1
|
Opp S, Pampeno C, Hurtado A, Meruelo D. Sindbis Virus Platform Provides an Oncolytic-Virus-Mediated and Immunotherapeutic Strategy to Overcome the Challenging Microenvironment of Pancreatic Cancer. Pharmaceuticals (Basel) 2025; 18:725. [PMID: 40430543 PMCID: PMC12115309 DOI: 10.3390/ph18050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Our laboratory has been developing a Sindbis viral (SV) vector platform for treatments of several types of cancers. In this study, we assess treatment efficacy for metastatic and immunosuppressive pancreatic cancer. Methods: Orthotopic mouse models were generated by injection of tumor cells into the pancreatic parenchyma. Sindbis vectors were inoculated intraperitoneally. Imaging of tumors was performed by either MRI or in vivo imaging using luciferase. Flow cytometry, multi-immunofluorescence and elispot analysis were performed for certain tumors. Results: SV can infect and reduce pancreatic tumors in three mouse model systems: a model bearing human pancreatic tumors, a highly metastatic model, and a model that reflects the highly immunosuppressive, desmoplastic microenvironment common to human pancreatic cancer. Conclusions: Combination of SV vector expressing IL12 with an immune co-stimulatory agent, anti-OX40, can reduce tumors, facilitate an influx of immune response cells into the tumor microenvironment, and prevent tumors in mice rechallenged with tumor cells promising an effective treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Silvana Opp
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; (S.O.); (C.P.); (A.H.)
- BioNTech Ltd., Cambridge, MA 02139, USA
| | - Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; (S.O.); (C.P.); (A.H.)
| | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; (S.O.); (C.P.); (A.H.)
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA; (S.O.); (C.P.); (A.H.)
| |
Collapse
|
2
|
Guglielmo A, Borghi A, Zengarini C, Piraccini BM, Corazza M, Pileri A. OX40-OX40L Axis in Cutaneous T-Cell Lymphomas: Pathogenic, Prognostic, and Potential Therapeutic Perspectives. Biomolecules 2025; 15:715. [PMID: 40427608 PMCID: PMC12109069 DOI: 10.3390/biom15050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most prevalent forms of cutaneous T-cell lymphoma (CTCL) and are characterized by the proliferation of CD4+ T-helper cells. The pathogenesis of CTCLs involves a critical interaction between neoplastic cells and the tumor microenvironment. This interaction is driven not only by cytokines but also by surface proteins that mediate cell-cell contact. One such protein, OX40 (also known as CD134), is a member of the TNF receptor superfamily and serves as an induced costimulatory molecule that facilitates the interaction between T-cells and antigen-presenting cells. In this narrative review, we explore the literature surrounding the OX40-OX40L interaction in CTCLs, highlighting its pathogenic and prognostic significance. Additionally, we compare the expression and function of OX40-OX40L in chronic inflammatory skin diseases, such as atopic dermatitis and psoriasis, with their role in CTCLs. Finally, we provide an overview of the current state of therapeutic research, discussing the potential of targeting the OX40-OX40L axis in CTCL treatment.
Collapse
Affiliation(s)
- Alba Guglielmo
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.B.); (M.C.)
| | - Alessandro Borghi
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.B.); (M.C.)
| | - Corrado Zengarini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.Z.); (B.M.P.); (A.P.)
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.Z.); (B.M.P.); (A.P.)
| | - Monica Corazza
- Section of Dermatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.B.); (M.C.)
| | - Alessandro Pileri
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.Z.); (B.M.P.); (A.P.)
| |
Collapse
|
3
|
Kang SJ, Gong JR, Jin SP, Oh JM, Jin H, Lee Y, Moon Y, Kim D, Nam HJ, Choi HS, Hwang S, Huh YJ, Han KY, Moon J, Chung J, Park WY, Park CG, Kim HJ, Kim JE. Deciphering Dysfunctional Regulatory T Cells in Atopic Dermatitis. Allergy 2025; 80:1473-1477. [PMID: 39692151 DOI: 10.1111/all.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Seong-Jun Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Ryeol Gong
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Medical Research Center, Institute of Human-Environmental Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin-Mi Oh
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyunjin Jin
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yuji Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yewon Moon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Dongjun Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyo Jeong Nam
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyun Seung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Sanha Hwang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yun Jung Huh
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jihwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Sungkyunkwan University, Seoul, Republic of Korea
| | | | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- GENINUS Inc., Seoul, Republic of Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence (IPAI), Seoul National University, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
5
|
Stüve P, Godoy GJ, Ferreyra FN, Hellriegel F, Boukhallouk F, Kao YS, More TH, Matthies AM, Akimova T, Abraham WR, Kaever V, Schmitz I, Hiller K, Lochner M, Salomon BL, Beier UH, Rehli M, Sparwasser T, Berod L. ACC1 is a dual metabolic-epigenetic regulator of Treg stability and immune tolerance. Mol Metab 2025; 94:102111. [PMID: 39929287 PMCID: PMC11893314 DOI: 10.1016/j.molmet.2025.102111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE Regulatory T cells (Tregs) are essential in maintaining immune tolerance and controlling inflammation. Treg stability relies on transcriptional and post-translational mechanisms, including histone acetylation at the Foxp3 locus and FoxP3 protein acetylation. Additionally, Tregs depend on specific metabolic programs for differentiation, yet the underlying molecular mechanisms remain elusive. We aimed to investigate the role of acetyl-CoA carboxylase 1 (ACC1) in the differentiation, stability, and function of regulatory T cells (Tregs). METHODS We used either T cell-specific ACC1 knockout mice or ACC1 inhibition via a pharmacological agent to examine the effects on Treg differentiation and stability. The impact of ACC1 inhibition on Treg function was assessed in vivo through adoptive transfer models of Th1/Th17-driven inflammatory diseases. RESULTS Inhibition or genetic deletion of ACC1 led to an increase in acetyl-CoA availability, promoting enhanced histone and protein acetylation, and sustained FoxP3 transcription even under inflammatory conditions. Mice with T cell-specific ACC1 deletion exhibited an enrichment of double positive RORγt+FoxP3+ cells. Moreover, Tregs treated with an ACC1 inhibitor demonstrated superior long-term stability and an enhanced capacity to suppress Th1/Th17-driven inflammatory diseases in adoptive transfer models. CONCLUSIONS We identified ACC1 as a metabolic checkpoint in Treg biology. Our data demonstrate that ACC1 inhibition promotes Treg differentiation and long-term stability in vitro and in vivo. Thus, ACC1 serves as a dual metabolic and epigenetic hub, regulating immune tolerance and inflammation by balancing de novo lipid synthesis and protein acetylation.
Collapse
Affiliation(s)
- Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Gloria J Godoy
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fernando N Ferreyra
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Hellriegel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fatima Boukhallouk
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Yu-San Kao
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany
| | - Tushar H More
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Anne-Marie Matthies
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolf-Rainer Abraham
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany; Department of Chemical Microbiology, HZI, Braunschweig 38124, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, MHH, Hannover 30625, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Department of Experimental Immunology, HZI, Braunschweig 38124, Germany; Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany; Institute for Molecular Immunology, Ruhr-University Bochum, Bochum 44801, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Germany; A Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany; Institute of Medical Microbiology and Hospital Epidemiology, MHH, Hannover 30625, Germany
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris 75013, France
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55122, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
| | - Luciana Berod
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany.
| |
Collapse
|
6
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Nakajima S, Yonekura S, Kabashima K. Targeting the OX40-OX40L pathway: A new era in atopic dermatitis management by T-cell rebalancing. J Allergy Clin Immunol 2025; 155:1211-1213. [PMID: 39978683 DOI: 10.1016/j.jaci.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Affiliation(s)
- Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Yonekura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; A∗STAR Skin Research Labs, Skin Research Institute of Singapore, and Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.
| |
Collapse
|
8
|
Shi Y, Zhang H, Miao C. Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives. Cell Death Discov 2025; 11:123. [PMID: 40155378 PMCID: PMC11953409 DOI: 10.1038/s41420-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Li B, Gong S, Zhang N, Shi B, Lv Z, Zhang Y, Gaowa N, Dong L, Wu D, Wu J, Liu F, Zhang R, Behzadigohar R, Ganju V, Wu C, Wu X. A Novel Designed Anti-PD-L1/OX40 Bispecific Antibody Augments Both Peripheral and Tumor-Associated Immune Responses for Boosting Antitumor Immunity. Mol Cancer Ther 2025; 24:317-330. [PMID: 39575565 DOI: 10.1158/1535-7163.mct-24-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 03/05/2025]
Abstract
Bispecific antibodies (BsAb) combining simultaneous PD-L1 blockade and conditional costimulatory receptor activation have been developed to improve immune checkpoint therapy response. However, several PD-L1-based BsAbs have encountered clinical challenges, including insufficient activity or unexpected toxicity. In this study, we propose OX40 as a more suitable target partner for PD-L1-based BsAb design compared with ongoing clinical partners (CD27 and 4-1BB). We present a novel Fc-silenced tetravalent PD-L1/OX40 BsAb (EMB-09), which efficiently blocks PD-1/PD-L1 interactions and induces PD-L1-dependent OX40 activation, leading to enhanced T-cell activation. EMB-09 demonstrated improved antitumor activity compared with the anti-PD-L1 mAb. Significantly, EMB-09 activated effector memory T cells in the peripheral immune system and promoted the influx of stem-like CD8+ T cells into the tumor site, resulting in a more active phenotype of CD8+ tumor-infiltrating lymphocytes. In an ongoing first-in-human study in patients with advanced refractory solid tumors (NCT05263180), EMB-09 demonstrated a consistent pharmacodynamic response and early efficacy signals.
Collapse
Affiliation(s)
- Baocun Li
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Shiyong Gong
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | | | - Beilei Shi
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Zhou Lv
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Yu Zhang
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Naren Gaowa
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Liqin Dong
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Danqing Wu
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Jianfu Wu
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Fan Liu
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Rui Zhang
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | | | - Vinod Ganju
- Peninsula and Southeast Oncology (PASO), Frankston, Australia
| | - Chengbin Wu
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| | - Xuan Wu
- EpimAb Biotherapeutics Co. Ltd., Shanghai, China
| |
Collapse
|
10
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
12
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
13
|
Gadwa J, Yu J, Piper M, Knitz MW, Darragh LB, Olimpo N, Corbo S, Beynor JI, Neupert B, Nguyen AT, Hodgson C, Nguyen D, Abdelazeem KN, Saviola A, Pousse L, Bransi A, Pincha M, Klein C, Amann M, Karam SD. Divergent response to radio-immunotherapy is defined by intrinsic features of the tumor microenvironment. J Immunother Cancer 2025; 13:e010405. [PMID: 39773568 PMCID: PMC11749720 DOI: 10.1136/jitc-2024-010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Treatment with immunotherapy can elicit varying responses across cancer types, and the mechanistic underpinnings that contribute to response vrsus progression remain poorly understood. However, to date there are few preclinical models that accurately represent these disparate disease scenarios. METHODS Using combinatorial radio-immunotherapy consisting of PD-1 blockade, IL2Rβγ biased signaling, and OX40 agonism we were able to generate preclinical tumor models with conflicting responses, where head and neck squamous cell carcinoma (HNSCC) models respond and pancreatic ductal adenocarcinoma (PDAC) progresses. RESULTS By modeling these disparate states, we find that regulatory T cells (Tregs) are expanded in PDAC tumors undergoing treatment, constraining tumor reactive CD8 T cell activity. Consequently, the depletion of Tregs restores the therapeutic efficacy of our treatment and abrogates the disparity between models. Moreover, we show that through heterotopic implantations the site of tumor development defines the response to therapy, as implantation of HNSCC tumors into the pancreas resulted in comparable levels of tumor progression. CONCLUSIONS This work highlights the complexity of combining immunotherapies within the tumor microenvironment (TME) and further defines the immune and non-immune components of the TME as an intrinsic feature of immune suppression.
Collapse
Affiliation(s)
- Jacob Gadwa
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin Yu
- Department of Otolaryngology - Head & Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael W Knitz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas Olimpo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica I Beynor
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander T Nguyen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloe Hodgson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Khalid Nm Abdelazeem
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Ali Bransi
- Roche Innovation Centre Zurich, Schlieren, Switzerland
| | - Mudita Pincha
- Roche Innovation Centre Zurich, Schlieren, Switzerland
| | | | - Maria Amann
- Roche Innovation Centre Zurich, Schlieren, Switzerland
| | - Sana D Karam
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Zhang J, Zhou L, Sun X, Lin Y, Yuan J, Yang C, Liao C. SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity. Cancer Biol Ther 2024; 25:2426305. [PMID: 39543823 PMCID: PMC11572088 DOI: 10.1080/15384047.2024.2426305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8+ T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities in vitro. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.
Collapse
Affiliation(s)
- Jun Zhang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Lei Zhou
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Xing Sun
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Yuan Lin
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Jimin Yuan
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Changyong Yang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Cheng Liao
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
15
|
Xiao X, Du Y, Sun S, Su X, Xing J, Wang G, Elzein SM, Zou D, Minze LJ, Mao Z, Ghobrial RM, Connor AA, Chen W, Zhang Z, Li XC. Apex1 safeguards genomic stability to ensure a cytopathic T cell fate in autoimmune disease models. J Clin Invest 2024; 135:e183671. [PMID: 39739423 PMCID: PMC11827838 DOI: 10.1172/jci183671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
T cells have a remarkable capacity to clonally expand, a process that is intricately linked to their effector activities. As vigorously proliferating T cell also incur substantial DNA lesions, how the dividing T cells safeguard their genomic integrity to allow the generation of T effector cells remains largely unknown. Here we report the identification of the apurinic/apyrimidinic endonuclease-1 (Apex1) as an indispensable molecule for the induction of cytopathic T effectors in mouse models. We demonstrate that conditional deletion of Apex1 in T cells resulted in a remarkable accumulation of baseless DNA sites in the genome of proliferating T cells, which further led to genomic instability and apoptotic cell death. Consequently, Apex1-deleted T cells failed to acquire any effector features after activation and failed to mediate autoimmune diseases and allergic tissue damages. Detailed mutational analyses pinpointed the importance of its endonuclease domain in the generation of T effector cells. We provide further evidence that inhibiting the base repair activities of Apex1 with chemical inhibitors similarly abrogated the induction of autoimmune diseases. Collectively, our study suggests that Apex1 serves as a gatekeeper for the generation of cytopathic T cells and that therapeutically targeting Apex1 may have important clinical implications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiang Xiao
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Yong Du
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Si Sun
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Xiaojun Su
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Junji Xing
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Cardiovascular Sciences, and
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Steven M. Elzein
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
| | - Dawei Zou
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Laurie J. Minze
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Zhuyun Mao
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Rafik M. Ghobrial
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Ashton A. Connor
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Xian C. Li
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
16
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024; 43:1137-1163. [PMID: 39363128 PMCID: PMC11554763 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
18
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
20
|
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Previs RA, Conroy JM, DePietro P, Pabla S, Kurzrock R. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev 2024; 43:1001-1013. [PMID: 38526805 PMCID: PMC11300540 DOI: 10.1007/s10555-024-10184-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
22
|
Lupsa N, Érsek B, Böröczky C, Kis D, Szarka E, Lumniczky K, Sáfrány G, Zádori ZS, Szöőr Á, Buzás EI, Pós Z. High sensitivity of host Helios +/Neuropilin-1 + Treg to pretransplant conditioning hampers development of OX40 bright/integrin-β7 + regulatory cells in acute gastrointestinal GvHD. Eur J Immunol 2024; 54:e2350619. [PMID: 38532599 DOI: 10.1002/eji.202350619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
This study sought to compare the behavior of Treg subsets displaying different coexpression patterns of Neuropilin-1 (Nrp1) and Helios, under the influence of gut stress unrelated to hematopoietic stem cell transplantation, pretransplantation conditioning, and posttransplant gastrointestinal acute graft versus host disease (GI-aGvHD). Host CD4+/CD25hi/Foxp3+ Treg cells, identified by flow cytometry, were isolated from various tissues of mice affected by these stressors. Expression of CD25, CTLA-4, CD39, OX40, integrin-β7, LAG3, TGFβ/LAP, granzyme-A, -B, and interleukin-10 was compared in four Treg subsets displaying Helios or Nrp1 only, both or none. Fluorescence-activated cell sorter-sorted Treg subsets, displaying markers affected in a conditioning- and GI-aGVHD-restricted manner, were further investigated by transcriptome profiling and T-cell suppression assays. We found that conditioning by irradiation greatly diminished the relative frequency of Helios+/Nrp1+ Treg, shifting the balance toward Helios-/Nrp1- Treg in the host. Upregulation of integrin-β7 and OX40 occurred in GI-aGvHD-dependent manner in Helios+/Nrp1+ cells but not in Helios-/Nrp1- Treg. Sorted Treg subsets, confirmed to overexpress Nrp1, Helios, OX40, or integrin-β7, displayed superior immunosuppressive activity and enrichment in activation-related messenger RNA transcripts. Our data suggest that conditioning-induced shrinkage of the Nrp1+/Helios+ Treg subset may contribute to the development of GI-GvHD by impairing gut homing and decreasing the efficiency of Treg-mediated immunosuppression.
Collapse
Affiliation(s)
- Nikolett Lupsa
- Department of Genetics, Cell and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csenge Böröczky
- Department of Genetics, Cell and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dávid Kis
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Eszter Szarka
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Géza Sáfrány
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Immunproteogenomics Extracellular Vesicle Research Group of the Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Extracellular Vesicle Research Group, Hungarian Center of Excellence Molecular Medicine, Budapest, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Pampeno C, Opp S, Hurtado A, Meruelo D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int J Mol Sci 2024; 25:2925. [PMID: 38474178 PMCID: PMC10932354 DOI: 10.3390/ijms25052925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.
Collapse
Affiliation(s)
- Christine Pampeno
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | | | - Alicia Hurtado
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
25
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
27
|
Mahasongkram K, Glab-ampai K, Kaewchim K, Saenlom T, Chulanetra M, Sookrung N, Nathalang O, Chaicumpa W. Agonistic Bivalent Human scFvs-Fcγ Fusion Antibodies to OX40 Ectodomain Enhance T Cell Activities against Cancer. Vaccines (Basel) 2023; 11:1826. [PMID: 38140230 PMCID: PMC10747724 DOI: 10.3390/vaccines11121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.
Collapse
Affiliation(s)
- Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kantaphon Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.M.); (K.G.-a.); (K.K.); (T.S.); (M.C.); (N.S.)
| |
Collapse
|
28
|
Xu Y, Lan P, Wang T. The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1984. [PMID: 38004032 PMCID: PMC10672798 DOI: 10.3390/medicina59111984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology with limited treatment options. The role of the immune system in IPF has received increasing attention. Uncontrolled immune responses drive the onset and progression of IPF. This article provides an overview of the role of innate immune cells (including macrophages, neutrophils, mast cells, eosinophils, dendritic cells, nature killer cells, nature kill cells and γδ T cells) and adaptive immune cells (including Th1 cells, Th2 cells, Th9 cells, Th17 cells, Th22 cells, cytotoxic T cells, B lymphocytes and Treg cells) in IPF. In addition, we review the current status of pharmacological treatments for IPF and new developments in immunotherapy. A deeper comprehension of the immune system's function in IPF may contribute to the development of targeted immunomodulatory therapies that can alter the course of the disease.
Collapse
Affiliation(s)
- Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
29
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
30
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
31
|
Tognarelli EI, Duarte LF, Farías MA, Cancino FA, Corrales N, Ibáñez FJ, Riedel CA, Bueno SM, Kalergis AM, González PA. Heme Oxygenase-1 Expression in Dendritic Cells Contributes to Protective Immunity against Herpes Simplex Virus Skin Infection. Antioxidants (Basel) 2023; 12:1170. [PMID: 37371900 DOI: 10.3390/antiox12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are highly prevalent in the human population and produce mild to life-threatening diseases. These viruses interfere with the function and viability of dendritic cells (DCs), which are professional antigen-presenting cells that initiate and regulate the host's antiviral immune responses. Heme oxygenase-1 (HO-1) is an inducible host enzyme with reported antiviral activity against HSVs in epithelial cells and neurons. Here, we sought to assess whether HO-1 modulates the function and viability of DCs upon infection with HSV-1 or HSV-2. We found that the stimulation of HO-1 expression in HSV-inoculated DCs significantly recovered the viability of these cells and hampered viral egress. Furthermore, HSV-infected DCs stimulated to express HO-1 promoted the expression of anti-inflammatory molecules, such as PDL-1 and IL-10, and the activation of virus-specific CD4+ T cells with regulatory (Treg), Th17 and Treg/Th17 phenotypes. Moreover, HSV-infected DCs stimulated to express HO-1 and then transferred into mice, promoted the activation of virus-specific T cells and improved the outcome of HSV-1 skin infection. These findings suggest that stimulation of HO-1 expression in DCs limits the deleterious effects of HSVs over these cells and induces a favorable virus-specific immune response in the skin against HSV-1.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Felipe A Cancino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Francisco J Ibáñez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
32
|
Lu Y, Li Y, Yu J, Meng S, Bi C, Guan Q, Li L, Qiu L, Qian Z, Zhou S, Gong W, Meng B, Ren X, Armitage J, Zhang H, Fu K, Wang X. OX40 shapes an inflamed tumor immune microenvironment and predicts response to immunochemotherapy in diffuse large B-cell lymphoma. Clin Immunol 2023; 251:109637. [PMID: 37150239 DOI: 10.1016/j.clim.2023.109637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
OX40 enhances the T-cell activation via costimulatory signaling. However, its molecular characteristics and value in predicting response to immunochemotherapy in DLBCL remain largely unexplored. Here, we performed an integrative analysis of sequencing and multiplex immunofluorescence staining, and discovered abnormally higher expression of OX40 in DLBCL patients. Elevated OX40 could activate T cells leading to a higher immune score for tumor immune microenvironment (TiME). OX40 upregulation simultaneously happened with immune-related genes including PD-1, CTLA4 and TIGIT et,al. Patients with high OX40 expression exhibited a lower Ann Arbor stage and IPI score and more easily achieved a complete response/partial response. The analysis of infiltrated T-cell subset revealed that patients with a greater number of CD4+/OX40+ or CD8+/OX40+ T cells had a longer OS. Our findings indicated that OX40 shapes an inflamed tumor immune microenvironment and predicts response to immunochemotherapy, providing insights for the application of OX40 agonist in DLBCL patients.
Collapse
Affiliation(s)
- Yaxiao Lu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Yang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shen Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Chengfeng Bi
- Department of Pathology and Microbiology, Fred & Pamela Buffett Cancer, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Qingpei Guan
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - James Armitage
- Section of Oncology & Hematology, Fred & Pamela Buffett Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China.
| | - Kai Fu
- Department of Pathology and Microbiology, Fred & Pamela Buffett Cancer, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China.
| |
Collapse
|
33
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
34
|
Zhang Q, Sun X, Hou Y, Gao X, Shen K, Qin X. New insight on the correlation of immune landscapes with immune markers expression in different risk classification of gastrointestinal stromal tumors. J Gastroenterol 2023; 58:527-539. [PMID: 36961557 DOI: 10.1007/s00535-023-01981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The immune landscapes of gastrointestinal stromal tumors (GISTs) are still unclear. We aimed to explore the immune status of GISTs with different recurrence risks and sought potential immunotherapeutic targets. METHODS Immune cell infiltration and the expression of 93 tumor markers of 65 GISTs with different recurrence risks from public datasets were analyzed via bioinformatic methods. Infiltrating immune cell and OX40L expression of 417 patients from the Zhongshan cohort were analyzed by immunohistochemistry and immunofluorescence. The clinicopathological data of the patients were collected and the prognostic factors were analyzed by univariate and multivariate methods. RESULTS Macrophages, T cells and NK cells were the most abundant immune cells in tumor microenvironment. OX40L was the only differentially expressed marker in high- and low-risk patients, as well as in patients with primary and recurrent GIST. The positive rate of OX40L in GIST was 54%. OX40L was highly expressed in patients with no metastasis, low mitotic index and relapse risk. The amount of CD68 + macrophages was the independent factor of OX40L expression. The OX40L expression was positively correlated with M2 and resting mast cells. OX40L co-located with CD4 + T cells, M2 and activated mast cells. Patients with high OX40L levels experienced more prolonged relapse-free survival (RFS). CONCLUSIONS We first reported that GIST cells could express OX40L, patients with high OX40L experienced longer RFS. The colocalization of OX40L with immune cells indicates that OX40L could be a promising potential target for immunotherapy in GIST.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Xiangfei Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
35
|
Li Q, Lu J, Li J, Zhang B, Wu Y, Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells. Front Oncol 2023; 13:1157345. [PMID: 37182149 PMCID: PMC10174253 DOI: 10.3389/fonc.2023.1157345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs.
Collapse
Affiliation(s)
- Quanxiao Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| |
Collapse
|
36
|
Opp S, Hurtado A, Pampeno C, Lin Z, Meruelo D. Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer. Cells 2022; 12:77. [PMID: 36611875 PMCID: PMC9818975 DOI: 10.3390/cells12010077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Our laboratory has been developing a Sindbis viral (SV) vector platform for treatments of ovarian and other types of cancers. In this study we show that SV.IL-12 combined with an agonistic OX40 antibody can eliminate ovarian cancer in a Mouse Ovarian Surface Epithelial Cell Line (MOSEC) model and further prevent tumors in mice rechallenged with tumor cells after approximately 5 months. Treatment efficacy is shown to be dependent upon T-cells that are transcriptionally and metabolically reprogramed. An influx of immune cells to the tumor microenvironment occurs. Combination of sequences encoding both IL-12 and anti-OX40 into a single SV vector, SV.IgGOX40.IL-12, facilitates the local delivery of immunoregulatory agents to tumors enhancing the anti-tumor response. We promote SV.IgGOX40.IL-12 as a safe and effective therapy for multiple types of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
37
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
38
|
Chen Q, Benamar M, Chan TMF, Wang M, Chatila TA. CPHEN-014: Comprehensive phenotyping of mouse regulatory T cells relevant to viral infections. Cytometry A 2022; 101:1000-1005. [PMID: 35593538 DOI: 10.1002/cyto.a.24655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
Regulatory T (Treg) cells are a specialized subpopulation of CD4+ T cells that enforce peripheral immune tolerance. Treg cells act to suppress exuberant immune responses, limit inflammation, and promote tissue repair, thereby maintaining homeostasis and tolerance to self-antigens and those of the commensal microbial flora. Treg cells are characterized by the expression of the master regulator Foxp3, which plays a major role in Treg cells development and function. Under inflammatory conditions, Foxp3+ Treg cells may acquire effector T cell programs that modify their phenotype and function, reflecting their plasticity. During microbial infections, Treg cells act to limit the immunopathology triggered by the host immune response to pathogens albeit at the potential risk of pathogen persistence. In this review, we will discuss the influence of Treg cells on the outcome of viral infection and will give an overview of the Treg phenotype at steady-state and in inflammatory conditions.
Collapse
Affiliation(s)
- Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Liu L, Hou Y, Deng C, Tao Z, Chen Z, Hu J, Chen K. Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment. Nat Commun 2022; 13:6740. [PMID: 36347860 PMCID: PMC9643495 DOI: 10.1038/s41467-022-34495-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Single-cell sequencing technologies have noteworthily improved our understanding of the genetic map and molecular characteristics of bladder cancer (BC). Here we identify CD39 as a potential therapeutic target for BC via single-cell transcriptome analysis. In a subcutaneous tumor model and orthotopic bladder cancer model, inhibition of CD39 (CD39i) by sodium polyoxotungstate is able to limit the growth of BC and improve the overall survival of tumor-bearing mice. Via single cell RNA sequencing, we find that CD39i increase the intratumor NK cells, conventional type 1 dendritic cells (cDC1) and CD8 + T cells and decrease the Treg abundance. The antitumor effect and reprogramming of the tumor microenvironment are blockaded in both the NK cells depletion model and the cDC1-deficient Batf3-/- model. In addition, a significant synergistic effect is observed between CD39i and cisplatin, but the CD39i + anti-PD-L1 (or anti-PD1) strategy does not show any synergistic effects in the BC model. Our results confirm that CD39 is a potential target for the immune therapy of BC.
Collapse
Affiliation(s)
- Lilong Liu
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changqi Deng
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Tao
- grid.411918.40000 0004 1798 6427Department of Radiation Oncology and Cyberknife Center, Tianjin Medical University Cancer institute & Hospital, Tianjin, China
| | - Zhaohui Chen
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Hu
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- grid.33199.310000 0004 0368 7223Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Synovial Macrophages Expression of OX40L Is Required for Follicular Helper T Cells Differentiation in the Joint Microenvironment. Cells 2022; 11:cells11203326. [PMID: 36291190 PMCID: PMC9601235 DOI: 10.3390/cells11203326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Signaling via the OX40/OX40L axis plays a key role in CD4+ T cell development, and OX40L expression is primarily restricted to antigen-presenting cells (APCs). This study was designed to assess the role of APC-mediated OX40L expression in the context of the development of rheumatoid arthritis (RA)-associated CD4+ T cell subsets. For these analyses, clinical samples were harvested from patients with osteoarthritis and RA, with additional analyses performed using OX40−/− mice and mice harboring monocyte/macrophage-specific deletions of OX40L. Together, these analyses revealed tissue-specific roles for OX40/OX40L signaling in RA. Specifically, higher levels of synovial macrophage OX40L expression were associated with the enhanced development of T follicular helper cells in the joint microenvironment, thereby contributing to the pathogenesis of RA. This Tfh differentiation was found to be OX40/OX40L-dependent in this synovial setting. Overall, these results indicate that the expression of OX40L by synovia macrophages is necessary to support Tfh differentiation in the joint tissues, thus offering new insight regarding the etiological basis for RA progression.
Collapse
|
41
|
Arnold PR, Wen M, Zhang L, Ying Y, Xiao X, Chu X, Wang G, Zhang X, Mao Z, Zhang A, Hamilton DJ, Chen W, Li XC. Suppression of FOXP3 expression by the AP-1 family transcription factor BATF3 requires partnering with IRF4. Front Immunol 2022; 13:966364. [PMID: 36090981 PMCID: PMC9452699 DOI: 10.3389/fimmu.2022.966364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
FOXP3 is the lineage-defining transcription factor for Tregs, a cell type critical to immune tolerance, but the mechanisms that control FOXP3 expression in Tregs remain incompletely defined, particularly as it relates to signals downstream of TCR and CD28 signaling. Herein, we studied the role of IRF4 and BATF3, two transcription factors upregulated upon T cell activation, to the conversion of conventional CD4+ T cells to FOXP3+ T cells (iTregs) in vitro. We found that IRF4 must partner with BATF3 to bind to a regulatory region in the Foxp3 locus where they cooperatively repress FOXP3 expression and iTreg induction. In addition, we found that interactions of these transcription factors are necessary for glycolytic reprogramming of activated T cells that is antagonistic to FOXP3 expression and stability. As a result, Irf4 KO iTregs show increased demethylation of the critical CNS2 region in the Foxp3 locus. Together, our findings provide important insights how BATF3 and IRF4 interactions integrate activating signals to control CD4+ cell fate decisions and govern Foxp3 expression.
Collapse
Affiliation(s)
- Preston R. Arnold
- College of Medicine, Texas A&M Health, Bryan, TX, United States
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Mou Wen
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Lei Zhang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Yuanlin Ying
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Xiang Xiao
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Xiufeng Chu
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Xiaolong Zhang
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Zhuyun Mao
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
| | - Aijun Zhang
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX, United States
- Center for Bioenergetics, Houston Methodist Hospital and Research Institute, Texas Medical Center, Houston, TX, United States
- Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Dale J. Hamilton
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX, United States
- Center for Bioenergetics, Houston Methodist Hospital and Research Institute, Texas Medical Center, Houston, TX, United States
- Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Wenhao Chen
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Xian C. Li
- Immunobiology and Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Texas Medical Center, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, United States
- *Correspondence: Xian C. Li,
| |
Collapse
|
42
|
Lin L, Hu Y, Guo Z, Chen J, Sun P, Tian H, Chen X. Gene-guided OX40L anchoring to tumor cells for synergetic tumor “self-killing” immunotherapy. Bioact Mater 2022; 25:689-700. [PMID: 37056266 PMCID: PMC10086763 DOI: 10.1016/j.bioactmat.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
The low objective response rates and severe side effects largely limit the clinical outcomes of immune checkpoint blockade (ICB) therapy. Here, a tumor "self-killing" therapy based on gene-guided OX40L anchoring to tumor cell membrane was reported to boost ICB therapy. We developed a highly efficient delivery system HA/PEI-KT (HKT) to co-deliver the OX40L plasmids and unmethylated CG-enriched oligodeoxynucleotide (CpG). On the one hand, CpG induced the expression of OX40 on T cells within tumors. On the other hand, OX40L plasmids achieved the OX40L anchoring on the tumor cell membrane to next promote T cells responses via OX40/OX40L axis. Such synergistic tumor "self-killing" strategy finally turned "cold" tumors to "hot", to sensitize tumors to programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) blockade therapy, and promoted an immune-mediated tumor regression in both B16F10 and 4T1 tumor models, with prevention of tumor recurrence and metastasis. To avoid the side effects, the gene-guided OX40L anchoring and PD-L1 silencing was proposed to replace the existing antibody therapy, which showed negligible toxicity in vivo. Our work provided a new possibility for tumor "self-killing" immunotherapy to treated various solid tumors.
Collapse
|
43
|
Kumar P, Balakrishnan S, Surendra Lele S, Setty S, Dhingra S, Epstein AL, Prabhakar BS. Restoration of Follicular T Regulatory/Helper Cell Balance by OX40L-JAG1 Cotreatment Suppresses Lupus Nephritis in NZBWF1/j Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2467-2481. [PMID: 35470257 DOI: 10.4049/jimmunol.2200057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Class-switched antinuclear autoantibodies produced by T follicular helper (TFH) cell-dependent germinal center (GC) B cell response play an essential pathogenic role in lupus nephritis (LN). The role of T follicular regulatory (TFR) cells, an effector subset of CD4+Foxp3+ T regulatory cells (Tregs), which are specialized in suppressing TFH-GC response and Ab production, remains elusive in LN. Contrasting reports have shown increased/reduced circulating TFR cells in human lupus that might not accurately reflect their presence in the GCs of relevant lymphoid organs. In this study, we report a progressive reduction in TFR cells and decreased TFR/TFH ratio despite increased Tregs in the renal lymph nodes of NZBWF1/j mice, which correlated with increased GC-B cells and proteinuria onset. Cotreatment with soluble OX40L and Jagged-1 (JAG1) proteins increased Tregs, TFR cells, and TFR/TFH ratio, with a concomitant reduction in TFH cells, GC B cells, and anti-dsDNA IgG Ab levels, and suppressed LN onset. Mechanistic studies showed attenuated TFH functions and diminished GC events such as somatic hypermutation and isotype class-switching in OX40L-JAG1-treated mice. RNA sequencing studies revealed inhibition of hypoxia-inducible factor 1-α (HIF-1a) and STAT3 signaling in T conventional cells from OX40L-JAG1-treated mice, which are critical for the glycolytic flux and differentiation into TFH cell lineage. Therefore, the increased TFR/TFH ratio seen in OX40L-JAG1-treated mice could involve both impaired differentiation of TFH cells from T conventional cells and expansion of TFR cells. We show a key role for GC-TFR/TFH imbalance in LN pathogenesis and how restoring homeostatic balance can suppress LN.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Suman Setty
- Department of Pathology, University of Illinois College of Medicine, Chicago, IL; and
| | - Shaurya Dhingra
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL;
| |
Collapse
|
44
|
Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model. Cancers (Basel) 2022; 14:cancers14112692. [PMID: 35681672 PMCID: PMC9179485 DOI: 10.3390/cancers14112692] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This experimental study was designed in order to investigate the efficacy of the triple combination of radiation (SBRT), PD-1 blockade, and OX40 co-stimulation in a syngeneic murine model using ‘immunologically cold’ triple-negative breast cancer cells. SBRT can induce immunogenic tumor cell deaths and act as an in situ vaccine while OX40 signaling has been shown to improve anticancer immunity combined with PD-1 inhibition via multiple preclinical studies. In our study, triple combination therapy significantly improved primary/abscopal tumor control and reduced lung metastases compared to single or dual therapies. This was found to be through an increased ratio of CD8+ T cells to regulatory T cells and a reduced proportion of exhausted T cells in the tumor microenvironment. Abstract Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (α-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and α-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of α-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, α-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-γ, respectively. Together, our results suggest that the combination of α-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.
Collapse
|
45
|
Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15:61. [PMID: 35585567 PMCID: PMC9118588 DOI: 10.1186/s13045-022-01282-8] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies like the adoptive transfer of gene-engineered T cells and immune checkpoint inhibitors are novel therapeutic modalities for advanced cancers. However, some patients are refractory or resistant to these therapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. Immunosuppressive cells such as myeloid-derived suppressive cells, tumor-associated macrophages, tumor-associated neutrophils, regulatory T cells (Tregs), and tumor-associated dendritic cells are critical factors correlated with immune resistance. In addition, cytokines and factors secreted by tumor cells or these immunosuppressive cells also mediate the tumor progression and immune escape of cancers. Thus, targeting these immunosuppressive cells and the related signals is the promising therapy to improve the efficacy of immunotherapies and reverse the immune resistance. However, even with certain success in preclinical studies or in some specific types of cancer, large perspectives are unknown for these immunosuppressive cells, and the related therapies have undesirable outcomes for clinical patients. In this review, we comprehensively summarized the phenotype, function, and potential therapeutic targets of these immunosuppressive cells in the tumor microenvironment.
Collapse
|
46
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
47
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
48
|
Burrack AL, Schmiechen ZC, Patterson MT, Miller EA, Spartz EJ, Rollins MR, Raynor JF, Mitchell JS, Kaisho T, Fife BT, Stromnes IM. Distinct myeloid antigen-presenting cells dictate differential fates of tumor-specific CD8+ T cells in pancreatic cancer. JCI Insight 2022; 7:e151593. [PMID: 35393950 PMCID: PMC9057584 DOI: 10.1172/jci.insight.151593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
We investigate how myeloid subsets differentially shape immunity to pancreatic ductal adenocarcinoma (PDA). We show that tumor antigenicity sculpts myeloid cell composition and functionality. Antigenicity promotes accumulation of type 1 dendritic cells (cDC1), which is driven by Xcr1 signaling, and overcomes macrophage-mediated suppression. The therapeutic activity of adoptive T cell therapy or programmed cell death ligand 1 blockade required cDC1s, which sustained splenic Klrg1+ cytotoxic antitumor T cells and functional intratumoral T cells. KLRG1 and cDC1 genes correlated in human tumors, and PDA patients with high intratumoral KLRG1 survived longer than patients with low intratumoral KLRG1. The immunotherapy CD40 agonist also required host cDC1s for maximal therapeutic benefit. However, CD40 agonist exhibited partial therapeutic benefit in cDC1-deficient hosts and resulted in priming of tumor-specific yet atypical CD8+ T cells with a regulatory phenotype and that failed to participate in tumor control. Monocyte/macrophage depletion using clodronate liposomes abrogated T cell priming yet enhanced the antitumor activity of CD40 agonist in cDC1-deficient hosts via engagement of innate immunity. In sum, our study supports that cDC1s are essential for sustaining effective antitumor T cells and supports differential roles for cDC1s and monocytes/macrophages in instructing T cell fate and immunotherapy response.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Microbiology and Immunology
- Center for Immunology
| | | | | | - Ebony A. Miller
- Department of Microbiology and Immunology
- Center for Immunology
| | | | | | | | - Jason S. Mitchell
- Center for Immunology
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | - Brian T. Fife
- Center for Immunology
- Department of Medicine, and
- Masonic Cancer Center, and
| | - Ingunn M. Stromnes
- Department of Microbiology and Immunology
- Center for Immunology
- Masonic Cancer Center, and
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Wang Y, Xiao X, Kong G, Wen M, Wang G, Ghobrial RM, Dong N, Chen W, Li XC. Genetically targeting the BATF family transcription factors BATF and BATF3 in the mouse abrogates effector T cell activities and enables long-term heart allograft survival. Am J Transplant 2022; 22:414-426. [PMID: 34599765 PMCID: PMC8813885 DOI: 10.1111/ajt.16861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023]
Abstract
T cells must be activated and become effectors first before executing allograft rejection, a process that is regulated by diverse signals and transcription factors. In this study, we studied the basic leucine zipper ATF-like transcription factor (BATF) family members in regulating T cell activities in a heart transplant model and found that mice deficient for both BATF and BATF3 (Batf-/- Batf3-/- mice) spontaneously accept the heart allografts long-term without tolerizing therapies. Similarly, adoptive transfer of wild type T cells into Rag1-/- hosts induced prompt rejection of heart and skin allografts, whereas the Batf-/- Batf3-/- T cells failed to do so. Analyses of graft-infiltrating cells showed that Batf-/- Batf3-/- T cells infiltrate the graft but fail to acquire an effector phenotype (CD44high KLRG1+ ). Co-transfer experiments in a T cell receptor transgenic TEa model revealed that the Batf-/- Batf3-/- T cells fail to expand in vivo, retain a quiescent phenotype (CD62L+ CD127+ ), and unable to produce effector cytokines to alloantigen stimulation, which contrasted sharply to that of wild type T cells. Together, our data demonstrate that the BATF and BATF3 are critical regulators of T effector functions, thus making them attractive targets for therapeutic interventions in transplant settings.
Collapse
Affiliation(s)
- Yixuan Wang
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Xiao
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Gangcheng Kong
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Mou Wen
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Guangchuan Wang
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Rafik M. Ghobrial
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine of Cornell University, New York, New York
| | - Nianguo Dong
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Chen
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine of Cornell University, New York, New York
| | - Xian C. Li
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist Hospital, Houston, Texas
- Department of Surgery, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
50
|
Zhang S, Li X, Zhang X, Zhang S, Tang C, Kuang W. The Pyroptosis-Related Gene Signature Predicts the Prognosis of Hepatocellular Carcinoma. Front Mol Biosci 2022; 8:781427. [PMID: 35047554 PMCID: PMC8762168 DOI: 10.3389/fmolb.2021.781427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a genetically and phenotypically heterogeneous tumor, and the prediction of its prognosis remains a challenge. In the past decade, studies elucidating the mechanisms that induce tumor cell pyroptosis has rapidly increased. The elucidation of their mechanisms is essential for the clinical development optimal application of anti-hepatocellular carcinoma therapeutics. Methods: Based on the different expression profiles of pyroptosis-related genes in HCC, we constructed a LASSO Cox regression pyroptosis-related genes signature that could more accurately predict the prognosis of HCC patients. Results: We identified seven pyroptosis-related genes signature (BAK1, CHMP4B, GSDMC, NLRP6, NOD2, PLCG1, SCAF11) in predicting the prognosis of HCC patients. Kaplan Meier survival analysis showed that the pyroptosis-related high-risk gene signature was associated with poor prognosis HCC patients. Moreover, the pyroptosis-related genes signature performed well in the survival analysis and ICGC validation group. The hybrid nomogram and calibration curve further demonstrated their feasibility and accuracy for predicting the prognosis of HCC patients. Meanwhile, the evaluation revealed that our novel signature predicted the prognosis of HCC patients more accurately than traditional clinicopathological features. GSEA analysis further revealed the novel signature associated mechanisms of immunity response in high-risk groups. Moreover, analysis of immune cell subsets with relevant functions revealed significant differences in aDCs, APC co-stimulation, CCR, check-point, iDCs, Macrophages, MHC class-I, Treg, and type II INF response between high- and low-risk groups. Finally, the expression of Immune checkpoints was enhanced in high-risk group, and m6A-related modifications were expressed differently between low- and high-risk groups. Conclusion: The novel pyroptosis-related genes signature can predict the prognosis of patients with HCC and insight into new cell death targeted therapies.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|