the stria terminalis (ovBNST) has been implicated in stress-induced anxiety. However, the role of Fkbp5 in the ovBNST and its impact on anxiety-like behavior have remained unknown. Here, we show in mice that Fkbp5 in the ovBNST is reactive to acute stress and coexpressed with the stress-regulated neuropeptides Tac2 and Crh Subsequently, results obtained from viral-mediated manipulation indicate that Fkbp5 overexpression (OE) in the ovBNST results in an anxiolytic-like tendency regarding behavior and endocrinology, whereas a Fkbp5 knock-out (KO) exposed a clear anxiogenic phenotype, indicating that native ovBNST expression and regulation is necessary for normal anxiety-related behavior. Notably, our data suggests that a stress-induced increase of Fkbp5 in the ovBNST may in fact have a protective role, leading to a transient decrease in anxiety and suppression of a future stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation. Together, our findings provide a first insight into the previously unknown relationship and effects of Fkbp5 and the ovBNST on anxiety-like behavior and HPA axis functioning.
Collapse
|
15
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
16
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
17
|
Thumfart KM, Jawaid A, Bright K, Flachsmann M, Mansuy IM. Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci Biobehav Rev 2021; 132:1049-1066. [PMID: 34742726 DOI: 10.1016/j.neubiorev.2021.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Childhood trauma (CT) can have persistent effects on the brain and is one of the major risk factors for neuropsychiatric diseases in adulthood. Recent advances in the field of epigenetics suggest that epigenetic factors such as DNA methylation and histone modifications, as well as regulatory processes involving non-coding RNA are associated with the long-term sequelae of CT. This narrative review summarizes current knowledge on the epigenetic basis of CT and describes studies in animal models and human subjects examining how the epigenome and transcriptome are modified by CT in the brain. It discusses psychological and pharmacological interventions that can counteract epigenetic changes induced by CT and the need to establish longitudinal assessment after CT for developing more effective diagnostics and treatment strategies based on epigenetic targets.
Collapse
Affiliation(s)
- Kristina M Thumfart
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland; Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, Warsaw, 02-093, Poland
| | - Kristina Bright
- Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Marc Flachsmann
- Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
18
|
The miRNome of Depression. Int J Mol Sci 2021; 22:ijms222111312. [PMID: 34768740 PMCID: PMC8582693 DOI: 10.3390/ijms222111312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Depression is an effect of complex interactions between genetic, epigenetic and environmental factors. It is well established that stress responses are associated with multiple modest and often dynamic molecular changes in the homeostatic balance, rather than with a single genetic factor that has a strong phenotypic penetration. As depression is a multifaceted phenotype, it is important to study biochemical pathways that can regulate the overall allostasis of the brain. One such biological system that has the potential to fine-tune a multitude of diverse molecular processes is RNA interference (RNAi). RNAi is an epigenetic process showing a very low level of evolutionary diversity, and relies on the posttranscriptional regulation of gene expression using, in the case of mammals, primarily short (17–23 nucleotides) noncoding RNA transcripts called microRNAs (miRNA). In this review, our objective was to examine, summarize and discuss recent advances in the field of biomedical and clinical research on the role of miRNA-mediated regulation of gene expression in the development of depression. We focused on studies investigating post-mortem brain tissue of individuals with depression, as well as research aiming to elucidate the biomarker potential of miRNAs in depression and antidepressant response.
Collapse
|
19
|
The Molecular Biology of Susceptibility to Post-Traumatic Stress Disorder: Highlights of Epigenetics and Epigenomics. Int J Mol Sci 2021; 22:ijms221910743. [PMID: 34639084 PMCID: PMC8509551 DOI: 10.3390/ijms221910743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world’s population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80–90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.
Collapse
|
20
|
Wang H. MicroRNAs, Multiple Sclerosis, and Depression. Int J Mol Sci 2021; 22:ijms22157802. [PMID: 34360568 PMCID: PMC8346048 DOI: 10.3390/ijms22157802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
21
|
Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. Int J Mol Sci 2021; 22:ijms22105157. [PMID: 34068160 PMCID: PMC8153003 DOI: 10.3390/ijms22105157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder occurring in susceptible individuals following a traumatic event. Understanding the mechanisms subserving trauma susceptibility/resilience is essential to develop new effective treatments. Increasing evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), may play a prominent role in mediating trauma susceptibility/resilience. In this study, we evaluated the transcriptional expression of two key PTSD-related genes (FKBP5 and BDNF) and the relative targeting miRNAs (miR-15a-5p, miR-497a-5p, miR-511-5p, let-7d-5p) in brain areas of PTSD-related susceptible and resilient mice identified through our recently developed mouse model of PTSD (arousal-based individual screening (AIS) model). We observed lower transcript levels of miR-15a-5p, miR-497a-5p, and miR-511a-5p in the hippocampus and hypothalamus of susceptible mice compared to resilient mice, suggesting that the expression of these miRNAs could discriminate the two different phenotypes of stress-exposed mice. These miRNA variations could contribute, individually or synergically, to the inversely correlated transcript levels of FKBP5 and BDNF. Conversely, in the medial prefrontal cortex, downregulation of miR-15a-5p, miR-511-5p, and let-7d-5p was observed both in susceptible and resilient mice, and not accompanied by changes in their mRNA targets. Furthermore, miRNA expression in the different brain areas correlated to stress-induced behavioral scores (arousal score, avoidance-like score, social memory score and PTSD-like score), suggesting a linear connection between miRNA-based epigenetic modulation and stress-induced phenotypes. Pathway analysis of a miRNA network showed a statistically significant enrichment of molecular processes related to PTSD and stress. In conclusion, our results indicate that PTSD susceptibility/resilience might be shaped by brain-area-dependent modulation of miRNAs targeting FKBP5, BDNF, and other stress-related genes.
Collapse
|
22
|
Martins HC, Schratt G. MicroRNA-dependent control of neuroplasticity in affective disorders. Transl Psychiatry 2021; 11:263. [PMID: 33941769 PMCID: PMC8093191 DOI: 10.1038/s41398-021-01379-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Affective disorders are a group of neuropsychiatric disorders characterized by severe mood dysregulations accompanied by sleep, eating, cognitive, and attention disturbances, as well as recurring thoughts of suicide. Clinical studies consistently show that affective disorders are associated with reduced size of brain regions critical for mood and cognition, neuronal atrophy, and synaptic loss in these regions. However, the molecular mechanisms that mediate these changes and thereby increase the susceptibility to develop affective disorders remain poorly understood. MicroRNAs (miRNAs or miRs) are small regulatory RNAs that repress gene expression by binding to the 3'UTR of mRNAs. They have the ability to bind to hundreds of target mRNAs and to regulate entire gene networks and cellular pathways implicated in brain function and plasticity, many of them conserved in humans and other animals. In rodents, miRNAs regulate synaptic plasticity by controlling the morphology of dendrites and spines and the expression of neurotransmitter receptors. Furthermore, dysregulated miRNA expression is frequently observed in patients suffering from affective disorders. Together, multiple lines of evidence suggest a link between miRNA dysfunction and affective disorder pathology, providing a rationale to consider miRNAs as therapeutic tools or molecular biomarkers. This review aims to highlight the most recent and functionally relevant studies that contributed to a better understanding of miRNA function in the development and pathogenesis of affective disorders. We focused on in vivo functional studies, which demonstrate that miRNAs control higher brain functions, including mood and cognition, in rodents, and that their dysregulation causes disease-related behaviors.
Collapse
Affiliation(s)
- Helena Caria Martins
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
24
|
Luo PX, Manning CE, Fass JN, Williams AV, Hao R, Campi KL, Trainor BC. Sex-specific effects of social defeat stress on miRNA expression in the anterior BNST. Behav Brain Res 2021; 401:113084. [PMID: 33358922 PMCID: PMC7864284 DOI: 10.1016/j.bbr.2020.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
Women are more likely to suffer from stress-related affective disorders than men, but the underlying mechanisms of sex differences remain unclear. Previous works show that microRNA (miRNA) profiles are altered in stressed animals and patients with depression and anxiety disorders. In this study, we investigated how miRNA expression in the anterior bed nucleus of stria terminalis (BNST) was affected by social defeat stress in female and male California mice (Peromyscus californicus). We performed sequencing to identify miRNA transcripts in the whole brain and anterior BNST followed by qPCR analysis to compare miRNA expression between control and stressed animals. The results showed that social defeat stress induced sex-specific miRNA expression changes in the anterior BNST. Let-7a, let-7f and miR-181a-5p were upregulated in stressed female but not male mice. Our study provided evidence that social stress produces distinct molecular responses in the BNST of males and females.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Claire E Manning
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Joe N Fass
- Bioinformatics Core and Genome Center, University of California, Davis, CA, 95616, USA
| | - Alexia V Williams
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Katharine L Campi
- Department of Psychology, University of California, Davis, CA, 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain 2021; 161:47-60. [PMID: 31569141 DOI: 10.1097/j.pain.0000000000001709] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent comorbid sequelae of trauma that occur at different rates in women and men. We sought to identify microRNA (miRNA) that may contribute to sex-dependent differences in vulnerability to these outcomes. Monte Carlo simulations (x10,000) identified miRNA in which predicted targeting of PTWP or PTSS genes was most enriched. Expression of the leading candidate miRNA to target PTWP/PTSS-related genes, miR-19b, has been shown to be influenced by estrogen and stress exposure. We evaluated whether peritraumatic miR-19b blood expression levels predicted PTWP and PTSS development in women and men experiencing trauma of motor vehicle collision (n = 179) and in women experiencing sexual assault trauma (n = 74). A sex-dependent relationship was observed between miR-19b expression levels and both PTWP (β = -2.41, P = 0.034) and PTSS (β = -3.01, P = 0.008) development 6 months after motor vehicle collision. The relationship between miR-19b and PTSS (but not PTWP) was validated in sexual assault survivors (β = -0.91, P = 0.013). Sex-dependent expression of miR-19b was also observed in blood and nervous tissue from 2 relevant animal models. Furthermore, in support of increasing evidence indicating a role for the circadian rhythm (CR) in PTWP and PTSS pathogenesis, miR-19b targets were enriched in CR gene transcripts. Human cohort and in vitro analyses assessing miR-19b regulation of key CR transcripts, CLOCK and RORA, supported the potential importance of miR-19b to regulating the CR pathway. Together, these results highlight the potential role that sex-dependent expression of miR-19b might play in PTWP and PTSS development after trauma/stress exposure.
Collapse
|
26
|
Maffioletti E, Bocchio-Chiavetto L, Perusi G, Carvalho Silva R, Sacco C, Bazzanella R, Zampieri E, Bortolomasi M, Gennarelli M, Minelli A. Inflammation-related microRNAs are involved in stressful life events exposure and in trauma-focused psychotherapy in treatment-resistant depressed patients. Eur J Psychotraumatol 2021; 12:1987655. [PMID: 35070159 PMCID: PMC8772504 DOI: 10.1080/20008198.2021.1987655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND About 30% of major depressive disorder (MDD) patients are classified as resistant to treatment (treatment-resistant depression, TRD). Among the factors associated with unfavourable treatment outcomes, stressful life events play a relevant role, and trauma-focused psychotherapy has been successfully proposed for the treatment of patients with a history of such events. Stressful experiences are related to enhanced inflammation and, recently, microRNAs (miRNAs) have emerged as potential mediators of the association between these experiences and psychiatric disorders. To date, no study has explored the effects of stressful life events on miRNAs in MDD patients. OBJECTIVE The objective of the present study was to assess possible miRNA blood expression alterations in TRD patients induced by the exposure to stressful life events and to investigate the effects of trauma-focused psychotherapy on the expression profiles of the same miRNAs, as well as their possible predictivity in relation to therapy outcome. METHOD The basal levels (T0) of seven candidate miRNAs (miR-15a/miR-29a/miR-125b/miR-126/miR-146a/miR-195/let-7f) were measured in the whole blood of 41 TRD patients. A subgroup of patients (n = 21) underwent trauma-focused psychotherapy; for all of them, miRNA levels were also longitudinally assessed (T4: after 4 weeks of treatment; T8: end of treatment; T12: follow-up visit), contextually to clinical evaluations. RESULTS miR-146a levels negatively correlated with recent stressful life event scores (p = .001), whereas the levels of miR-15a, miR-29a, miR-126, miR-195, and let-7f changed during the psychotherapy (best p = 1.98*10-9). miR-29a was also identified as a response predictor, with lower baseline levels predicting non-response (p = .019) or worse improvement in mood symptoms (p = .032). CONCLUSIONS The study results could contribute to clarify the underlying molecular mechanisms and to identify novel biomarkers of stressful experiences and response to targeted treatments.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisella Bocchio-Chiavetto
- Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Psychiatric Unit, IRCCS Istituto Centro S. Giovanni di Dio, Brescia, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Como, Novedrate, Italy
| | - Giulia Perusi
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Rosana Carvalho Silva
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Sacco
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Elisa Zampieri
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | | | - Massimo Gennarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Psychiatric Unit, IRCCS Istituto Centro S. Giovanni di Dio, Brescia, Italy
| | - Alessandra Minelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Psychiatric Unit, IRCCS Istituto Centro S. Giovanni di Dio, Brescia, Italy
| |
Collapse
|
27
|
Widespread transcriptional disruption of the microRNA biogenesis machinery in brain and peripheral tissues of individuals with schizophrenia. Transl Psychiatry 2020; 10:376. [PMID: 33149139 PMCID: PMC7642431 DOI: 10.1038/s41398-020-01052-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
In schizophrenia, altered transcription in brain and peripheral tissues may be due to altered expression of the microRNA biogenesis machinery genes. In this study, we explore the expression of these genes both at the cerebral and peripheral levels. We used shinyGEO application to analyze gene expression from ten Gene Expression Omnibus datasets, in order to perform differential expression analyses for eight genes encoding the microRNA biogenesis machinery. First, we compared expression of the candidate genes between control subjects and individuals with schizophrenia in postmortem cerebral samples from seven different brain regions. Then, we compared the expression of the candidate genes between control subjects and individuals with schizophrenia in three peripheral tissues. In brain and peripheral tissues of individuals with schizophrenia, we report distinct altered expression patterns of the microRNA biogenesis machinery genes. In the dorsolateral prefrontal cortex, associative striatum and cerebellum of individuals with schizophrenia, we observed an overexpression pattern of some candidate genes suggesting a heightened miRNA production in these brain regions. Additionally, mixed transcriptional abnormalities were identified in the hippocampus. Moreover, in the blood and olfactory epithelium of individuals with schizophrenia, we observed distinct aberrant transcription patterns of the candidate genes. Remarkably, in individuals with schizophrenia, we report DICER1 overexpression in the dorsolateral prefrontal cortex, hippocampus and cerebellum as well as a congruent DICER1 upregulation in the blood compartment suggesting that it may represent a peripheral marker. Transcriptional disruption of the miRNA biogenesis machinery may contribute to schizophrenia pathogenesis both in brain and peripheral tissues.
Collapse
|
28
|
Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. Int J Mol Sci 2020; 21:ijms21197223. [PMID: 33007856 PMCID: PMC7583940 DOI: 10.3390/ijms21197223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson's disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.
Collapse
|
29
|
Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, Kuznetsov Y, Brandis A, Mehlman T, Mazkereth R, McCarter R, Segal M, Nagamani SCS, Chen A, Erez A. ASL Metabolically Regulates Tyrosine Hydroxylase in the Nucleus Locus Coeruleus. Cell Rep 2020; 29:2144-2153.e7. [PMID: 31747589 PMCID: PMC6902269 DOI: 10.1016/j.celrep.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies. ASL is expressed in the locus coeruleus (LC) and regulates catecholamine synthesis LC-ASL deficiency in mice promotes abnormal stress response and seizure sensitivity LC-ASL deficiency decreases nitric-oxide levels and tyrosine hydroxylase activity NO donors normalize catecholamine production and rescue LC-ASL deficiency phenotype
Collapse
Affiliation(s)
- Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elmira Anderzhanova
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Sima Verbitsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Ram Mazkereth
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Robert McCarter
- Center for Translational Sciences, Children's National Health System, The George Washington University, Washington, DC, USA
| | - Menahem Segal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Keverne J, Binder EB. A Review of epigenetics in psychiatry: focus on environmental risk factors. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Epigenetic modifications play a key role in development and cell type specificity. These modifications seem to be particularly critical for brain development, where mutations in epigenetic enzymes have been associated with neurodevelopmental disorders as well as with the function of post-mitotic neurons. Epigenetic modifications can be influenced by genetic and environmental factors, both known major risk factors for psychiatric disorders. Epigenetic modifications may thus be an important mediator of the effects of genetic and environmental risk factors on cell function.
This review summarizes the different types of epigenetic regulation and then focuses on the mechanisms transducing environmental signals, especially adverse life events that are major risk factors for psychiatric disorders, into lasting epigenetic changes. This is followed by examples of how the environment can induce epigenetic changes that relate to the risk of psychiatric disorders.
Collapse
Affiliation(s)
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstr. 2-10 , Munich , Germany
| |
Collapse
|
31
|
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YHE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020; 106:912-926.e5. [PMID: 32304628 PMCID: PMC7305959 DOI: 10.1016/j.neuron.2020.03.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022]
Abstract
Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Behavior, Animal
- Depression/genetics
- Depression/metabolism
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Down-Regulation
- Female
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Neurons/metabolism
- Prefrontal Cortex/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Seq
- Resilience, Psychological
- Sex Factors
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Young Adult
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chunfeng Tan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong-Hwee E Loh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Immanuel Purushothaman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter J Hamilton
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine J Peña
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigham J Hartley
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Kronman
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia E Duffy
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Molly S Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin S Calipari
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benoit Labonté
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
32
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
33
|
Guo L, Zhu Z, Wang G, Cui S, Shen M, Song Z, Wang JH. microRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens. J Biol Chem 2020; 295:6831-6848. [PMID: 32209659 PMCID: PMC7242712 DOI: 10.1074/jbc.ra119.012047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/20/2020] [Indexed: 11/06/2022] Open
Abstract
Major depression is a prevalent affective disorder characterized by recurrent low mood. It presumably results from stress-induced deteriorations of molecular networks and synaptic functions in brain reward circuits of genetically-susceptible individuals through epigenetic processes. Epigenetic regulator microRNA-15b inhibits neuronal progenitor proliferation and is up-regulated in the medial prefrontal cortex of mice that demonstrate depression-like behavior, indicating the contribution of microRNA-15 to major depression. Using a mouse model of major depression induced by chronic unpredictable mild stress (CUMS), here we examined the effects of microRNA-15b on synapses and synaptic proteins in the nucleus accumbens of these mice. The application of a microRNA-15b antagomir into the nucleus accumbens significantly reduced the incidence of CUMS-induced depression and reversed the attenuations of excitatory synapse and syntaxin-binding protein 3 (STXBP3A)/vesicle-associated protein 1 (VAMP1) expression. In contrast, the injection of a microRNA-15b analog into the nucleus accumbens induced depression-like behavior as well as attenuated excitatory synapses and STXBP3A/VAMP1 expression similar to the down-regulation of these processes induced by the CUMS. We conclude that microRNA-15b-5p may play a critical role in chronic stress-induced depression by decreasing synaptic proteins, innervations, and activities in the nucleus accumbens. We propose that the treatment of anti-microRNA-15b-5p may convert stress-induced depression into resilience.
Collapse
Affiliation(s)
- Li Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoming Zhu
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Guangyan Wang
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Shen
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Brückl TM, Spoormaker VI, Sämann PG, Brem AK, Henco L, Czamara D, Elbau I, Grandi NC, Jollans L, Kühnel A, Leuchs L, Pöhlchen D, Schneider M, Tontsch A, Keck ME, Schilbach L, Czisch M, Lucae S, Erhardt A, Binder EB. The biological classification of mental disorders (BeCOME) study: a protocol for an observational deep-phenotyping study for the identification of biological subtypes. BMC Psychiatry 2020; 20:213. [PMID: 32393358 PMCID: PMC7216390 DOI: 10.1186/s12888-020-02541-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A major research finding in the field of Biological Psychiatry is that symptom-based categories of mental disorders map poorly onto dysfunctions in brain circuits or neurobiological pathways. Many of the identified (neuro) biological dysfunctions are "transdiagnostic", meaning that they do not reflect diagnostic boundaries but are shared by different ICD/DSM diagnoses. The compromised biological validity of the current classification system for mental disorders impedes rather than supports the development of treatments that not only target symptoms but also the underlying pathophysiological mechanisms. The Biological Classification of Mental Disorders (BeCOME) study aims to identify biology-based classes of mental disorders that improve the translation of novel biomedical findings into tailored clinical applications. METHODS BeCOME intends to include at least 1000 individuals with a broad spectrum of affective, anxiety and stress-related mental disorders as well as 500 individuals unaffected by mental disorders. After a screening visit, all participants undergo in-depth phenotyping procedures and omics assessments on two consecutive days. Several validated paradigms (e.g., fear conditioning, reward anticipation, imaging stress test, social reward learning task) are applied to stimulate a response in a basic system of human functioning (e.g., acute threat response, reward processing, stress response or social reward learning) that plays a key role in the development of affective, anxiety and stress-related mental disorders. The response to this stimulation is then read out across multiple levels. Assessments comprise genetic, molecular, cellular, physiological, neuroimaging, neurocognitive, psychophysiological and psychometric measurements. The multilevel information collected in BeCOME will be used to identify data-driven biologically-informed categories of mental disorders using cluster analytical techniques. DISCUSSION The novelty of BeCOME lies in the dynamic in-depth phenotyping and omics characterization of individuals with mental disorders from the depression and anxiety spectrum of varying severity. We believe that such biology-based subclasses of mental disorders will serve as better treatment targets than purely symptom-based disease entities, and help in tailoring the right treatment to the individual patient suffering from a mental disorder. BeCOME has the potential to contribute to a novel taxonomy of mental disorders that integrates the underlying pathomechanisms into diagnoses. TRIAL REGISTRATION Retrospectively registered on June 12, 2019 on ClinicalTrials.gov (TRN: NCT03984084).
Collapse
Affiliation(s)
- Tanja M. Brückl
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Victor I. Spoormaker
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Philipp G. Sämann
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna-Katharine Brem
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany ,grid.38142.3c000000041936754XBerenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Lara Henco
- grid.419548.50000 0000 9497 5095Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Immanuel Elbau
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Norma C. Grandi
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Lee Jollans
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Anne Kühnel
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.419548.50000 0000 9497 5095International Max Planck Research School – Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Leuchs
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Dorothee Pöhlchen
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.419548.50000 0000 9497 5095International Max Planck Research School – Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Maximilian Schneider
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Alina Tontsch
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Martin E. Keck
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Leonhard Schilbach
- grid.419548.50000 0000 9497 5095Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Susanne Lucae
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Munich, Germany
| | - Angelika Erhardt
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
35
|
Palumbo MC, Dominguez S, Dong H. Sex differences in hypothalamic-pituitary-adrenal axis regulation after chronic unpredictable stress. Brain Behav 2020; 10:e01586. [PMID: 32154650 PMCID: PMC7177572 DOI: 10.1002/brb3.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Exposure to stress, mediated through the hypothalamic-pituitary-adrenal (HPA) axis, elicits sex differences in endocrine, neurological, and behavioral responses. However, the sex-specific factors that confer resilience or vulnerability to stress and stress-associated psychiatric disorders remain largely unknown. The evident sex differences in stress-related disease prevalence suggest the underlying differences in the neurobiological underpinnings of HPA axis regulation. METHOD Here, we used a chronic unpredictable stress (CUS) model to investigate the behavioral and biochemical responses of the HPA axis in C57BL/6 mice. Animals were tested in the open field and forced swim test to examine anxiety-like and depressive-like behaviors. Plasma corticosterone levels were measured after behavior and CUS, and glucocorticoid receptor (GR) expression and cytosolic and nuclear fractions of binding protein FKBP51 expression were taken to measure function and regulation of the stress response. RESULTS Our results indicate increased depressive-like behavior in males and females which correlated with increased corticosterone levels following CUS. However, females displayed more anxiety-like behaviors with and without CUS. Interestingly, we found trends toward dysregulation of GR protein expression in CUS females, and an increase in the GR inhibitory protein, FKBP51, in the cytosol of CUS males but not females. CONCLUSION These results suggest biochemical alterations to the HPA axis regulation which may elicit a glucocorticoid resistance in females after chronic stress and may contribute to the sex-biased vulnerability to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
36
|
Roy B, Dunbar M, Agrawal J, Allen L, Dwivedi Y. Amygdala-Based Altered miRNome and Epigenetic Contribution of miR-128-3p in Conferring Susceptibility to Depression-Like Behavior via Wnt Signaling. Int J Neuropsychopharmacol 2020; 23:165-177. [PMID: 32173733 PMCID: PMC7171932 DOI: 10.1093/ijnp/pyz071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies suggest that microRNAs (miRNAs) can participate in depression pathogenesis by altering a host of genes that are critical in corticolimbic functioning. The present study focuses on examining whether alterations in the miRNA network in the amygdala are associated with susceptibility or resiliency to develop depression-like behavior in rats. METHODS Amygdala-specific altered miRNA transcriptomics were determined in a rat depression model following next-generation sequencing method. Target prediction analyses (cis- and trans) and qPCR-based assays were performed to decipher the functional role of altered miRNAs. miRNA-specific target interaction was determined using in vitro transfection assay in neuroblastoma cell line. miRNA-specific findings from the rat in vivo model were further replicated in postmortem amygdala of major depressive disorder (MDD) subjects. RESULTS Changes in miRNome identified 17 significantly upregulated and 8 significantly downregulated miRNAs in amygdala of learned helpless (LH) compared with nonlearned helpless rats. Prediction analysis showed that the majority of the upregulated miRNAs had target genes enriched for the Wnt signaling pathway. Among altered miRNAs, upregulated miR-128-3p was identified as a top hit based on statistical significance and magnitude of change in LH rats. Target validation showed significant downregulation of Wnt signaling genes in amygdala of LH rats. A discernable increase in expression of amygdalar miR-128-3p along with significant downregulation of key target genes from Wnt signaling (WNT5B, DVL, and LEF1) was noted in MDD subjects. Overexpression of miR-128-3p in a cellular model lead to a marked decrease in the expression of Dvl1 and Lef1 genes, confirming them as validated targets of miR-128-3p. Additional evidence suggested that the amygdala-specific diminished expression of transcriptional repressor Snai1 could be potentially linked to induced miR-128-2 expression in LH rats. Furthermore, an amygdala-specific posttranscriptional switching mechanism could be active between miR-128-3p and RNA binding protein Arpp21 to gain control over their target genes such as Lef1. CONCLUSION Our study suggests that in amygdala a specific set of miRNAs may play an important role in depression susceptibility, which could potentially be mediated through Wnt signaling.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Dunbar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Juhee Agrawal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama,Correspondence: Yogesh Dwivedi, PhD, Elesabeth Ridgely Shook Professor, Director of Translational Research, UAB Mood Disorder Program, Co-Director, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL ()
| |
Collapse
|
37
|
Kang HJ, Yoon S, Lee S, Choi K, Seol S, Park S, Namgung E, Kim TD, Chung YA, Kim J, Han JS, Lyoo IK. FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals. Sci Rep 2020; 10:3353. [PMID: 32098997 PMCID: PMC7042218 DOI: 10.1038/s41598-020-60334-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/30/2020] [Indexed: 01/31/2023] Open
Abstract
The epigenetic regulation of microRNA (miRNA) expression related to the FK506-binding protein 5 (FKBP5) gene may contribute to the risk of stress-related disorders such as posttraumatic stress disorder (PTSD). Here, we identified candidate miRNAs derived from FKBP5 knockout mice as a potential diagnostic biomarker of PTSD. Using a translational approach, candidate miRNAs found to alter in expression within the medial prefrontal cortex of FKBP5 knockout mice were selected. Each candidate miRNA was examined in the serum of 48 recently traumatized individuals with PTSD and 47 healthy individuals. Multimodal imaging was also conducted to identify the neural correlates for the expression of candidate exosomal miRNAs in response to trauma exposure. Differential miRNA expression was found according to PTSD diagnosis in two composite marker groups. The differential miRNA expression between the composite marker groups contributed to PTSD symptom severity, which may be explained by differential recruitment of prefrontolimbic activity in brain imaging. The present study reveals that a set of circulating exosomal miRNAs showing altered expression in FKBP5 knockout mice play a potential role as epigenetic markers of PTSD. The corroborative evidence from multiple levels including molecular, brain, and behavioral indicates that these epigenetic biomarkers may serve as complementary measures for the diagnosis and prognosis prediction of PTSD in recently traumatized individuals.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Koeul Choi
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Shinwon Park
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Eun Namgung
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Tammy D Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea. .,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea. .,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea. .,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
38
|
Abstract
MicroRNAs as critical regulators of gene expression important for functions including neuronal development, synapse formation, and synaptic plasticity have been linked with the regulation of neurobiological systems that underlie anxiety processing in the brain. In this chapter, we give an update on associative evidence linking regulation of microRNAs with anxiety- and trauma-related disorders. Moving beyond correlative research, functional studies have emerged recently that explore causal relationships between microRNA expression and anxiety-like behavior. It has been demonstrated that experimental up- or downregulation of the candidate microRNAs in important nodes of the anxiety neurocircuitry can indeed modulate anxiety-related behavior in animal models. Improved methodologies for assessing microRNA-mediated modulation have aided such functional studies, revealing a number of anxiety-regulating microRNAs including miR-15a, miR-17-92, miR-34, miR-101, miR-124, miR-135, and miR-155. Important functional target genes of these identified microRNAs are associated with specific neurotransmitter/neuromodulator signaling, neurotrophin (e.g., BDNF) expression and other aspects of synaptic plasticity, as well as with stress-regulatory/hypothalamic-pituitary-axis function. Furthermore, microRNAs have been revealed that are regulated in distinct brain regions following various anxiety-attenuating strategies. These include pharmacological treatments such as antidepressants and other drugs, as well as non-pharmacological interventions such as fear extinction/exposure therapy or positive stimuli such as exposure to environmental enrichment. These are first indications for a role for microRNAs in the mechanism of action of anxiolytic treatments. As research continues, there is much hope that a deeper understanding of the microRNA-mediated mechanisms underlying anxiety-related disorders could open up possibilities for future novel biomarker and treatment strategies.
Collapse
|
39
|
Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2019; 735:144276. [PMID: 31816363 DOI: 10.1016/j.gene.2019.144276] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Depression is increasingly threatening human health as a serious psychological problem. However, it is remarkable that the precise mechanism underlying depression remains unelucidated. Recent studies have clarified that non-coding RNA, including but not limited to microRNA, long non-coding RNA, and circular RNA, plays an important role in the pathogenesis of depression. The research results cited in this paper reveal the origin, expression, distribution, function, and mechanism of microRNA in the nervous system. MicroRNA is involved in regulation of life activities, including growth, immune reaction, haematopoiesis, and metabolism, which are significant for maintaining normal physiological functions. Moreover, microRNA plays an important role in cell death and proliferation, development of cancer, and disease prognosis. Here, we also introduce the general research status of long non-coding RNA and circular RNA. Next, descriptive study methods, including fluorescence quantitative polymerase chain reaction, northern blot, microarray technology, RNA-seq, and fluorescent in situ hybridization are discussed. Functional study methods are also summarized and divided into gain- and loss-of-function studies. Moreover, the roles of non-coding RNA in the pathogenesis of depression, including neurogenesis, synaptic plasticity, brain-derived neurotrophic factor expression, HPA axis regulation, neurotransmission, neuropeptide expression, neuro-inflammation, and polyamine synthesis are discussed. Nevertheless, many unknown associations between non-coding RNA and depression remain to be clarified.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
40
|
Torres-Berrío A, Issler O, Parise EM, Nestler EJ. Unraveling the epigenetic landscape of depression: focus on early life stress
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:341-357. [PMID: 31949402 PMCID: PMC6952747 DOI: 10.31887/dcns.2019.21.4/enestler] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Depression is a devastating psychiatric disorder caused by a combination of genetic predisposition and life events, mainly exposure to stress. Early life stress (ELS) in particular is known to "scar" the brain, leading to an increased susceptibility to developing depression later in life via epigenetic mechanisms. Epigenetic processes lead to changes in gene expression that are not due to changes in DNA sequence, but achieved via modulation of chromatin modifications, DNA methylation, and noncoding RNAs. Here we review common epigenetic mechanisms including the enzymes that take part in reading, writing, and erasing specific epigenetic marks. We then describe recent developments in understanding how ELS leads to changes in the epigenome that are manifested in increased susceptibility to depression-like abnormalities in animal models. We conclude with highlighting the need for future studies that will potentially enable the utilisation of the understanding of epigenetic changes linked to ELS for the development of much-needed novel therapeutic strategies and biomarker discovery.
.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Orna Issler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric M Parise
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric J Nestler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| |
Collapse
|
41
|
Misiewicz Z, Iurato S, Kulesskaya N, Salminen L, Rodrigues L, Maccarrone G, Martins J, Czamara D, Laine MA, Sokolowska E, Trontti K, Rewerts C, Novak B, Volk N, Park DI, Jokitalo E, Paulin L, Auvinen P, Voikar V, Chen A, Erhardt A, Turck CW, Hovatta I. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLoS Genet 2019; 15:e1008358. [PMID: 31557158 PMCID: PMC6762065 DOI: 10.1371/journal.pgen.1008358] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Stressful life events are major environmental risk factors for anxiety disorders, although not all individuals exposed to stress develop clinical anxiety. The molecular mechanisms underlying the influence of environmental effects on anxiety are largely unknown. To identify biological pathways mediating stress-related anxiety and resilience to it, we used the chronic social defeat stress (CSDS) paradigm in male mice of two inbred strains, C57BL/6NCrl (B6) and DBA/2NCrl (D2), that differ in their susceptibility to stress. Using a multi-omics approach, we identified differential mRNA, miRNA and protein expression changes in the bed nucleus of the stria terminalis (BNST) and blood cells after chronic stress. Integrative gene set enrichment analysis revealed enrichment of mitochondrial-related genes in the BNST and blood of stressed mice. To translate these results to human anxiety, we investigated blood gene expression changes associated with exposure-induced panic attacks. Remarkably, we found reduced expression of mitochondrial-related genes in D2 stress-susceptible mice and in exposure-induced panic attacks in humans, but increased expression of these genes in B6 stress-susceptible mice. Moreover, stress-susceptible vs. stress-resilient B6 mice displayed more mitochondrial cross-sections in the post-synaptic compartment after CSDS. Our findings demonstrate mitochondrial-related alterations in gene expression as an evolutionarily conserved response in stress-related behaviors and validate the use of cross-species approaches in investigating the biological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Zuzanna Misiewicz
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Stella Iurato
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia Kulesskaya
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Salminen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Luis Rodrigues
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jade Martins
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mikaela A. Laine
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ewa Sokolowska
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Christiane Rewerts
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bozidar Novak
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Naama Volk
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Dong Ik Park
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Vootele Voikar
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Angelika Erhardt
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (AE); (CWT); (IH)
| | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (AE); (CWT); (IH)
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail: (AE); (CWT); (IH)
| |
Collapse
|
42
|
miRNAs in depression vulnerability and resilience: novel targets for preventive strategies. J Neural Transm (Vienna) 2019; 126:1241-1258. [PMID: 31350592 PMCID: PMC6746676 DOI: 10.1007/s00702-019-02048-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
Abstract
The exposure to stressful experiences during the prenatal period and through the first years of life is known to affect the brain developmental trajectories, leading to an enhanced vulnerability for the development of several psychiatric disorders later in life. However, not all the subjects exposed to the same stressful experience develop a pathologic condition, as some of them, activating coping strategies, become more resilient. The disclosure of mechanisms associated with stress vulnerability or resilience may allow the identification of novel biological processes and potential molecules that, if properly targeted, may prevent susceptibility or potentiate resilience. Over the last years, miRNAs have been proposed as one of the epigenetic mechanisms mediating the long-lasting effects of stress. Accordingly, they are associated with the development of stress vulnerability or resilience-related strategies. Moreover, miRNAs have been proposed as possible biomarkers able to identify subjects at high risk to develop depression and to predict the response to pharmacological treatments. In this review, we aimed to provide an overview of findings from studies in rodents and humans focused on the involvement of miRNAs in the mechanisms of stress response with the final goal to identify distinct sets of miRNAs involved in stress vulnerability or resilience. In addition, we reviewed studies on alterations of miRNAs in the context of depression, showing data on the involvement of miRNAs in the pathogenesis of the disease and in the efficacy of pharmacological treatments, discussing the potential utility of miRNAs as peripheral biomarkers able to predict the treatment response.
Collapse
|
43
|
Shen M, Song Z, Wang JH. microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology (Berl) 2019; 236:2119-2142. [PMID: 30900007 DOI: 10.1007/s00213-019-05209-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Major depressive disorder characterized as recurrent negative mood is one of the prevalent psychiatric diseases. Chronic stress plus lack of reward may induce long-term imbalance between reward and penalty circuits in the brain, leading to persistent negative mood. Numerous individuals demonstrate resilience to chronic mild stress. Molecular mechanisms for major depression and resilience in the brain remain unclear. METHODS After juvenile mice were treated by the chronic unpredictable mild stress (CUMS) for 4 weeks, they were screened by sucrose preference, Y-maze and forced swimming tests to examine whether their behaviors were depression-like or not. mRNA and miRNA profiles were quantified by high-throughput sequencing in amygdala tissues harvested from control, CUMS-susceptible, and CUMS-resilience mice. RESULTS 1.5-fold ratio in reads per kilo-base per million reads was set to be the threshold to judge the involvement of mRNAs and miRNAs in the CUMS, major depression, or resilience. In the amygdala from CUMS-susceptible mice, the expression of genes relevant to GABAergic, cholinergic, glutamatergic, dopaminergic, and serotonergic synapses was changed, as well as the expression of genes that encoded signal pathways of PI3K-Akt, calcium, cAMP, MAPK, and drug addiction was imbalanced. The expression of these genes in the amygdala form CUMS-resilience mice was less changed. CONCLUSIONS The downregulation of genes relevant to synaptic functions and the imbalance of intra-signaling pathway in the amygdala are associated with major depression. Consistent results through sequencing mRNA and miRNA and using different methods validate our finding and conclusion.
Collapse
Affiliation(s)
- Mengmeng Shen
- School of Pharmacy, Qingdao University, 38 Dengzhou, Qingdao, 266021, Shandong, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, 38 Dengzhou, Qingdao, 266021, Shandong, China.
| | - Jin-Hui Wang
- School of Pharmacy, Qingdao University, 38 Dengzhou, Qingdao, 266021, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
44
|
The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proc Natl Acad Sci U S A 2019; 117:23252-23260. [PMID: 31127037 DOI: 10.1073/pnas.1820837116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, Neurobiol. Learn. Mem. 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.
Collapse
|
45
|
Wiechmann T, Röh S, Sauer S, Czamara D, Arloth J, Ködel M, Beintner M, Knop L, Menke A, Binder EB, Provençal N. Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus. Clin Epigenetics 2019; 11:83. [PMID: 31122292 PMCID: PMC6533766 DOI: 10.1186/s13148-019-0682-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 01/30/2023] Open
Abstract
Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure. Electronic supplementary material The online version of this article (10.1186/s13148-019-0682-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Wiechmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Madita Beintner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Lisanne Knop
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany. .,Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, GA, USA.
| | - Nadine Provençal
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany. .,Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Snijders C, de Nijs L, Baker DG, Hauger RL, van den Hove D, Kenis G, Nievergelt CM, Boks MP, Vermetten E, Gage FH, Rutten BPF. MicroRNAs in Post-traumatic Stress Disorder. Curr Top Behav Neurosci 2019; 38:23-46. [PMID: 29063484 DOI: 10.1007/7854_2017_32] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.
Collapse
Affiliation(s)
- Clara Snijders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
- VA San Diego Healthcare System, San Diego, La Jolla, CA, 92037, USA
| | - Richard L Hauger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
- VA San Diego Healthcare System, San Diego, La Jolla, CA, 92037, USA
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, 97080, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92037, USA
- VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, 92037, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Eric Vermetten
- Military Mental Health Research Center, Ministry of Defense, P.O. Box 90000, Utrecht, 3509 AA, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Arq Psychotrauma Research Group, Diemen, 1112 XE, The Netherlands
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience, (EURON), Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
47
|
Ji LL, Ye Y, Nie PY, Peng JB, Fu CH, Wang ZY, Tong L. Dysregulation of miR-142 results in anxiety-like behaviors following single prolonged stress. Behav Brain Res 2019; 365:157-163. [PMID: 30857769 DOI: 10.1016/j.bbr.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent mental disorder that is classified as a trauma- and stressor-related disorder. While numerous epigenetic factors are related to the risk for PTSD, the precise mechanisms underlying this disorder remain unclear. However, accumulating evidence has demonstrated that dysregulation of microRNAs is involved in stress-related psychiatric disorders, resulting in anxiety-like behavior, memory-related deficits and aberrant neuronal plasticity. Here, rats exposed to single prolonged stress showed increased microRNA-142-5p levels in the amygdala and a concurrent reduction in the levels of its predicted target Npas4, an activity-regulated transcription factor, which was implicated in stress-related psychopathologies. In addition, the inhibition of microRNA-142 following exposure to single prolonged stress exhibited decreased anxiety-like behaviors and memory deficits, as well as increased expression of Npas4 and BDNF. Furthermore, a dual-luciferase reporter assay indicated that Npas4 was a direct downstream target of miR-142. Taken together, these data suggest that miR-142 may play a key role in the pathogenesis of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Yao Ye
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
48
|
Binder EB. [Environment and epigenetics]. DER NERVENARZT 2019; 90:107-113. [PMID: 30643952 DOI: 10.1007/s00115-018-0657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Environmental factors are among the strongest risk factors for psychiatric disorders. Differences in exposure to such environments have been associated with lasting biological changes. In recent years epigenetic mechanisms have been brought to the forefront as central in mediating a lasting embedding of environmental risk factors. This article first summarizes the different levels of epigenetic regulation and then focuses on mechanisms transducing environmental signals into lasting epigenetic changes. This is followed by examples of how environmentally induced epigenetic changes relate to risk and resilience to psychiatric disorders and their treatment.
Collapse
Affiliation(s)
- Elisabeth B Binder
- Abteilung für translationale Forschung für Psychiatrie, Max-Planck-Institut für Psychiatrie, Kraepelinstr. 2-10, 80804, München, Deutschland. .,Dept. of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
49
|
Dwivedi Y. MicroRNAs in depression and suicide: Recent insights and future perspectives. J Affect Disord 2018; 240:146-154. [PMID: 30071418 PMCID: PMC6108934 DOI: 10.1016/j.jad.2018.07.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Suicide is a major public health concern. A significant proportion of depressed individuals show suicidal ideation. The currently available medications are not optimal and a large number of depressed/suicidal patients do not respond to these medications. Thus, there is an urgent need to fully understand the neurobiological mechanisms associated with depression and suicidal behavior and to find novel targets for therapeutic interventions. In this regard, microRNAs (miRNAs), member of small non-coding RNA family, have emerged as an invaluable tool not only to understand disease pathogenesis but also to precisely pinpoint the targets that can be developed as drugs. In this review, these aspects have been discussed in a comprehensive and critical manner.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue, Birmingham, AL 35294, USA.
| |
Collapse
|
50
|
A Functional riboSNitch in the 3' Untranslated Region of FKBP5 Alters MicroRNA-320a Binding Efficiency and Mediates Vulnerability to Chronic Post-Traumatic Pain. J Neurosci 2018; 38:8407-8420. [PMID: 30150364 DOI: 10.1523/jneurosci.3458-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress- and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3'UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene-miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies.SIGNIFICANCE STATEMENT FKBP5 is a critical regulator of the stress response. Previous studies have shown that dysregulation of the expression of this gene plays a role in the pathogenesis of chronic pain development as well as a number of comorbid neuropsychiatric disorders. In the current study, we identified a functional allele (rs3800373) in the 3'UTR of FKBP5 that influences vulnerability to chronic post-traumatic pain in two ethnic cohorts. Using multiple complementary experimental approaches, we show that the FKBP5 rs3800373 minor allele alters the secondary structure of FKBP5 mRNA, decreasing the binding of a stress- and pain-associated microRNA, miR-320a. This results in relatively greater FKBP5 translation, unchecked by miR-320a, increasing glucocorticoid resistance and increasing vulnerability to post-traumatic pain.
Collapse
|