1
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
2
|
Le Bihan T, Nunez de Villavicencio Diaz T, Reitzel C, Lange V, Park M, Beadle E, Wu L, Jovic M, Dubois RM, Couzens AL, Duan J, Han X, Liu Q, Ma B. De novo protein sequencing of antibodies for identification of neutralizing antibodies in human plasma post SARS-CoV-2 vaccination. Nat Commun 2024; 15:8790. [PMID: 39389968 PMCID: PMC11466954 DOI: 10.1038/s41467-024-53105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
The antibody response to vaccination and infection is a key component of the immune response to pathogens. Sequencing of peripheral B cells may not represent the complete B cell receptor repertoire. Here we present a method for sequencing human plasma-derived polyclonal IgG using a combination of mass spectrometry and B-cell sequencing. We investigate the IgG response to the Moderna Spikevax COVID-19 vaccine. From the sequencing data of the natural polyclonal response to vaccination, we generate 12 recombinant antibodies. Six derived recombinant antibodies, including four generated with de novo protein sequencing, exhibit similar or higher binding affinities than the original natural polyclonal antibody. Neutralization tests reveal that the six antibodies possess neutralizing capabilities against the target antigen. This research provides insights into sequencing polyclonal IgG antibodies and the potential of our approach in generating recombinant antibodies with robust binding affinity and neutralization capabilities. Directly examining the circulating IgG pool is crucial due to potential misrepresentations by B-cell analysis alone.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Wu
- Rapid Novor, Kitchener, ON, Canada
| | | | | | | | - Jin Duan
- Rapid Novor, Kitchener, ON, Canada
| | | | | | - Bin Ma
- Rapid Novor, Kitchener, ON, Canada.
| |
Collapse
|
3
|
Strandmoe AL, Bremer J, Diercks GFH, Gostyński A, Ammatuna E, Pas HH, Wouthuyzen-Bakker M, Huls GA, Heeringa P, Laman JD, Horváth B. Beyond the skin: B cells in pemphigus vulgaris, tolerance and treatment. Br J Dermatol 2024; 191:164-176. [PMID: 38504438 DOI: 10.1093/bjd/ljae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Pemphigus vulgaris (PV) is a rare autoimmune bullous disease characterized by blistering of the skin and mucosa owing to the presence of autoantibodies against the desmosome proteins desmoglein 3 and occasionally in conjunction with desmoglein 1. Fundamental research into the pathogenesis of PV has revolutionized its treatment and outcome with rituximab, a B-cell-depleting therapy. The critical contribution of B cells to the pathogenesis of pemphigus is well accepted. However, the exact pathomechanism, mechanisms of onset, disease course and relapse remain unclear. In this narrative review, we provide an overview of the fundamental research progress that has unfolded over the past few centuries to give rise to current and emerging therapies. Furthermore, we summarize the multifaceted roles of B cells in PV, including their development, maturation and antibody activity. Finally, we explored how these various aspects of B-cell function contribute to disease pathogenesis and pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Lise Strandmoe
- Departments of Medical Biology and Pathology
- Dermatology (Centre for Blistering Diseases)
| | | | - Gilles F H Diercks
- Departments of Medical Biology and Pathology
- Dermatology (Centre for Blistering Diseases)
| | - Antoni Gostyński
- Dermatology (Centre for Blistering Diseases)
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | - Marjan Wouthuyzen-Bakker
- Medical Microbiology and Infection Prevention; University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | - Jon D Laman
- Departments of Medical Biology and Pathology
| | | |
Collapse
|
4
|
Didona D, Scarsella L, Hudemann C, Volkmann K, Zimmer CL, Beckert B, Tikkanen R, Korff V, Kühn K, Wienzek-Lischka S, Bein G, Di Zenzo G, Böhme J, Cunha T, Solimani F, Pieper J, Juratli HA, Göbel M, Schmidt T, Borradori L, Yazdi AS, Sitaru C, Garn H, Eming R, Fleischer S, Hertl M. Type 2 T-Cell Responses against Distinct Epitopes of the Desmoglein 3 Ectodomain in Pemphigus Vulgaris. J Invest Dermatol 2024; 144:263-272.e8. [PMID: 37717934 DOI: 10.1016/j.jid.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disorder of the skin and/or mucous membranes caused by IgG autoantibodies that predominantly target two transmembrane desmosomal cadherins: desmoglein (DSG)1 and DSG3. DSG-specific T cells play a central role in PV pathogenesis because they provide help to autoreactive B cells for autoantibody production. In this study, we characterized DSG3-specific peripheral T cells in a cohort of 52 patients with PV and 41 healthy controls with regard to cytokine profile and epitope specificity. By ELISpot analysis, type 2 T cells reactive with the DSG3 ectodomain were significantly increased in patients with PV compared with those in healthy controls. By dextramer analysis, CD4+ T cells specific for an epitope within the extracellular domain of DSG3, DSG3(206-220), were found at significantly higher frequencies in patients with PV than in HLA-matched healthy controls. T-cell recognition of two distinct DSG3 epitopes, that is, DSG3(206-220) and DSG3(378-392), correlated significantly, suggesting a synergistic effect in B-cell help. Immunization of HLA-DRB1∗04:02-transgenic mice with PV with the same set of DSG3 peptides induced pathogenic DSG3-specific IgG antibodies, which induced loss of keratinocyte adhesion in vitro. Thus, DSG3 peptide-specific T cells are of particular interest as surrogate markers of disease activity and potential therapeutic targets in PV.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Karolin Volkmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Christine L Zimmer
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Benedikt Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Germany
| | - Vera Korff
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Katja Kühn
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Jaqueline Böhme
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Tomas Cunha
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Farzan Solimani
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Josquin Pieper
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Hazem A Juratli
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Manuel Göbel
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Luca Borradori
- Department of Dermatology, University of Bern, Bern, Switzerland
| | - Amir S Yazdi
- Department of Dermatology, RWTH Aachen University, Aachen, Germany
| | - Cassian Sitaru
- Department of Dermatology, Albert-Ludwigs University, Freiburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Klinik III Dermatologie, Venerologie & Allergologie, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Germany
| | | | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany.
| |
Collapse
|
5
|
Xu C, Zhang T, Wang H, Zhu L, Ruan Y, Huang Z, Wang J, Zhu H, Huang C, Pan M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J Autoimmun 2024; 142:103128. [PMID: 37939532 DOI: 10.1016/j.jaut.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Pemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous immune microenvironment and the pathogenesis of pemphigus cutaneous lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.
Collapse
Affiliation(s)
- Chuqiao Xu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailun Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ruan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Wang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiqin Zhu
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Pan
- Department of Dermatology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Hammers CM. Unraveling Mechanisms of Autoimmune Skin Blistering: Applying Single-Cell Transcriptomics to Pemphigus B Cells. J Invest Dermatol 2023; 143:1857-1859. [PMID: 37330716 DOI: 10.1016/j.jid.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Christoph M Hammers
- Department of Dermatology, Christian-Albrechts-University of Kiel, Kiel, Germany; Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
7
|
Egami S, Watanabe T, Fukushima-Nomura A, Nomura H, Takahashi H, Yamagami J, Ohara O, Amagai M. Desmoglein-Specific B-Cell-Targeted Single-Cell Analysis Revealing Unique Gene Regulation in Patients with Pemphigus. J Invest Dermatol 2023; 143:1919-1928.e16. [PMID: 36997112 DOI: 10.1016/j.jid.2023.03.1661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
Autoreactive B cells are assumed to play a critical role in pemphigus; however, the characteristics of these cells are not yet fully understood. In this study, 23 pemphigus vulgaris or pemphigus foliaceus samples were used to isolate circulating desmoglein (DSG)-specific B cells. Transcriptome analysis of the samples was performed at the single-cell level to detect genes involved in disease activity. DSG1- or DSG3-specific B cells from three patients' differentially expressed genes related to T cell costimulation (CD137L) as well as B-cell differentiation (CD9, BATF, TIMP1) and inflammation (S100A8, S100A9, CCR3), compared with nonspecific B cells from the same patients. When the DSG1-specific B cells before and after treatment transcriptomes of the patient with pemphigus foliaceus were compared, there were changes in several B-cell activation pathways not detected in non-DSG1-specific B cells. This study clarifies the transcriptomic profile of autoreactive B cells in patients with pemphigus and documents the gene expression related to disease activity. Our approach can be applied to other autoimmune diseases and has the potential for future detection of disease-specific autoimmune cells.
Collapse
Affiliation(s)
- Shohei Egami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Takashi Watanabe
- Laboratory for integrative genomics, RIKEN Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | | | - Hisashi Nomura
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Ohara
- Laboratory for integrative genomics, RIKEN Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.
| |
Collapse
|
8
|
Calonga-Solís V, Olbrich M, Ott F, Adelman Cipolla G, Malheiros D, Künstner A, Farias TD, Camargo CM, Petzl-Erler ML, Busch H, Fähnrich A, Augusto DG. The landscape of the immunoglobulin repertoire in endemic pemphigus foliaceus. Front Immunol 2023; 14:1189251. [PMID: 37575223 PMCID: PMC10421657 DOI: 10.3389/fimmu.2023.1189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Primarily driven by autoreactive B cells, pemphigus foliaceus (PF) is an uncommon autoimmune blistering skin disease of sporadic occurrence worldwide. However, PF reaches a prevalence of 3% in the endemic areas of Brazil, the highest ever registered for any autoimmune disease, which indicates environmental factors influencing the immune response in susceptible individuals. We aimed to provide insights into the immune repertoire of patients with PF living in the endemic region of the disease, compared to healthy individuals from the endemic region and a non-endemic area. Methods We characterized the B-cell repertoire in i) nontreated patients (n=5); ii) patients under immunosuppressive treatment (n=5); iii) patients in remission without treatment (n=6); and two control groups iv) from the endemic (n=6) and v) non-endemic areas in Brazil (n=4). We used total RNA extracted from peripheral blood mononuclear cells and performed a comprehensive characterization of the variable region of immunoglobulin heavy chain (IGH) in IgG and IgM using next-generation sequencing. Results Compared to individuals from a different area, we observed remarkably lower clonotype diversity in the B-cell immune repertoire of patients and controls from the endemic area (p < 0.02), suggesting that the immune repertoire in the endemic area is under geographically specific and intense environmental pressure. Moreover, we observed longer CDR3 sequences in patients, and we identified differential disease-specific usage of IGHV segments, including increased IGHV3-30 and decreased IGHV3-23 in patients with active disease (p < 0.04). Finally, our robust network analysis discovered clusters of CDR3 sequences uniquely observed in patients with PF. Discussion Our results indicate that environmental factors, in addition to disease state, impact the characteristics of the repertoire. Our findings can be applied to further investigation of the environmental factors that trigger pemphigus and expand the knowledge for identifying new targeted and more effective therapies.
Collapse
Affiliation(s)
- Verónica Calonga-Solís
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Olbrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Danielle Malheiros
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ticiana D.J. Farias
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina M. Camargo
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Danillo G. Augusto
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
9
|
Zavialova M, Kamaeva D, Kazieva L, Skvortsov VS, Smirnova L. Some structural features of the peptide profile of myelin basic protein-hydrolyzing antibodies in schizophrenic patients. PeerJ 2023; 11:e15584. [PMID: 37431466 PMCID: PMC10329820 DOI: 10.7717/peerj.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/26/2023] [Indexed: 07/12/2023] Open
Abstract
The antibodies of schizophrenic patients that hydrolyze myelin basic protein (MBP) have been actively studied recently, but the mechanism of the catalytic properties of immunoglobulin molecules remains unknown. Determination of specific immunoglobulin sequences associated with the high activity of MBP proteolysis will help to understand the mechanisms of abzyme catalysis. In the course of comparative mass spectrometric analysis of IgG peptides from the blood serum of patients with acute schizophrenia and healthy people, 12 sequences were identified, which were found only in antibodies that hydrolyze MBP. These sequences belong to IgG heavy chains and κ- and λ-type light chains, with eight of them belonging to variable domains. The content of peptides from the variable regions of the light chains does not correlate with the proteolytic activity of IgG to MBP in patients with schizophrenia, whereas for two sequences from the variable regions of the heavy chains (FQ(+0.98)GWVTMTR and *LYLQMN(+0.98)SLR), an increase in activity with increasing their concentration. The results suggest that these sequences may be involved in one way or another in MBP hydrolysis.
Collapse
Affiliation(s)
| | - Daria Kamaeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | | | - Liudmila Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Gueto-Tettay C, Tang D, Happonen L, Heusel M, Khakzad H, Malmström J, Malmström L. Multienzyme deep learning models improve peptide de novo sequencing by mass spectrometry proteomics. PLoS Comput Biol 2023; 19:e1010457. [PMID: 36668672 PMCID: PMC9891523 DOI: 10.1371/journal.pcbi.1010457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep learning models have represented a performance breakthrough. Incorporating that technology into de novo protein sequencing workflows require machine-learning models capable of handling highly diverse MS data. In this study, we analyzed the requirements for assembling such generalizable deep learning models by systemcally varying the composition and size of the training set. We assessed the generated models' performances using two test sets composed of peptides originating from the multienzyme digestion of samples from various species. The peptide recall values on the test sets showed that the deep learning models generated from a collection of highly N- and C-termini diverse peptides generalized 76% more over the termini-restricted ones. Moreover, expanding the training set's size by adding peptides from the multienzymatic digestion with five proteases of several species samples led to a 2-3 fold generalizability gain. Furthermore, we tested the applicability of these multienzyme deep learning (MEM) models by fully de novo sequencing the heavy and light monomeric chains of five commercial antibodies (mAbs). MEMs extracted over 10000 matching and overlapped peptides across six different proteases mAb samples, achieving a 100% sequence coverage for 8 of the ten polypeptide chains. We foretell that the MEMs' proven improvements to de novo analysis will positively impact several applications, such as analyzing samples of high complexity, unknown nature, or the peptidomics field.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Moritz Heusel
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Schulte D, Peng W, Snijder J. Template-Based Assembly of Proteomic Short Reads For De Novo Antibody Sequencing and Repertoire Profiling. Anal Chem 2022; 94:10391-10399. [PMID: 35834437 PMCID: PMC9330293 DOI: 10.1021/acs.analchem.2c01300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Antibodies can target a vast molecular diversity of antigens.
This
is achieved by generating a complementary diversity of antibody sequences
through somatic recombination and hypermutation. A full understanding
of the antibody repertoire in health and disease therefore requires
dedicated de novo sequencing methods. Next-generation
cDNA sequencing methods have laid the foundation of our current understanding
of the antibody repertoire, but these methods share one major limitation
in that they target the antibody-producing B-cells, rather than the
functional secreted product in bodily fluids. Mass spectrometry-based
methods offer an opportunity to bridge this gap between antibody repertoire
profiling and bulk serological assays, as they can access antibody
sequence information straight from the secreted polypeptide products.
In a step to meeting the challenge of mass spectrometry (MS)-based
antibody sequencing, we present a fast and simple software tool (Stitch)
to map proteomic short reads to user-defined templates with dedicated
features for both monoclonal antibody sequencing and profiling of
polyclonal antibody repertoires. We demonstrate the use of Stitch
by fully reconstructing two monoclonal antibody sequences with >98%
accuracy (including I/L assignment); sequencing a Fab from patient
serum isolated by reversed-phase liquid chromatography (LC) fractionation
against a high background of homologous antibody sequences; sequencing
antibody light chains from the urine of multiple-myeloma patients;
and profiling the IgG repertoire in sera from patients hospitalized
with COVID-19. We demonstrate that Stitch assembles a comprehensive
overview of the antibody sequences that are represented in the dataset
and provides an important first step toward analyzing polyclonal antibodies
and repertoire profiling.
Collapse
Affiliation(s)
- Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Li N, Aoki V, Liu Z, Prisayanh P, Valenzuela JG, Diaz LA. From Insect Bites to a Skin Autoimmune Disease: A Conceivable Pathway to Endemic Pemphigus Foliaceus. Front Immunol 2022; 13:907424. [PMID: 35693761 PMCID: PMC9186141 DOI: 10.3389/fimmu.2022.907424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
In the endemic variants of pemphigus foliaceus (PF), in Brazil and Tunisia, patients generate pathogenic IgG4 anti-desmoglein 1 autoantibodies. Additionally, these patients possess antibodies against salivary proteins from sand flies that react with Dsg1, which may lead to skin disease in susceptible individuals living in endemic areas. This minireview focuses on recent studies highlighting the possible role of salivary proteins from Lutzomyia longipalpis (L. longipalpis) in EPF from Brazil and Phlebotomus papatasi (P. papatasi) in EPF from Tunisia. We will briefly discuss the potential mechanisms of molecular mimicry and epitope spreading in the initiation and development of endemic PF (EPF) in Brazil and Tunisia.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valeria Aoki
- Department of Dermatology, Faculdade de Medicina Facultade de Medicina, Universidade de Sao Paulo (FMUSP), Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Luis A. Diaz,
| |
Collapse
|
13
|
Cho YT, Fu KT, Chen KL, Chang YL, Chu CY. Clinical, Histopathologic, and Immunohistochemical Features of Patients with IgG/IgA Pemphigus. Biomedicines 2022; 10:1197. [PMID: 35625932 PMCID: PMC9138426 DOI: 10.3390/biomedicines10051197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Pemphigus is an autoantibody-mediated blistering disease. In addition to conventional pemphigus vulgaris and pemphigus foliaceus, several other types have been reported. Among them, IgG/IgA pemphigus is less well defined and seldom reported. To characterize the clinical, histopathologic, and immunohistochemical presentation of IgG/IgA pemphigus, we retrospectively identified 22 patients with the disease at a referral center in Taiwan. These patients showed two types of skin lesion: annular or arciform erythemas with blisters or erosions (45.5%) and discrete erosions or blisters such as those in conventional pemphigus (54.5%). Mucosal involvement was found in 40.9%. Histopathologic analysis identified acantholysis (77.3%) and intra-epidermal aggregates of neutrophils (40.9%) and eosinophils (31.8%). Direct immunofluorescence studies showed IgG/IgA (100%) and C3 (81.8%) depositions in the intercellular space of the epidermis. In immunohistochemical staining, patients with IgG/IgA pemphigus demonstrated significantly higher levels of epidermal expression of interleukin-8 and matrix metalloproteinase-9 than those with conventional pemphigus (p < 0.05). In conclusion, although IgG/IgA pemphigus is heterogeneous in presentation, it shows characteristic features that are different from other forms of pemphigus and should be considered a distinct type of pemphigus.
Collapse
Affiliation(s)
- Yung-Tsu Cho
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (Y.-T.C.); (K.-T.F.); (K.-L.C.)
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243, Taiwan
| | - Ko-Ting Fu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (Y.-T.C.); (K.-T.F.); (K.-L.C.)
| | - Kai-Lung Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (Y.-T.C.); (K.-T.F.); (K.-L.C.)
| | - Yih-Leong Chang
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (Y.-T.C.); (K.-T.F.); (K.-L.C.)
| |
Collapse
|
14
|
Ellebrecht CT, Maseda D, Payne AS. Pemphigus and Pemphigoid: From Disease Mechanisms to Druggable Pathways. J Invest Dermatol 2022; 142:907-914. [PMID: 34756581 PMCID: PMC8860856 DOI: 10.1016/j.jid.2021.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
Pemphigus and pemphigoid are paradigms for understanding the mechanisms of antibody-mediated autoimmune disease in humans. In pemphigus, IgG4-predominant autoantibodies cause intraepidermal blistering by direct interference with desmoglein interactions and subsequent disruption of desmosomes and signaling pathways. In pemphigoid, IgG1, IgG4, and IgE autoantibodies against basement membrane zone antigens directly interfere with hemidesmosomal adhesion, activating complement and Fc receptor‒mediated effector pathways. Unraveling disease mechanisms in pemphigus and pemphigoid has identified numerous opportunities for clinical trials, which hold promise to identify safer and more effective therapies for these potentially life-threatening diseases.
Collapse
Affiliation(s)
| | - Damian Maseda
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S. Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Ionov S, Lee J. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by Serological Repertoire Profiling. Front Immunol 2022; 13:832533. [PMID: 35178051 PMCID: PMC8843944 DOI: 10.3389/fimmu.2022.832533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in various disease contexts. Until recently, characterization of antibody molecules in biological fluids was limited to bulk serology, which identifies clinically relevant features of polyclonal antibody responses. The past decade, however, has seen the rise of mass-spectrometry-enabled proteomics methods that have allowed profiling of the antibody response at the molecular level, with the disease-specific serological repertoire elucidated in unprecedented detail. In this review, we present an up-to-date survey of insights into the disease-specific immunological repertoire by examining how quantitative proteomics-based approaches have shed light on the humoral immune response to infection and vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the tumor-specific repertoire in cancer. We address limitations of this technology with a focus on emerging potential solutions and discuss the promise of high-resolution immunoproteomics in therapeutic discovery and novel vaccine design.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
16
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
17
|
Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol 2021; 40:463-481. [PMID: 34535228 DOI: 10.1016/j.tibtech.2021.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Humoral immunity is divided into the cellular B cell and protein-level antibody responses. High-throughput sequencing has advanced our understanding of both these fundamental aspects of B cell immunology as well as aspects pertaining to vaccine and therapeutics biotechnology. Although the protein-level serum and mucosal antibody repertoire make major contributions to humoral protection, the sequence composition and dynamics of antibody repertoires remain underexplored. This limits insight into important immunological and biotechnological parameters such as the number of antigen-specific antibodies, which are for example, relevant for pathogen neutralization, microbiota regulation, severity of autoimmunity, and therapeutic efficacy. High-resolution mass spectrometry (MS) has allowed initial insights into the antibody repertoire. We outline current challenges in MS-based sequence analysis of antibody repertoires and propose strategies for their resolution.
Collapse
|
18
|
Bondt A, Hoek M, Tamara S, de Graaf B, Peng W, Schulte D, van Rijswijck DMH, den Boer MA, Greisch JF, Varkila MRJ, Snijder J, Cremer OL, Bonten MJM, Heck AJR. Human plasma IgG1 repertoires are simple, unique, and dynamic. Cell Syst 2021; 12:1131-1143.e5. [PMID: 34613904 PMCID: PMC8691384 DOI: 10.1016/j.cels.2021.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/30/2023]
Abstract
Although humans can produce billions of IgG1 variants through recombination and hypermutation, the diversity of IgG1 clones circulating in human blood plasma has largely eluded direct characterization. Here, we combined several mass-spectrometry-based approaches to reveal that the circulating IgG1 repertoire in human plasma is dominated by a limited number of clones in healthy donors and septic patients. We observe that each individual donor exhibits a unique serological IgG1 repertoire, which remains stable over time but can adapt rapidly to changes in physiology. We introduce an integrative protein- and peptide-centric approach to obtain and validate a full sequence of an individual plasma IgG1 clone de novo. This IgG1 clone emerged at the onset of a septic episode and exhibited a high mutation rate (13%) compared with the closest matching germline DNA sequence, highlighting the importance of de novo sequencing at the protein level. A record of this paper’s transparent peer review process is included in the supplemental information. Novel LC-MS-based methods enable personalized IgG1 profiling in plasma Each donor exhibits a simple but unique serological IgG1 repertoire This repertoire adapts to changes in physiology, e.g., sepsis Individual plasma IgG1 clones can be identified by combining top-down and bottom-up proteomics
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Bastiaan de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Jean-François Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Meri R J Varkila
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
19
|
Peng W, Pronker MF, Snijder J. Mass Spectrometry-Based De Novo Sequencing of Monoclonal Antibodies Using Multiple Proteases and a Dual Fragmentation Scheme. J Proteome Res 2021; 20:3559-3566. [PMID: 34121409 PMCID: PMC8256418 DOI: 10.1021/acs.jproteome.1c00169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Antibody sequence information is crucial to understanding the structural basis for antigen binding and enables the use of antibodies as therapeutics and research tools. Here, we demonstrate a method for direct de novo sequencing of monoclonal IgG from the purified antibody products. The method uses a panel of multiple complementary proteases to generate suitable peptides for de novo sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a bottom-up fashion. Furthermore, we apply a dual fragmentation scheme, using both stepped high-energy collision dissociation (stepped HCD) and electron-transfer high-energy collision dissociation (EThcD), on all peptide precursors. The method achieves full sequence coverage of the monoclonal antibody herceptin, with an accuracy of 99% in the variable regions. We applied the method to sequence the widely used anti-FLAG-M2 mouse monoclonal antibody, which we successfully validated by remodeling a high-resolution crystal structure of the Fab and demonstrating binding to a FLAG-tagged target protein in Western blot analysis. The method thus offers robust and reliable sequences of monoclonal antibodies.
Collapse
Affiliation(s)
| | | | - Joost Snijder
- Biomolecular Mass Spectrometry
and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute of Pharmaceutical Sciences, Utrecht
University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Abstract
The vaccine field is pursuing diverse approaches to translate the molecular insights from analyses of effective antibodies and their targeted epitopes into immunogens capable of eliciting protective immune responses. Here we review current antibody-guided strategies including conformation-based, epitope-based, and lineage-based vaccine approaches, which are yielding promising vaccine candidates now being evaluated in clinical trials. We summarize directions being employed by the field, including the use of sequencing technologies to monitor and track developing immune responses for understanding and improving antibody-based immunity. We review opportunities and challenges to transform powerful new discoveries into safe and effective vaccines, which are encapsulated by vaccine efforts against a variety of pathogens including HIV-1, influenza A virus, malaria parasites, respiratory syncytial virus, and SARS-CoV-2. Overall, this review summarizes the extensive progress that has been made to realize antibody-guided structure-based vaccines, the considerable challenges faced, and the opportunities afforded by recently developed molecular approaches to vaccine development.
Collapse
|
21
|
Abstract
Pemphigus is a rare autoimmune disease of the skin, characterized by autoantibodies targeting adhesion proteins of the epidermis, in particular desmoglein 3 and desmoglein 1, that cause the loss of cell-cell adhesion and the formation of intraepidermal blisters. Given that these autoantibodies are both necessary and sufficient for pemphigus to occur, the goal of pemphigus therapy is the elimination of autoreactive B-cells responsible for autoantibody production. Rituximab, an anti-CD20 monoclonal antibody, was the first targeted B-cell therapy approved for use in pemphigus and is now considered the frontline therapy for new onset disease. One limitation of this treatment is that it targets both autoreactive and non -autoreactive B-cells, which accounts for the increased risk of serious infections in treated patients. In addition, most rituximab-treated patients experience disease relapse, highlighting the need of new therapeutic options. This review provides a concise overview of rituximab use in pemphigus and discusses new B-cell and antibody-directed therapies undergoing investigation in clinical studies.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy -
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Hammers CM, Stanley JR. Recent Advances in Understanding Pemphigus and Bullous Pemphigoid. J Invest Dermatol 2020; 140:733-741. [DOI: 10.1016/j.jid.2019.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
23
|
Hashimoto A, Takeuchi S, Kajita R, Yamagata A, Kakui R, Tanaka T, Nakata K. Proteogenomic analysis of granulocyte macrophage colony- stimulating factor autoantibodies in the blood of a patient with autoimmune pulmonary alveolar proteinosis. Sci Rep 2020; 10:4923. [PMID: 32188922 PMCID: PMC7080758 DOI: 10.1038/s41598-020-61934-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Recently, attempts to reveal the structures of autoantibodies comprehensively using improved proteogenomics technology, have become popular. This technology identifies peptides in highly purified antibodies by using an Orbitrap device to compare spectra from liquid chromatography-tandem mass spectrometry against a cDNA database obtained through next-generation sequencing. In this study, we first analyzed granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies in a patient with autoimmune pulmonary alveolar proteinosis, using the trapped ion mobility spectrometry coupled with quadrupole time-of-flight (TIMS-TOF) instrument. The TIMS-TOF instrument identified peptides that partially matched sequences in up to 156 out of 162 cDNA clones. Complementarity-determining region 3 (CDR3) was fully and partially detected in nine and 132 clones, respectively. Moreover, we confirmed one unique framework region 4 (FR4) and at least three unique across CDR3 to FR4 peptides via de novo peptide sequencing. This new technology may thus permit the comprehensive identification of autoantibody structure.
Collapse
Affiliation(s)
| | - Shiho Takeuchi
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | - Takahiro Tanaka
- Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Niigata University Medical & Dental Hospital, Niigata, Japan.
| |
Collapse
|
24
|
Ellebrecht CT, Mukherjee EM, Zheng Q, Choi EJ, Reddy SG, Mao X, Payne AS. Autoreactive IgG and IgA B Cells Evolve through Distinct Subclass Switch Pathways in the Autoimmune Disease Pemphigus Vulgaris. Cell Rep 2020; 24:2370-2380. [PMID: 30157430 PMCID: PMC6156788 DOI: 10.1016/j.celrep.2018.07.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/17/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Lineage analysis of autoreactive B cells can reveal the origins of autoimmunity. In the autoimmune disease pemphigus vulgaris (PV), desmoglein 3 (DSG3) and DSG1 autoantibodies are predominantly of the IgG4 subclass and less frequently of IgG1 and IgA subclasses, prompting us to investigate whether anti-DSG IgG4 B cells share lineages with IgG1, IgA1, and IgA2. Combining subclass-specific B cell deep sequencing with high-throughput antibody screening, we identified 80 DSG-reactive lineages from 4 PV patients. Most anti-DSG IgG4 B cells lacked clonal relationships to other subclasses and preferentially targeted DSG adhesion domains, whereas anti-DSG IgA frequently evolved from or to other subclasses and recognized a broader range of epitopes. Our findings suggest that anti-DSG IgG4 B cells predominantly evolve independently or diverge early from other subclasses and that IgA is most often not the origin of IgG autoreactivity in PV. These data provide insight into how autoreactivity diversifies across B cell subclasses. Ellebrecht et al. use next-generation sequencing to identify clonal relationships among antigen-specific B cells in the autoimmune disease pemphigus vulgaris. They find that autoreactive IgG4 B cells are largely clonally distinct from autoreactive IgG1 and IgA, thus elucidating the class-switch pathways that diversify and modify an autoimmune response in humans.
Collapse
Affiliation(s)
| | - Eric M Mukherjee
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eun Jung Choi
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shantan G Reddy
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Lee AYS, Chataway T, Colella AD, Gordon TP, Wang JJ. Quantitative Mass Spectrometric Analysis of Autoantibodies as a Paradigm Shift in Autoimmune Serology. Front Immunol 2019; 10:2845. [PMID: 31867009 PMCID: PMC6904311 DOI: 10.3389/fimmu.2019.02845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Adrian Y S Lee
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alex D Colella
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tom P Gordon
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jing J Wang
- Department of Immunology, SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
26
|
Lindesmith LC, McDaniel JR, Changela A, Verardi R, Kerr SA, Costantini V, Brewer-Jensen PD, Mallory ML, Voss WN, Boutz DR, Blazeck JJ, Ippolito GC, Vinje J, Kwong PD, Georgiou G, Baric RS. Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity 2019; 50:1530-1541.e8. [PMID: 31216462 PMCID: PMC6591005 DOI: 10.1016/j.immuni.2019.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire—pre- and post-vaccination—and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen. Serum vaccine response is dominated by a small number of abundant antibody clonotypes Vaccine-boosted antibodies predominantly target conserved norovirus epitopes Identified cross-genogroup and strain-specific epitopes Discovered a pandemic-genotype neutralizing antibody recognizing a conserved epitope
Collapse
Affiliation(s)
- Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A Kerr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William N Voss
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - John J Blazeck
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jan Vinje
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Olbrich M, Künstner A, Witte M, Busch H, Fähnrich A. Genetics and Omics Analysis of Autoimmune Skin Blistering Diseases. Front Immunol 2019; 10:2327. [PMID: 31749790 PMCID: PMC6843061 DOI: 10.3389/fimmu.2019.02327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Autoimmune blistering diseases (AIBDs) of the skin are characterized by autoantibodies against different intra-/extracellular structures within the epidermis and at the basement membrane zone (BMZ). Binding of the antibodies to their target antigen leads to inflammation at the respective binding site and degradation of these structures, resulting in the separation of the affected skin layers. Clinically, blistering, erythema and lesions of the skin and/or mucous membranes can be observed. Based on the localization of the autoantigen, AIBDs can be divided into pemphigus (intra-epidermal blistering diseases) and pemphigoid diseases (sub-epidermal blistering diseases), respectively. Although autoantigens have been extensively characterized, the underlying causes that trigger the diseases are still poorly understood. Besides the environment, genetic factors seem to play an important role in a predisposition to AIBDs. Here, we review currently known genetic and immunological mechanisms that contribute to the pathogenesis of AIBDs. Among the most commonly encountered genetic predispositions for AIBDs are the HLA gene region, and deleterious mutations of key genes for the immune system. Particularly, HLA class II genes such as the HLA-DR and HLA-DQ alleles have been shown to be prevalent in patients. This has prompted further epidemiological studies as well as unbiased Omics approaches on the transcriptome, microbiome, and proteome level to elucidate common and individual genetic risk factors as well as the molecular pathways that lead to the pathogenesis of AIBDs.
Collapse
Affiliation(s)
- Michael Olbrich
- Medical Systems Biology, Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology, Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology, Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology, Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Lin L, Moran TP, Peng B, Yang J, Culton DA, Che H, Jiang S, Liu Z, Geng S, Zhang Y, Diaz LA, Qian Y. Walnut antigens can trigger autoantibody development in patients with pemphigus vulgaris through a "hit-and-run" mechanism. J Allergy Clin Immunol 2019; 144:720-728.e4. [PMID: 31071340 PMCID: PMC6742533 DOI: 10.1016/j.jaci.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Environmental factors, as well as genetic predisposition, are known to be critical for the development of autoimmunity. However, the environmental agents that trigger autoimmune responses have remained elusive. One possible explanation is the "hit-and-run" mechanism in which the inciting antigens that initiate autoimmune responses are not present at the time of overt autoimmune disease. OBJECTIVE After our previous findings that some allergens can incite autoimmune responses, we investigated the potential role of environmental allergens in triggering autoantibody development in patients with an autoimmune skin disease, pemphigus vulgaris (PV). METHODS Revertant/germline mAbs (with mutations on variable regions of heavy and light chains reverted to germline forms) of 8 anti-desmoglein (Dsg) 3 pathogenic mAbs from patients with PV were tested for reactivity against a panel of possible allergens, including insects, pollens, epithelia, fungi, and food antigens. RESULTS All the PV germline mAbs were reactive to antigens from walnut, including the well-known allergen Jug r 2 and an uncharacterized 85-kDa protein component. Sera from patients with PV contained significantly greater levels of anti-Dsg3 autoantibodies than walnut-specific antibodies, suggesting that the autoreactive B-cell response in patients with PV might be initially triggered by walnut antigens but is subsequently driven by Dsg3. CONCLUSION Our findings suggest that walnut antigens/allergens can initiate autoantibody development in patients with PV through a "hit-and-run" mechanism. The revertant/germline mAb approach might provide a paradigm for the etiological study of other allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Lan Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Timothy P Moran
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bin Peng
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Jinsheng Yang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Western Regional Research Center, US Department of Agriculture, Albany, Calif
| | - Songsong Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Western Regional Research Center, US Department of Agriculture, Albany, Calif
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Yuzhu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
29
|
Zhou S, Liu Z, Yuan H, Zhao X, Zou Y, Zheng J, Pan M. Autoreactive B Cell Differentiation in Diffuse Ectopic Lymphoid-Like Structures of Inflamed Pemphigus Lesions. J Invest Dermatol 2019; 140:309-318.e8. [PMID: 31476317 DOI: 10.1016/j.jid.2019.07.717] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
Pemphigus is an organ-specific autoimmune disease that targets skin and/or mucous membranes. Our previous study showed that infiltrating lymphocytes in pemphigus vulgaris (PV) lesions produce anti-desmoglein (Dsg) 1/3 antibodies after in vitro culture. In this study, we found diffuse ectopic lymphoid-like structures (ELSs) commonly present in the lesions of both PV and pemphigus foliaceus. Notably, pemphigus lesions contained centroblasts, plasmablasts, and plasma cells, which recapitulated the different stages of B cell differentiation. Elevated mRNA expression levels of the differentiation-related transcription factors BLIMP-1, IRF4, and BCL-6 were observed in pemphigus lesions. Moreover, B cell receptor repertoire analysis revealed the clonal expansion of the lesional B cells. Lesional B cells might recirculate among lesions, lymph nodes, and peripheral blood. Increased mRNA expression levels of multiple chemokines in pemphigus lesions and elevated expression levels of chemokine receptors on lesional B cells were also observed. Collectively, these results show that the ELSs in pemphigus lesions might act as a niche, supporting in situ B cell differentiation and clonal expansion.
Collapse
Affiliation(s)
- Shengru Zhou
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Yuan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaru Zou
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Cho A, Caldara AL, Ran NA, Menne Z, Kauffman RC, Affer M, Llovet A, Norwood C, Scanlan A, Mantus G, Bradley B, Zimmer S, Schmidt T, Hertl M, Payne AS, Feldman R, Kowalczyk AP, Wrammert J. Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep 2019; 28:909-922.e6. [PMID: 31340153 PMCID: PMC6684256 DOI: 10.1016/j.celrep.2019.06.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by blistering sores on skin and mucosal membranes, caused by autoantibodies primarily targeting the cellular adhesion protein, desmoglein-3 (Dsg3). To better understand how Dsg3-specific autoantibodies develop and cause disease in humans, we performed a cross-sectional study of PV patients before and after treatment to track relevant cellular responses underlying disease pathogenesis, and we provide an in-depth analysis of two patients by generating a panel of mAbs from single Dsg3-specific memory B cells (MBCs). Additionally, we analyzed a paired sample from one patient collected 15-months prior to disease diagnosis. We find that Dsg3-specific MBCs have an activated phenotype and show signs of ongoing affinity maturation and clonal selection. Monoclonal antibodies (mAbs) with pathogenic activity primarily target epitopes in the extracellular domains EC1 and EC2 of Dsg3, though they can also bind to the EC4 domain. Combining antibodies targeting different epitopes synergistically enhances in vitro pathogenicity.
Collapse
Affiliation(s)
- Alice Cho
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Amber L Caldara
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina A Ran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zach Menne
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Maurizio Affer
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Llovet
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bridget Bradley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Zimmer
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Pollmann R, Walter E, Schmidt T, Waschke J, Hertl M, Möbs C, Eming R. Identification of Autoreactive B Cell Subpopulations in Peripheral Blood of Autoimmune Patients With Pemphigus Vulgaris. Front Immunol 2019; 10:1375. [PMID: 31258541 PMCID: PMC6587433 DOI: 10.3389/fimmu.2019.01375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Pemphigus vulgaris (PV) is a rare blistering disease caused by IgG autoantibodies against the epidermal adhesion molecules desmoglein (Dsg)3 and Dsg1 providing a well-characterized paradigm of an antibody-mediated organ-specific autoimmune disease. In PV patients who have achieved clinical remission after B cell-depleting therapy, relapses often coincide with a reoccurrence of B cells and Dsg-specific autoantibodies. Here, we analyzed Dsg3-specific B cell subpopulations (i.e., total CD19+ B cells, CD19+CD27−B cells, CD19+CD27+ memory B cells, and CD19+CD27hiCD38hi plasmablasts) in peripheral blood of both PV patients (n = 14) at different stages of disease and healthy individuals (n = 14) by flow cytometry using fluorescently labeled recombinant human Dsg3 protein. Applying this approach, Dsg3-specific B cells could be detected at low frequencies (0.11–0.53% of CD19+ B cells) and numbers of Dsg3-specific memory B cells were significantly increased in PV patients in clinical remission receiving minimal immunosuppressive therapy. Finally, we confirmed in vitro that Dsg3-reactive memory B cells were able to produce anti-Dsg3 IgG autoantibodies upon ex vivo activation. Thus, monitoring of Dsg3-specific B cells in PV is of particular interest to further characterize the immunopathogenesis of PV.
Collapse
Affiliation(s)
- Robert Pollmann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Elias Walter
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
32
|
Berkani N, Joly P, Golinski ML, Colliou N, Lim A, Larbi A, Riou G, Caillot F, Bernard P, Bedane C, Delaporte E, Chaby G, Dompmartin A, Hertl M, Calbo S, Musette P. B-cell depletion induces a shift in self antigen specific B-cell repertoire and cytokine pattern in patients with bullous pemphigoid. Sci Rep 2019; 9:3525. [PMID: 30837635 PMCID: PMC6401188 DOI: 10.1038/s41598-019-40203-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/04/2019] [Indexed: 11/08/2022] Open
Abstract
Bullous Pemphigoid is the most common auto-immune bullous skin disease. It is characterized by the production of auto-antibodies directed against 2 proteins of the hemi-desmosome (BP180 and BP230). We assessed the efficacy and mechanisms of action of rituximab, an anti-CD20 monoclonal antibody, in 17 patients with severe and relapsing type of bullous pemphigoid. The phenotype, cytokine gene expression, and rearrangement of BP180-specific B-cell receptor genes were performed over 2 years following treatment. At the end of the study, 5 patients had died, 3 had withdrawn from the study, and 9 patients were in complete remission. The one- and two-year relapse rates were 44.1% (95% Confidence Interval (CI): 21.0-76.0%) and 66.5%, (95% CI: 38.4-91.4%), respectively. Phenotypic analyses confirmed dramatic B-cell depletion, which lasted for 9 to 12 months. The ELISA values of serum anti-BP180 antibodies and the frequency of BP180-specific circulating B cells decreased dramatically following treatment, which paralleled the improvement of skin lesions. During B-cell reconstitution, a polyclonal IgM repertoire appeared and a shift in the rearrangement of the B-cell receptor genes of BP180-specific circulating B cells was observed. Concurrently, we observed a decrease of IL-15, IL-6 and TNFα expressing BP180-specific B cells, and the emergence of IL-10 and IL-1RA-expressing BP180-specific IgM+ B cells in patients in complete remission off therapy, suggesting the functional plasticity of BP180-specific auto-immune B cells after rituximab treatment.
Collapse
Affiliation(s)
| | - Pascal Joly
- Normandie University, UNIROUEN, INSERM U1234, Rouen, France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Dermatology, French reference center for autoimmune bullous diseases, F76000, Rouen, France
| | - Marie-Laure Golinski
- Normandie University, UNIROUEN, INSERM U1234, Rouen, France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Dermatology, French reference center for autoimmune bullous diseases, F76000, Rouen, France
| | | | - Annick Lim
- Immunoscope plateform, Pasteur Institute, Paris, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gaetan Riou
- Normandie University, UNIROUEN, INSERM U1234, Rouen, France
| | | | - Philippe Bernard
- Department of Dermatology, Reims University Hospital, Reims, France
| | - Christophe Bedane
- Department of Dermatology, Limoges University Hospital, Limoges, France
| | | | - Guillaume Chaby
- Department of Dermatology, Amiens University Hospital, Amiens, France
| | - Anne Dompmartin
- Department of Dermatology, Caen University Hospital, Caen, France
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Philippe Musette
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Dermatology, French reference center for autoimmune bullous diseases, F76000, Rouen, France.
- INSERM U976, Saint Louis Hospital, Paris, France.
| |
Collapse
|
33
|
Abstract
Pemphigus and pemphigoid are characterized as autoimmune blistering diseases in which immunoglobulin G autoantibodies cause blisters and erosions of the skin or mucosa or both. Recently, understanding of the pathophysiology of pemphigus and pemphigoid has been furthered by genetic analyses, characterization of autoantibodies and autoreactive B cells, and elucidation of cell–cell adhesion between keratinocytes. For the management of pemphigus and pemphigoid, the administration of systemic corticosteroids still represents the standard treatment strategy; however, evidence of the efficacy of therapies not involving corticosteroids, such as those employing anti-CD20 antibodies, is increasing. The goal should be to develop antigen-specific immune suppression-based treatments.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
34
|
Avram O, Vaisman-Mentesh A, Yehezkel D, Ashkenazy H, Pupko T, Wine Y. ASAP - A Webserver for Immunoglobulin-Sequencing Analysis Pipeline. Front Immunol 2018; 9:1686. [PMID: 30105017 PMCID: PMC6077260 DOI: 10.3389/fimmu.2018.01686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Reproducible and robust data on antibody repertoires are invaluable for basic and applied immunology. Next-generation sequencing (NGS) of antibody variable regions has emerged as a powerful tool in systems immunology, providing quantitative molecular information on antibody polyclonal composition. However, major computational challenges exist when analyzing antibody sequences, from error handling to hypermutation profiles and clonal expansion analyses. In this work, we developed the ASAP (A webserver for Immunoglobulin-Seq Analysis Pipeline) webserver (https://asap.tau.ac.il). The input to ASAP is a paired-end sequence dataset from one or more replicates, with or without unique molecular identifiers. These datasets can be derived from NGS of human or murine antibody variable regions. ASAP first filters and annotates the sequence reads using public or user-provided germline sequence information. The ASAP webserver next performs various calculations, including somatic hypermutation level, CDR3 lengths, V(D)J family assignments, and V(D)J combination distribution. These analyses are repeated for each replicate. ASAP provides additional information by analyzing the commonalities and differences between the repeats (“joint” analysis). For example, ASAP examines the shared variable regions and their frequency in each replicate to determine which sequences are less likely to be a result of a sample preparation derived and/or sequencing errors. Moreover, ASAP clusters the data to clones and reports the identity and prevalence of top ranking clones (clonal expansion analysis). ASAP further provides the distribution of synonymous and non-synonymous mutations within the V genes somatic hypermutations. Finally, ASAP provides means to process the data for proteomic analysis of serum/secreted antibodies by generating a variable region database for liquid chromatography high resolution tandem mass spectrometry (LC-MS/MS) interpretation. ASAP is user-friendly, free, and open to all users, with no login requirement. ASAP is applicable for researchers interested in basic questions related to B cell development and differentiation, as well as applied researchers who are interested in vaccine development and monoclonal antibody engineering. By virtue of its user-friendliness, ASAP opens the antibody analysis field to non-expert users who seek to boost their research with immune repertoire analysis.
Collapse
Affiliation(s)
- Oren Avram
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Anna Vaisman-Mentesh
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Dror Yehezkel
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Haim Ashkenazy
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Tal Pupko
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Yariv Wine
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
35
|
Hammers CM, Tang HY, Chen J, Emtenani S, Zheng Q, Stanley JR. Research Techniques Made Simple: Mass Spectrometry for Analysis of Proteins in Dermatological Research. J Invest Dermatol 2018; 138:1236-1242. [DOI: 10.1016/j.jid.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 01/27/2023]
|
36
|
Iversen R, Snir O, Stensland M, Kroll JE, Steinsbø Ø, Korponay-Szabó IR, Lundin KEA, de Souza GA, Sollid LM. Strong Clonal Relatedness between Serum and Gut IgA despite Different Plasma Cell Origins. Cell Rep 2018; 20:2357-2367. [PMID: 28877470 PMCID: PMC5603730 DOI: 10.1016/j.celrep.2017.08.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/14/2017] [Accepted: 08/07/2017] [Indexed: 01/02/2023] Open
Abstract
Mucosal antigens induce generation of lamina propria plasma cells (PCs) that secrete dimeric immunoglobulin A (IgA) destined for transport across the epithelium. In addition, blood contains monomeric IgA. To study the relationship between mucosal and systemic antibody responses, we took advantage of celiac disease patient samples for isolation of gut PCs as well as serum IgA and IgG reactive with a gluten-derived peptide or the autoantigen transglutaminase 2. Proteomic analysis of serum IgA revealed antigen-specific V-gene preferences, which matched those found in gut PCs. Further, gut PC CDR-H3 sequences were abundant in serum IgA but also detectable in serum IgG. Our data indicate that the same B cell clones that give rise to gut PCs also contribute to the serum antibody pool. However, serum IgA antibodies had a molecular composition distinct from that of IgA antibodies secreted in the gut, suggesting that individual B cell clones give rise to different PC populations.
Collapse
Affiliation(s)
- Rasmus Iversen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway
| | - Omri Snir
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway
| | - Maria Stensland
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; Proteomics Core Facility, Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway
| | - José E Kroll
- Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Øyvind Steinsbø
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway
| | | | - Knut E A Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; KG Jebsen Coeliac Disease Research Centre, University of Oslo, NO-0372 Oslo, Norway
| | - Gustavo A de Souza
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; Proteomics Core Facility, Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, NO-0372 Oslo, Norway; KG Jebsen Coeliac Disease Research Centre, University of Oslo, NO-0372 Oslo, Norway.
| |
Collapse
|
37
|
Didona D, Di Zenzo G. Humoral Epitope Spreading in Autoimmune Bullous Diseases. Front Immunol 2018; 9:779. [PMID: 29719538 PMCID: PMC5913575 DOI: 10.3389/fimmu.2018.00779] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune blistering diseases are characterized by autoantibodies against structural adhesion proteins of the skin and mucous membranes. Extensive characterization of their autoantibody targets has improved understanding of pathogenesis and laid the basis for the study of antigens/epitopes diversification, a process termed epitope spreading (ES). In this review, we have reported and discussed ES phenomena in autoimmune bullous diseases and underlined their functional role in disease pathogenesis. A functional ES has been proposed: (1) in bullous pemphigoid patients and correlates with the initial phase of the disease, (2) in pemphigus vulgaris patients with mucosal involvement during the clinical transition to a mucocutaneous form, (3) in endemic pemphigus foliaceus, underlining its role in disease pathogenesis, and (4) in numerous cases of disease transition associated with an intermolecular diversification of immune response. All these findings could give useful information to better understand autoimmune disease pathogenesis and to design antigen/epitope specific therapeutic approaches.
Collapse
Affiliation(s)
- Dario Didona
- Clinic for Dermatology and Allergology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
38
|
Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff V. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires. Front Immunol 2018; 9:224. [PMID: 29515569 PMCID: PMC5826328 DOI: 10.3389/fimmu.2018.00224] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.
Collapse
Affiliation(s)
- Enkelejda Miho
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- aiNET GmbH, ETH Zürich, Basel, Switzerland
| | - Alexander Yermanos
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cédric R. Weber
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christoph T. Berger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Department of Internal Medicine, Clinical Immunology, University Hospital Basel, Basel, Switzerland
| | - Sai T. Reddy
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Immunology, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Kovaltsuk A, Krawczyk K, Galson JD, Kelly DF, Deane CM, Trück J. How B-Cell Receptor Repertoire Sequencing Can Be Enriched with Structural Antibody Data. Front Immunol 2017; 8:1753. [PMID: 29276518 PMCID: PMC5727015 DOI: 10.3389/fimmu.2017.01753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022] Open
Abstract
Next-generation sequencing of immunoglobulin gene repertoires (Ig-seq) allows the investigation of large-scale antibody dynamics at a sequence level. However, structural information, a crucial descriptor of antibody binding capability, is not collected in Ig-seq protocols. Developing systematic relationships between the antibody sequence information gathered from Ig-seq and low-throughput techniques such as X-ray crystallography could radically improve our understanding of antibodies. The mapping of Ig-seq datasets to known antibody structures can indicate structurally, and perhaps functionally, uncharted areas. Furthermore, contrasting naïve and antigenically challenged datasets using structural antibody descriptors should provide insights into antibody maturation. As the number of antibody structures steadily increases and more and more Ig-seq datasets become available, the opportunities that arise from combining the two types of information increase as well. Here, we review how these data types enrich one another and show potential for advancing our knowledge of the immune system and improving antibody engineering.
Collapse
Affiliation(s)
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Jacob D Galson
- Division of Immunology and the Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology and the Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
VanDuijn MM, Dekker LJ, van IJcken WFJ, Sillevis Smitt PAE, Luider TM. Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics. Front Immunol 2017; 8:1286. [PMID: 29085363 PMCID: PMC5650670 DOI: 10.3389/fimmu.2017.01286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023] Open
Abstract
The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Theo M Luider
- Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|