1
|
Chiang YH, Emmrich S, Vannini N. Metabolic Alterations in HSCs during Aging and Leukemogenesis. Physiology (Bethesda) 2025; 40:0. [PMID: 40019828 DOI: 10.1152/physiol.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/15/2024] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
Aging is a multifaceted process associated with a functional decline in cellular function over time, affecting all lifeforms. During the aging process, metabolism, a fundamental hallmark of life (1), is profoundly altered. In the context of hematopoiesis, the proper function of hematopoietic stem cells, at the apex of the blood system, is tightly linked to their energy metabolism, which in turn shapes hematopoietic output. Here, we review the latest developments in our understanding of the metabolic states and changes in aged hematopoietic stem cells, molecular players and pathways involved in aged hematopoietic stem cell metabolism, the consequences of perturbed metabolism on clonal hematopoiesis and leukemogenesis, and pharmacologic/genetic strategies to reverse or rejuvenate altered metabolic phenotypes.
Collapse
Affiliation(s)
- Yi-Hsuan Chiang
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Stephan Emmrich
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
2
|
Li R, Guan L, Liu Y, Hu Z, Liu J, Li C, Min H. The roles of vitamin C in infectious diseases: A comprehensive review. Nutrition 2025; 134:112733. [PMID: 40154019 DOI: 10.1016/j.nut.2025.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Vitamin C is a versatile nutrient with essential antioxidant properties and roles in amino acid metabolism, collagen promotion, and hormone synthesis. It has long been regarded as benefitting infectious disease management, although its specific roles remain uncertain. The dominant view is that this efficacy not only stems from its redox regulation in the body but also from its profound impact on the immune system. This review provides a comprehensive overview of Vitamin C's effects on redox regulation and shows how the vitamin influences various immune cells and cell-intrinsic innate immunity signaling pathways, thereby updating and expanding our previous perspectives. Clinically, though some studies and case series have suggested potential benefits of Vitamin C in preventing and (or) treating respiratory tract infections and sepsis and septic shock, the evidence remains controversial. The current data is insufficient to support the routine clinical use of Vitamin C in managing these diseases and requires further rigorous evaluation to establish definitive efficacy and safety profiles. This review thoroughly examines current clinical research progress on Vitamin C, summarizes the primary controversies and their underlying causes, and proposes directions for future clinical research. Furthermore, preclinical evidence shows potential roles for Vitamin C in the supplementary treatment of the "Big Three" infectious diseases: acquired immunodeficiency syndrome (AIDS), tuberculosis, and malaria; however, systematic clinical studies in these areas are lacking. We examine related in vitro and animal studies, as well as clinical trials, and discuss potential roles for Vitamin C as a treatment and (or) adjuvant therapy.
Collapse
Affiliation(s)
- Runze Li
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Liangchao Guan
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yue Liu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Zongyi Hu
- Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Junyu Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Cheng Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Liu S, Xiao G, Liang W, Zhang S, Liang J, Pan T, Lin S, Liu X, Zhou Z, Zhang G. Vγ9Vδ2 T cells expanded with vitamin C combined with HMBPP in vitro inhibit intracellular Mycobacterium tuberculosis growth. Front Cell Infect Microbiol 2025; 15:1533277. [PMID: 40370406 PMCID: PMC12075132 DOI: 10.3389/fcimb.2025.1533277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/04/2025] [Indexed: 05/16/2025] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) presents a significant global health threat, and the existing treatments have notable limitations. Vγ9Vδ2 T cells activated by HMBPP can inhibit the growth of intracellular Mtb. Additionally, vitamin C (VC) promotes the differentiation and proliferation of related T cells. However, it remains uncertain whether VC can enhance the expansion of Vγ9Vδ2 T cells within PBMCs activated by HMBPP and rIL-2, and the underlying mechanism of the inhibitory effect of the expanded T cells on intracellular Mtb has not been elucidated. Methods Venous blood was collected from healthy individuals, and PBMCs were subsequently isolated. In vitro, Vγ9Vδ2 T cells were selectively expanded with HMBPP, rIL-2, and VC. Flow cytometry was utilized to analyze the purities and phenotypes of Vγ9Vδ2 T cells, while cell counts were performed to determine the total number of viable cells. Magnetic bead sorting was employed to purify Vγ9Vδ2 T cells. Mtb strains were cultured, and macrophage infection models derived from THP1 cells were established. Co-culture experiments were conducted with Mtb-infected macrophages and Vγ9Vδ2 T cells, and the number of intracellular bacteria was quantified through CFU counting. The levels of cytokines were measured using the CBA method and flow cytometry. Statistical analysis was carried out using GraphPad Prism and SPSS software. Results VC (70 μM) significantly enhances the expansion of Vγ9Vδ2 T cells within PBMCs during primary HMBPP activation in the presence of rIL-2, with higher induction rates and total cell proliferation. By day 14 of induction, Vγ9Vδ2 T cells expanded with HMBPP, VC, and rIL-2 exhibited the central memory (10-20%) and the effector memory phenotypes (75-90%). Furthermore, these expanded T cells effectively inhibited the growth of intracellular virulent Mtb strain (H37Rv) in a cell-contact-dependent manner. The inhibitory effect was associated with an up-regulated production of TNF-α and IFN-γ, and a down-regulated expression of IL-10 and IL-17A during Mtb infection. Conclusion This study demonstrates that VC enhances the proliferative expansion of Vγ9Vδ2 T cells in PBMCs primarily stimulated with HMBPP and rIL-2. The expanded Vγ9Vδ2 T cells are capable of effectively inhibiting the growth of virulent H37Rv strain, likely through the secretion of TNF-α and IFN-γ. These findings provide a novel direction for tuberculosis treatment research.
Collapse
Affiliation(s)
- Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
- Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wanxin Liang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Su Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Juan Liang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Teng Pan
- Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Shaoxiang Lin
- Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Xiuju Liu
- Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Zhenwen Zhou
- Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Shi H, Li J, Li F, Yu H, Zhang F, Wu T, Yang L, Li Y, Hu R, Chen M, SG N, Zhuang X, Feng S, Zhu L, Duan R. Vitamin C-Dependent Intergenerational Inheritance of Enhanced Endurance Performance Following Maternal Exercise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408912. [PMID: 39921869 PMCID: PMC11967756 DOI: 10.1002/advs.202408912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Declining levels of physical activity and fitness in children and youth are linked to negative health outcomes. This study investigates whether maternal exercise can enhance offspring's physical fitness. Our results demonstrate that maternal exercise improves offspring's endurance by changing muscle fiber composition and promoting mitochondrial biogenesis, with benefits lasting across generations. This improvement is associated with changes in DNA methylation, specifically the demethylation of the Slc23a2 gene, which codes for SVCT2, crucial for vitamin C (VC) transport, in F1 and F2 generations. Importantly, VC administration during pregnancy mimics the transgenerational benefits of exercise on offspring fitness, but these benefits are absent in genetic VC deficiency mice. VC supplementation increases TET2 expression in murine and human myogenic cells, regulating DNA methylation, promoting the development of oxidative fibers, and enhancing mitochondrial biogenesis. This study highlights the VC-TET2-SVCT2 pathway as a key mechanism for the transgenerational endurance benefits of maternal exercise, suggesting potential strategies to enhance maternal and child health.
Collapse
Affiliation(s)
- Haiwang Shi
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Jie Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Fan Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Haoyang Yu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Fulong Zhang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Tao Wu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Luodan Yang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Yuecheng Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Rui Hu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Mengjie Chen
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Nina SG
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Xuhong Zhuang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Shu Feng
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Ling Zhu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| | - Rui Duan
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhouGuangdong510006China
| |
Collapse
|
5
|
Vaughn N. Cytometry at the Intersection of Metabolism and Epigenetics in Lymphocyte Dynamics. Cytometry A 2025; 107:165-176. [PMID: 40052492 DOI: 10.1002/cyto.a.24919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Landmark studies at the turn of the century revealed metabolic reprogramming as a driving force for lymphocyte differentiation and function. In addition to metabolic changes, differentiating lymphocytes must remodel their epigenetic landscape to properly rewire their gene expression. Recent discoveries have shown that metabolic shifts can shape the fate of lymphocytes by altering their epigenetic state, bringing together these two areas of inquiry. The ongoing evolution of high-dimensional cytometry has enabled increasingly comprehensive analyses of metabolic and epigenetic landscapes in lymphocytes that transcend the technical limitations of the past. Here, we review recent insights into the interplay between metabolism and epigenetics in lymphocytes and how its dysregulation can lead to immunological dysfunction and disease. We also discuss the latest technical advances in cytometry that have enabled these discoveries and that we anticipate will advance future work in this area.
Collapse
Affiliation(s)
- Nicole Vaughn
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Yan X, Jiang C, Han Z, Huang D, Cheng L, Han W, Jiang L. Effects of ascorbic acid on myelination in offspring of advanced maternal age. Neuroscience 2025; 566:218-226. [PMID: 39571959 DOI: 10.1016/j.neuroscience.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Myelination is the process by which oligodendrocytes ensheathe axons to form myelin sheaths. Myelination is a crucial aspect of brain development and is closely associated with central nervous system abnormalities. However, previous studies have found that advanced maternal age might affect the myelination of offspring, potentially through the pathway of disrupting DNA methylation levels in the offspring's hippocampus. Current research has demonstrated that ascorbic acid can promote hydroxymethylation to reduce methylation levels in vivo. This study aims to verify the relationship between ascorbic acid and myelination, as well as the specific mechanism involved. Initially, oligodendrocyte differentiation was observed using immunofluorescence and Western blot. Myelination was assessed through Luxol Fast Blue staining, Glycine silver staining, immunofluorescence, and transmission electron microscopy. The demethylation level of oligodendrocyte progenitor cells was detected by immunofluorescence co-expression of OLIG2 and DNA hydroxylase ten-eleven translocation 1 (TET1), TET2, and TET3. Our study found that advanced maternal age could impair myelination in the hippocampus and corpus callosum of offspring. Ascorbic acid intervention may induce TET1 and TET2-mediated hydroxymethylation to ameliorate myelination disorders, promote myelination and maturation, and reverse the effects of advanced maternal age on offspring.
Collapse
Affiliation(s)
- Xinru Yan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Chunxue Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Ziyao Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Dishu Huang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China
| | - Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China.
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China.
| |
Collapse
|
7
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Paul A, Bansal S, Xie SZ, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate deficiency increases quiescence and self-renewal in hematopoietic stem cells and multipotent progenitors. Blood 2025; 145:114-126. [PMID: 39437548 PMCID: PMC11738029 DOI: 10.1182/blood.2024024769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development, partly by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet, whereas in mice, it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter from hematopoietic cells depleted ascorbate to undetectable levels in HSCs and multipotent hematopoietic progenitors (MPPs) without altering the plasma ascorbate levels. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potentials of MPPs, conferring the ability to reconstitute irradiated mice long term. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate deficiency confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel L Cassidy
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew W DeVilbiss
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elise C Jeffery
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bethany R Ottesen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amanda R Reyes
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Animesh Paul
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Muh
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas P Mathews
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brandon Chen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiyu Zhao
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
8
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Wang Y, Zhang S, Kang N, Dong L, Ni H, Liu S, Chong S, Ji Z, Wan Z, Chen X, Wang F, Lu Y, Hou B, Tong P, Qi H, Xu MM, Liu W. Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells. Immunity 2024; 57:2547-2564.e12. [PMID: 39476842 DOI: 10.1016/j.immuni.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Shaocun Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Lihui Dong
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichen Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Siankang Chong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengpeng Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, College of life Sciences, University of Chinese Academy of Sciences, Beijing, P.R.China
| | - Pei Tong
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Ghoneem WMA, Rahmy HAF, El-Tanany RRA. Effect of orange pulp with or without zeolite on productive performance, nitrogen utilization, and antioxidative status of growing rabbits. Trop Anim Health Prod 2024; 56:326. [PMID: 39361180 PMCID: PMC11449954 DOI: 10.1007/s11250-024-04157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
The current study was designed to investigate the effect of dried orange pulp inclusion (OP diet), natural zeolite addition (Z diet), or both (OPZ diet) compared to control (CON diet) on digestibility, growth performance, nitrogen utilization, blood biochemical, antioxidative status, and cecum microbiota of growing rabbits. Seventy-two V-line male rabbits (6 weeks old) were divided into 4 balanced experimental groups. Results showed that administration of dried orange pulp or zeolite especially the OPZ diet significantly improved nutrient digestibility and nutritive values. Rabbits fed the experimental diets (OP, Z, or OPZ) recorded significantly higher values of average daily gain, N-retention, and N-balance compared with those fed the CON diet. Data on blood biochemical, showed non-significant differences in globulin concentrations, and significant decreases in levels of cholesterol, LDL (low-density lipoproteins), triglycerides, and MDA (malondialdehyde) as an antioxidant biomarker with OP, Z, or OPZ diets. Moreover, the incorporation of orange pulp or zeolite in diets significantly decreased the cecal count of E. coli, with no significant difference in total bacterial count among the experimental groups. It could be concluded that a combination between dried orange pulp and natural zeolite in the diet can enhance the growth performance, antioxidant and health status of rabbits.
Collapse
|
12
|
Asefi N, Pakzad P, Khorasani A, Taghizadeh M, Amirkhani Z, Yazdi MH, Shahverdi AR, Mahdavi M. Ascorbic Acid and α-Tocopherol in the Inactivated SARS-CoV-2 Vaccine Formulation: Induction of the Th1 Pattern in Aged Mice. Viral Immunol 2024; 37:355-370. [PMID: 39212606 DOI: 10.1089/vim.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aging is physiologically associated with a decline in the function of the immune system and subsequent susceptibility to infections. Interferon-gamma (IFN-γ), a key element in the activation of cellular immunity, plays an important role in defense against virus infections. Decreased levels of IFN-γ in the elderly may explain their increased risk for viral infectious diseases such as COVID-19. There is accumulating evidence that ascorbic acid (vitamin C [VitC]) and α-tocopherol together help improve the function of the immune system in the elderly, control infections, and decrease the treatment duration. A SARS-CoV-2 strain was isolated from a patient and then cultured in the Vero cell line. The isolated and propagated virus was then inactivated using formalin and purified by the column chromatography. The inactivated SARS-CoV-2 was formulated in the Alum adjuvant combined with VitC or α-tocopherol and/or both of them. The vaccines were injected twice to young and aged C57BL/6 mice. Two weeks later, IFN-γ, IL-4, and IL-2 cytokines were assessed using ELISA Kits. Specific IgG and IgG1/IgG2a were assessed by an in-house ELISA. In addition, the expression of PD1 and TERT genes in the spleen tissue of the mice was measured using real-time PCR. IL-4 and IFN-γ cytokines showed a significant increase in both aged and young mice compared with the Alum-based vaccine. In addition, our results exhibited a significant decrease and increase in specific total IgG and the IgG2a/IgG1 ratio, respectively. Furthermore, the vaccine formulated in α-tocopherol + VitC led to decreased PD1 and increased TERT gene expression levels. In conclusion, our results demonstrated that α-tocopherol + VitC formulated in the inactivated SARS-CoV-2 vaccine led to a shift toward Th1, which may be due to their effect on the physiology of cells, especially aged ones and changing their phenotype toward young cells.
Collapse
Affiliation(s)
- Nika Asefi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Khorasani
- Department of FMD vaccine production, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran
| | - Morteza Taghizadeh
- Department of Human Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra Amirkhani
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yin Y, Wu S. Ascorbic acid alleviates rheumatoid arthritis by inhibiting the production of autoantibodies. Cell Commun Signal 2024; 22:373. [PMID: 39049070 PMCID: PMC11267742 DOI: 10.1186/s12964-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Ascorbic acid can regulate the function of the immune system. This study aimed to investigate the underlying mechanisms of ascorbic acid in plasma cell differentiation and rheumatoid arthritis (RA). METHODS Mice were intraperitoneally injected with either ascorbic acid or an equivalent volume of phosphate-buffered saline (PBS). To elucidate the effects of ascorbic acid on arthritis, we utilized a collagen induced arthritis mouse model (CIA). To investigate the effects of ascorbic acid on antibody response, mice were immunized with (4-Hydroxy-3-nitrophenylacetyl)-Ficoll (NP-Ficoll) or (4-hydroxy-3-nitrophenyl) acetyl-keyhole limpet hemocyanin (NP-KLH) to elicit a T-cell independent (TI) or T-cell dependent (TD) antibody response. To clarify the ability of ascorbic acid on plasma cell production, we tracked the B cell differentiation fate on the NP-specific B1-8hi BCR transgenic background. RESULTS Ascorbic acid-injected mice demonstrated significantly delayed disease incidence and decreased disease severity compared to PBS-injected mice. Ascorbic acid can reduce the titers of autoantibodies in both arthritis and lupus mice models. Ascorbic acid can significantly reduce the number of plasma cells and the production of antigen-specific antibodies in TI and TD antibody response. In addition, ascorbic acid can disrupt the antibody affinity maturation. Through B1-8hi adoptive transfer experiments, it has been demonstrated that ascorbic acid restrains B cell differentiation into plasma cells in a cell-intrinsic manner. After in-depth exploration, we found that ascorbic acid can block the cell cycle of B cells and promote cell apoptosis. Mechanistically, ascorbic acid inhibited the production of autoreactive plasma cells by inhibiting the Stat3 signaling pathway. CONCLUSION Our study demonstrates that ascorbic acid has the ability to suppress the generation of autoreactive plasma cells, diminish the production of autoantibodies, and consequently delay the onset of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
14
|
Kabelitz D, Cierna L, Juraske C, Zarobkiewicz M, Schamel WW, Peters C. Empowering γδ T-cell functionality with vitamin C. Eur J Immunol 2024; 54:e2451028. [PMID: 38616772 DOI: 10.1002/eji.202451028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Vitamin C (ascorbic acid) is a potent antioxidant and a cofactor for various enzymes including histone demethylases and methylcytosine dioxygenases. Vitamin C also exerts direct cytotoxicity toward selected tumor cells including colorectal carcinoma. Moreover, vitamin C has been shown to impact immune cell differentiation at various levels including maturation and/or functionality of T cells and their progenitors, dendritic cells, B cells, and NK cells. γδ T cells have recently attracted great interest as effector cells for cell-based cancer immunotherapy, due to their HLA-independent recognition of a large variety of tumor cells. While γδ T cells can thus be also applied as an allogeneic off-the-shelf product, it is obvious that the effector function of γδ T cells needs to be optimized to ensure the best possible clinical efficacy. Here we review the immunomodulatory mechanisms of vitamin C with a special focus on how vitamin C enhances the effector function of γδ T cells. We also discuss future directions of how vitamin C can be used in the clinical setting to boost the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Institute of Immunology, UKSH Campus Kiel, Kiel, Germany
| | - Lea Cierna
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Claudia Juraske
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Michal Zarobkiewicz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Wolfgang W Schamel
- Signalling Research Centres BIOSS and CIBSS, and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate depletion increases quiescence and self-renewal potential in hematopoietic stem cells and multipotent progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587574. [PMID: 38617357 PMCID: PMC11014518 DOI: 10.1101/2024.04.01.587574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel L. Cassidy
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew W. DeVilbiss
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise C. Jeffery
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bethany R. Ottesen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda R. Reyes
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
17
|
Nettelfield S, Yu D, Cañete PF. Systemic immunometabolism and responses to vaccines: insights from T and B cell perspectives. Int Immunol 2023; 35:571-582. [PMID: 37330692 DOI: 10.1093/intimm/dxad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.
Collapse
Affiliation(s)
- Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Morshedy SA, Zahran SM, Sabir SA, El-Gindy YM. Effects of increasing levels of orange peel extract on kit growth, feed utilization, and some blood metabolites in the doe rabbits under heat stress conditions. Anim Biotechnol 2023; 34:1532-1543. [PMID: 35176970 DOI: 10.1080/10495398.2022.2038615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
One of the most severe consequences of climate change on the rabbit production sector is heat stress. Dietary supplementation of phytochemicals could alleviate the negative impact of heat stress on rabbits. Thirty-six V-line rabbit does with average live body weight (LBW) of 2.672 ± 0.031 kg were randomly allocated into three experimental groups as follows: the control group (OPE0) and the OPE2.5 and OPE5 groups were orally administered orange peel extract (OPE) at doses of 2.5 and 5 mL/doe. The increasing OPE levels significantly improved LBW at partum (p = 0.002) and weaning (p = 0.004), daily and total feed intake from pregnancy until weaning (p = 0.007), daily milk yield per doe at 7th and 14th days (p ≤ 0.05), and milk efficiency (p = 0.001). Litter size at 1st-28th days, litter weight gain, survival rate, and kit weight gain at 21st-28th days of heat-stressed doe rabbits were significantly improved with OPE treatments. The treatment of OPE5 significantly decreased serum glucose, triglycerides, and very-low-density lipoprotein-cholesterol levels of rabbits. The increasing OPE levels decreased significantly total lipid and low-density lipoprotein-cholesterol levels and increased (p = 0.001) high-density lipoprotein-cholesterol concentration in heat-stressed rabbits. In conclusion, the treatment of OPE improved feed utilization, milk efficiency, and reproductive performance and alleviated the drastic impacts of heat stress on rabbits.
Collapse
Affiliation(s)
- Sabrin Abdelrahman Morshedy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Soliman Mohamed Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Salem Abdulnabi Sabir
- Animal Production Department, Faculty of Agriculture, Omer Al-Mukhtar University, Bieda, Libya
| | - Yassmine Moemen El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Maity J, Majumder S, Pal R, Saha B, Mukhopadhyay PK. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. Bioessays 2023; 45:e2300035. [PMID: 37694689 DOI: 10.1002/bies.202300035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | |
Collapse
|
20
|
Hu Y, Chen X, Ling Y, Zhou K, Han M, Wang X, Yue M, Li Y. Influenza A virus inhibits TET2 expression by endoribonuclease PA-X to attenuate type I interferon signaling and promote viral replication. PLoS Pathog 2023; 19:e1011550. [PMID: 37498975 PMCID: PMC10409264 DOI: 10.1371/journal.ppat.1011550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Influenza A virus (IAV) expresses several accessory proteins to limit host anti-viral restriction factors to facilitate viral replication. The Ten-Eleven Translocation 2 (TET2) is a methylcytosine dioxygenase that promotes DNA demethylation by catalyzing the oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), which plays a vital role in hematopoiesis and immunity. Here we report that TET2 is a host restriction factor that limits IAV replication. But IAV endoribonuclease PA-X is able to remove the replication restriction by binding to TET2 mRNA and driving TET2 mRNA degradation to reduce TET2 expression during infection. Genetic inactivation of TET2 markedly enhances IAV replication in vitro and in vivo. Mechanistically, we found that TET2 regulates demethylation and transcription of STAT1 and some interferon-stimulated genes (ISGs), including ISG15, ISG20, and IFIT5, so the loss of TET2 greatly impairs type I Interferon signaling. Furthermore, we confirmed that TET2-mediated demethylation of the STAT1 gene is critical for interferon anti-viral activity. Our study demonstrates that the host TET2 is essential to the innate immune response against IAV infection.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xinru Chen
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Yuehuan Ling
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Kun Zhou
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Meiqing Han
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xingbo Wang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Medoro A, Davinelli S, Colletti A, Di Micoli V, Grandi E, Fogacci F, Scapagnini G, Cicero AFG. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev Nutr Food Sci 2023; 28:89-107. [PMID: 37416796 PMCID: PMC10321448 DOI: 10.3746/pnf.2023.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 07/08/2023] Open
Abstract
Dietary supplementation with nutraceuticals can promote optimal immune system activation, modulating different pathways that enhance immune defenses. Therefore, the immunity-boosting effects of nutraceuticals encompass not only immunomodulatory but also antioxidant, antitumor, antiviral, antibacterial, and antifungal properties, with therapeutic effects against diverse pathological conditions. However, the complexity of the pathways that regulate the immune system, numerous mechanisms of action, and heterogeneity of the immunodeficiencies, and subjects treated make their application in the clinical field difficult. Some nutraceuticals appear to safely improve immune system function, particularly by preventing viral and bacterial infections in specific groups, such as children, the elderly, and athletes, as well as in frail patients, such as those affected by autoimmune diseases, chronic diseases, or cancer. Several nutraceuticals, such as vitamins, mineral salts, polyunsaturated omega-3 fatty acids, many types of phytocompounds, and probiotic strains, have the most consolidated evidence in humans. In most cases, further large and long-term randomized clinical trials are needed to confirm the available preliminary positive data.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Science and Drug Technology, University of Turin, Turin 10125, Italy
| | - Valentina Di Micoli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Elisa Grandi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Federica Fogacci
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Arrigo F. G. Cicero
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria Policlinico S. Orsola-Malpighi, Bologna 40138, Italy
| |
Collapse
|
22
|
Tsagaratou A. TET Proteins in the Spotlight: Emerging Concepts of Epigenetic Regulation in T Cell Biology. Immunohorizons 2023; 7:106-115. [PMID: 36645853 PMCID: PMC10152628 DOI: 10.4049/immunohorizons.2200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that oxidize 5-methylcytosine to form 5-hydroxymethylcytosine and downstream oxidized modified cytosines. In the past decade, intensive research established that TET-mediated DNA demethylation is critical for immune cell development and function. In this study, we discuss major advances regarding the role of TET proteins in regulating gene expression in the context of T cell lineage specification, function, and proliferation. Then, we focus on open questions in the field. We discuss recent findings regarding the diverse roles of TET proteins in other systems, and we ask how these findings might relate to T cell biology. Finally, we ask how this tremendous progress on understanding the multifaceted roles of TET proteins in shaping T cell identity and function can be translated to improve outcomes of human disease, such as hematological malignancies and immune response to cancer.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
23
|
Föh B, Buhre JS, Sina C, Ehlers M. Influence of nutrients and metabolites on the differentiation of plasma cells and implications for autoimmunity. Front Immunol 2022; 13:1004644. [PMID: 36466846 PMCID: PMC9716886 DOI: 10.3389/fimmu.2022.1004644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
The modulation of inflammatory (auto)immune reactions by nutrients and gut bacterial metabolites is of great interest for potential preventive and therapeutic strategies. B cell-derived plasma cells are major players in inflammatory (auto)immune responses and can exhibit pro- or anti-inflammatory effects through (auto)antibody-dependent and -independent functions. Emerging evidence indicates a key role of nutrients and microbial metabolites in regulating the differentiation of plasma cells as well as their differentiation to pro- or anti-inflammatory phenotypes. These effects might be mediated indirectly by influencing other immune cells or directly through B cell-intrinsic mechanisms. Here, we provide an overview of nutrients and metabolites that influence B cell-intrinsic signaling pathways regulating B cell activation, plasma cell differentiation, and effector functions. Furthermore, we outline important inflammatory plasma cell phenotypes whose differentiation could be targeted by nutrients and microbial metabolites. Finally, we discuss possible implications for inflammatory (auto)immune conditions.
Collapse
Affiliation(s)
- Bandik Föh
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jana Sophia Buhre
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, University of Lübeck, German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Lübeck, Germany
| |
Collapse
|
24
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
25
|
Phadke I, Pouzolles M, Machado A, Moraly J, Gonzalez-Menendez P, Zimmermann VS, Kinet S, Levine M, Violet PC, Taylor N. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol 2022; 13:898827. [PMID: 36248829 PMCID: PMC9562198 DOI: 10.3389/fimmu.2022.898827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.
Collapse
Affiliation(s)
- Ira Phadke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| |
Collapse
|
26
|
Chen HY, Almonte-Loya A, Lay FY, Hsu M, Johnson E, González-Avalos E, Yin J, Bruno RS, Ma Q, Ghoneim HE, Wozniak DJ, Harrison FE, Lio CWJ. Epigenetic remodeling by vitamin C potentiates plasma cell differentiation. eLife 2022; 11:73754. [PMID: 36069787 PMCID: PMC9451539 DOI: 10.7554/elife.73754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in humans. The severe chronic deficiency of ascorbate, termed scurvy, has long been associated with increased susceptibility to infections. How ascorbate affects the immune system at the cellular and molecular levels remained unclear. From a micronutrient analysis, we identified ascorbate as a potent enhancer for antibody response by facilitating the IL-21/STAT3-dependent plasma cell differentiation in mouse and human B cells. The effect of ascorbate is unique as other antioxidants failed to promote plasma cell differentiation. Ascorbate is especially critical during early B cell activation by poising the cells to plasma cell lineage without affecting the proximal IL-21/STAT3 signaling and the overall transcriptome. As a cofactor for epigenetic enzymes, ascorbate facilitates TET2/3-mediated DNA modification and demethylation of multiple elements at the Prdm1 locus. DNA demethylation augments STAT3 association at the Prdm1 promoter and a downstream enhancer, thus ensuring efficient gene expression and plasma cell differentiation. The results suggest that an adequate level of ascorbate is required for antibody response and highlight how micronutrients may regulate the activity of epigenetic enzymes to regulate gene expression. Our findings imply that epigenetic enzymes can function as sensors to gauge the availability of metabolites and influence cell fate decisions.
Collapse
Affiliation(s)
- Heng-Yi Chen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Ana Almonte-Loya
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Fang-Yun Lay
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Michael Hsu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Eric Johnson
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Edahí González-Avalos
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Jieyun Yin
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, United States
| | - Qin Ma
- Biomedical Informatics, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
28
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
29
|
Chen HY, Hsu M, Lio CWJ. Micro but mighty-Micronutrients in the epigenetic regulation of adaptive immune responses. Immunol Rev 2022; 305:152-164. [PMID: 34820863 PMCID: PMC8766944 DOI: 10.1111/imr.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Micronutrients are essential small molecules required by organisms in minute quantity for survival. For instance, vitamins and minerals, the two major categories of micronutrients, are central for biological processes such as metabolism, cell replication, differentiation, and immune response. Studies estimated that around two billion humans worldwide suffer from micronutrient deficiencies, also known as "hidden hunger," linked to weakened immune responses. While micronutrients affect the immune system at multiple levels, recent studies showed that micronutrients potentially impact the differentiation and function of immune cells as cofactors for epigenetic enzymes, including the 2-oxoglutarate-dependent dioxygenase (2OGDD) family involved in histone and DNA demethylation. Here, we will first provide an overview of the role of DNA methylation in T cells and B cells, followed by the micronutrients ascorbate (vitamin C) and iron, two critical cofactors for 2OGDD. We will discuss the emerging evidence of these micronutrients could regulate adaptive immune response by influencing epigenetic remodeling.
Collapse
Affiliation(s)
| | | | - Chan-Wang Jerry Lio
- Corresponding author: Chan-Wang Jerry Lio (), Address: 460 W 12 Ave, Columbus, Ohio, USA 43064, Tel: (614)-247-5337
| |
Collapse
|
30
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
31
|
Impacts of Dietary Supplementations of Orange Peel and Tomato Pomace Extracts as Natural Sources for Ascorbic Acid on Growth Performance, Carcass Characteristics, Plasma Biochemicals and Antioxidant Status of Growing Rabbits. Animals (Basel) 2021; 11:ani11061688. [PMID: 34198934 PMCID: PMC8228404 DOI: 10.3390/ani11061688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary There has been growing interest in using natural feed additives in to enhance animal performance and meat quality for human consumption. Citrus fruit residues can act as potential natural resources of antioxidants, which comprise a considerable quantity of ascorbic acid. Tomato pomace powder has a good nutritional value because of its content of essential amino acids and fatty acids besides its high content of antioxidants. This work examined the impact of dietary orange peel and tomato pomace extract supplementations at level of 200 mg/kg on growth performance, plasma biochemicals, carcass characteristics and antioxidant status of growing male rabbits. Dietary supplementations of orange peel and tomato pomace extracts could effectively improve growth performance, antioxidative status, modulate ascorbic acid level in plasma and meat and lower the plasma total cholesterol. Abstract The effect of dietary orange peel (OPE) and tomato pomace extract (TPE) supplementations on growth performance, plasma biochemicals, carcass characteristics and antioxidant status of growing male rabbits were investigated. A total of 96 rabbits (5 weeks old) were distributed into four groups. The first group received untreated pelleted diet (control). The second group was fed a diet containing ascorbic acid (AA; 1.0 g/kg diet), while the third and fourth groups consumed diets supplemented with 200 gm of OPE or (TPE, respectively. Our results indicated that OPE and TPE contained 59, 14.03 mg ascorbic acid/100 g DM, respectively. Growth performance, except feed conversion ratio, and carcass weight were improved by dietary supplementations. Dietary supplementations decreased kidneys, abdominal, back fats and ether extract of meat. Plasma protein and globulin levels were high in rabbits fed AA and TPE-supplemented diets. Low plasma total cholesterol and LDL-cholesterol concentrations were observed in rabbits fed the supplemented diets. Plasma AA was increased in rabbits fed AA and OPE-supplemented diets. Rabbits fed OPE and TPE-supplemented diets had great SOD activity. The best economic efficiency was recorded by rabbits fed the supplemented diets. Dietary supplementations of OPE and TPE could effectively improve growth performance, antioxidative status, modulate AA level in plasma and meat and lower plasma total cholesterol and LDL.
Collapse
|
32
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
33
|
Zhou M, Bi Y, Ding M, Yuan Y. One-Step Biosynthesis of Vitamin C in Saccharomyces cerevisiae. Front Microbiol 2021; 12:643472. [PMID: 33717042 PMCID: PMC7947327 DOI: 10.3389/fmicb.2021.643472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin C (VC) is comprehensively applied in foods, cosmetics, pharmaceuticals, and especially clinical medicine. Nowadays, the industrial production of VC mainly relies on the classic two-step fermentation route, and researchers have explored the way for one-step fermentation of VC in recent years. In this study, a VC biosynthesis pathway that directly produced VC from glucose was reconstructed in Saccharomyces cerevisiae, and the protein engineering and metabolic engineering strategies were adopted to improve it. First, five exogenous modules from Arabidopsis were introduced into the chassis cells by synthetic biology approaches to obtain the strain YLAA harboring VC biosynthesis. In addition, L-galactose dehydrogenase (L-GalDH) and L-galactono-1,4-lactone dehydrogenase (L-GLDH) were fused and expressed in S. cerevisiae cells for the first time, which increased the intracellular VC accumulation by 2.78-fold, reaching 9.97 ± 0.09 mg/L. Through copy number engineering, it was further confirmed that the last step catalyzed by L-GLDH is the rate-limiting step. GDP-L-galactose phosphorylase (GPP) encoded by vtc2 is another rate-limiting enzyme confirmed by GAL1p overexpression results. Finally, by balancing gene expression and cell growth, the highest production strain with overexpressing vtc2 by multicopy plasmids was constructed. The VC accumulation reached 24.94 ± 1.16 mg/L, which was currently the highest production from glucose in S. cerevisiae. The production of the recombinant strain reached nearly 44 mg/L with the exogenous addition of L-galactose or glutathione. The results further emphasized the importance of the step catalyzed by GPP. The investigation provided experience for the efficient biosynthesis of VC and the determination of rate-limiting steps.
Collapse
Affiliation(s)
- Mengyu Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yanhui Bi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Han Z, Zhang Z, Guan Y, Chen B, Yu M, Zhang L, Fang J, Gao Y, Guo Z. New insights into Vitamin C function: Vitamin C induces JAK2 activation through its receptor-like transporter SVCT2. Int J Biol Macromol 2021; 173:379-398. [PMID: 33484802 DOI: 10.1016/j.ijbiomac.2021.01.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Vitamin C (VitC) is a requisite nutrient for humans and other primates. Extensive research continuously illustrates the applications of VitC in promoting cell reprogramming, fine-tuning embryonic stem cell function, and fighting diseases. Given its chemical reduction property, VitC predominantly acts as an antioxidant to reduce reactive oxygen species (ROS) and as a cofactor for certain dioxygenases involved in epigenetic regulation. Here, we propose that VitC is also a bio-signaling molecule based on the finding that sodium-dependent VitC transporter (SVCT) 2 is a novel receptor-like transporter of VitC that possesses dual activities in mediating VitC uptake and Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 2 signaling pathway. Through interaction, SVCT2 induces JAK2 phosphorylation while transporting VitC into cells. Activated JAK2 phosphorylates the C-terminus of SVCT2, resulting in the recruitment and activation of STAT2. As a highlight, our results suggest that the activation of JAK2 synergistically promotes regulation of VitC in ROS scavenging and epigenetic modifications through phosphorylating pyruvate dehydrogenase kinase 1, ten-eleven translocation enzyme 3, and histone H3 Tyr41. Furthermore, VitC-activated JAK2 exhibits bidirectional effects in regulating cell pluripotency and differentiation. Our results thus reveal that the SVCT2-mediated JAK2 activation facilitates VitC functions in a previously unknown manner.
Collapse
Affiliation(s)
- Zhuo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yian Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Bingxue Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jingshuai Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
35
|
Tsiouplis NJ, Bailey DW, Chiou LF, Wissink FJ, Tsagaratou A. TET-Mediated Epigenetic Regulation in Immune Cell Development and Disease. Front Cell Dev Biol 2021; 8:623948. [PMID: 33520997 PMCID: PMC7843795 DOI: 10.3389/fcell.2020.623948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. The oxidized methylcytosines (oxi-mCs) facilitate DNA demethylation and are also novel epigenetic marks. TET loss-of-function is strongly associated with cancer; TET2 loss-of-function mutations are frequently observed in hematological malignancies that are resistant to conventional therapies. Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we seek to provide a conceptual framework of the mechanisms that fine tune TET activity. Then, we specifically focus on the multifaceted roles of TET proteins in regulating gene expression in immune cell development, function, and disease.
Collapse
Affiliation(s)
- Nikolas James Tsiouplis
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - David Wesley Bailey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States
| | - Lilly Felicia Chiou
- University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States
| | - Fiona Jane Wissink
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States.,University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States.,University of North Carolina Department of Genetics, Chapel Hill, NC, United States.,University of North Carolina Department of Microbiology and Immunology, Chapel Hill, NC, United States
| |
Collapse
|