1
|
Ma YN, Yang CJ, Zhang CC, Sun YX, Yao XD, Liu X, Li XX, Wang HL, Wang H, Wang T, Wang XD, Zhang C, Su YA, Li JT, Si TM. Prefrontal parvalbumin interneurons mediate CRHR1-dependent early-life stress-induced cognitive deficits in adolescent male mice. Mol Psychiatry 2025; 30:2407-2426. [PMID: 39578519 PMCID: PMC12092253 DOI: 10.1038/s41380-024-02845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Cognitive impairment, a core symptom of psychiatric disorders, is frequently observed in adolescents exposed to early-life stress (ES). However, the underlying neural mechanisms are unclear, and therapeutic efficacy is limited. Targeting parvalbumin-expressing interneurons (PVIs) in the medial prefrontal cortex (mPFC), we report that ES reduces mPFC PVI activity, which causally mediated ES-induced cognitive deficits in adolescent male mice through chemogenetic and optogenetic experiments. To understand the possible causes of PVI activity reduction following ES, we then demonstrated that ES upregulated corticotropin-releasing hormone (CRH) receptor 1 [CRHR1, mainly expressed in pyramidal neurons (PNs)] and reduced activity of local pyramidal neurons (PNs) and their excitatory inputs to PVIs. The subsequent genetic manipulation experiments (CRHR1 knockout, CRH overexpression, and chemogenetics) highlight that ES-induced PVI activity reduction may result from CRHR1 upregulation and PN activity downregulation and that PVIs play indispensable roles in CRHR1- or PN-mediated cognitive deficits induced by ES. These results suggest that ES-induced cognitive deficits could be attributed to the prefrontal CRHR1-PN-PVI pathway. Finally, treatment with antalarmin (a CRHR1 antagonist) and environmental enrichment successfully restored the PVI activity and cognitive deficits induced by ES. These findings reveal the neurobiological mechanisms underlying ES-induced cognitive deficits in adolescent male mice and highlight the therapeutic potentials of PVIs in stress-related cognitive deficits in adolescent individuals.
Collapse
Affiliation(s)
- Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chao-Juan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing-Duo Yao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
2
|
He ZC, Yu YJ, Wang T, Yin HR, Sun YX, Liu X, Xie XM, Wang HL, Su YA, Li JT, Si TM. Early-life stress of limited bedding/nesting material induced recognition memory loss and decreased hippocampal VGluT1 and nectin3 levels in aged male mice. Pharmacol Biochem Behav 2025; 249:173980. [PMID: 39987993 DOI: 10.1016/j.pbb.2025.173980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Exposure to early-life stress has been found to lead to enduring psychiatric symptoms, including cognitive impairments that persist into adulthood and even old age. In this study, we investigated the behavioral effects and molecular changes of a well-established animal model of early-life stress, the limited bedding and nesting (LBN) model, in aged male mice. After 16 months, stressed mice showed a marked impairment in novel and spatial object recognition tasks, but not in temporal order memory or spatial working memory in the Y-maze spontaneous alternation task. These cognitive deficits were accompanied by a reduction in VGluT1 expression and a lower VGluT1/VGAT ratio in the CA1 region of the hippocampus, as well as reduced nectin3 expression in the mouse hippocampus. No significant molecular alterations were observed in the medial prefrontal cortex. These data support the notion that early-life stress leads to cognitive impairments in aged male mice, and these effects may be associated with a dysregulated excitatory/inhibitory balance and reduced nectin3 levels in the hippocampus.
Collapse
Affiliation(s)
- Ze-Cong He
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ya-Jie Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hui-Rong Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; The First Affiliated Hospital of Xinxiang Medical College, 453100 Xinxiang, Henan, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao-Meng Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
3
|
Li S, Shen Q, Zhang S. Spatial transcriptomics-aided localization for single-cell transcriptomics with STALocator. Cell Syst 2025; 16:101195. [PMID: 39904340 DOI: 10.1016/j.cels.2025.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Single-cell RNA-sequencing (scRNA-seq) techniques can measure gene expression at single-cell resolution but lack spatial information. Spatial transcriptomics (ST) techniques simultaneously provide gene expression data and spatial information. However, the data quality of the spatial resolution or gene coverage is still much lower than the quality of the single-cell transcriptomics data. To this end, we develop a ST-Aided Locator for single-cell transcriptomics (STALocator) to localize single cells to corresponding ST data. Applications on simulated data showed that STALocator performed better than other localization methods. When applied to the human brain and squamous cell carcinoma data, STALocator could robustly reconstruct the relative spatial organization of critical cell populations. Moreover, STALocator could enhance gene expression patterns for Slide-seqV2 data and predict genome-wide gene expression data for fluorescence in situ hybridization (FISH) and Xenium data, leading to the identification of more spatially variable genes and more biologically relevant Gene Ontology (GO) terms compared with the raw data. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Shang Li
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunlun Shen
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Ma YN, Zhang CC, Sun YX, Liu X, Li XX, Wang H, Wang T, Wang XD, Su YA, Li JT, Si TM. Dorsal CA1 NECTIN3 Reduction Mediates Early-Life Stress-Induced Object Recognition Memory Deficits in Adolescent Female Mice. Neurosci Bull 2025; 41:243-260. [PMID: 39395912 PMCID: PMC11794733 DOI: 10.1007/s12264-024-01305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/28/2024] [Indexed: 10/14/2024] Open
Abstract
Early-life stress (ES) leads to cognitive dysfunction in female adolescents, but the underlying neural mechanisms remain elusive. Recent evidence suggests that the cell adhesion molecules NECTIN1 and NECTIN3 play a role in cognition and ES-related cognitive deficits in male rodents. In this study, we aimed to investigate whether and how nectins contribute to ES-induced cognitive dysfunction in female adolescents. Applying the well-established limited bedding and nesting material paradigm, we found that ES impairs recognition memory, suppresses prefrontal NECTIN1 and hippocampal NECTIN3 expression, and upregulates corticotropin-releasing hormone (Crh) and its receptor 1 (Crhr1) mRNA levels in the hippocampus of adolescent female mice. Genetic experiments revealed that the reduction of dorsal CA1 (dCA1) NECTIN3 mediates ES-induced object recognition memory deficits, as knocking down dCA1 NECTIN3 impaired animals' performance in the novel object recognition task, while overexpression of dCA1 NECTIN3 successfully reversed the ES-induced deficits. Notably, prefrontal NECTIN1 knockdown did not result in significant cognitive impairments. Furthermore, acute systemic administration of antalarmin, a CRHR1 antagonist, upregulated hippocampal NECTIN3 levels and rescued object and spatial memory deficits in stressed mice. Our findings underscore the critical role of dCA1 NECTIN3 in mediating ES-induced object recognition memory deficits in adolescent female mice, highlighting it as a potential therapeutic target for stress-related psychiatric disorders in women.
Collapse
Affiliation(s)
- Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
5
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025; 21:e14477. [PMID: 39776253 PMCID: PMC11848412 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of PsychiatryYale Medical SchoolNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| |
Collapse
|
6
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Silva-Llanes I, Martín-Baquero R, Berrojo-Armisen A, Rodríguez-Cueto C, Fernández-Ruiz J, De Lago E, Lastres-Becker I. Beneficial Effect of Dimethyl Fumarate Drug Repositioning in a Mouse Model of TDP-43-Dependent Frontotemporal Dementia. Antioxidants (Basel) 2024; 13:1072. [PMID: 39334731 PMCID: PMC11428793 DOI: 10.3390/antiox13091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Frontotemporal dementia (FTD) causes progressive neurodegeneration in the frontal and temporal lobes, leading to behavioral, cognitive, and language impairments. With no effective treatment available, exploring new therapeutic approaches is critical. Recent research highlights the transcription factor Nuclear Factor erythroid-derived 2-like 2 (NRF2) as vital in limiting neurodegeneration, with its activation shown to mitigate FTD-related processes like inflammation. Dimethyl fumarate (DMF), an NRF2 activator, has demonstrated neuroprotective effects in a TAU-dependent FTD mouse model, reducing neurodegeneration and inflammation. This suggests DMF repositioning potential for FTD treatment. Until now, no trial had been conducted to analyze the effect of DMF on TDP-43-dependent FTD. In this study, we aimed to determine the potential therapeutic efficacy of DMF in a TDP-43-related FTD mouse model that exhibits early cognitive impairment. Mice received oral DMF treatment every other day from presymptomatic to symptomatic stages. By post-natal day (PND) 60, an improvement in cognitive function is already evident, becoming even more pronounced by PND90. This cognitive enhancement correlates with the neuroprotection observed in the dentate gyrus and a reduction in astrogliosis in the stratum lacunosum-moleculare zone. At the prefrontal cortex (PFC) level, a neuroprotective effect of DMF is also observed, accompanied by a reduction in astrogliosis. Collectively, our results suggest a potential therapeutic application of DMF for patients with TDP-43-dependent FTD.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
| | - Raquel Martín-Baquero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Alicia Berrojo-Armisen
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Eva De Lago
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
8
|
Atapour N, Rosa MGP, Bai S, Bednarek S, Kulesza A, Saworska G, Teymornejad S, Worthy KH, Majka P. Distribution of calbindin-positive neurons across areas and layers of the marmoset cerebral cortex. PLoS Comput Biol 2024; 20:e1012428. [PMID: 39312590 PMCID: PMC11495585 DOI: 10.1371/journal.pcbi.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
The diversity of the mammalian cerebral cortex demands technical approaches to map the spatial distribution of neurons with different biochemical identities. This issue is magnified in the case of the primate cortex, characterized by a large number of areas with distinctive cytoarchitectures. To date, no full map of the distribution of cells expressing a specific protein has been reported for the cortex of any primate. Here we have charted the 3-dimensional distribution of neurons expressing the calcium-binding protein calbindin (CB+ neurons) across the entire marmoset cortex, using a combination of immunohistochemistry, automated cell identification, computerized reconstruction, and cytoarchitecture-aware registration. CB+ neurons formed a heterogeneous population, which together corresponded to 10-20% of the cortical neurons. They occurred in higher proportions in areas corresponding to low hierarchical levels of processing, such as sensory cortices. Although CB+ neurons were concentrated in the supragranular and granular layers, there were clear global trends in their laminar distribution. For example, their relative density in infragranular layers increased with hierarchical level along sensorimotor processing streams, and their density in layer 4 was lower in areas involved in sensorimotor integration, action planning and motor control. These results reveal new quantitative aspects of the cytoarchitectural organization of the primate cortex, and demonstrate an approach to mapping the full distribution of neurochemically distinct cells throughout the brain which is readily applicable to most other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shi Bai
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kulesza
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Gabriela Saworska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Katrina H. Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Sun M, Zhang Y, Zhang XQ, Zhang Y, Wang XD, Li JT, Si TM, Su YA. Dopamine D1 receptor in medial prefrontal cortex mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits. Neuropsychopharmacology 2024; 49:1341-1351. [PMID: 38658737 PMCID: PMC11224251 DOI: 10.1038/s41386-024-01866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is an intracellular expressed G-protein-coupled receptor that is widely expressed in major dopaminergic areas and plays a crucial role in modulation of central dopaminergic neurotransmission and function. Pharmacological studies have clarified the roles of dopamine D1 receptor (D1R) in the medial prefrontal cortex (mPFC) in cognitive function and social behaviors, and chronic stress can inhibit D1R expression due to its susceptibility. Recently, we identified TAAR1 in the mPFC as a potential target for treating chronic stress-induced cognitive and social dysfunction, but whether D1R is involved in mediating the effects of TAAR1 agonist remains unclear. Combined genomics and transcriptomic studies revealed downregulation of D1R in the mPFC of TAAR1-/- mice. Molecular dynamics simulation showed that hydrogen bond, salt bridge, and Pi-Pi stacking interactions were formed between TAAR1 and D1R indicating a stable TAAR1-D1R complex structure. Using pharmacological interventions, we found that D1R antagonist disrupted therapeutic effect of TAAR1 partial agonist RO5263397 on stress-related cognitive and social dysfunction. Knockout TAAR1 in D1-type dopamine receptor-expressing neurons reproduced adverse effects of chronic stress, and TAAR1 conditional knockout in the mPFC led to similar deficits, along with downregulation of D1R expression, all of these effects were ameliorated by viral overexpression of D1R in the mPFC, suggesting the functional interaction between TAAR1 and D1R. Collectively, our data elucidate the possible molecular mechanism that D1R in the mPFC mediates the effects of TAAR1 activation on chronic stress-induced cognitive and social deficits.
Collapse
Affiliation(s)
- Meng Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yue Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
10
|
Zhang Y, Zhang XQ, Niu WP, Sun M, Zhang Y, Li JT, Si TM, Su YA. TAAR1 in dentate gyrus is involved in chronic stress-induced impairments in hippocampal plasticity and cognitive function. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110995. [PMID: 38514038 DOI: 10.1016/j.pnpbp.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Multiple lines of evidence suggest that the trace amine-associated receptor 1 (TAAR1) holds promise as a potential target for stress-related disorders, such as treating major depressive disorder (MDD). The role of TAAR1 in the regulation of adult neurogenesis is recently supported by transcriptomic data. However, it remains unknown whether TAAR1 in dentate gyrus (DG) mediate chronic stress-induced negative effects on hippocampal plasticity and related behavior in mice. The present study consisted of a series of experiments using RNAscope, genetic approaches, behavioral tests, immunohistochemical staining, Golgi-Cox technique to unravel the effects of TAAR1 on alterations of dentate neuronal plasticity and cognitive function in the chronic social defeat stress model. The mice subjected to chronic defeat stress exhibited a noteworthy decrease in the mRNA level of TAAR1 in DG. Additionally, they exhibited compromised social memory and spatial object recognition memory, as well as impaired proliferation and maturation of adult-born dentate granule cells. Moreover, the selective knockout TAAR1 in DG mostly mimicked the cognitive function deficits and neurogenesis impairment induced by chronic stress. Importantly, the administration of the selective TAAR1 partial agonist RO5263397 during stress exposure attenuated the adverse effects of chronic stress on cognitive function, adult neurogenesis, dendritic arborization, and the synapse number of dentate neurons in DG. In summary, our findings suggest that TAAR1 plays a crucial role in mediating the detrimental effects of chronic stress on hippocampal plasticity and cognition. TAAR1 agonists exhibit therapeutic potential for individuals suffering from cognitive impairments associated with MDD.
Collapse
Affiliation(s)
- Yue Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wei-Pan Niu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Meng Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
11
|
Mota B, Brás AR, Araújo-Andrade L, Silva A, Pereira PA, Madeira MD, Cardoso A. High-Caloric Diets in Adolescence Impair Specific GABAergic Subpopulations, Neurogenesis, and Alter Astrocyte Morphology. Int J Mol Sci 2024; 25:5524. [PMID: 38791562 PMCID: PMC11122083 DOI: 10.3390/ijms25105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.
Collapse
Affiliation(s)
- Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Rita Brás
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
| | - Leonardo Araújo-Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro A. Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - M. Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Huo L, Ye Z, Liu M, He Z, Huang M, Li D, Wu Q, Wang Q, Wang X, Cao P, Dong J, Shang C. Brain circuits for retching-like behavior. Natl Sci Rev 2024; 11:nwad256. [PMID: 38288368 PMCID: PMC10824557 DOI: 10.1093/nsr/nwad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 01/31/2024] Open
Abstract
Nausea and vomiting are important defensive responses to cope with pathogens and toxins that invade the body. The nucleus of the solitary tract (NTS) is important for initiating these responses. However, the molecular heterogeneities and cellular diversities of the NTS occlude a better understanding of these defensive responses. Here, we constructed the single-nucleus transcriptomic atlas of NTS cells and found multiple populations of NTS neurons that may be involved in these defensive responses. Among these, we identified Calbindin1-positive (Calb1+) NTS neurons that are molecularly distinct from Tac1+ neurons. These Calb1+ neurons are critical for nausea and retching induced by cereulide; an emetic toxin secreted by Bacillus Cereus. Strikingly, we found that cereulide can directly modulate vagal sensory neurons that innervate Calb1+ NTS neurons, a novel mechanism distinct from that for nausea and retching induced by Staphylococcal enterotoxin A. Together, our transcriptomic atlas of NTS neurons and the functional analyses revealed the neural mechanism for cereulide-induced retching-like behavior. These results demonstrate the molecular and cellular complexities in the brain that underlie defensive responses to the diversities of pathogens and toxins.
Collapse
Affiliation(s)
- Lifang Huo
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Zhimin Ye
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meiling Liu
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Ziqing He
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Wang
- Changping Life Science Laboratory, Beijing 102299, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ji Dong
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
13
|
Arnsten AFT, Ishizawa Y, Xie Z. Scientific rationale for the use of α2A-adrenoceptor agonists in treating neuroinflammatory cognitive disorders. Mol Psychiatry 2023; 28:4540-4552. [PMID: 37029295 PMCID: PMC10080530 DOI: 10.1038/s41380-023-02057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Neuroinflammatory disorders preferentially impair the higher cognitive and executive functions of the prefrontal cortex (PFC). This includes such challenging disorders as delirium, perioperative neurocognitive disorder, and the sustained cognitive deficits from "long-COVID" or traumatic brain injury. There are no FDA-approved treatments for these symptoms; thus, understanding their etiology is important for generating therapeutic strategies. The current review describes the molecular rationale for why PFC circuits are especially vulnerable to inflammation, and how α2A-adrenoceptor (α2A-AR) actions throughout the nervous and immune systems can benefit the circuits in PFC needed for higher cognition. The layer III circuits in the dorsolateral PFC (dlPFC) that generate and sustain the mental representations needed for higher cognition have unusual neurotransmission and neuromodulation. They are wholly dependent on NMDAR neurotransmission, with little AMPAR contribution, and thus are especially vulnerable to kynurenic acid inflammatory signaling which blocks NMDAR. Layer III dlPFC spines also have unusual neuromodulation, with cAMP magnification of calcium signaling in spines, which opens nearby potassium channels to rapidly weaken connectivity and reduce neuronal firing. This process must be tightly regulated, e.g. by mGluR3 or α2A-AR on spines, to prevent loss of firing. However, the production of GCPII inflammatory signaling reduces mGluR3 actions and markedly diminishes dlPFC network firing. Both basic and clinical studies show that α2A-AR agonists such as guanfacine can restore dlPFC network firing and cognitive function, through direct actions in the dlPFC, but also by reducing the activity of stress-related circuits, e.g. in the locus coeruleus and amygdala, and by having anti-inflammatory actions in the immune system. This information is particularly timely, as guanfacine is currently the focus of large clinical trials for the treatment of delirium, and in open label studies for the treatment of cognitive deficits from long-COVID.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department Neuroscience, Yale University School of Medicine, New Haven, CT, 056510, USA.
| | - Yumiko Ishizawa
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhongcong Xie
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
14
|
Zhang B, Zhao C, Shen W, Li W, Zheng Y, Kong X, Wang J, Wu X, Zeng T, Liu Y, Zhou Y. KDM2B regulates hippocampal morphogenesis by transcriptionally silencing Wnt signaling in neural progenitors. Nat Commun 2023; 14:6489. [PMID: 37838801 PMCID: PMC10576813 DOI: 10.1038/s41467-023-42322-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
The hippocampus plays major roles in learning and memory, and its formation requires precise coordination of patterning, cell proliferation, differentiation, and migration. Here we removed the chromatin-association capability of KDM2B in the progenitors of developing dorsal telencephalon (Kdm2b∆CxxC) to discover that Kdm2b∆CxxC hippocampus, particularly the dentate gyrus, became drastically smaller with disorganized cellular components and structure. Kdm2b∆CxxC mice display prominent defects in spatial memory, motor learning and fear conditioning, resembling patients with KDM2B mutations. The migration and differentiation of neural progenitor cells is greatly impeded in the developing Kdm2b∆CxxC hippocampus. Mechanism studies reveal that Wnt signaling genes in developing Kdm2b∆CxxC hippocampi are de-repressed due to reduced enrichment of repressive histone marks by polycomb repressive complexes. Activating the Wnt signaling disturbs hippocampal neurogenesis, recapitulating the effect of KDM2B loss. Together, we unveil a previously unappreciated gene repressive program mediated by KDM2B that controls progressive fate specifications and cell migration, hence morphogenesis of the hippocampus.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenchen Shen
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Li
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yue Zheng
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiangfei Kong
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Kimizoğlu O, Kirca ND, Kandis S, Micili SC, Harzadin NU, Kocturk S. Daily Consumption of High-Polyphenol Olive Oil Enhances Hippocampal Neurogenesis in Old Female Rats. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:668-677. [PMID: 36416641 DOI: 10.1080/27697061.2022.2144540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of daily consumption of high-polyphenol (HP) olive oil on neurogenesis by investigating neuronal cell proliferation and maturation in the hippocampus of old rats, and to evaluate the relationship between neurogenesis, spatial memory, and anxiety-like behavior. METHODS A total of 34 female, 20-22-month-old Sprague Dawley rats were divided into three groups: control group, low-polyphenol (LP) group, and high-polyphenol (HP) group. The animals were fed distilled water, LP olive oil and HP-extra virgin olive oil, respectively for 6 weeks using an oral gavage. At 43 days, animals were tested using the Morris Water Maze to evaluate spatial memory, and the Open-field test to evaluate anxiety-like behavior. Neural cell proliferation in the dentate gyrus (DG) was determined by BrdU labeling and Nestin protein expression. Neuronal maturation was determined by NeuN labeling. Synaptic density in the hippocampus and prefrontal cortex was examined by measuring Synaptophysin (SYN) levels. Hippocampal Calbindin levels were measured to assess cellular calcium metabolism. RESULTS Daily consumption of HP olive oil significantly improved cell proliferation and neuronal maturation in the DG of old rats. HP-olive oil significantly increased SYN levels in the prefrontal cortex, and nestin and calbindin levels in the hippocampus (p < 0.05). LP olive oil diet has shown no effect on any parameter (p > 0.05). We also did not find any statistically significant difference between the groups in terms of spatial memory and anxiety-like behavior (p > 0.05). CONCLUSION Our study is first to show that daily consumption of HP-olive oil enhances hippocampal neurogenesis in old rats, which has been confirmed by proliferation and maturation biomarkers. In addition, increased SYN and calbindin levels showed that the generated cells were also functionally developed in the HP group. We suggest that daily consumption of HP olive oil may have beneficial effects on brain aging by triggering neurogenesis.
Collapse
Affiliation(s)
- Ozgun Kimizoğlu
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - N Deniz Kirca
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Serap Cilaker Micili
- Faculty of Medicine, Department of Histology and Embryology, Dokuz Eylul University, Izmir, Turkey
| | - Nazan Uysal Harzadin
- Faculty of Medicine, Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | - Semra Kocturk
- Institute of Health Sciences, Department of Neurosciences, Dokuz Eylul University, Izmir, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
16
|
Sun YX, Su YA, Wang Q, Zheng JY, Zhang CC, Wang T, Liu X, Ma YN, Li XX, Zhang XQ, Xie XM, Wang XD, Li JT, Si TM. The causal involvement of the BDNF-TrkB pathway in dentate gyrus in early-life stress-induced cognitive deficits in male mice. Transl Psychiatry 2023; 13:173. [PMID: 37225683 DOI: 10.1038/s41398-023-02476-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Cognitive dysfunction is a significant, untreated clinical need in patients with psychiatric disorders, for which preclinical studies are needed to understand the underlying mechanisms and to identify potential therapeutic targets. Early-life stress (ELS) leads to long-lasting deficits of hippocampus-dependent learning and memory in adult mice, which may be associated with the hypofunction of the brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB). In this study, we carried out eight experiments using male mice to examine the causal involvement of the BDNF-TrkB pathway in dentate gyrus (DG) and the therapeutic effects of the TrkB agonist (7,8-DHF) in ELS-induced cognitive deficits. Adopting the limited nesting and bedding material paradigm, we first demonstrated that ELS impaired spatial memory, suppressed BDNF expression and neurogenesis in the DG in adult mice. Downregulating BDNF expression (conditional BDNF knockdown) or inhibition of the TrkB receptor (using its antagonist ANA-12) in the DG mimicked the cognitive deficits of ELS. Acute upregulation of BDNF (exogenous human recombinant BDNF microinjection) levels or activation of TrkB receptor (using its agonist, 7,8-DHF) in the DG restored ELS-induced spatial memory loss. Finally, acute and subchronic systemic administration of 7,8-DHF successfully restored spatial memory loss in stressed mice. Subchronic 7,8-DHF treatment also reversed ELS-induced neurogenesis reduction. Our findings highlight BDNF-TrkB system as the molecular target of ELS-induced spatial memory deficits and provide translational evidence for the intervention at this system in the treatment of cognitive deficits in stress-related psychiatric disorders, such as major depressive disorder.
Collapse
Affiliation(s)
- Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Qi Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Ya Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Meng Xie
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Sharma DR, Cheng B, Jaiswal MK, Zhang X, Kumar A, Parikh N, Singh D, Sheth H, Varghese M, Dobrenis K, Zhang X, Hof PR, Stanton PK, Ballabh P. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb Cortex 2023; 33:6449-6464. [PMID: 36646459 PMCID: PMC10183730 DOI: 10.1093/cercor/bhac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Collapse
Affiliation(s)
- Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manoj Kumar Jaiswal
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nirzar Parikh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Divya Singh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patric K Stanton
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Kuga N, Nakayama R, Morikawa S, Yagishita H, Konno D, Shiozaki H, Honjoya N, Ikegaya Y, Sasaki T. Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun 2023; 14:2105. [PMID: 37080967 PMCID: PMC10119298 DOI: 10.1038/s41467-023-37736-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The ventral hippocampus (vHC) is a core brain region for emotional memory. Here, we examined how the vHC regulates stress susceptibility from the level of gene expression to neuronal population dynamics in male mice. Transcriptome analysis of samples from stress-naïve mice revealed that intrinsic calbindin (Calb1) expression in the vHC is associated with susceptibility to social defeat stress. Mice with Calb1 gene knockdown in the vHC exhibited increased stress resilience and failed to show the increase in the poststress ventral hippocampal sharp wave ripple (SWR) rate. Poststress vHC SWRs triggered synchronous reactivation of stress memory-encoding neuronal ensembles and facilitated information transfer to the amygdala. Suppression of poststress vHC SWRs by real-time feedback stimulation or walking prevented social behavior deficits. Taken together, our results demonstrate that internal reactivation of memories of negative stressful episodes supported by ventral hippocampal SWRs serves as a crucial neurophysiological substrate for determining stress susceptibility.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Ryota Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Morikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruya Yagishita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Daichi Konno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
19
|
A Novel Early Life Stress Model Affects Brain Development and Behavior in Mice. Int J Mol Sci 2023; 24:ijms24054688. [PMID: 36902120 PMCID: PMC10002977 DOI: 10.3390/ijms24054688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (PV), vasoactive intestinal peptide, and calbindin-D28k (CaBP-28k), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.
Collapse
|
20
|
Sancho-Balsells A, Borràs-Pernas S, Brito V, Alberch J, Girault JA, Giralt A. Cognitive and Emotional Symptoms Induced by Chronic Stress Are Regulated by EGR1 in a Subpopulation of Hippocampal Pyramidal Neurons. Int J Mol Sci 2023; 24:ijms24043833. [PMID: 36835243 PMCID: PMC9962724 DOI: 10.3390/ijms24043833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Chronic stress is a core risk factor for developing a myriad of neurological disorders, including major depression. The chronicity of such stress can lead to adaptive responses or, on the contrary, to psychological maladaptation. The hippocampus is one of the most affected brain regions displaying functional changes in chronic stress. Egr1, a transcription factor involved in synaptic plasticity, is a key molecule regulating hippocampal function, but its role in stress-induced sequels has been poorly addressed. Emotional and cognitive symptoms were induced in mice by using the chronic unpredictable mild stress (CUMS) protocol. We used inducible double-mutant Egr1-CreERT2 x R26RCE mice to map the formation of Egr1-dependent activated cells. Results show that short- (2 days) or long-term (28 days) stress protocols in mice induce activation or deactivation, respectively, of hippocampal CA1 neural ensembles in an Egr1-activity-dependent fashion, together with an associated dendritic spine pathology. In-depth characterization of these neural ensembles revealed a deep-to-superficial switch in terms of Egr1-dependent activation of CA1 pyramidal neurons. To specifically manipulate deep and superficial pyramidal neurons of the hippocampus, we then used Chrna7-Cre (to express Cre in deep neurons) and Calb1-Cre mice (to express Cre in superficial neurons). We found that specific manipulation of superficial but not deep pyramidal neurons of the CA1 resulted in the amelioration of depressive-like behaviors and the restoration of cognitive impairments induced by chronic stress. In summary, Egr1 might be a core molecule driving the activation/deactivation of hippocampal neuronal subpopulations underlying stress-induced alterations involving emotional and cognitive sequels.
Collapse
Affiliation(s)
- Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, 75005 Paris, France
- Science and Engineering Faculty, Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Casanova 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 08036 Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934037980
| |
Collapse
|
21
|
Sun J, Qiu L, Zhang H, Zhou Z, Ju L, Yang J. CRHR1 antagonist alleviates LPS-induced depression-like behaviour in mice. BMC Psychiatry 2023; 23:17. [PMID: 36624454 PMCID: PMC9830857 DOI: 10.1186/s12888-023-04519-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Maladaptation of the HPA (hypothalamic-pituitary-adrenal) axis plays an important role in depression-like behaviour, but the specific molecular mechanisms are unknown. Here, we determined the roles of CRHR1 (corticotrophin releasing hormone receptor 1) and nectin3 in LPS (lipopolysaccharide)-induced depression-like behaviour in mice. METHODS C57BL/6 male mice were intraperitoneally injected with LPS (0.83 g/kg), and the open field, novelty-suppressed feeding, forced swimming, and tail suspension tests were performed after intraperitoneal injections of saline or antalarmin (20 mg/kg). The hippocampal mRNA levels of CRHR1 and nectin3 were determined by quantitative reverse transcription-PCR. The hippocampal protein levels of CRHR1, nectin3, and calbindin were measured by western blotting. The CORT (corticosterone) levels in the blood were measured by ELISA kits. RESULTS Antalarmin alleviated LPS-induced depression-like behaviour in male mice. Furthermore, antalarmin significantly inhibited changes in CRHR1, nectin3 and calbindin levels in the hippocampus and reduced the increase in CORT levels in LPS-treated mice. CONCLUSION CRHR1antagonist showed antidepressant effects in LPS-induced depressive mice, and CRHR1/nectin3 signalling may play a crucial role in this process.
Collapse
Affiliation(s)
- Jie Sun
- grid.263826.b0000 0004 1761 0489Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu China
| | - Lili Qiu
- grid.263826.b0000 0004 1761 0489Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu China
| | - Hui Zhang
- grid.263826.b0000 0004 1761 0489Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu China
| | - Zhiqiang Zhou
- grid.440259.e0000 0001 0115 7868Department of Anesthesiology, Jinling Hospital, Medical College of Nanjing Medical University, Nanjing, China
| | - Lingsha Ju
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Wang T, Ma YN, Zhang CC, Liu X, Sun YX, Wang HL, Wang H, Zhong YH, Su YA, Li JT, Si TM. The Nucleus Accumbens CRH-CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse. Neurosci Bull 2023; 39:41-56. [PMID: 35750984 PMCID: PMC9849529 DOI: 10.1007/s12264-022-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/14/2022] [Indexed: 01/24/2023] Open
Abstract
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.
Collapse
Affiliation(s)
- Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Heng Zhong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
23
|
Hou H, Chan C, Yuki KE, Sokolowski D, Roy A, Qu R, Uusküla-Reimand L, Faykoo-Martinez M, Hudson M, Corre C, Goldenberg A, Zhang Z, Palmert MR, Wilson MD. Postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary gland. Biol Sex Differ 2022; 13:57. [PMID: 36221127 PMCID: PMC9552479 DOI: 10.1186/s13293-022-00467-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pituitary gland regulates essential physiological processes such as growth, pubertal onset, stress response, metabolism, reproduction, and lactation. While sex biases in these functions and hormone production have been described, the underlying identity, temporal deployment, and cell-type specificity of sex-biased pituitary gene regulatory networks are not fully understood. METHODS To capture sex differences in pituitary gene regulation dynamics during postnatal development, we performed 3' untranslated region sequencing and small RNA sequencing to ascertain gene and microRNA expression, respectively, across five postnatal ages (postnatal days 12, 22, 27, 32, 37) that span the pubertal transition in female and male C57BL/6J mouse pituitaries (n = 5-6 biological replicates for each sex at each age). RESULTS We observed over 900 instances of sex-biased gene expression and 17 sex-biased microRNAs, with the majority of sex differences occurring with puberty. Using miRNA-gene target interaction databases, we identified 18 sex-biased genes that were putative targets of 5 sex-biased microRNAs. In addition, by combining our bulk RNA-seq with publicly available male and female mouse pituitary single-nuclei RNA-seq data, we obtained evidence that cell-type proportion sex differences exist prior to puberty and persist post-puberty for three major hormone-producing cell types: somatotropes, lactotropes, and gonadotropes. Finally, we identified sex-biased genes in these three pituitary cell types after accounting for cell-type proportion differences between sexes. CONCLUSION Our study reveals the identity and postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary. This work also highlights the importance of considering sex biases in cell-type composition when understanding sex differences in the processes regulated by the pituitary gland.
Collapse
Affiliation(s)
- Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Dustin Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Rihao Qu
- Interdepartmental Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada. .,Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada.
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
25
|
Disrupted presynaptic nectin1-based neuronal adhesion in the entorhinal-hippocampal circuit contributes to early-life stress-induced memory deficits. Transl Psychiatry 2022; 12:141. [PMID: 35379771 PMCID: PMC8980071 DOI: 10.1038/s41398-022-01908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule nectin3 and its presynaptic partner nectin1 have been linked to early-life stress-related cognitive disorders, but how the nectin1-nectin3 system contributes to stress-induced neuronal, circuit, and cognitive abnormalities remains to be studied. Here we show that in neonatally stressed male mice, temporal order and spatial working memories, which require the medial entorhinal cortex (MEC)-CA1 pathway, as well as the structural integrity of CA1 pyramidal neurons were markedly impaired in adulthood. These cognitive and structural abnormalities in stressed mice were associated with decreased nectin levels in entorhinal and hippocampal subregions, especially reduced nectin1 level in the MEC and nectin3 level in the CA1. Postnatal suppression of nectin1 but not nectin3 level in the MEC impaired spatial memory, whereas conditional inactivation of nectin1 from MEC excitatory neurons reproduced the adverse effects of early-life stress on MEC-dependent memories and neuronal plasticity in CA1. Our data suggest that early-life stress disrupts presynaptic nectin1-mediated interneuronal adhesion in the MEC-CA1 pathway, which may in turn contribute to stress-induced synaptic and cognitive deficits.
Collapse
|
26
|
Tsai CW, Tsai SJ, Pan YJ, Lin HM, Pan TY, Yang FY. Transcranial Ultrasound Stimulation Reverses Behavior Changes and the Expression of Calcium-Binding Protein in a Rodent Model of Schizophrenia. Neurotherapeutics 2022; 19:649-659. [PMID: 35229268 PMCID: PMC9226253 DOI: 10.1007/s13311-022-01195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive dysfunctions are a core feature of schizophrenia that may be linked to abnormalities in gamma-aminobutyric-acid (GABA)ergic neurons. Traditional antipsychotics show poor efficacy in treating cognitive symptoms. The purpose of this study was to investigate the restorative role of transcranial ultrasound stimulation (TUS) in counteracting dizocilpine (MK-801)-induced cognitive deficits and GABAergic interneuron dysfunction in a simulation of schizophrenia. Some rats subjected to MK-801 administration were treated with low-intensity pulsed ultrasound (LIPUS) daily for 5 days, while other rats subjected to MK-801 administration received no LIPUS treatment. After LIPUS treatment, the neuroprotective effects of LIPUS in the LIPUS-treated rats were assessed through behavioral analysis, western blotting, and histological observations. Compared with the MK-801-treated group, the MK-801 plus LIPUS-treated rats revealed a preference for novel objects. The MK-801 plus LIPUS-treated rats also exhibited a significant decrease in swim times compared to the MK-801-treated rats. LIPUS stimulation significantly increased hippocampal levels of CB and PV and restored the cell densities of PV + and CB + in the cingulate cortex in the MK-801 plus LIPUS-treated group. In addition, LIPUS stimulation rebalanced the BDNF levels in the hippocampus and medial prefrontal cortex. Our findings indicate that LIPUS improves cognitive deficits and ameliorates neuropathology in MK-801-treated rats. These results suggest that LIPUS may constitute a potential novel therapeutic approach for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Mei Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
27
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
28
|
Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: An evolutionary perspective. Am J Primatol 2021; 83:e23254. [PMID: 33960505 PMCID: PMC8550995 DOI: 10.1002/ajp.23254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Todd M. Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
29
|
Liu YJ, Liu TT, Jiang LH, Liu Q, Ma ZL, Xia TJ, Gu XP. Identification of hub genes associated with cognition in the hippocampus of Alzheimer's Disease. Bioengineered 2021; 12:9598-9609. [PMID: 34719328 PMCID: PMC8810106 DOI: 10.1080/21655979.2021.1999549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disease featured by cognitive impairment. This bioinformatic analysis was used to identify hub genes related to cognitive dysfunction in AD. The gene expression profile GSE48350 in the hippocampus of AD patients aged >70 years was obtained from the Gene Expression Omnibus (GEO) database. A total of 96 differentially expressed genes (DEGs) were identified, and subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses; a protein–protein interaction (PPI) network was constructed. The DEGs were enriched in synapse-related changes. A protein cluster was teased out of PPI. Furthermore, the cognition ranked the first among all the terms of biological process (BP). Next, 4 of 10 hub genes enriched in cognition were identified. The function of these genes was validated using APP/PS1 mice. Cognitive performance was validated by Morris Water Maze (MWM), and gene expression by RT-qPCR, Cholecystokinin (CCK), Tachykinin precursor 1 (TAC1), Calbindin 1 (CALB1) were downregulated in the hippocampus. These genes can provide new directions in the research of the molecular mechanism of AD.
Collapse
Affiliation(s)
- Yu-Jia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.,Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tian-Tian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.,Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lin-Hao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.,Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.,Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zheng-Liang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Tian-Jiao Xia
- Medical School of Nanjing University, Nanjing, Jiangsu Province, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Ping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
30
|
Guo L, Du QQ, Cheng PQ, Yang TT, Xing CQ, Luo XZ, Peng XC, Qian F, Huang JR, Tang FR. Neuroprotective Effects of Lycium barbarum Berry on Neurobehavioral Changes and Neuronal Loss in the Hippocampus of Mice Exposed to Acute Ionizing Radiation. Dose Response 2021; 19:15593258211057768. [PMID: 34887716 PMCID: PMC8649475 DOI: 10.1177/15593258211057768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Brain exposure to ionizing radiation during the radiotherapy of brain tumor or metastasis of peripheral cancer cells to the brain has resulted in cognitive dysfunction by reducing neurogenesis in hippocampus. The water extract of Lycium barbarum berry (Lyc), containing water-soluble Lycium barbarum polysaccharides and flavonoids, can protect the neuronal injury by reducing oxidative stress and suppressing neuroinflammation. Reseach Design: To demonstrate the long-term radioprotective effect of Lyc, we evaluated the neurobehavioral alterations and the numbers of NeuN, calbindin (CB), and parvalbumin (PV) immunopositive hippocampal neurons in BALB/c mice after acute 5.5 Gy radiation with/without oral administration of Lyc at the dosage of 10 g/kg daily for 4 weeks. Results: The results showed that Lyc could improve irradiation-induced animal weight loss, depressive behaviors, spatial memory impairment, and hippocampal neuron loss. Immunohistochemistry study demonstrated that the loss of NeuN-immunopositive neuron in the hilus of the dentate gyrus, CB-immunopositive neuron in CA1 strata radiatum, lacunosum moleculare and oriens, and PV-positive neuron in CA1 stratum pyramidum and stratum granulosum of the dentate gyrus after irradiation were significantly improved by Lyc treatment. Conclusion: The neuroprotective effect of Lyc on those hippocampal neurons may benefit the configuration of learning related neuronal networks and then improve radiation induced neurobehavioral changes such as cognitive impairment and depression. It suggests that Lycium barbarum berry may be an alternative food supplement to prevent radiation-induced neuron loss and neuropsychological disorders.
Collapse
Affiliation(s)
- Lei Guo
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Qian-Qian Du
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Piao-Qin Cheng
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ting-Ting Yang
- Department of Physiology, School of
Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Chao-Qun Xing
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xue-Zhi Luo
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Department of Pathophysiology,
School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng Qian
- Department of Physiology, School of
Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jiang-Rong Huang
- Department of Traditional Chinese
Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory,
Singapore Nuclear Research and Safety Initiative,National University of
Singapore, Singapore
| |
Collapse
|
31
|
Kim KR, Jeong HJ, Kim Y, Lee SY, Kim Y, Kim HJ, Lee SH, Cho H, Kang JS, Ho WK. Calbindin regulates Kv4.1 trafficking and excitability in dentate granule cells via CaMKII-dependent phosphorylation. Exp Mol Med 2021; 53:1134-1147. [PMID: 34234278 PMCID: PMC8333054 DOI: 10.1038/s12276-021-00645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Calbindin, a major Ca2+ buffer in dentate granule cells (GCs), plays a critical role in shaping Ca2+ signals, yet how it regulates neuronal function remains largely unknown. Here, we found that calbindin knockout (CBKO) mice exhibited dentate GC hyperexcitability and impaired pattern separation, which co-occurred with reduced K+ current due to downregulated surface expression of Kv4.1. Relatedly, manipulation of calbindin expression in HT22 cells led to changes in CaMKII activation and the level of surface localization of Kv4.1 through phosphorylation at serine 555, confirming the mechanism underlying neuronal hyperexcitability in CBKO mice. We also discovered that Ca2+ buffering capacity was significantly reduced in the GCs of Tg2576 mice to the level of CBKO GCs, and this reduction was restored to normal levels by antioxidants, suggesting that calbindin is a target of oxidative stress. Our data suggest that the regulation of CaMKII signaling by Ca2+ buffering is crucial for neuronal excitability regulation.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of BioInnovation Research, Kolon Life Science Inc, 110 Magokdong-ro, Gangseo-gu, Seoul, 07793, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoonsub Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res 2021; 167:105571. [PMID: 33753244 DOI: 10.1016/j.phrs.2021.105571] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence supports an essential role of trace amine-associated receptor 1 (TAAR1) in neuropsychiatric disorders such as depression and schizophrenia. Stressful events are critical contributors to various neuropsychiatric disorders. This study examined the role of TAAR1 in mediating the negative outcomes of stressful events. In mice that experienced chronic social defeat stress but not acute stress, a significant reduction in the TAAR1 mRNA level was found in the medial prefrontal cortex (mPFC), a brain region that is known to be vulnerable to stress experience. Conditional TAAR1 knockout in the mPFC mimicked the cognitive deficits induced by chronic stress. In addition, chronic treatment with the selective TAAR1 partial agonist RO5263397 ameliorated chronic stress-induced changes in cognitive function, dendritic arborization, and the synapse number of pyramidal neurons in the mPFC but did not affect chronic stress-induced anxiety-like behaviors. Biochemically, chronic stress reduced the ratio of vesicular transporters of glutamate-1 (VGluT1) / vesicular GABA transporter (VGAT) in the mPFC,most prominently in the prelimbic cortex, and RO5263397 restored the excitatory-inhibitory (E/I) imbalance. Together, the results of this study reveal an essential role of TAAR1 in mediating chronic stress-induced cognitive impairments and suggest that TAAR1 agonists may be uniquely useful to treat MDD-related cognitive impairments.
Collapse
|
33
|
Liu X, Sun YX, Zhang CC, Zhang XQ, Zhang Y, Wang T, Ma YN, Wang H, Su YA, Li JT, Si TM. Vortioxetine attenuates the effects of early-life stress on depression-like behaviors and monoamine transporters in female mice. Neuropharmacology 2021; 186:108468. [PMID: 33485943 DOI: 10.1016/j.neuropharm.2021.108468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 01/06/2023]
Abstract
Major depressive disorder is a major psychiatric disorder and a leading cause of disability around the world. Females have about twice as high an incidence of depression as males. However, preclinical animal models of depression have seldom investigated the molecular alterations associated with higher depression risk in females. In this study, adopting the early-life stress (ELS) paradigm of limited bedding and nesting material, we found that ELS induced depression-like behaviors only in adult female mice, as evaluated by sucrose preference and tail suspension tests. We then examined the ELS effects on monoamine neurotransmission (transporters for monoamine reuptake and release) in depression-related brain regions in female mice. We found that ELS resulted in widespread changes of the expression levels of these transporters in four brain regions. Moreover, systemic 21-day treatment with vortioxetine, a novel multimodal antidepressant, successfully reversed depression-like behaviors and normalized some molecular changes, including that of the norepinephrine transporter in the medial prefrontal cortex, vesicular monoamine transporter 2 in nucleus accumbens core, and serotonin transporter in amygdala. Collectively, these results provide evidence for the validity of using the limited bedding and nesting material paradigm to investigate sex differences in depression and demonstrate that the region-specific alterations of monoamine neurotransmission may be associated with depression-like behaviors in female mice. This article is part of the special issue on 'Stress, Addiction and Plasticity'.
Collapse
Affiliation(s)
- Xiao Liu
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Chen-Chen Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xian-Qiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yue Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ting Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yu-Nu Ma
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
34
|
Salaka RJ, Nair KP, Annamalai K, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment ameliorates chronic temporal lobe epilepsy-induced behavioral hyperexcitability and restores synaptic plasticity in CA3-CA1 synapses in male Wistar rats. J Neurosci Res 2021; 99:1646-1665. [PMID: 33713475 DOI: 10.1002/jnr.24823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacoresistance and comorbidities pose significant challenges to its treatment necessitating the development of non-pharmacological approaches. In an earlier study, exposure to enriched environment (EE) reduced seizure frequency and duration and ameliorated chronic epilepsy-induced depression in rats. However, the cellular basis of beneficial effects of EE remains unknown. Accordingly, in the current study, we evaluated the effects of EE in chronic epilepsy-induced changes in behavioral hyperexcitability, synaptic transmission, synaptophysin (SYN), and calbindin (CB) expression, hippocampal subfield volumes and cell density in male Wistar rats. Epilepsy was induced by lithium-pilocarpine-induced status epilepticus. Chronic epilepsy resulted in behavioral hyperexcitability, decreased basal synaptic transmission, increased paired-pulse facilitation ratio, decreased hippocampal subfields volumes. Moreover, epileptic rats showed decreased synaptophysin and CB expression in the hippocampus. Six weeks post-SE, epileptic rats were exposed to EE for 2 weeks, 6 hr/day. EE significantly reduced the behavioral hyperexcitability and restored basal synaptic transmission correlating with increased expression of SYN and CB. Our results reaffirm the beneficial effects of EE on behavior in chronic epilepsy and establishes some of the putative cellular mechanisms. Since drug resistance and comorbidities are a major concern in TLE, we propose EE as a potent non-pharmacological treatment modality to mitigate these changes in chronic epilepsy.
Collapse
Affiliation(s)
- Raghava Jagadeesh Salaka
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kala P Nair
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Kiruthiga Annamalai
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | |
Collapse
|
35
|
Bjerke IE, Yates SC, Laja A, Witter MP, Puchades MA, Bjaalie JG, Leergaard TB. Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. iScience 2021; 24:101906. [PMID: 33385111 PMCID: PMC7770605 DOI: 10.1016/j.isci.2020.101906] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
The calcium-binding proteins parvalbumin and calbindin are expressed in neuronal populations regulating brain networks involved in spatial navigation, memory processes, and social interactions. Information about the numbers of these neurons across brain regions is required to understand their functional roles but is scarcely available. Employing semi-automated image analysis, we performed brain-wide analysis of immunohistochemically stained parvalbumin and calbindin sections and show that these neurons distribute in complementary patterns across the mouse brain. Parvalbumin neurons dominate in areas related to sensorimotor processing and navigation, whereas calbindin neurons prevail in regions reflecting behavioral states. We also find that parvalbumin neurons distribute according to similar principles in the hippocampal region of the rat and mouse brain. We validated our results against manual counts and evaluated variability of results among researchers. Comparison of our results to previous reports showed that neuron numbers vary, whereas patterns of relative densities and numbers are consistent. Brain-wide, semi-automatic quantification of parvalbumin and calbindin neurons Largely complementary distribution of calbindin and parvalbumin neurons in mice Comparison with several previous studies shows variable numbers but similar trends Similar distribution of parvalbumin neurons in the rat and mouse hippocampal region
Collapse
Affiliation(s)
- Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sharon C Yates
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Arthur Laja
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol 2021; 19:265-277. [PMID: 32727332 PMCID: PMC8033985 DOI: 10.2174/1570159x18666200729100427] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders (ND) are the central nervous system (CNS) related complications originated by enhanced oxidative stress, mitochondrial failure and overexpression of proteins like S100B. S100B is a helix-loop-helix protein with the calcium-binding domain associated with various neurological disorders through activation of the MAPK pathway, increased NF-kB expression resulting in cell survival, proliferation and gene up-regulation. S100B protein plays a crucial role in Alzheimer's disease, Parkinson's disease, multiple sclerosis, Schizophrenia and epilepsy because the high expression of this protein directly targets astrocytes and promotes neuroinflammation. Under stressful conditions, S100B produces toxic effects mediated through receptor for advanced glycation end products (AGE) binding. S100B also mediates neuroprotection, minimizes microgliosis and reduces the expression of tumor necrosis factor (TNF-alpha) but that are concentration- dependent mechanisms. Increased level of S100B is useful for assessing the release of inflammatory markers, nitric oxide and excitotoxicity dependent neuronal loss. The present review summarizes the role of S100B in various neurological disorders and potential therapeutic measures to reduce the prevalence of neurological disorders.
Collapse
Affiliation(s)
- Urvashi Langeh
- Department of Neuropharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Department of Neuropharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
37
|
Zhang X, Mei Y, He Y, Wang D, Wang J, Wei X, Yang E, Zhou D, Shen H, Peng G, Shu Q, Li X, Luo B, Zhou Y, Sun B. Ablating Adult Neural Stem Cells Improves Synaptic and Cognitive Functions in Alzheimer Models. Stem Cell Reports 2020; 16:89-105. [PMID: 33382977 PMCID: PMC7897582 DOI: 10.1016/j.stemcr.2020.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/26/2023] Open
Abstract
Adult neurogenesis is impaired in the hippocampus of patients with Alzheimer disease (AD) as well as AD models. However, it is far from clear how modulating adult neurogenesis affects AD neuropathology. We confirm that adult hippocampal neurogenesis is impaired in two AD models. Surprisingly, however, cognitive functions are improved in AD models after ablating adult neural stem cells (aNSCs). Ablation of aNSCs does not affect the levels of amyloid β but restores the normal synaptic transmission in the dentate gyrus (DG) granule cells of AD models. Furthermore, calbindin depletion in the DG of AD mice is ameliorated after aNSC ablation, and knocking down calbindin abolishes the effects of aNSC ablation on synaptic and cognitive functions of AD mice. Together, our data suggest that cognitive functions of AD mice are improved after aNSC ablation, which is associated with the restoration of synaptic transmission in the DG granule cells with calbindin as an important mediator. Adult hippocampal neurogenesis was impaired in two AD models Cognitive functions were improved in AD models after ablation of aNSCs Ablating aNSCs restored the normal synaptic transmission in the DG granule cells of AD models Altered expression of calbindin mediated the effects of ablating aNSCs on synaptic and cognitive functions in AD mice
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; Department of Physiology and Pharmacology, Medical School of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Yufei Mei
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yang He
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dongpi Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310052, China
| | - Jing Wang
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaojie Wei
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Enlu Yang
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310052, China
| | - Haowei Shen
- Department of Physiology and Pharmacology, Medical School of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Guoping Peng
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310052, China
| | - Xuekun Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310052, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310029, China
| | - Benyan Luo
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Yudong Zhou
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Binggui Sun
- Department of Neurobiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
38
|
Phillips KF, Deshpande LS. Calcium Hypothesis of Gulf War Illness: Role of Calcium Ions in Neurological Morbidities in a DFP-Based Rat Model for Gulf War Illness. Neurosci Insights 2020; 15:2633105520979841. [PMID: 33354668 PMCID: PMC7734545 DOI: 10.1177/2633105520979841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
Gulf War Illness (GWI) refers to a multi-system disorder that afflicts approximately 30% of First Gulf War (GW) veterans. Amongst the symptoms exhibited, mood and memory impairment are commonly reported by GW veterans. Exposure to organophosphate (OP) compounds which target the cholinergic system is considered a leading cause for GWI symptoms. It is hypothesized that chronic OP-based war-time stimulation of cholinergic signaling led to recruitment of excitatory glutamatergic signaling and other downstream signaling cascades leading to neuronal injury, neuroinflammation, generation of reactive oxygen species, oxidative stress, and mitochondrial damage within the central nervous system. These findings have been observed in both experimental models and GWI veterans. In this context the role of calcium (Ca2+) signaling in GWI has come to the forefront. Here we present our Ca2+ hypothesis of GWI that suggests sustained neuronal Ca2+ elevations serve as a molecular trigger for pathological synaptic plasticity that has allowed for the persistence of GWI symptoms. Subsequently we discuss that therapeutic targeting of Ca2+ homeostatic mechanisms provides novel targets for effective treatment of GWI-related neurological signs in our rodent model.
Collapse
Affiliation(s)
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, USA
- Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
39
|
Tianeptine Enhances Energy-related Processes in the Hippocampal Non-synaptic Mitochondria in a Rat Model of Depression. Neuroscience 2020; 451:111-125. [DOI: 10.1016/j.neuroscience.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
40
|
Albrecht A, Redavide E, Regev-Tsur S, Stork O, Richter-Levin G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci Biobehav Rev 2020; 122:229-244. [PMID: 33188820 DOI: 10.1016/j.neubiorev.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Studies in humans and rodents suggest a critical role for the hippocampal formation in cognition and emotion, but also in the adaptation to stressful events. Successful stress adaptation promotes resilience, while its failure may lead to stress-induced psychopathologies such as depression and anxiety disorders. Hippocampal architecture and physiology is shaped by its strong control of activity via diverse classes of inhibitory interneurons that express typical calcium binding proteins and neuropeptides. Celltype-specific opto- and chemogenetic intervention strategies that take advantage of these biochemical markers have bolstered our understanding of the distinct role of different interneurons in anxiety, fear and stress adaptation. Moreover, some of the signature proteins of GABAergic interneurons have a potent impact on emotion and cognition on their own, making them attractive targets for interventions. In particular, neuropeptide Y is a promising endogenous agent for mediating resilience against severe stress. In this review, we evaluate the role of the major types of interneurons across hippocampal subregions in the adaptation to chronic and acute stress and to emotional memory formation.
Collapse
Affiliation(s)
- Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Elisa Redavide
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stav Regev-Tsur
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| | - Oliver Stork
- Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Psychology Department, University of Haifa199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| |
Collapse
|
41
|
Klement W, Oliviero F, Gangarossa G, Zub E, De Bock F, Forner-Piquer I, Blaquiere M, Lasserre F, Pascussi JM, Maurice T, Audinat E, Ellero-Simatos S, Gamet-Payrastre L, Mselli-Lakhal L, Marchi N. Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience 2020; 446:225-237. [PMID: 32736067 DOI: 10.1016/j.neuroscience.2020.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of β-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.
Collapse
Affiliation(s)
- Wendy Klement
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | | | - Emma Zub
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic De Bock
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Isabel Forner-Piquer
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Jean-Marc Pascussi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|
42
|
Franco LO, Carvalho MJ, Costa J, Ferreira PA, Guedes JR, Sousa R, Edfawy M, Seabra CM, Cardoso AL, Peça J. Social subordination induced by early life adversity rewires inhibitory control of the prefrontal cortex via enhanced Npy1r signaling. Neuropsychopharmacology 2020; 45:1438-1447. [PMID: 32492699 PMCID: PMC7360628 DOI: 10.1038/s41386-020-0727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
Social hierarchies are present in most mammalian species. In nature, hierarchies offer a tradeoff between reduction of in-group fighting between males, at the expense of an asymmetric sharing of resources. Early life experiences and stress are known to influence the rank an individual attains in adulthood, but the associated cellular and synaptic alterations are poorly understood. Using a maternal separation protocol, we show that care-deprived mice display a long-lasting submissive phenotype, increased social recognition, and enhanced explorative behavior. These alterations are consistent with an adaptation that favors exploration rather than confrontation within a group setting. At the neuronal level, these animals display dendritic atrophy and enhanced inhibitory synaptic inputs in medial prefrontal cortex (mPFC) neurons. To determine what could underlie this synaptic modification, we first assessed global gene expression changes via RNAseq, and next focused on a smaller subset of putatively altered synaptic receptors that could explain the changes in synaptic inhibition. Using different cohorts of maternally deprived mice, we validated a significant increase in the expression of Npy1r, a receptor known to play a role in maternal care, anxiety, foraging, and regulation of group behavior. Using electrophysiological recordings in adult mice while blocking NPY1R signaling, we determined that this receptor plays a key role in enhancing GABAergic currents in mice that experience maternal deprivation. Taken together, our work highlights the potential of regulating NPY1R in social anxiety disorders and the alterations induced in brain circuitry as a consequence of early life stress and adversity.
Collapse
Affiliation(s)
- Lara O. Franco
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Mário J. Carvalho
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,MIT-Portugal Bioengineering Systems Doctoral Program, Coimbra, Portugal
| | - Jéssica Costa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana R. Guedes
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Renato Sousa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mohamed Edfawy
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Catarina M. Seabra
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana L. Cardoso
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
43
|
Wang HL, Li JT, Wang H, Sun YX, Liu R, Wang XD, Su YA, Si TM. Prefrontal Nectin3 Reduction Mediates Adolescent Stress-Induced Deficits of Social Memory, Spatial Working Memory, and Dendritic Structure in Mice. Neurosci Bull 2020; 36:860-874. [PMID: 32385776 PMCID: PMC7410914 DOI: 10.1007/s12264-020-00499-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic stress may disrupt the normal neurodevelopmental trajectory of the adolescent brain (especially the prefrontal cortex) and contribute to the pathophysiology of stress-related mental illnesses, but the underlying molecular mechanisms remain unclear. Here, we investigated how synaptic cell adhesion molecules (e.g., nectin3) are involved in the effects of adolescent chronic stress on mouse medial prefrontal cortex (mPFC). Male C57BL/6N mice were subjected to chronic social instability stress from postnatal days 29 to 77. One week later, the mice exposed to chronic stress exhibited impaired social recognition and spatial working memory, simplified dendritic structure, and reduced spine density in the mPFC. Membrane localization of nectin3 was also altered, and was significantly correlated with behavioral performance. Furthermore, knocking down mPFC nectin3 expression by adeno-associated virus in adolescent mice reproduced the stress-induced changes in behavior and mPFC morphology. These results support the hypothesis that nectin3 is a potential mediator of the effects of adolescent chronic stress on prefrontal structural and functional abnormalities.
Collapse
Affiliation(s)
- Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.,The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Rui Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
44
|
Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, Gao Y, Yu H, Xiong R, Jiang T, Li S, Wang X, Guo J, Zhang S, Yin T, He T, Ke D, Li R, Li H, Liu G, Yang X, Luo MH, Zhang X, Yang Y, Wang JZ. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun 2020; 11:183. [PMID: 31924799 PMCID: PMC6954243 DOI: 10.1038/s41467-019-13919-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
The basolateral amygdala (BLA) and ventral hippocampal CA1 (vCA1) are cellularly and functionally diverse along their anterior-posterior and superficial-deep axes. Here, we find that anterior BLA (aBLA) and posterior BLA (pBLA) innervate deep-layer calbindin1-negative (Calb1-) and superficial-layer calbindin1-positive neurons (Calb1+) in vCA1, respectively. Photostimulation of pBLA-vCA1 inputs has an anxiolytic effect in mice, promoting approach behaviours during conflict exploratory tasks. By contrast, stimulating aBLA-vCA1 inputs induces anxiety-like behaviour resulting in fewer approaches. During conflict stages of the elevated plus maze task vCA1Calb1+ neurons are preferentially activated at the open-to-closed arm transition, and photostimulation of vCA1Calb1+ neurons at decision-making zones promotes approach with fewer retreats. In the APP/PS1 mouse model of Alzheimer's disease, which shows anxiety-like behaviour, photostimulating the pBLA-vCA1Calb1+ circuit ameliorates the anxiety in a Calb1-dependent manner. These findings suggest the pBLA-vCA1Calb1+ circuit from heterogeneous BLA-vCA1 connections drives approach behaviour to reduce anxiety-like behaviour.
Collapse
Affiliation(s)
- Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongqin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology and Neurology, Key Laboratory for Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, 453000, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Taoyuan Yin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruining Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100000, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
45
|
Early-life stress alters sleep structure and the excitatory-inhibitory balance in the nucleus accumbens in aged mice. Chin Med J (Engl) 2020; 132:1582-1590. [PMID: 31045908 PMCID: PMC6616240 DOI: 10.1097/cm9.0000000000000279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Exposure to adverse experiences in early life may profoundly reshape the neurodevelopmental trajectories of the brain and lead to long-lasting behavioral and neural alterations. One deleterious effect of early-life stress that manifests in later life is sleep disturbance, but this has not been examined in aged mice and the underlying neural mechanisms remain unknown. Considering the important role of the nucleus accumbens (NAc) in the sleep-wake regulation, this study aimed to assess the effects of early-life stress on the sleep behaviors in aged mice and the potential involvement of the NAc in stress-induced sleep abnormalities. Methods: Twenty aged male C57BL/6 mice (>16 months, n = 10 per group) were used in this study. During post-natal days 2 to 9, dams were provided with either sufficient (control) or a limited nesting and bedding materials (stressed). When the mice were 16 to 17 months old, their sleep-wake behaviors were recorded over 24 h using electroencephalogram and electromyelogram. The amount of each sleep-wake stage, mean duration, and stage transition was analyzed. Then, five animals were randomly chosen from each group and were used to measure the expression levels of vesicular glutamate transporter-1 (VGluT1) and vesicular transporters of γ-aminobutyric acid (VGAT) in the NAc using immunohistochemistry. Group comparisons were carried out using Student t test or analysis of variances when appropriate. Results: Compared with the control mice, the early-life stressed aged mice spent less time awake over 24 h (697.97 ± 77.47 min vs. 631.33 ± 34.73 min, t17 = 2.376, P = 0.030), accordingly, non-rapid eye movement sleep time was increased (667.37 ± 62.07 min vs. 723.54 ± 39.21 min, t17 = 2.326, P = 0.033) and mean duration of rapid eye movement sleep was prolonged (73.00 ± 8.98 min vs. 89.39 ± 12.69 min, t17 = 3.277, P = 0.004). Meanwhile, we observed decreased VGluT1/VGAT ratios in the NAc in the stressed group (F(1, 16) = 81.04, P < 0.001). Conclusion: Early adverse experiences disrupt sleep behaviors in aged mice, which might be associated with the excitatory-inhibitory imbalance in the NAc.
Collapse
|
46
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
47
|
Liu R, Wang H, Wang HL, Sun YX, Su YA, Wang XD, Li JT, Si TM. Postnatal nectin-3 knockdown induces structural abnormalities of hippocampal principal neurons and memory deficits in adult mice. Hippocampus 2019; 29:1063-1074. [PMID: 31066147 PMCID: PMC6850426 DOI: 10.1002/hipo.23098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
The early postnatal stage is a critical period of hippocampal neurodevelopment and also a period of high vulnerability to adverse life experiences. Recent evidence suggests that nectin-3, a cell adhesion molecule, mediates memory dysfunction and dendritic alterations in the adult hippocampus induced by postnatal stress. But it is unknown whether postnatal nectin-3 reduction alone is sufficient to alter hippocampal structure and function in adulthood. Here, we down regulated hippocampal expression of nectin-3 and its heterophilic adhesion partner nectin-1, respectively, from early postnatal stage by injecting adeno-associated virus (AAV) into the cerebral lateral ventricles of neonatal mice (postnatal day 2). We found that suppression of nectin-3, but not nectin-1, expression from the early postnatal stage impaired hippocampus-dependent novel object recognition and spatial object recognition in adult mice. Moreover, AAV-mediated nectin-3 knockdown significantly reduced dendritic complexity and spine density of pyramidal neurons throughout the hippocampus, whereas nectin-1 knockdown only induced the loss of stubby spines in CA3. Our data provide direct evidence that nectins, especially nectin-3, are necessary for postnatal hippocampal development of memory functions and structural integrity.
Collapse
Affiliation(s)
- Rui Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|
48
|
Depression and Temporal Lobe Epilepsy: Expression Pattern of Calbindin Immunoreactivity in Hippocampal Dentate Gyrus of Patients Who Underwent Epilepsy Surgery with and without Comorbid Depression. Behav Neurol 2019; 2019:7396793. [PMID: 31191739 PMCID: PMC6525951 DOI: 10.1155/2019/7396793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/05/2022] Open
Abstract
Purpose Changes in calbindin (CB) expression have been reported in patients with temporal lobe epilepsy (TLE) with controversial implications on hippocampal functions. The aim of this study was to determine the CB immunoreactivity in hippocampal dentate gyrus of patients who underwent epilepsy surgery for drug-resistant TLE with and without comorbid depression and/or memory deficits. Methods Selected hippocampal samples from patients with TLE who underwent epilepsy surgery were included. Clinical and complementary assessment: EEG, video-EEG, MRI, psychiatric assessment (structured clinical interview, DSM-IV), and memory assessment (Rey auditory verbal learning test, RAVLT; Rey-Osterrieth complex figure test, RCFT), were determined before surgery. Hippocampal sections were processed using immunoperoxidase with the anti-calbindin antibody. The semiquantitative analysis of CB immunoreactivity was determined in dentate gyrus by computerized image analysis (ImageJ). Results Hippocampal sections of patients with TLE and HS (n = 24) and postmortem controls (n = 5) were included. A significant reduction of CB+ cells was found in patients with TLE (p < 0.05, Student's t-test). Among TLE cases (n = 24), depression (n = 12) and memory deficit (n = 17) were determined. Depression was associated with a higher % of cells with the CB dendritic expression (CB-sprouted cells) (F(1, 20) = 11.81, p = 0.003, hp2 = 0.37), a higher CB+ area (μm2) (F(1, 20) = 5.33, p = 0.032, hp2 = 0.21), and a higher optical density (F(1, 20) = 15.09, p = 0.001, hp2 = 0.43) (two-way ANOVA). The GAF scale (general assessment of functioning) of DSM-IV inversely correlated with the % of CB-sprouted cells (r = −0.52, p = 0.008) and with the CB+ area (r = −0.46, p = 0.022). Conclusions In this exploratory study, comorbid depression was associated with a differential pattern of CB cell loss in dentate gyrus combined with a higher CB sprouting. These changes may indicate granular cell dysmaturation associated to the epileptic hyperexcitability phenomena. Further investigations should be carried out to confirm these preliminary findings.
Collapse
|
49
|
Fairless R, Williams SK, Diem R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int J Mol Sci 2019; 20:ijms20092146. [PMID: 31052285 PMCID: PMC6539299 DOI: 10.3390/ijms20092146] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Neuronal subpopulations display differential vulnerabilities to disease, but the factors that determine their susceptibility are poorly understood. Toxic increases in intracellular calcium are a key factor in several neurodegenerative processes, with calcium-binding proteins providing an important first line of defense through their ability to buffer incoming calcium, allowing the neuron to quickly achieve homeostasis. Since neurons expressing different calcium-binding proteins have been reported to be differentially susceptible to degeneration, it can be hypothesized that rather than just serving as markers of different neuronal subpopulations, they might actually be a key determinant of survival. In this review, we will summarize some of the evidence that expression of the EF-hand calcium-binding proteins, calbindin, calretinin and parvalbumin, may influence the susceptibility of distinct neuronal subpopulations to disease processes.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Li J, Li Y, Sun Y, Wang H, Liu X, Zhao Y, Wang H, Su Y, Si T. Chronic mild corticosterone exposure during adolescence enhances behaviors and upregulates neuroplasticity-related proteins in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:400-411. [PMID: 30392783 DOI: 10.1016/j.pnpbp.2018.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
Adolescence is a critical period with ongoing maturational processes in stress-sensitive systems. It remains unknown how adolescent individuals would be affected by chronic exposure to corticosterone (the major stress hormone in rodents, CORT) at the doses that are usually not detrimental in adults. In this study, male Sprague-Dawley rats were injected with CORT (5 mg/kg) or vehicle for 21 days during adolescence (postnatal day (PND) 29-49) or adulthood (PND 71-91) and then subjected to behavioral testing or sacrifice for neurobiological analyses. Shortly after treatment cessation, different from CORT-treated adults showing increased anxiety-like behaviors, CORT-treated adolescents exhibited enhanced prepulse inhibition and spatial learning. They also showed increased expression of hippocampal neuroplasticity-related proteins, including BDNF, nectin3, and AMPA receptor subunits. These effects became undetectable after a four-week washout period when CORT-treated adolescents exhibited improved reversal learning. Together, these findings demonstrate that chronic CORT exposure at the dose of 5 mg/kg endows adolescent individuals with enhanced cognitive capacities, possibly supported by increased hippocampal neuroplasticity. This study also highlights mild elevation of CORT levels during adolescence as a potential approach of promoting adaptive behaviors.
Collapse
Affiliation(s)
- Jitao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Youhong Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Yaxin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Han Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Xiao Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China; The Sixth People's Hospital of Hebei Province, Baoding 071000, China
| | - Yingying Zhao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China; MECT Treatment Center, Beijing Anding Hospital of Capital Medical University, Beijing 100088, China
| | - Hongli Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Yun'ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Tianmei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.
| |
Collapse
|