1
|
Toscano ECB, Justo AFO, Paula MCA, Grossi LB, Neves VH, Leite REP, Paes VR, Melo RCN, Nitrini R, Pasqualucci C, Ferriolli E, Teixeira AL, Grinberg LT, Suemoto CK. Upregulation of NLRP3 Inflammasome in Specific Hippocampal Regions: Strengthening the Link Between Neuroinflammation and Selective Vulnerability in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04975-6. [PMID: 40281298 DOI: 10.1007/s12035-025-04975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Neuroinflammation has emerged as an important mechanism in the early stages of neurodegenerative diseases. Experimental models have demonstrated the detrimental role of inflammasomes in the development of Alzheimer's disease (AD). However, neuropathological studies characterizing NLRP1 and NLRP3 pathways in AD are scarce. In addition, the possible association between inflammasome-induced neuroinflammation and clinicopathological outcomes is unclear. This study aimed to characterize the hippocampal expression of the inflammasome proteins in post-mortem samples of individuals with pure AD neuropathological change (ADNC) compared to controls from an admixed Latin American sample (n = 28 per group). We also investigated potential associations of inflammasome expression with neuropathological burden and cognitive abilities. The expression of NLRP1, NLRP3, caspase-1, ASC, gasdermin D, IL-1β, IL-18, amyloid β, and hyperphosphorylated tau (p-tau) was evaluated in the cornu ammonis (CA), dentate gyrus (DG), and subiculum (SUB), using immunohistochemistry and morphometry. We also performed the alignment of serial sections and 3D reconstruction of ADNC samples to verify the spatial locations of NLRP3/ASC and AD pathology across the hippocampus. We used ordinal logistic regression to investigate potential associations between inflammasome proteins and AD pathology, while linear regression assessed relationships between inflammasome and cognitive abilities. NLRP3, ASC, caspase-1, IL-1β, and IL-18 were overexpressed in CA and SUB of individuals with ADNC compared to controls. NLRP3 pathway correlated with AD pathology and CDR-SB, mainly in CA and SUB. Our results suggest that hippocampal NLRP3, but not NLRP1, inflammasome was associated with pathologic burden and cognitive impairment in AD and may contribute to the selective vulnerability to AD pathology.
Collapse
Affiliation(s)
- Eliana C B Toscano
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil.
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil.
| | - Alberto F O Justo
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Michelle C A Paula
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil
| | - Laura B Grossi
- Laboratory of Pathology, Department of Pathology, Federal University of Juiz de Fora Medical School, Eugênio Do Nascimento, S/No.-Dom Bosco, Juiz de Fora, MG, 36038 - 330, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Renata E P Leite
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Vitor R Paes
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos Pasqualucci
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Eduardo Ferriolli
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio L Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Lea T Grinberg
- Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - Claudia K Suemoto
- Physiopathology in Aging Laboratory (LIM- 22), Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
- Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
2
|
Kusunoki Y, Li C, Long H, Watanabe-Kusunoki K, Kuang M, Marschner JA, Linkermann A, Steiger S, Anders HJ. Gasdermin D deficiency aggravates nephrocalcinosis-related chronic kidney disease with rendering macrophages vulnerable to necroptosis. Cell Death Dis 2025; 16:283. [PMID: 40221396 PMCID: PMC11993636 DOI: 10.1038/s41419-025-07620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Several forms of regulated necrosis contribute to the pathogenesis of crystal nephropathy, however, the role of pyroptosis, an inflammatory form of cell death involving the formation of gasdermin-D pores in internal and external cell membranes, in this condition remains unknown. Our transcriptional and histological analyses suggest that Gsdmd in tubulointerstitital cells may contribute to the pathogenesis of chronic oxalate nephropathy. However, genetic deletion of Gsdmd exacerbated oxalate nephropathy in mice in association with enhanced CaOx crystal deposition and accelerated tubular epithelial cell injury. Pharmacological inhibition of necroptosis reversed this effect. Indeed, Gsdmd-/- bone marrow-derived macrophages were more prone to undergo necroptosis when stimulated with CaOx crystals compared to their wildtype counterparts. We conclude that gasdermin D suppresses the necroptosis pathway, which determines the outcome of oxalate nephropathy-related nephrocalcinosis.
Collapse
Affiliation(s)
- Yoshihiro Kusunoki
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Chenyu Li
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Long
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Meisi Kuang
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | | | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Hospital of the Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
3
|
Miao R, Wang X, Zhang J, Kang Q, Liu Q, Luo X, Hou J, Gao B. Manipulation of cancer cell pyroptosis for therapeutic approaches: challenges and opportunities. Biomark Res 2025; 13:58. [PMID: 40200299 PMCID: PMC11980353 DOI: 10.1186/s40364-025-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
Remarkable advances have been achieved following discoveries that gasdermins are the executioners of pyroptosis. The pyroptotic process consists a subcellular permeabilization phase and a cell lysis phase, the latter of which is irreversible. Besides immune cells, pyroptosis has also been observed in cancer cells, which exhibit distinct mechanisms compared to canonical immune cell pyroptosis. Although chronic cancer cell pyroptosis fuels tumor growth, intense pyroptotic cell death in tumor cells enhances anticancer immunity by promoting killer lymphocytes infiltration. Triggering pyroptosis in cancer cells is emerging as a promising strategy for cancer treatment. In this review, we introduce the process of cancer cell pyroptosis and its role in antitumor immunity, discuss the translation of these insights into therapies, and highlight current challenges and opportunities in the investigation of cancer cell pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Jingyv Zhang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qinyv Kang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xianglin Luo
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China.
| | - Baorong Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Komiya H, Takeuchi H, Ogasawara A, Ogawa Y, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Tada M, Doi H, Tanaka F. Siponimod inhibits microglial inflammasome activation. Neurosci Res 2025; 213:138-145. [PMID: 39921000 DOI: 10.1016/j.neures.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Siponimod is the first oral drug approved for active secondary progressive multiple sclerosis. It acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) through S1P1 internalization, and also serves an agonist of S1P5; however, the detailed mechanisms of its therapeutic effects on glial cells have yet to be elucidated. In this study, we investigated the anti-inflammatory mechanism of siponimod in microglia. Pretreatment with either siponimod or the S1P1 antagonist W146 significantly suppressed the production of interleukin-1β in activated microglia stimulated with lipopolysaccharide plus nigericin, an inflammasome activator. Furthermore, siponimod treatment reduced the protein levels of cleaved caspase-1 and inhibited the formation of aggregates of apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC specks) in microglia. Our data indicate that siponimod achieves its anti-inflammatory effects by inhibiting inflammasome activation in microglia via S1P1 antagonism. This process is inferred to play a crucial role in mitigating the secondary progression of multiple sclerosis, where microglial activation in the gray matter is considered a key pathological factor.
Collapse
Affiliation(s)
- Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Japan.
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Ogawa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
6
|
Keller J, Danis J, Krehl I, Girousi E, Satoh TK, Meier-Schiesser B, Kemény L, Széll M, Wong WWL, Pascolo S, French LE, Kündig TM, Mellett M. LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes. Cell Death Dis 2025; 16:198. [PMID: 40121229 PMCID: PMC11929817 DOI: 10.1038/s41419-025-07537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Judit Danis
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Department of Immunology, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Isabella Krehl
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Eleftheria Girousi
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lajos Kemény
- Department of Immunology, University of Szeged, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, Szeged, Hungary
| | - W Wei-Lynn Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, USA
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
7
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 PMCID: PMC11877805 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
8
|
Song J, Zhang L, Moon S, Fang A, Wang G, Gheshm N, Loeb SA, Cao P, Wallace JR, Alfajaro MM, Strine MS, Beatty WL, Jamieson AM, Orchard RC, Robinson BA, Nice TJ, Wilen CB, Orvedahl A, Reese TA, Lee S. Norovirus co-opts NINJ1 for selective protein secretion. SCIENCE ADVANCES 2025; 11:eadu7985. [PMID: 40020060 PMCID: PMC11870086 DOI: 10.1126/sciadv.adu7985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Plasma membrane rupture by Ninjurin-1 (NINJ1) executes programmed cell death, releasing large cellular damage-associated molecular patterns (DAMPs). However, the regulation and selectivity of NINJ1-mediated DAMP release remain unexplored. Here, we uncover that murine norovirus (MNoV) strategically co-opts NINJ1 to selectively release the intracellular viral protein NS1, while NINJ1-mediated plasma membrane rupture simultaneously bulk-releases various cellular DAMPs. Host caspase-3 cleaves the precursor NS1/2, leading to NS1 secretion via an unconventional pathway. An unbiased CRISPR screen identifies NINJ1 as an essential factor for NS1 secretion. During infection, NINJ1 is recruited to the viral replication site, where it oligomerizes and forms speckled bodies, directly interacting with NS1. Subsequent mutagenesis studies identify critical amino acid residues of NS1 necessary for its interaction with NINJ1 and selective secretion. Genetic ablation or pharmaceutical inhibition of caspase-3 inhibits oral MNoV infection in mice. This study underscores the co-option of NINJ1 for controlled release of an intracellular viral protein.
Collapse
Affiliation(s)
- Jaewon Song
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Li Zhang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Seokoh Moon
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Ariana Fang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Newsha Gheshm
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Skylar A. Loeb
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Paul Cao
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Joselynn R. Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - Madison S. Strine
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Amanda M. Jamieson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Franco AR, Aladailleh Z, Romerio A, Italia A, Lami F, Shaik MM, Skupinska N, Artusa V, Pirianov G, Peri F. Towards more efficient synthetic immunomodulators: biological characterization and mechanism of action of monosaccharide-derived TLR4 agonists. RSC Med Chem 2025:d4md00950a. [PMID: 40124897 PMCID: PMC11926738 DOI: 10.1039/d4md00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/15/2025] [Indexed: 03/25/2025] Open
Abstract
Toll-like receptors (TLRs), including TLR4, play a crucial role in innate immunity activation, and small molecular TLR4 activators (agonists) are in the preclinical and clinical phases of development as vaccine adjuvants or tumor immunotherapeutics. Recently, we generated novel glucosamine-derived compounds, FP molecules, that are active as TLR4 agonists. Despite their chemical structure differing from LPS, some of these compounds, including compound FP18, mimicked the biological activity of LPS and its capacity to activate TLR4 and its downstream pathways. In contrast to FP18, compound FP20 showed immunostimulant activity that was only partially due to TLR4 agonism. This activity was mainly associated with NLRP3 inflammasome activation. We generated a panel of glycosylated FP20 derivatives (glyco-FP20) bearing different monosaccharides linked to C6 of the glucosamine. The biological activity of glyco-FP20 was related to TLR4 activation, as assessed from preliminary experiments in HEK-Blue cells. We presented a comprehensive study of the mechanism of action of glyco-FP20 derivatives and their effect on TLR4 signalling, leading to macrophage M1 polarisation and pyroptosis in THP-1 derived macrophages. Results revealed that, similarly to LPS and differently from FP20, glyco-FP20 derivatives were potent TLR4 agonists inducing TLR4/MyD88 signalling pathways that led to M1 macrophage polarisation, associated with NF-kB activation/translocation and release of a number of proinflammatory mediators in THP-1-derived macrophages. In particular, compound FP20 Rha activated TLR4/TRIF signalling, associated with phosphorylation of STAT1/IRF3, leading to the production of IFN-β in THP-1-derived macrophages. Furthermore, using a specific GSD inhibitor (U73), we demonstrated the ability of FP20 and glyco-FP20 to induce GSD-dependent pyroptosis, which was associated with IL-1β/IL-18 and LDH release in THP-1-derived macrophages. These results show that the optimization of FP20 glycosylation can increase the biological potency of the parent molecule and can be used in preclinical development as vaccine adjuvants or macrophage-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ana Rita Franco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Zaineh Aladailleh
- School of Life Sciences, Anglia Ruskin University East Road Cambridge CB1 1PT UK
| | - Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Alice Italia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Federico Lami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Mohammed Monsoor Shaik
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Natalia Skupinska
- School of Life Sciences, Anglia Ruskin University East Road Cambridge CB1 1PT UK
| | - Valentina Artusa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| | - Grisha Pirianov
- School of Life Sciences, Anglia Ruskin University East Road Cambridge CB1 1PT UK
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Piazza della Scienza, 2 20154 Milano (MI) Italy
| |
Collapse
|
10
|
Chan FHM, Yeap HW, Liu Z, Rosli SN, Low KE, Bonne I, Wu Y, Chong SZ, Chen KW. Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection. Cell Rep 2025; 44:115216. [PMID: 39823227 DOI: 10.1016/j.celrep.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/30/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD). However, whether and how macrophages respond to Yersinia infection in the absence of YopJ or caspase-8 activity remains unclear. Here, we demonstrate that loss of YopJ or its catalytic activity triggers non-canonical inflammasome activation in macrophages and that caspase-11 is required to restrict the bacterial burden in vivo. Under conditions of low caspase-8 activity, wild-type Y. pseudotuberculosis invades macrophages and accesses the cytosol, leading to non-canonical inflammasome activation. Thus, our study highlights the plasticity of death pathways to ensure GSDMD activation during Yersinia infection.
Collapse
Affiliation(s)
- Felicia Hui Min Chan
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Zonghan Liu
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Isabelle Bonne
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Yixuan Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Shu Zhen Chong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| |
Collapse
|
11
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2025; 329:e13410. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Liu Y, Wang W, Liang B, Zou Z, Zhang A. NLRP3 inflammasome activation and disruption of IRS-1/PI3K/AKT signaling: Potential mechanisms of arsenic-induced pancreatic beta cells dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117504. [PMID: 39657381 DOI: 10.1016/j.ecoenv.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Environmental exposure to arsenic is associated with significant health risks, including diabetogenic effects linked to pancreatic dysfunction. The NOD-like receptor protein 3 (NLRP3) inflammasome has been implicated in various metabolic abnormalities; however, its specific role in arsenic-induced pancreatic dysfunction remains insufficiently understood. This study aimed to elucidate the involvement and underlying mechanisms of the NLRP3 inflammasome in arsenic-induced pancreatic beta cells dysfunction through in vivo and in vitro models. In rat models, arsenic exposure was found to activate the NLRP3 inflammasome, as evidenced by pathomorphological changes and the expression of inflammasome activation markers. These pathological changes were accompanied by disruptions in the insulin signaling pathway, characterized by increased phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser616, reduced expression of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT) at Ser473, and significant decreases in downstream targets, including the nuclear translocation of PDX-1, membrane translocation of glucose transporter 2 (GLUT2), and glucokinase (GCK) expression. In vitro, NaAsO2-treated INS-1 cells exhibited a dose-dependent reduction in glucose-stimulated insulin secretion. Furthermore, arsenic exposure in these cells activated the NLRP3 inflammasome, suppressed the IRS-1/PI3K/AKT signaling pathway, and downregulated insulin secretion regulatory molecules (PDX-1, GLUT2, and GCK). Notably, these arsenic-induced effects were reversed by MCC950, an NLRP3 inflammasome inhibitor, and Extendin-4, an agonist of the IRS-1/PI3K/AKT signaling pathway. Collectively, these findings demonstrate that NLRP3 inflammasome activation disrupts the IRS-1/PI3K/AKT signaling pathway, contributing to arsenic-induced pancreatic beta cells dysfunction in rats.
Collapse
Affiliation(s)
- Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
13
|
Zheng Y, Wu Z, Wei X, Zhang L, Hu Y, Zhou Z. 1,25(OH)2D3 promotes insulin secretion through the classical pyroptosis pathway in vitro and vivo. Biochem Biophys Res Commun 2025; 742:151058. [PMID: 39642712 DOI: 10.1016/j.bbrc.2024.151058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Diabetes is a chronic metabolic disorder characterized by persistently elevated levels of blood glucose. Research has demonstrated a close relationship between inflammation and the development of diabetes. Vitamin D has been shown to be significantly associated with type 2 diabetes; however, the mechanisms by which it regulates inflammation during the onset of the disease remain incompletely understood. In this study, we investigated the effect of pyroptosis on pancreatic β-cell function in diabetes and explored the role of 1,25(OH)2D3 in type 2 diabetes through the pyroptosis signaling pathway. METHODS In both in vivo and in vitro settings, we established a diabetes model combined with 1,25(OH)₂D₃ intervention to investigate its impact on insulin secretion levels, the release of inflammatory factors, and the expression levels of pyroptosis-related proteins. RESULTS In both in vivo and in vitro experiments, we have observed that 1,25(OH)₂D₃ exhibits anti-inflammatory properties by downregulating the expression levels of pyroptosis-related proteins. Furthermore, it provides protection against pancreatic β-cell damage caused by type 2 diabetes mellitus (T2DM) and enhances insulin secretion. Inhibition of gasdermin D (GSDMD) expression impedes the progression of cell pyroptosis, reduces the amplification of the inflammatory response, and protects pancreatic cells from injury. CONCLUSION We hypothesize that the induction of pancreatic cells through pyroptosis occurs via the classical pathway in T2DM, and propose that 1,25(OH)2D3 may have a beneficial effect on this process. Consequently, 1,25(OH)2D3 could potentially serve as an adjuvant to inhibit the pyroptosis of pancreatic β cells by targeting the classical signaling pathway, thereby reducing the inflammatory response and alleviating symptoms associated with diabetes.
Collapse
Affiliation(s)
- Yuxuan Zheng
- Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China
| | - Zhihao Wu
- Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China
| | - Xun Wei
- Center of Laboratory Animal, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Zhang
- Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China
| | - Yudie Hu
- Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China
| | - Zhengyu Zhou
- Laboratory Animal Center of Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Holley CL, Monteleone M, Fisch D, Libert AES, Ju RJ, Choi JH, Condon ND, Emming S, Crawford J, Lawrence GMEP, Coombs JR, Lefevre JG, Bajracharya R, Lahoud MH, Yap AS, Hamilton N, Stehbens SJ, Kagan JC, Ariotti N, Burgener SS, Schroder K. Pyroptotic cell corpses are crowned with F-actin-rich filopodia that engage CLEC9A signaling in incoming dendritic cells. Nat Immunol 2025; 26:42-52. [PMID: 39633178 PMCID: PMC11695261 DOI: 10.1038/s41590-024-02024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia. As a rich store of F-actin, pyroptotic filopodia are recognized by dendritic cells through the F-actin receptor, CLEC9A (DNGR1). We propose that cells assemble filopodia before cell rupture to serve as a posthumous mark for a cell that has died by gasdermin-induced pyroptosis, or MLKL-induced necroptosis, for recognition by dendritic cells. This study reveals the spectacular morphology of pyroptosis and identifies a mechanism by which inflammasomes induce pyroptotic cells to construct a de novo alarmin that activates dendritic cells via CLEC9A, which coordinates the transition from innate to adaptive immunity1,2.
Collapse
Affiliation(s)
- Caroline L Holley
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mercedes Monteleone
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | - Daniel Fisch
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre E S Libert
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Robert J Ju
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Joon H Choi
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas D Condon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jared R Coombs
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James G Lefevre
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Science, University of Queensland, Brisbane, Queensland, Australia
| | - Rinie Bajracharya
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Hamilton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Stehbens
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Coll RC, Schroder K. Inflammasome components as new therapeutic targets in inflammatory disease. Nat Rev Immunol 2025; 25:22-41. [PMID: 39251813 DOI: 10.1038/s41577-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Inflammation drives pathology in many human diseases for which there are no disease-modifying drugs. Inflammasomes are signalling platforms that can induce pathological inflammation and tissue damage, having potential as an exciting new class of drug targets. Small-molecule inhibitors of the NLRP3 inflammasome that are now in clinical trials have demonstrated proof of concept that inflammasomes are druggable, and so drug development programmes are now focusing on other key inflammasome molecules. In this Review, we describe the potential of inflammasome components as candidate drug targets and the novel inflammasome inhibitors that are being developed. We discuss how the signalling biology of inflammasomes offers mechanistic insights for therapeutic targeting. We also discuss the major scientific and technical challenges associated with drugging these molecules during preclinical development and clinical trials.
Collapse
Affiliation(s)
- Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
16
|
Orehek S, Ramuta TŽ, Lainšček D, Malenšek Š, Šala M, Benčina M, Jerala R, Hafner-Bratkovič I. Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors. Nat Commun 2024; 15:10801. [PMID: 39737979 PMCID: PMC11686184 DOI: 10.1038/s41467-024-55083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers. We demonstrate that the electrogenic transfer of ICD effector-encoding plasmids into mouse melanoma tumors when combined with intratumoral expression of cytokines IL-1β, IL-12, or IL-18, enhanced anti-tumor immune responses. Careful selection of immunostimulatory molecules is, however, imperative as a combination of IL-1β and IL-18 antagonized the protective effect of pyroptosis by IFNγ-mediated upregulation of several immunosuppressive pathways. Additionally, we show that the intratumoral introduction of armed pyroptosis provides protection against distant tumors and proves effective across various tumor types without inducing systemic inflammation. Deconstructed inflammasomes thus serve as a powerful, tunable, and tumor-agnostic strategy to enhance antitumor response, even against the most resilient types of tumors.
Collapse
Affiliation(s)
- Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Mei C, Liu Y, Liu Z, Zhi Y, Jiang Z, Lyu X, Wang H. Dysregulated Signaling Pathways in Canine Mammary Tumor and Human Triple Negative Breast Cancer: Advances and Potential Therapeutic Targets. Int J Mol Sci 2024; 26:145. [PMID: 39796003 PMCID: PMC11720488 DOI: 10.3390/ijms26010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In 2022, human breast cancer (HBC) and canine mammary tumors (CMTs) remained the most prevalent malignant tumors worldwide, with high recurrence and lethality rates, posing a significant threat to human and dog health. The development of breast cancer involves multiple signaling pathways, highlighting the need for effective inhibitory drugs that target key proteins in these pathways. This article reviews the dysregulation of the EGFR, PI3K/AKT/mTOR, Hippo, pyroptosis, and PD-1/PD-L1 signaling pathways in HBC and CMT, as well as the corresponding drugs used to inhibit tumor growth, with the aim of providing theoretical support for the development of more efficient drugs.
Collapse
Affiliation(s)
- Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhaoling Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Xueze Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| |
Collapse
|
18
|
Rizzo GP, Sanches RC, Chavero C, Bianchi DS, Apuzzo E, Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Keitelman IA, Trevani AS, Oliveira SC, Azzaroni O, Smaldini PL, Docena GH. Poly(allylamine)/tripolyphosphate nanocomplex coacervate as a NLRP3-dependent systemic adjuvant for vaccine development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601578. [PMID: 39005275 PMCID: PMC11244956 DOI: 10.1101/2024.07.01.601578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nanotechnology plays a crucial role in vaccine development. It allows the design of functional nanoparticles (NPs) that can act both as antigen carriers and as adjuvants to enhance the immune response. The present study aims to evaluate complex coacervate-like NPs composed of poly(allylamine hydrochloride) (PAH) and tripolyphosphate (TPP) as a safe vehicle and adjuvant for systemic vaccines. We investigated the activation of different antigen-presenting cells (APCs) with NPs and their adjuvanticity in Balbc/c and different KO mice that were intraperitoneally immunized with NP-OVA. We found that NPs increased the expression of CD86 and MHCII and promoted the production and secretion of interleukin-1β (IL-1β) and IL-18 through the inflammasome NLRP3 when macrophages and dendritic cells were co-incubated with LPS and NPs. We evidenced an unconventional IL-1β release through the autophagosome pathway. The inhibition of autophagy with 3-methyladenine reduced the LPS/NPs-induced IL-1β secretion. Additionally, our findings showed that the systemic administration of mice with NP-OVA triggered a significant induction of serum OVA-specific IgG and IgG2a, an increased secretion of IFN-γ by spleen cells, and high frequencies of LT CD4 + IFN-γ + and LT CD8 + IFN-γ + . Our findings show that NPs promoted the inflammasome activation of innate cells with Th1-dependent adjuvant properties, making them valuable for formulating novel preventive or therapeutic vaccines for infectious and non-infectious diseases.
Collapse
|
19
|
Dorfleutner A, Stehlik C, Jefferies CA. Mx1-ing it up-Mitochondrial relay for interferon-dependent, unconventional IL-1β release in SLE monocytes. Immunity 2024; 57:2483-2486. [PMID: 39536711 PMCID: PMC11965885 DOI: 10.1016/j.immuni.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The role of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) is well documented, but the role of interleukin (IL)-1β remains elusive. In this issue of Immunity, Caielli et al. identified an SLE monocyte population coproducing IL-1β and IFN-I and described how mitochondrial nucleic-acid-containing RBCs engage cGAS/STING, RIG-I, MDA5, and NLRP3 for unconventional IL-1β release.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Department of Academic Pathology and Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christian Stehlik
- Department of Academic Pathology, Department of Biomedical Sciences and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Kao Autoimmunity Institute and Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Caielli S, Balasubramanian P, Rodriguez-Alcazar J, Balaji U, Robinson L, Wan Z, Baisch J, Smitherman C, Walters L, Sparagana P, Nehar-Belaid D, Marches R, Nassi L, Stewart K, Fuller J, Banchereau JF, Gu J, Wright T, Pascual V. Type I IFN drives unconventional IL-1β secretion in lupus monocytes. Immunity 2024; 57:2497-2513.e12. [PMID: 39378884 PMCID: PMC11563874 DOI: 10.1016/j.immuni.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Opsonization of red blood cells that retain mitochondria (Mito+ RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1β (mIL-1β) upon Mito+ RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors' (RLRs) sensing of Mito+ RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1β (IL-1β) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito+ RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1β secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1β into a trans-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1β and expanded in SLE patients with active disease.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Preetha Balasubramanian
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Juan Rodriguez-Alcazar
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Uthra Balaji
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Robinson
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Zurong Wan
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Cynthia Smitherman
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lorien Nassi
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Katie Stewart
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Julie Fuller
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | | | - Jinghua Gu
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Tracey Wright
- Scottish Rite Hospital for Children, Dallas, TX, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Giuliani KTK, Adams BC, Healy HG, Kassianos AJ. Regulated cell death in chronic kidney disease: current evidence and future clinical perspectives. Front Cell Dev Biol 2024; 12:1497460. [PMID: 39544363 PMCID: PMC11560912 DOI: 10.3389/fcell.2024.1497460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of kidney function/structure over a period of at least 3 months. It is characterised histologically by the triad of cell loss, inflammation and fibrosis. This literature review focuses on the forms of cell death that trigger downstream inflammation and fibrosis, collectively called regulated cell death (RCD) pathways. Discrete forms of RCD have emerged as central mediators of CKD pathology. In particular, pathways of regulated necrosis - including mitochondrial permeability transition pore (mPTP)-mediated necrosis, necroptosis, ferroptosis and pyroptosis - have been shown to mediate kidney pathology directly or through the release of danger signals that trigger a pro-inflammatory response, further amplifying tissue injury in a cellular process called necroinflammation. Despite accumulating evidence in pre-clinical models, no clinical studies have yet targeted these RCD modes in human CKD. The review summarizes recent advances in our understanding of RCD pathways in CKD, looks at inter-relations between the pathways (with the emphasis on propagation of death signals) and the evidence for therapeutic targeting of molecules in the RCD pathways to prevent or treat CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Benjamin C. Adams
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Helen G. Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Liu L, Zhang L, Hao X, Wang Y, Zhang X, Ge L, Wang P, Tian B, Zhang M. Coronavirus envelope protein activates TMED10-mediated unconventional secretion of inflammatory factors. Nat Commun 2024; 15:8708. [PMID: 39379362 PMCID: PMC11461611 DOI: 10.1038/s41467-024-52818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
The precise cellular mechanisms underlying heightened proinflammatory cytokine production during coronavirus infection remain incompletely understood. Here we identify the envelope (E) protein in severe coronaviruses (SARS-CoV-2, SARS, or MERS) as a potent inducer of interleukin-1 release, intensifying lung inflammation through the activation of TMED10-mediated unconventional protein secretion (UcPS). In contrast, the E protein of mild coronaviruses (229E, HKU1, or OC43) demonstrates a less pronounced effect. The E protein of severe coronaviruses contains an SS/DS motif, which is not present in milder strains and facilitates interaction with TMED10. This interaction enhances TMED10-oligomerization, facilitating UcPS cargo translocation into the ER-Golgi intermediate compartment (ERGIC)-a pivotal step in interleukin-1 UcPS. Progesterone analogues were identified as compounds inhibiting E-enhanced release of proinflammatory factors and lung inflammation in a Mouse Hepatitis Virus (MHV) infection model. These findings elucidate a molecular mechanism driving coronavirus-induced hyperinflammation, proposing the E-TMED10 interaction as a potential therapeutic target to counteract the adverse effects of coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Lijingyao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyan Hao
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Dino P, Giuffrè MR, Buscetta M, Di Vincenzo S, La Mensa A, Cristaldi M, Bucchieri F, Lo Iacono G, Bertani A, Pace E, Cipollina C. Release of IL-1β and IL-18 in human primary bronchial epithelial cells exposed to cigarette smoke is independent of NLRP3. Eur J Immunol 2024; 54:e2451053. [PMID: 39072707 DOI: 10.1002/eji.202451053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1β and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1β, IL-18, and IL-8), NLRP3, pro-IL-1β/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1β expression and induced activation of caspase-1 and release of IL-1β and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.
Collapse
Affiliation(s)
- Paola Dino
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Ospedale Civile di Venezia SS. Giovanni e Paolo, Venezia, Italy
| | | | | | | | - Agnese La Mensa
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | | | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | - Chiara Cipollina
- Ri.MED Foundation, Palermo, Italy
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
24
|
Xiang X, Zhang J, Yue Y. Pyroptosis: A major trigger of excessive immune response in the gingiva. Oral Dis 2024; 30:4152-4160. [PMID: 38852159 DOI: 10.1111/odi.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES The gingival mucosal barrier, an important oral cavity barrier, plays a significant role in preventing pathogenic microorganism invasion and maintaining periodontal tissue health. Pathogenic microorganism invasion of the gingival mucosa produces a large number of cytokines. Among them, pyroptosis is an important player in exacerbating immune-inflammatory responses, leading to tissue destruction. However, the mechanism of pyroptosis and the immune response it triggers have not been fully elucidated. We provide an overview of recent advances in understanding gingival physical barrier pyroptosis and inflammation-induced hyperimmunity. METHODS PubMed, Web of Science databases were searched for articles, reviews, and clinical studies published until March 2024. RESULTS We summarised the importance of the gingival barrier in terms of the functions of different cells, described the progress in research on gingival epithelial cell and gingival fibroblast pyroptosis and the immune-inflammatory response it induces, and discussed the relationship between pyroptosis and systemic diseases, association of multiple cell death systems. Finally, we propose future directions for pyroptosis research. CONCLUSIONS Pyroptosis often triggers a range of inflammatory immune responses that lead to associated diseases. Therefore, further study of the molecular mechanisms of pyroptosis and the immune responses is warranted.
Collapse
Affiliation(s)
- Xueyu Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Yue
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Meade JJ, Stuart S, Neiman-Zenevich J, Krustev C, Girardin SE, Mogridge J. Activation of the NLRP1B inflammasome by caspase-8. Commun Biol 2024; 7:1164. [PMID: 39289441 PMCID: PMC11408587 DOI: 10.1038/s42003-024-06882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Cleavage of the innate immune receptor NLRP1B by various microbial proteases causes the proteasomal degradation of its N-terminal fragment and the subsequent release of a C-terminal fragment that forms an inflammasome. We reported previously that metabolic stress caused by intracellular bacteria triggers NLRP1B activation, but the mechanism by which this occurs was not elucidated. Here we demonstrate that TLR4 signaling in metabolically stressed macrophages promotes the formation of a TRIF/RIPK1/caspase-8 complex. Caspase-8 activity, induced downstream of this TLR4 pathway or through a distinct TNF receptor pathway, causes cleavage and activation of NLRP1B, which facilitates the maturation of both pro-caspase-1 and pro-caspase-8. Thus, our findings indicate that caspase-8 and NLRP1B generate a positive feedback loop that amplifies cell death processes and promotes a pro-inflammatory response through caspase-1. The ability of NLRP1B to detect caspase-8 activity suggests that this pattern recognition receptor may play a role in the defense against a variety of pathogens that induce apoptosis.
Collapse
Affiliation(s)
- Justin J Meade
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada
| | - Jana Neiman-Zenevich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada
| | - Christian Krustev
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeremy Mogridge
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, On, M5S 1A8, Canada.
| |
Collapse
|
26
|
Song Y, Liu P, Qi X, Shi XL, Wang YS, Guo D, Luo H, Du ZJ, Wang MY. Helicobacter pylori infection delays neutrophil apoptosis and exacerbates inflammatory response. Future Microbiol 2024; 19:1145-1156. [PMID: 39056165 PMCID: PMC11529197 DOI: 10.1080/17460913.2024.2360798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: Understanding molecular mechanisms of Helicobacter pylori (H. pylori)-induced inflammation is important for developing new therapeutic strategies for gastrointestinal diseases.Materials & methods: We designed an H. pylori-neutrophil infection model and explored the effects of H. pylori infection on neutrophils.Results: H. pylori infected neutrophils showed a low level of apoptosis. H. pylori stimulation activated the NACHT/LRR/PYD domain-containing protein 3 (NLRP3)-gasdermin-D (GSDMD) pathway for interleukin (IL)-1β secretion. However, IL-1β secretion was not completely dependent on GSDMD, as inhibition of autophagy significantly reduced IL-1β release, and autophagy-related molecules were significantly upregulated in H. pylori-infected neutrophils.Conclusion: Therefore, H. pylori infection inhibits neutrophils apoptosis and induces IL-1β secretion through autophagy. These findings may be utilized to formulate therapeutic strategies against H. pylori mediated chronic gastritis.
Collapse
Affiliation(s)
- Yu Song
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Xi Qi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Xiao-Lin Shi
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Yu-Shan Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hong Luo
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ming-Yi Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Department of Central Lab, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
27
|
Leung J, Chang M, Moore RE, Dagvadorj J, Sutterwala FS, Cassel SL. Gasdermin D and Gasdermin E Are Dispensable for Silica-Mediated IL-1β Secretion from Mouse Macrophages. Immunohorizons 2024; 8:679-687. [PMID: 39264735 PMCID: PMC11447662 DOI: 10.4049/immunohorizons.2400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024] Open
Abstract
Silica crystals activate the NLRP3 inflammasome in macrophages, resulting in the caspase-1-dependent secretion of the proinflammatory cytokine IL-1β. Caspase-1-mediated cleavage of gasdermin D (GSDMD) triggers the formation of GSDMD pores, which drive pyroptotic cell death and facilitate the rapid release of IL-1β. However, the role of GSDMD in silica-induced lung injury is unclear. In this study, we show that although silica-induced lung injury is dependent on the inflammasome adaptor ASC and IL-1R1 signaling, GSDMD is dispensable for acute lung injury. Although the early rapid secretion of IL-1β in response to ATP and nigericin was GSDMD dependent, GSDMD was not required for IL-1β release at later time points. Similarly, secretion of IL-1β from macrophages in response to silica and alum proceeded in a GSDMD-independent manner. We further found that gasdermin E did not contribute to macrophage IL-1β secretion in the absence of GSDMD in vitro and was also not necessary for silica-induced acute lung injury in vivo. These findings demonstrate that GSDMD and gasdermin E are dispensable for IL-1β secretion in response to silica in vitro and in silica-induced acute lung injury in vivo.
Collapse
Affiliation(s)
- Jennifer Leung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Chang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Richard E. Moore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
28
|
Chen KW, Broz P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat Cell Biol 2024; 26:1394-1406. [PMID: 39187689 DOI: 10.1038/s41556-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
30
|
Wellens R, Tapia VS, Seoane PI, Bennett H, Adamson A, Coutts G, Rivers-Auty J, Lowe M, Green JP, Lopez-Castejon G, Brough D, Hoyle C. Proximity labelling of pro-interleukin-1α reveals evolutionary conserved nuclear interactions. Nat Commun 2024; 15:6750. [PMID: 39117622 PMCID: PMC11310415 DOI: 10.1038/s41467-024-50901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Interleukin-1α is a suggested dual-function cytokine that diverged from interleukin-1β in mammals potentially by acquiring additional biological roles that relate to highly conserved regions in the pro-domain of interleukin-1α, including a nuclear localisation sequence and histone acetyltransferase-binding domains. Why evolution modified pro-interleukin-1α's subcellular location and protein interactome, and how this shaped interleukin-1α's intracellular role, is unknown. Here we show that TurboID proximity labelling with pro-interleukin-1α suggests a nuclear role for pro-interleukin-1α that involves interaction with histone acetyltransferases, including EP300. We also identify and validate inactivating mutations in the pro-interleukin-1α nuclear localisation sequence of multiple mammalian species, including toothed whales, castorimorpha and marsupials. However, histone acetyltransferase-binding domains are conserved in those species that have lost pro-interleukin-1α nuclear localisation. Together, these data suggest that histone acetyltransferase binding and nuclear localisation occurred together, and that while some species lost the nuclear localisation sequence in their pro-interleukin-1α, histone acetyltransferase binding ability was maintained. The nuclear localisation sequence was lost from several distinct species at different evolutionary times, suggesting convergent evolution, and that the loss of the nuclear localisation sequence confers some important biological outcome.
Collapse
Affiliation(s)
- Rose Wellens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Victor S Tapia
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Graham Coutts
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Gloria Lopez-Castejon
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
31
|
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
32
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
33
|
Ma X, Lin Y, Zhang L, Miao S, Zhang H, Li H, Fu X, Han L, Li P. GSDMD in regulated cell death: A novel therapeutic target for sepsis. Int Immunopharmacol 2024; 135:112321. [PMID: 38795599 DOI: 10.1016/j.intimp.2024.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by an abnormal host response to infection. Regulated cell death is essential for maintaining tissue homeostasis and eliminating damaged, infected, or aging cells in multicellular organisms. Gasdermin D, as a member of the gasdermin family, plays a crucial role in the formation of cytoplasmic membrane pores. Research has found that GSDMD plays important roles in various forms of regulated cell death such as pyroptosis, NETosis, and necroptosis. Therefore, through mediating regulated cell death, GSDMD regulates different stages of disease pathophysiology. This article mainly summarizes the concept of GSDMD, its role in regulated cell death, its involvement in organ damage associated with sepsis-related injuries mediated by regulated cell death via GSDMD activation and introduces potential drugs targeting GSDMD that may provide more effective treatment options for sepsis patients through drug modification.
Collapse
Affiliation(s)
- Xiangli Ma
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| | - Yujie Lin
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Shaoyi Miao
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Haidan Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Hongyao Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
34
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Abuzaid O, Idris AB, Yılmaz S, Idris EB, Idris LB, Hassan MA. Prediction of the most deleterious non-synonymous SNPs in the human IL1B gene: evidence from bioinformatics analyses. BMC Genom Data 2024; 25:56. [PMID: 38858637 PMCID: PMC11163699 DOI: 10.1186/s12863-024-01233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.
Collapse
Affiliation(s)
- Ola Abuzaid
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
- Erciyes Teknopark, Promoseed Biotechnology A.Ş, Kayseri, Turkey
| | - Einass Babikir Idris
- Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | | | - Mohamed A Hassan
- Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan
- Sanimed International Lab and Management L.L.C, Abu Dhabi, UAE
| |
Collapse
|
36
|
Ma X, Yang Y, Li H, Luo Z, Wang Q, Yao X, Tang F, Huang Y, Ling Y, Ma W. Periplogenin inhibits pyroptosis of fibroblastic synoviocytes in rheumatoid arthritis through the NLRP3/Caspase-1/GSDMD signaling pathway. Int Immunopharmacol 2024; 133:112041. [PMID: 38636373 DOI: 10.1016/j.intimp.2024.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Although the pathogenesis of rheumatoid arthritis (RA) remains unclear, an increasing number of studies have confirmed that pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) is an important factor affecting the progression of RA. Periplogenin (PPN) is a natural cardiac glycoside; reportedly, it exerts anti-inflammatory and analgesic effects in diseases by inhibiting cell growth and migration. This study aimed to determine the effect of PPN on the growth, migration, and invasion of RA-FLS and the potential mechanism of pyroptosis regulation. We discovered that PPN could inhibit the migration and invasion abilities of RA-FLS and block their growth cycle, down-regulate the secretion and activation of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18, and reduce the number of pyroptosis. In summary, PPN inhibited pyroptosis, reduced the release of inflammatory factors, and improved RA-FLS inflammation by regulating the NLRP3/Caspase-1/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Xi Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - YuZheng Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Hao Li
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - ZeHong Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - QiuYi Wang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - XueMing Yao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yi Ling
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - WuKai Ma
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
37
|
Holley CL, Emming S, Monteleone MM, Mellacheruvu M, Kenney KM, Lawrence GMEP, Coombs JR, Burgener SS, Schroder K. The septin modifier, forchlorfenuron, activates NLRP3 via a potassium-independent mitochondrial axis. Cell Chem Biol 2024; 31:962-972.e4. [PMID: 38759620 DOI: 10.1016/j.chembiol.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.
Collapse
Affiliation(s)
- Caroline L Holley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Stefan Emming
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mercedes M Monteleone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manasa Mellacheruvu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kirsten M Kenney
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jared R Coombs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sabrina S Burgener
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
38
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
39
|
Bibo-Verdugo B, Salvesen G. Evolution of Caspases and the Invention of Pyroptosis. Int J Mol Sci 2024; 25:5270. [PMID: 38791309 PMCID: PMC11121540 DOI: 10.3390/ijms25105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur 4720, La Paz 23080, Mexico;
| | - Guy Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Kappelhoff S, Margheritis EG, Cosentino K. New insights into Gasdermin D pore formation. Biochem Soc Trans 2024; 52:681-692. [PMID: 38497302 DOI: 10.1042/bst20230549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Gasdermin D (GSDMD) is a pore-forming protein that perforates the plasma membrane (PM) during pyroptosis, a pro-inflammatory form of cell death, to induce the unconventional secretion of inflammatory cytokines and, ultimately, cell lysis. GSDMD is activated by protease-mediated cleavage of its active N-terminal domain from the autoinhibitory C-terminal domain. Inflammatory caspase-1, -4/5 are the main activators of GSDMD via either the canonical or non-canonical pathways of inflammasome activation, but under certain stimuli, caspase-8 and other proteases can also activate GSDMD. Activated GSDMD can oligomerize and assemble into various nanostructures of different sizes and shapes that perforate cellular membranes, suggesting plasticity in pore formation. Although the exact mechanism of pore formation has not yet been deciphered, cysteine residues are emerging as crucial modulators of the oligomerization process. GSDMD pores and thus the outcome of pyroptosis can be modulated by various regulatory mechanisms. These include availability of activated GSDMD at the PM, control of the number of GSDMD pores by PM repair mechanisms, modulation of the lipid environment and post-translational modifications. Here, we review the latest findings on the mechanisms that induce GSDMD to form membrane pores and how they can be tightly regulated for cell content release and cell fate modulation.
Collapse
Affiliation(s)
- Shirin Kappelhoff
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Eleonora G Margheritis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Katia Cosentino
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
41
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
42
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
43
|
Wallace HL, Russell RS. Inflammatory Consequences: Hepatitis C Virus-Induced Inflammasome Activation and Pyroptosis. Viral Immunol 2024; 37:126-138. [PMID: 38593460 DOI: 10.1089/vim.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Hepatitis C virus (HCV), despite the availability of effective direct-acting antivirals (DAAs) that clear the virus from >95% of individuals treated, continues to cause significant health care burden due to disease progression that can lead to fibrosis, cirrhosis, and/or hepatocellular carcinoma. The fact that some people who are treated with DAAs still go on to develop worsening liver disease warrants further study into the immunopathogenesis of HCV. Many viral infections, including HCV, have been associated with activation of the inflammasome/pyroptosis pathway. This inflammatory cell death pathway ultimately results in cell lysis and release of inflammatory cytokines, IL-18 and IL-1β. This review will report on studies that investigated HCV and inflammasome activation/pyroptosis. This includes clinical in vivo data showing elevated pyroptosis-associated cytokines in the blood of individuals living with HCV, studies of genetic associations of pyroptosis-related genes and development of liver disease, and in vitro studies aimed at understanding the mechanism of pyroptosis induced by HCV. Finally, we discuss major gaps in understanding and outstanding questions that remain in the field of HCV-induced pyroptosis.
Collapse
Affiliation(s)
- Hannah L Wallace
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| |
Collapse
|
44
|
Ryu U, Chien PN, Jang S, Trinh XT, Lee HS, Van Anh LT, Zhang XR, Giang NN, Van Long N, Nam SY, Heo CY, Choi KM. Zirconium-Based Metal-Organic Framework Capable of Binding Proinflammatory Mediators in Hydrogel Form Promotes Wound Healing Process through a Multiscale Adsorption Mechanism. Adv Healthc Mater 2024; 13:e2301679. [PMID: 37931928 DOI: 10.1002/adhm.202301679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The regulation of proinflammatory mediators has been explored to promote natural healing without abnormal inflammation or autoimmune response induced by their overproduction. However, most efforts to control these mediators have relied on pharmacological substances that are directly engaged in biological cycles. It is believed that functional porous materials removing target mediators provide a new way to promote the healing process using their adsorption mechanisms. In this study, the Zr-based metal-organic frameworks (MOF)-808 (Zr6 O4 (OH)4 (BTC)2 (HCOO)6 ) crystals are found to be effective at removing proinflammatory mediators, such as nitric oxide (NO), cytokines, and reactive oxygen species (ROS) in vitro and in vivo, because of their porous structure and surface affinity. The MOF-808 crystals are applied to an in vivo skin wound model as a hydrogel dispersion. Hydrogel containing 0.2 wt% MOF-808 crystals shows significant improvement in terms of wound healing efficacy and quality over the corresponding control. It is also proven that the mode of action is to remove the proinflammatory mediators in vivo. Moreover, the application of MOF-808-containing hydrogels promotes cell activation, proliferation and inhibits chronic inflammation, leading to increased wound healing quality. These findings suggest that Zr-based MOFs may be a promising drug-free solution for skin problems related to proinflammatory mediators.
Collapse
Affiliation(s)
- UnJin Ryu
- Industry Collaboration Center, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Suin Jang
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyeon Shin Lee
- R&D Center, LabInCube Co. Ltd., Cheongju, 28116, Republic of Korea
| | - Le Thi Van Anh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Nguyen Van Long
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering & Institute of Advanced Materials & Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
45
|
Teske KA, Corona C, Wilkinson J, Mamott D, Good DA, Zambrano D, Lazar DF, Cali JJ, Robers MB, O'Brien MA. Interrogating direct NLRP3 engagement and functional inflammasome inhibition using cellular assays. Cell Chem Biol 2024; 31:349-360.e6. [PMID: 37858335 DOI: 10.1016/j.chembiol.2023.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
As a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1β and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway. However, for a subset of these ligands the functional link between live-cell target engagement and pathway inhibition has yet to be fully established. Herein we present a cohort of mechanistic assays to both query direct NLRP3 engagement in cells, and functionally interrogate different nodes of NLRP3 pathway activity. This system enabled the stratification of potency for five confirmed NLRP3 inhibitors, and identification of two reported NLRP3 inhibitors that failed to demonstrate direct pathway antagonism.
Collapse
Affiliation(s)
- Kelly A Teske
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Cesear Corona
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | | | - Daniel Mamott
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - David A Good
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Delia Zambrano
- Promega Corporation, Research & Development, San Luis Obispo, CA 93401, USA
| | - Dan F Lazar
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - James J Cali
- Promega Corporation, Research & Development, Madison, WI 53711, USA
| | - Matthew B Robers
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| | - Martha A O'Brien
- Promega Corporation, Research & Development, Madison, WI 53711, USA.
| |
Collapse
|
46
|
Tu H, Ren H, Jiang J, Shao C, Shi Y, Li P. Dying to Defend: Neutrophil Death Pathways and their Implications in Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306457. [PMID: 38044275 PMCID: PMC10885667 DOI: 10.1002/advs.202306457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Neutrophils, accounting for ≈70% of human peripheral leukocytes, are key cells countering bacterial and fungal infections. Neutrophil homeostasis involves a balance between cell maturation, migration, aging, and eventual death. Neutrophils undergo different death pathways depending on their interactions with microbes and external environmental cues. Neutrophil death has significant physiological implications and leads to distinct immunological outcomes. This review discusses the multifarious neutrophil death pathways, including apoptosis, NETosis, pyroptosis, necroptosis, and ferroptosis, and outlines their effects on immune responses and disease progression. Understanding the multifaceted aspects of neutrophil death, the intersections among signaling pathways and ramifications of immunity will help facilitate the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Haiyue Tu
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Haoyu Ren
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Junjie Jiang
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| | - Peishan Li
- The First Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSuzhou Medical College of Soochow UniversitySuzhouJiangsu215123China
| |
Collapse
|
47
|
Lolicato F, Steringer JP, Saleppico R, Beyer D, Fernandez-Sobaberas J, Unger S, Klein S, Riegerová P, Wegehingel S, Müller HM, Schmitt XJ, Kaptan S, Freund C, Hof M, Šachl R, Chlanda P, Vattulainen I, Nickel W. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024; 12:RP88579. [PMID: 38252473 PMCID: PMC10945597 DOI: 10.7554/elife.88579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergGermany
- Department of Physics, University of HelsinkiHelsinkiFinland
| | | | | | - Daniel Beyer
- Heidelberg University Biochemistry CenterHeidelbergGermany
| | | | | | - Steffen Klein
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | - Petra Riegerová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | | | | | - Xiao J Schmitt
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Shreyas Kaptan
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases-Virology, Heidelberg University HospitalHeidelbergGermany
| | | | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergGermany
| |
Collapse
|
48
|
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and have become significant players in immune system functioning, primarily by facilitating cell-to-cell communication. Immune cells like neutrophils and dendritic cells release EVs containing bioactive molecules that modulate chemotaxis, activate immune cells, and induce inflammation. EVs also contribute to antigen presentation, lymphocyte activation, and immune tolerance. Moreover, EVs play pivotal roles in antimicrobial host defense. They deliver microbial antigens to antigen-presenting cells (APCs), triggering immune responses, or act as decoys to neutralize virulence factors and toxins. This review discusses host and microbial EVs' multifaceted roles in innate and adaptive immunity, highlighting their involvement in immune cell development, antigen presentation, and antimicrobial responses.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Skylar S. Wright
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Vijay A. Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
49
|
Liu J, Zhang S, Jing Y, Zou W. Neutrophil extracellular traps in intracerebral hemorrhage: implications for pathogenesis and therapeutic targets. Metab Brain Dis 2023; 38:2505-2520. [PMID: 37486436 DOI: 10.1007/s11011-023-01268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Intracerebral hemorrhage is a common neurological disease, and its pathological mechanism is complex. As the first recruited leukocyte subtype after intracerebral hemorrhage, neutrophils play an important role in tissue damage. In the past, it was considered that neutrophils performed their functions through phagocytosis, chemotaxis, and degranulation. In recent years, studies have found that neutrophils also have the function of secreting extracellular traps. Extracellular traps are fibrous structure composed of chromatin and granular proteins, which plays an important role in innate immunity. Studies have shown a large number of neutrophil extracellular traps in hematoma samples, plasma samples, and drainage samples after intracerebral hemorrhage. In this paper, we summarized the related mechanisms of neutrophil external traps and injury after intracerebral hemorrhage. Neutrophil extracellular traps are involved in the process of brain injury after intracerebral hemorrhage. The application of related inhibitors to inhibit the formation of neutrophil external traps or promote their dissolution can effectively alleviate the pathological damage caused by intracerebral hemorrhage.
Collapse
Affiliation(s)
- Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
50
|
Pruenster M, Immler R, Roth J, Kuchler T, Bromberger T, Napoli M, Nussbaumer K, Rohwedder I, Wackerbarth LM, Piantoni C, Hennis K, Fink D, Kallabis S, Schroll T, Masgrau-Alsina S, Budke A, Liu W, Vestweber D, Wahl-Schott C, Roth J, Meissner F, Moser M, Vogl T, Hornung V, Broz P, Sperandio M. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat Immunol 2023; 24:2021-2031. [PMID: 37903858 PMCID: PMC10681899 DOI: 10.1038/s41590-023-01656-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Collapse
Affiliation(s)
- Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tim Kuchler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Nussbaumer
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chiara Piantoni
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Konstantin Hennis
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Fink
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agnes Budke
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wang Liu
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Münster, Münster, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|