1
|
de Oliveira CG, Boaventura TP, Santos FACD, Souza ADS, Silva SDS, Gil CSB, Luz RK, Oréfice RL. Effects of polypropylene microparticles ingestion on the growth and physiology of Piaractus brachypomus, and its accumulation and tissue damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107338. [PMID: 40188560 DOI: 10.1016/j.aquatox.2025.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/08/2025]
Abstract
The presence of microplastics in aquatic environments is a growing concern due to their impacts on fish health. This study aimed to investigate the effects of different concentrations of polypropylene microparticles (PPMs) added to the diet of juvenile Piaractus brachypomus, on their growth, survival, physiology and tissue health. A total of 280 juveniles weighing 13.45 ± 2.07 g were divided into five treatments (0, 10, 100, 1000 and 5000 mg PPMs per kg of feed) with four replicates each. The juveniles were cultivated for 60 days in recirculating aquaculture systems. Biometrics and blood and tissue collections were performed after 10 and 60 days of the experiment. Juvenile performance was affected by the presence of PPMs in the diet within 10 days, with a reduction in final weight for the different concentrations. No differences were observed in juvenile growth after 60 days compared to the control. Total protein, hematocrit, and the enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) changed significantly for the juveniles of the different treatments in both periods. No changes were observed in liver tissue histology; however, the presence of PPMs and damage to microvilli were verified in intestinal tissue. Although PPMs were observed in the intestine of juveniles in both periods, there was no migration of PPMs to the muscle. The addition of PPMs to juvenile diet caused growth disturbances within 10 days and blood and histological alterations in the intesine, without resulting in severe consequences leading to mortality in both periods.
Collapse
Affiliation(s)
- Camila Gomes de Oliveira
- Departamento de Engenharia Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| | - Túlio Pacheco Boaventura
- Departamento de Engenharia Química e de Materiais, Universidade Federal de Lavras, 372000-900, Lavras, MG, Brazil.
| | - Fabio Aremil Costa Dos Santos
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| | - André de Sena Souza
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| | - Sidney Dos Santos Silva
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| | - Camila Silva Brey Gil
- Departamento de Engenharia Química e de Materiais, Universidade Federal de Lavras, 372000-900, Lavras, MG, Brazil
| | - Ronald Kennedy Luz
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| | - Rodrigo Lambert Oréfice
- Departamento de Engenharia Metalúrgica e de Materiais, Escola de Engenharia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brasil
| |
Collapse
|
2
|
Ghosh T. Microplastics bioaccumulation in fish: Its potential toxic effects on hematology, immune response, neurotoxicity, oxidative stress, growth, and reproductive dysfunction. Toxicol Rep 2025; 14:101854. [PMID: 39802604 PMCID: PMC11720882 DOI: 10.1016/j.toxrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes. Microplastics lead to an imbalance in the generation of ROS and antioxidant defense of fish, which resulting in oxidative injury. Moreover, microplastics affect immunological responses through physico-chemical damage, hence produce neurotoxicity and modifies the activity of the acetylcholine esterase. Exposure to microplastics caused damage to the hepatic and gut tissue, affect intestinal barrier function and dysbiosis of microbial composition, altered the metabolism of host, affecting the activities of the digestive enzymes, eventually affecting the growth performance of fish. Microplastics exposure target the HPG axis and interfere with the process of steroidogenesis, apoptosis of the gonadal tissue, ultimately causing reproductive dysfunction. Fish exposed to microplastics have a range of toxic effects viz. alteration to immune, antioxidant and hematological indices, bioaccumulation, neurotoxicity, growth and reproductive dysfunction, all were examined in this present review by using different indicators.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
- Department of Zoology, Scottish Church College, Kolkata, West Bengal 700006, India
| |
Collapse
|
3
|
Ujuagu GI, Ejeromedoghene O, Enwemiwe V, Mgbechidinma CL, Omoniyi AO, Oladipo A, Gu J. Exploring the toxicology, socio-ecological impacts and biodegradation of microplastics in Africa: Potentials for resource conservation. Toxicol Rep 2025; 14:101873. [PMID: 39850514 PMCID: PMC11755024 DOI: 10.1016/j.toxrep.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Achieving upcycling and circularity in the microplastic economy predominantly depends on collecting and sorting plastic waste from the source to the end-user for resource conservation. Microplastics, whether from packaging or non-packaging materials, pose a significant environmental challenge as they are often not prioritized for collection or recycling initiatives. The presence of additives impedes the quality of plastic recyclates and the persistence of microplastics as shredded resultants remain a threat to the aquatic and terrestrial ecosystem and its biodiversity. Despite the increasing global research on microplastics, the success of plastic and microplastic waste management in Africa is yet to be fully attained. Considering the improper disposal, limited recycling and upcycling intervention, lack of policy, and strict laws against plastic waste management defaulters, the ecosystems in Africa remain immensely impacted by several socio-ecological factors leading to the loss of aquatic organisms through reducing fertility and increasing stress. As a ripple consequence, the disruption of economic activities, toxic effects on animal/human health, and climate crisis are among their impact. This review therefore provides comprehensive detail of microplastic production and challenges in Africa, the toxicology concerns, socio-ecological issues associated with microplastic waste management, and insight into approaches to mitigate plastic pollution through recycling, upcycling, bioprocessing and their biodegradation with social insects and microorganisms which may form the basis for adoption by policymakers and researchers, thereby minimizing the consequences of plastic pollution in Africa.
Collapse
Affiliation(s)
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Victor Enwemiwe
- Department of Animal and Environmental Biology, Delta State University, PMB 1, Abraka, Nigeria
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jintu Gu
- Department of Sociology, Hohai University, Nanjing 211100, China
| |
Collapse
|
4
|
Shaalan WM, Sayed AEDH. Toxicity of pharmaceutical micropollutants on common carp (Cyprinus carpio) using blood biomarkers. Sci Rep 2025; 15:18748. [PMID: 40436894 PMCID: PMC12119934 DOI: 10.1038/s41598-025-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 05/06/2025] [Indexed: 06/01/2025] Open
Abstract
The presence of pharmaceutical compounds in aquatic environments has become a notable ecological issue, with compounds such as bromazepam, naproxen, metoprolol, and sotalol being of particular concern due to their prevalence and potential biological effects on non-target species. This study aims to evaluate the effects of these pharmaceuticals on common carp (Cyprinus carpio), focusing on cytogenicity, genotoxicity, hematological, biochemical, neurological, and immunological responses. Juvenile carp were exposed to 15.54 µg/L bromazepam, 14.40 µg/L naproxen, 5.76 µg/L metoprolol, and 3.33 µg/L sotalol, respectively. Hematological analysis revealed significant reductions in red blood cell counts and hemoglobin levels, indicating potential anemia, especially in fish exposed to naproxen. Biochemical assays showed increased levels of albumin, globulin, and enzymes indicative of liver stress in exposed groups. Antioxidant defense enzymes such as superoxide dismutase, catalase, and glutathione peroxidase showed significant activity increases, suggesting oxidative stress. Apoptosis assays demonstrated elevated erythrocyte apoptosis, particularly in the naproxen group, which also exhibited the highest DNA damage. These findings highlight the ecological significance of pharmaceutical contamination and highlight the urgent need for thorough environmental risk assessments that take into account the health of both organisms and ecosystems, as well as the creation of mitigation plans for their detrimental effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
- Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
5
|
Shirmohammadi M, Kianersi F, Shiry N, Hekmatpour F. Ecotoxicological assessment of microplastics and florfenicol on Acanthopagrus latus: mucus, humoral immune responses and DNA damage. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02901-z. [PMID: 40423927 DOI: 10.1007/s10646-025-02901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
This study evaluated the adverse effects of florfenicol (FLO) (15 mg/kg diet) and microplastics (MPs) (100 and 500 mg/kg diet) on yellowfin seabream, Acanthopagrus latus, over a 10-day exposure period. Fish were exposed to these substances individually and in combination. Tissue, blood, and skin mucus samples were collected on days 1, 4, 7, and 14 post-exposure. Results indicated that both MPs alone and combined with FLO elevated cholesterol, triglyceride, urea, creatinine, and glucose levels. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, alkaline phosphatase (ALP), and creatine kinase were also increased. Conversely, immunological markers such as complement 3, complement 4, immunoglobulin M, lysozyme activity, phagocytic activity, respiratory burst activity, and total protein concentrations decreased. Similar to blood results, the concentrations of alternative complement, total immunoglobulin, lysozyme, and total protein in the mucus were reduced, whereas ALP levels in the mucus increased. These biomarkers did not recover by day 14 in groups exposed to MPs alone or with the antibiotic. FLO concentration in muscle peaked on day 1 and declined by the end of the trial. The FLO alone affected creatinine, cholesterol, total protein, AST, ALT, ALP, and immunological markers, all of which returned to normal by the conclusion of the trial. FLO did not influence the total immunoglobulin in the mucus. MPs, individually and in combination, increased DNA damage in the liver, kidney, spleen, and intestinal tissues. The findings demonstrate that FLO and MPs detrimentally impact fish health, with a more pronounced effect when combined, indicating synergistic toxicity.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.
| | - Farahnaz Kianersi
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Nima Shiry
- Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatemeh Hekmatpour
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
6
|
Trivedi A, Saxena V, Bakhasha J, Arya N, Yadav KK, Srivastava A, Trivedi SP, Banaee M, Sopjani M, Faggio C. Curcumin's role in reshaping the redox dynamics of fish kidneys: NRF2 activation as a strategy against copper-induced nephropathy. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:94. [PMID: 40332669 DOI: 10.1007/s10695-025-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
From essential to harmful, excess copper compromises aquatic vitality. Curcumin, a potent antioxidant bioactive, counteracts heavy metal toxicity. This study examines its role in modulating the NRF2-KEAP1 pathway to boost antioxidant defenses and mitigate apoptosis in kidneys of Channa punctatus exposed to environmentally relevant Copper concentrations (ERCC). 180 fully habituated fish were categorized into six groups: Group 1 served as control, Group 2 was treated with 3 mg/L Curcumin, Group 3 was exposed to ERCC (0.85 mg/L Copper), while Group 4, Group 5 and Group 6 received co-exposure to ERCC along with the escalating Curcumin concentrations of 1 mg/L, 2 mg/L, and 3 mg/L, respectively, over periods of 15, 30, 45, 60, and 75 days. Biochemical assays were conducted to evaluate oxidative stress markers (Reactive oxygen species, reduced glutathione, glutathione peroxidase, and lipid peroxidation), kidney damage indicators (creatinine), and genotoxicity (micronuclei). Additionally, transcriptional profiling assessed mRNA levels of apoptosis-related factors (p53, bax, apaf1, cas9, cas3 and bcl2), while histopathological examinations revealed changes in renal architecture. Molecular docking analysis confirmed Curcumin's strong binding affinity to KEAP1, providing insights into its role in activating the NRF2-KEAP1 pathway. The results indicated that Curcumin significantly (p < 0.05) reduced Copper-induced oxidative stress, improved antioxidant defenses, suppressed genotoxicity, modulated apoptosis, and maintained renal tissue integrity. These findings validate curcumin's potential in effectively combating copper toxicity in aquaculture, paving the way for enhanced fish health and improved food safety.
Collapse
Affiliation(s)
- Abha Trivedi
- Toxicogenomics Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly, 243006, India.
| | - Vaishnavi Saxena
- Toxicogenomics Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly, 243006, India
| | - Jumman Bakhasha
- Toxicogenomics Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly, 243006, India
| | - Neeti Arya
- Toxicogenomics Laboratory, Department of Animal Science, M.J.P. Rohilkhand University, Bareilly, 243006, India
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao, 209801, India
| | - Alok Srivastava
- Department of Plant Science, M.J.P. Rohilkhand University, Bareilly, 243006, India
| | - Sunil P Trivedi
- Department of Zoology, Lucknow University, Lucknow, 226007, India
| | - Mahdi Banaee
- Department of Aquaculture, Natural Resource and Environmental Faculty, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mentor Sopjani
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo.
| | - Caterina Faggio
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Azarm-Karnagh S, Sattari M, Banaee M, Shirkavand Hadavand B, Falco F. Effects of Polystyrene Nanoplastics on Oxidative Stress, Blood Biochemistry, and Digestive Enzyme Activity in Goldfish ( Carassius auratus). TOXICS 2025; 13:336. [PMID: 40423415 DOI: 10.3390/toxics13050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025]
Abstract
Plastic pollution in aquatic ecosystems has become a global concern, and nanoplastics, due to their small size and high penetration potential, pose significant risks to aquatic organisms. This study aimed to evaluate the effects of polystyrene nanoplastics (PS-NPs) on oxidative stress biomarkers, blood biochemical parameters, and digestive enzyme activities in Goldfish (Carassius auratus). The experiment was conducted over 21 days, exposing fish to four different dietary concentrations of PS-NPs (0, 1, 10, and 100 mg/Kg). The results showed that chronic exposure to 50 nm PS-NPs significantly increased the activity of antioxidant enzymes (CAT, SOD, and GPx) and MDA activity in the gill, kidney, and liver tissues, indicating the induction of oxidative stress. Furthermore, notable alterations were observed in blood biochemical enzymes (alkaline phosphatase [ALP], alanine aminotransferase [ALT], aspartate aminotransferase [AST], and lactate dehydrogenase [LDH]), suggesting cellular damage and physiological disturbances. Additionally, PS-NP exposure affected the activity of digestive enzymes (amylase, lipase, and protease), which may impact nutrient digestion and absorption. These findings highlight that PS-NPs can adversely affect aquatic animal health and may influence the nutritional quality of fish. Therefore, further research is necessary to assess the long-term ecological and toxicological impacts of nanoplastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Sasan Azarm-Karnagh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara P.O. Box 1144, Iran
| | - Masoud Sattari
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara P.O. Box 1144, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan P.O. Box 63616-64973, Iran
| | - Behzad Shirkavand Hadavand
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran P.O. Box 16765-654, Iran
| | - Francesca Falco
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), 91026 Mazara del Vallo, Italy
| |
Collapse
|
8
|
El-Alfy MA, El-Hamid HTA, Keshta AE, Elnaggar AA, Darwish DH, Basiony AI, Alzeny AM, Abou-Hadied MM, Toubar MM, Shalby A, Shabaka SH. Assessing microplastic pollution vulnerability in a protected coastal lagoon in the Mediterranean Coast of Egypt using GIS modeling. Sci Rep 2025; 15:11557. [PMID: 40185773 PMCID: PMC11971271 DOI: 10.1038/s41598-025-93329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025] Open
Abstract
Lake Burullus is a coastal wetland and protected area on the Mediterranean coast of Egypt. Despite the importance of this lake to the livelihood of millions of Egyptians, intensive anthropogenic activities and drainage water input have impacted its water quality. The current work aimed to evaluate the distribution and composition of microplastics (MPs) in Lake Burullus and analyze the impact of non-point pollution sources on their distribution and fate. The results showed that the average concentration of MPs in the open water was significantly lower (165.0 MPs/m3) than that near the drains (835.6 MPs/m3). The thermal analysis indicated the presence of eight thermoplastic polymers, originating from diffuse sources mainly via land-based activities. Moreover, a model was generated using ArcGIS 10.5 to assess the vulnerability of surface water to pollution from non-point sources. This model incorporated factors such as proximity to roads, waterways, land use, and urban areas, in addition to salinity and total suspended solids (TSS). Comprehensive maps were generated to visually illustrate the areas expected to be affected by MPs pollution. The results showed that waterways played an important role in in the transport of MPs to Lake Burullus. In addition, urban areas were identified as pollution hotspots, indicating the impact of land-use changes in urban areas. Salinity and TSS were also identified as important factors affecting the fate of MPs. Implementing strong measures to control land pollution in urban areas and managing wastewater inputs is highly recommended to effectively mitigate the impact of MPs on the ecosystem of Lake Burullus.
Collapse
Affiliation(s)
| | | | - Amr E Keshta
- Faculty of Science, Tanta University, Tanta, Egypt
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | | | - Dina H Darwish
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Afifi I Basiony
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ahmad M Alzeny
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | | | - Mohamed M Toubar
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ahmed Shalby
- Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Soha H Shabaka
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| |
Collapse
|
9
|
Lee JH, Choi JH, Kang YJ, Choi YJ, Choi CY, Kang JC, Kim JH. Toxic effects of microplastics (polyethylene) exposure on acetylcholinesterase, stress indicators and immunity in Korean Bullhead, Pseudobagrus fulvidraco. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104654. [PMID: 39947268 DOI: 10.1016/j.etap.2025.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Microplastics (MPs) in aquatic environments can have toxic effects on various organisms, including fish. This study exposed Pseudobagrus fulvidraco to polyethylene MPs at 0, 10 mg/L (approximately 9.50 ×108 particles/L), 20 mg/L (approximately 1.9 ×109 particles/L), 5000 mg/L (approximately 4.75 ×1011 particles/L), and 10,000 mg/L (approximately 9.50 ×1011 particles/L) concentrations for 96 h. At relatively lower MPs concentrations (0, 10 and 20 mg/L), no significant changes were observed in acetylcholinesterase (AChE) activity, stress indicators (heat shock protein 70 and cortisol), or immune responses (lysozyme activity and immunoglobulin M levels). However, at higher MPs concentrations (5000 and 10,000 mg/L), AChE activity was significantly inhibited, stress indicators were significantly increased, and immune responses were significantly decreased. Our results indicate that acute exposure of P. fulvidraco to MPs had negligible effects at concentrations below 20 mg/L, whereas significant toxic effects such as AChE activity inhibition, stress responses, and immune suppression were observed at concentrations above 5000 mg/L. Therefore, our study highlights the risks of severe MPs pollution on aquatic ecosystems and fish health.
Collapse
Affiliation(s)
- Ju-Hyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Yue Jai Kang
- Department of Aquatic life medicine, Kunsan National University, Gunsan 54150, South Korea.
| | - Young Jae Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 312844, South Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, South Korea; Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
10
|
Timaná Morales M, Peraza Gómez V, Kozak ER, Trejo Flores JV, Robles Ravelero M, Espinosa Chaurand LD, Jiménez Ruíz EI. Microplastics in marine fish: a mini-review on presence, classification, and impacts. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:169-180. [PMID: 39616298 DOI: 10.1007/s10646-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/20/2025]
Abstract
Plastic production has experienced exponential growth in recent years due to its diverse industrial applications, low cost, and high availability, also causing issues, since plastic waste in aquatic ecosystems transforms into microplastics (MPs) through mechanical and weathering processes. Microplastics are distributed ubiquitously in water bodies, where they can be ingested by a wide aquatic organism range, including fish, which have been used as bioindicators to assess microplastic presence and toxicity. Research has revealed microplastic presence in various fish species worldwide; the most common characteristics are fibers and fragments of blue, black, and transparent colors, and polyethylene, terephthalate, polypropylene and cellophane chemical composition. Experimental studies under laboratory conditions have demonstrated microplastics impact on fish, showing physical, immunological, and hematological damage, and oxidative stress ultimately leading to organisms' death. However, laboratory results do not necessarily predict impacts on wild fish due to different conditions to which the organisms are exposed. Therefore, further research needs to simulate real scenarios faced by wild fish in the marine environment, providing greater certainty about microplastic impacts and negative effects.
Collapse
Affiliation(s)
- María Timaná Morales
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Viridiana Peraza Gómez
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, San Blas, Nayarit, México.
| | - Eva R Kozak
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Jalisco, México
| | - José Vladimir Trejo Flores
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Maricruz Robles Ravelero
- Posgrado en Ciencias en Recursos Acuáticos. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen S/N. Col. Los Pinos, Mazatlán, Sinaloa, 82000, México
| | | | - Edgar Iván Jiménez Ruíz
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit. Tepic, Nayarit, Mexico
| |
Collapse
|
11
|
Okon E, Brandts I, Djafar H, Tvarijonaviciute A, Balasch JC, Teles M. Effects of Sub-Chronic Exposure to Polystyrene Nanoplastics on Lipid and Antioxidant Metabolism in Sparus aurata. Animals (Basel) 2025; 15:562. [PMID: 40003042 PMCID: PMC11851809 DOI: 10.3390/ani15040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Nanoplastics (NPs) can cross cellular membranes and affect cellular performance. This study aims to determine the effects of polystyrene NPs (PS-NPs, 44 nm) on gilthead seabream (Sparus aurata) exposed for 14 days to 100 μg/L PS-NPs. The results show that biometric indicators (weight, length, Fulton's condition factor, and hepatosomatic index) were not affected after the experimental exposures. No significant effects were observed on white blood cell count, red blood cell count, mean corpuscular hemoglobin, or platelets compared to the control group. However, there was a significant decrease in hemoglobin concentration, hematocrit values, and mean corpuscular cell volume in fish exposed to PS-NPs. There were no significant effects on plasmatic cholesterol, triglyceride, alkaline phosphatase, or aspartate aminotransferase levels. The histological anatomy of both the gills and the intestine revealed no obvious signs of cellular damage, excessive mucous, or inflammation in the PS-NP group. The expression of transcripts related to lipid metabolism (pparα, pparβ), growth and development (igf1), detoxification (bche), and oxidative stress (sod, gpx1) were significantly downregulated in animals exposed to PS-NPs, indicating a slight impairment in lipid homeostasis and antioxidant response.
Collapse
Affiliation(s)
- Ekemini Okon
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.O.); (I.B.); (H.D.)
| | - Irene Brandts
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.O.); (I.B.); (H.D.)
| | - Hayam Djafar
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.O.); (I.B.); (H.D.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.O.); (I.B.); (H.D.)
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.O.); (I.B.); (H.D.)
| |
Collapse
|
12
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
13
|
Rashid E, Hussain SM, Ali S, Munir M, Ghafoor A, Yilmaz E, Alshehri MA, Riaz D, Naeem A, Naeem E. Impacts of microplastic accumulation in aquatic environment: Physiological, eco-toxicological, immunological, and neurotoxic effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107232. [PMID: 39752783 DOI: 10.1016/j.aquatox.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/14/2024] [Accepted: 12/29/2024] [Indexed: 02/11/2025]
Abstract
The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution. MPs, characterized by their small size (< 5 mm), have emerged as a ubiquitous environmental pollutant. They exhibit diverse characteristics, including varying sizes, forms, polymer types, and colors. Two distinct categories of MPs exist: primary and secondary. Primary MPs are incorporated into industrial hard materials, cosmetics, and hand cleaners, whereas secondary MPs result from the breakdown of larger plastic products in both terrestrial and marine environments. They enter the environment through various sources, such as household products, clothing, industrial activities, sewage waste and plastic degradation. Aquatic organisms ingest these contaminants, facilitating the transfer of MPs into the food chain and potentially causing severe health problems. This review delves into the bioaccumulation of MPs in fish, highlighting the eco-toxicological, neurological and immunological effects. This review provides an in-depth analysis of innovative solutions for MPs removal and reduction. Finally, we delineate evidence-based strategies to mitigate impacts of MPs, offering valuable insights to inform policy formulations and accelerate the development of sustainable plastic technologies.
Collapse
Affiliation(s)
- Eram Rashid
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ebru Yilmaz
- Bozdoğan Vocational School, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Danish Riaz
- Department of Zoology, University of Education, Lahore, Punjab, Pakistan
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan
| | - Eman Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan
| |
Collapse
|
14
|
Soliman AM, Mohamed AS, Abdel-Khalek AA, Badran SR. Impact of polyvinyl chloride nano-plastics on the biochemical status of Oreochromis niloticus under a predicted global warming scenario. Sci Rep 2025; 15:3671. [PMID: 39880882 PMCID: PMC11779928 DOI: 10.1038/s41598-025-87558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers. The fish groups were subjected to three distinct temperatures (30, 32, and 34 °C) and subsequently separated into two groups: 0 and 10 mg/L of PVC-NPs, as it is expected that these temperatures may modify their chemical properties, which can influence their absorption and toxicity in fish. After 4 days, the biochemical response of fish exposed to PVC-NPs and elevated temperatures showed a significant increase in the levels of plasma total proteins, albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, and uric acid. Additionally, the level of oxidative stress biomarkers in the liver, gills, and brain was found to have a significant increase in malondialdehyde (MDA) concentration and a decrease in glutathione reduced (GSH) concentration and catalase (CAT) activity in all studied groups. Finally, the current findings revealed a synergistic cytotoxic effect of PVC-NPs and temperatures on the metabolic and oxidative stress indices of O. niloticus.
Collapse
Affiliation(s)
| | - Ayman S Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr A Abdel-Khalek
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, Tobruk University, Tobruk, Libya
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
15
|
Rashid E, Hussain SM, Ali S, Kucharczyk D, Nowosad J, Al-Ghanim KA, Nazish N. An assessment of physiological and health responses in Catla catla fingerlings after polystyrene microplastic exposure. Sci Rep 2025; 15:2218. [PMID: 39820509 PMCID: PMC11739412 DOI: 10.1038/s41598-025-85291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Microplastics (MPs) form when plastic debris is released into the aquatic environment, where they decompose and have deleterious effects on aquatic life. This study aimed to examine the harmful impacts of polystyrene MPs (PS-MPs) on the growth, carcass composition, hematology, digestibility, histopathology, and mineral analysis of Catla catla (11.09 ± 0.09 g/fish). Six experimental diets were prepared using canola meal (CM) as the base, each containing varying levels of PS-MPs: a control diet without MPs, and diets with 0.5%, 1%, 1.5%, 2%, and 2.5% PS-MPs. For ninety days, three groups of 15 fingerlings each were fed the test diets at a rate of 5% of their live, wet body weight. The growth rate and feed intake of C. catla fish showed a significant decline after the exposure to the diet containing 2.5% PS-MPs. Dietary inclusion of 2.5% PS-MPs resulted in reduced weight gain (g) and increased FCR. Mineral content and nutritional digestibility declined as PS-MP levels rose. PS-MPs led to a decrease in ash and protein content, while causing an increase in moisture levels and body fat. Moreover, exposure to PS-MPs resulted in significant reduction in RBCs, PLT, Hb, PCV, and MCHC, while WBCs, MCH, and MCV showed substantial increases. The histological analysis of the gut revealed elevated intestinal irregularities at 2.5% PS-MPs level. Notably, the present study revealed that PS-MPs accumulate in the gut, compromising the nutritional quality and overall well-being of C. catla fingerlings.
Collapse
Affiliation(s)
- Eram Rashid
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Punjab, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Dariusz Kucharczyk
- Department of Research and Development, Chemprof, Gutkowo 54B, Olsztyn, 11-041, Poland
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Al. Warszawska 117A, Olsztyn, 10-957, Poland
| | - Joanna Nowosad
- Department of Research and Development, Chemprof, Gutkowo 54B, Olsztyn, 11-041, Poland
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, ul. Oczapowskiego 10, Olsztyn, 10-719, Poland
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, 51040, Punjab, Pakistan
| |
Collapse
|
16
|
Saleh SMM, Abdel-Zaher S, Mohamed MS, Sayed AEDH. Microplastics induced ileum damage: Morphological and immunohistochemical study. Microsc Res Tech 2025; 88:251-269. [PMID: 39315562 DOI: 10.1002/jemt.24696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs) are small pieces of plastic that are widely distributed in the environment and accumulate within living organisms, so they are the most common types of pollutants at the present time. One of the most widespread types of MP in the environment is polyethylene (PE) MPs. There have been many published studies on the effect of PE MPs combined with other pollutants or chemicals such as benzoanthracene, emamectin benzoate, heavy metals and 4-nonylphenol, on some marine, amphibian, and mouse models. However, research has rarely been conducted on how single-use PE MPs affect the ileum of mammals. The current study is focused on the impact of PE MP exposure with different concentration (6, 60, 600 μg/mL PE/MPs) for 15 days, followed by 15 days of recovery on small intestine(ileum) of C57BL/6 murine model with precision and detail at the cell level by using different technique (histology, histochemistry, immunohistochemistry, and transmission electron microscope). Results demonstrated that the intestinal tissue exhibited nuclear pyknosis, villus deformation, shortness of villi, degeneration of lamina propria, hyperplasia of goblet cells, increase of goblet cells secretion, Alcian blue and Periodic acid-Schiff stain positivity of intact goblet cells, highly significance of P53 immunoreaction expression specially in high concentrations (600 μg/day of PE/MPs) and Ki-67 immunoreaction expression. RESEARCH HIGHLIGHTS: Different doses of microplastics (MPs) induced sever morphological alternations and clinical observations. MPs were deposits in cells and were observed in ultrastructure study. Recovery period able to ameliorate to the most extent the alternations caused by MPs administration.
Collapse
Affiliation(s)
- Shaimaa M M Saleh
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| | - Mahmoud S Mohamed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Morales-Espinoza LL, Gebara RC, Longo E, Fracácio R. Microplastics in freshwater ecosystems: probabilistic environmental risk assessment and current knowledge in occurrence and ecotoxicological studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:3-25. [PMID: 39887287 DOI: 10.1093/etojnl/vgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 02/01/2025]
Abstract
Ecotoxicological studies involving microplastics (MPs) conducted on a laboratory scale may not always accurately mirror real environmental conditions (types, sizes, shapes, and concentrations of MPs). This review primarily focused on examining studies that investigated the prevalence of MPs in freshwater environments and accumulation in organisms worldwide, considering important factors such as morphology, particle size, and the specific polymer types involved. This review also encompassed ecotoxicological studies related to MPs, and ecological risk analyses were carried out based on the obtained ecotoxicological data. Based on the extensive dataset collected, we determined the hazardous concentration for 5% of the tested organisms (HC5) and estimated for the first time a predicted noneffect concentration (PNEC) value for two distinct types of MPs polymers: polystyrene (PS) and polyethylene (PE), based on the species sensitive distribution (SSD) curves obtained from nonobserved concentration (NOEC) values, with 0.003 mg L-1 for PS and 0.011 mg L-1 for PE. Furthermore, another PNEC value for 7 types of MPs (PE, PS, polyvinyl chloride, PA6, polyester, polyethylene terephthalate, and ethylene acrylic acid copolymer (EEA copolymer)) was calculated (0.0027 mg L-1 or 2.61 particles L-1). Subsequently, the risk quotient (RQ) was computed utilizing data obtained from the measured environmental concentrations of 18 places. An RQ value of 0.094 was obtained, inferring that MPs have a low-risk potential globally. However, when the RQ values were examined for each country separately, they exhibited significant variability (RQ = 22.06 in Malaysia and 0.000008 in Australia). Overall, this review provides a comprehensive overview of the current knowledge on MP abundance in freshwater environments, the associated ecotoxicological research to reinforce the outcomes derived from the risk analysis, and their accumulation in biota.
Collapse
Affiliation(s)
- Leslie L Morales-Espinoza
- Department of Environmental Engineering, Instituto de Ciência e Tecnologia-Câmpus de Sorocaba-Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Renata Fracácio
- Department of Environmental Engineering, Instituto de Ciência e Tecnologia-Câmpus de Sorocaba-Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)
| |
Collapse
|
18
|
Bagheri S, Soltanian S, Heidari AA, Gholamhosseini A. Toxicity effects of microplastics individually and in combination with Aeromonas hydrophila on freshwater crayfish (Astacus leptodactylous). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1236-1246. [PMID: 39718694 DOI: 10.1007/s11356-024-35638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Opportunistic pathogens, such as Aeromonas hydrophila, can cause damage to freshwater crayfish (Astacus leptodactylous) in some situations. In addition to direct damage to the body, microplastics (MPs) can also be responsible for transmitting pathogens to the animal. Accordingly, this research was prepared to investigate the effects of MP on the damage caused by A. hydrophila exposure in A. leptodactylous. Hepatic oxidative biomarkers, blood biochemical indices, and clinical signs were investigated in freshwater crayfish co-exposed to MPs (500 and 1000 mg kg-1) and A. hydrophila (5 and 10% of the median lethal dose (LD50)) for 30 days. In the hemolymph of infested crayfish with A. hydrophila, there were no significant changes in glutathione peroxidase activity or total antioxidant level. However, in some of the clinical parameters, exposure to MP alone had a significant effect. Cholesterol levels, glutathione peroxidase, catalase, and the activity of γ-glutamyltransferase reduced, conversely, glucose, malondialdehyde, and aspartate aminotransferase increased. After co-exposure to A. hydrophila and MPs, certain parameters elevated in the hemolymph of crayfish such as glucose, activity of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. However, total protein, cholesterol, γ-glutamyltransferase, glutathione peroxidase, catalase activity, and total antioxidants decreased. In contrast, elevation in malondialdehyde content and superoxide dismutase activity was observed in the hepatocytes of crayfish after co-exposure to A. hydrophila and MPs. To summarize, the investigation demonstrated that the interaction of MPs and A. hydrophila in crayfish has a synergistic effect on various factors.
Collapse
Affiliation(s)
- Sara Bagheri
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siyavash Soltanian
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
19
|
Del Piano F, Mateu B, Coretti L, Borrelli L, Piccolo G, Addeo NF, Esposito S, Mercogliano R, Turco L, Meli R, Lembo F, Ferrante MC. Polystyrene microplastic exposure modulates gut microbiota and gut-liver axis in gilthead seabream (Sparus aurata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177857. [PMID: 39631330 DOI: 10.1016/j.scitotenv.2024.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) are a threat of growing concern for living organisms as they exist in all ecosystems. The bidirectional communication between the gut, its microbiota, and the liver, has been conceptualized as gut-liver axis and may be influenced by environmental factors. MPs can cause intestinal and hepatic injuries, but there is still limited research exploring their impact on gut-liver axis. The aim of this study was to assess the effects of MP ingestion on gut-liver axis balance in gilthead seabream (Sparus aurata) fed with a diet enriched with polystyrene (PS)-MPs (0, 25, or 250 mg/kg b.w./day) for 21 days. PS-MPs affected the composition of gut microbiota, enhancing the evenness of gut microbial species. We also observed the impoverishment of core microbiota, suggesting reduced stability and permanence of microbiota members. Furthermore, PS-MPs reduced predominant bacteria in the gut of gilthead seabreams, increasing low-abundance species, including potential harmful taxa. On the other hand, PS-MPs increased the gene expression of immune and inflammatory mediators (i.e., TLR2, TLR5, and COX-2) in the liver. PS-MP exposure also increased serum triglycerides and bile acids (BAs) without modifying cholesterol. Moreover, the hepatic BA metabolism was impacted by PS-MPs which increased the expression of genes involved in primary BA kinetic (i.e., CYP27A1 and LXRa), which in turn can modulate intestinal microbial community. Indeed, PICRUSt2 mapping of BA-related functions predicted the increase of factors involved in BA metabolism. Specifically, K01442 (choloylglycine hydrolase) and K00076 (7α-hydroxysteroid dehydrogenase) were augmented by PS-MPs, suggesting a possible adaptation or co-evolution of gut microbiota to the modified hepatic BA metabolism. Thus, the obtained results showed that ingested PS-MPs impact the gut microbiota architecture and functions, the hepatic innate immunity, and the BA metabolism, suggesting the involvement of the gut-liver axis in MP-induced toxicity.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
20
|
Razzaq S, Sidra S, Javid A, Mehmood S. Impact of dietary exposure to polyester microfibers on hematology, serology and histology in a mouse model. ENVIRONMENTAL RESEARCH 2024; 263:120175. [PMID: 39424032 DOI: 10.1016/j.envres.2024.120175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Synthetic fabrics, especially polyester, are a primary source of microplastic fibers (MFs), but there is limited data on their accumulation and dose related health impact in living organisms. This study examined the effects of ingested polyester microfibers (PE-MFs) on hematology, histopathology, and serum biochemistry in albino mice. Mice were given varying doses of PE-MFs (100, 200, 400 and 800 μg/d/mice) for a duration of thirty-five days and a notable decreases in certain hematological parameters such as RBCs, Hb, and platelets, and increases in MCV and MCH was noted at (p < 0.05) thereby indicating possible inflammatory response within the body resulting from ingestion of these MFs. Liver enzymes (ALT, AST, and alkaline phosphatase) and histopathological changes in the liver and gastrointestinal tract also exhibited significant variations, with higher levels seen in the group receiving the highest dose of PE-MFs (800 μg/d/mice). In summary, increased exposure to PE-MFs led to a dose-related impact and notable alterations in histopathological, hematological, and serum biomarkers in albino mice. This study highlights the potential hazards associated with dietary exposure to PE-MFs in mammals and emphasizes the need for further research in this field.
Collapse
Affiliation(s)
- Saira Razzaq
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Safdar Sidra
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Arshad Javid
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Shahid Mehmood
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
21
|
Rashid E, Hussain SM, Ali S, Sarker PK, Farah MA. Investigating the toxicity of polylactic acid microplastics on the health and physiology of freshwater fish, Cirrhinus mrigala. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1210-1221. [PMID: 39356372 DOI: 10.1007/s10646-024-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic ecosystems has raised growing concerns among ecotoxicologists regarding their potential toxicity. This study explored the impacts of polylactic acid (PLA) MPs on the physiology and health of freshwater fish, Cirrhinus mrigala, by dietary exposure for 90 days. The experiment consisted of six groups: five treatment groups (0.5%, 1%, 1.5%, 2%, and 2.5% PLA-MP) and a control group (0% PLA-MP). Each group was comprised of fifteen fish, and the experiment was replicated three times. The exposure severity of PLA-MPs varied from low to high, with treatment levels ranging from 0.5% to 2.5% PLA-MPs, relative to the control group. This exposure significantly affected their growth performance. Additionally, the apparent digestibility of the SFM-based diet decreased with increasing PLA-MPs concentration. Exposure to PLA-MPs induced considerable changes in body composition, characterized by increased moisture and crude fat content and decreased ash content and crude protein. The blood profile, including MCHC, RBCs, Hb, PLT and PCV exhibited significant declines in the high treatment group (2.5% PLA-MPs), while MCH, WBCs and MCV showed notable increases. Furthermore, histopathological examination of the intestine revealed an increase in abnormalities in the intestine at 2.5% PLA-MPs level. The high treatment group (2.5% PLA-MPs) showed the lowest mineral content in the fish muscles. In summary, dietary exposure to PLA-MPs led to alterations in overall body performance across the treatment groups, ranging from low to high severity levels.
Collapse
Affiliation(s)
- Eram Rashid
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
22
|
Soares MAM, Ferreira ERR, Tavares D, Moron SE, Fernandes MN, Mariano WDS, Paulino MG. Multi-Biomarkers' Responses in Gills of Oreochromis niloticus Exposed to Glyphosate and Polyethylene Microplastic, Isolated and in Mixture. ENVIRONMENTAL TOXICOLOGY 2024; 39:5048-5058. [PMID: 39051743 DOI: 10.1002/tox.24386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) and glyphosate-based herbicides (GBH) are among the most common contaminants in aquatic environments. In Brazilian rivers, both contaminants were found in elevated levels, leading to a high probability of their association, which can alter their individual effects and potentially intensify their toxicity. This study evaluated the isolated and combined effects of polyethylene microplastics (PE-MPs) and GBH on Oreochromis niloticus using multi-biomarkers of toxicity. The fish were subjected to a 96-h exposure period, with concentrations set based either isolated, PE-MPs group (5 mg L-1), GBH group (5 mg L-1), or in a group of associated contaminants (GAC), PE-MP + GBH (5 mg L-1 + 5 mg L-1). Toxicity effects were evaluated using biochemical, cytogenetic, hematological, and histopathological biomarkers. We observed change in erythrocyte parameters leading to macrocytic normochromic anemia in GAC. Leukocyte parameters indicate a nonspecific immunosuppression caused by the exposure of associated contaminants, besides the attempts to repair damage caused by PE-MPs. Histopathological markers indicate damage to tissues exposed to contaminants. Besides, there were morphophysiological adjustments on gills, with proliferation and hypertrophy of mitochondria-rich cells on GBH and GAC, besides epithelium ruptures, which were mostly present in the exposed groups. Therefore, this study indicates that PE-MPs and GBHs present toxic effects in O. niloticus with the used concentrations, intensified by the association of contaminants. Thus, multi-biomarkers were useful key to verify toxicity, providing data to the investigation of high levels of contaminant's mixture toxicity present in aquatic environments.
Collapse
Affiliation(s)
- Marco Aurélio Miranda Soares
- Laboratory of Morphophysiology and Biochemistry of Neotropical Fishes, Center of Agrarian Sciences, Federal University of Northern Tocantins, Araguaína, Tocantins, Brazil
| | - Ericsson Rubens Rodrigues Ferreira
- Laboratory of Morphophysiology and Biochemistry of Neotropical Fishes, Center of Agrarian Sciences, Federal University of Northern Tocantins, Araguaína, Tocantins, Brazil
| | - Driele Tavares
- Laboratory of Zoophysiology and Comparative Biochemistry, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Sandro Estevan Moron
- Laboratory of Morphophysiology and Biochemistry of Neotropical Fishes, Center of Agrarian Sciences, Federal University of Northern Tocantins, Araguaína, Tocantins, Brazil
| | - Marisa Narciso Fernandes
- Laboratory of Zoophysiology and Comparative Biochemistry, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Wagner Dos Santos Mariano
- Laboratory of Comparative Animal Morphophysiology, Center of Integrated Sciences, Federal University of Northern Tocantins, Araguaína, Tocantins, Brazil
| | - Marcelo Gustavo Paulino
- Laboratory of Comparative Animal Morphophysiology, Center of Integrated Sciences, Federal University of Northern Tocantins, Araguaína, Tocantins, Brazil
| |
Collapse
|
23
|
Mahmoud AS, Sayed AEDH, Mahmoud UT, Mohammed AAA, Darwish MHA. Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress. BMC Vet Res 2024; 20:474. [PMID: 39420344 PMCID: PMC11484423 DOI: 10.1186/s12917-024-04302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
Collapse
Affiliation(s)
- Amr Saber Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Alaa El Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt.
| | - Usama T Mahmoud
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A A Mohammed
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Animal Husbandry and Livestock Development, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Madeha H A Darwish
- Department of Animal, Poultry and Aquatic Life Behavior and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Emon FJ, Hasan J, Shahriar SIM, Islam N, Islam MS, Shahjahan M. Increased ingestion and toxicity of polyamide microplastics in Nile tilapia with increase of salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116730. [PMID: 39024944 DOI: 10.1016/j.ecoenv.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e. 0 ‰, 3 ‰, 6 ‰, 9 ‰, and 12 ‰ alone and along with 10 mg/L polyamide microplastics (PA-MP) in order to measure its effects on the hematology, gill, and intestinal morphology. The results exhibited that all the fish treated with PA-MP ingested microplastics and the quantity of accumulation was significantly greater in higher salinity gradients (9 ‰ and 12 ‰). In addition, the PA-MP treated fish showed increased glucose level and at the same time reduced hemoglobin concentration with the increase of salinity. The percentages of abnormalities in erythrocytes both cellular (twin, teardrop and spindle shaped) and nuclear (notched nuclei, nuclear bridge and karyopyknosis) significantly enhanced with PA-MP exposure again in higher salinity treatments (9 ‰ and 12 ‰). The principal component analysis (PCA) exhibited that the addition of 10 mg/L PA-MP negatively affected the hematology of Nile tilapia than that of salinity treatments alone. Besides, the exposure of PA-MP in 9 ‰ and 12 ‰ salinity gradients escalated the severity of histological damages in gills and intestine. Overall, this experiment affirms that the increase of salinity enhanced the microplastics ingestion and toxicity in Nile tilapia, therefore, PA-MP possibly is addressed as additional physiological stressors along with increased salinity gradients in environment.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Sadiqul Islam
- Department of Marine Fisheries Sciences, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
25
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
26
|
Zhang W, Teng M, Yan J. Combined effect and mechanism of microplastic with different particle sizes and levofloxacin on developing Rana nigromaculata: Insights from thyroid axis regulation and immune system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121833. [PMID: 39003906 DOI: 10.1016/j.jenvman.2024.121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) usually appear in the aquatic environment as complex pollutants with other environmental pollutants, such as levofloxacin (LVFX). After 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, we measured the weight, snout-to-vent length (SVL), and development stages of Rana nigromaculata. Furthermore, we analyzed proteins and genes related to immune system and thyroid axis regulation, intestinal histological, and bioaccumulation of LVFX and MPs in the intestine and brain to further explore the toxic mechanism of co-exposure. We found MPs exacerbated the effect of LVFX on growth and development, and the order of inhibitory effects is as follows: LVFX-MP3>LVFX-MP1>LVFX-MP2. 0.1 and 1 μm MP could penetrate the blood-brain barrier, interact with LVFX in the brain, and affect growth and development by regulating thyroid axis. Besides, LVFX with MPs caused severer interference on thyroid axis compared with LVFX alone. However, 10 μm MP was prone to accumulating in the intestine, causing severe histopathological changes, interfering with the intestinal immune system and influencing growth and development through immune enzyme activity. Thus, we concluded that MPs could regulate the thyroid axis by interfering with the intestinal immune system.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
27
|
Vineetha VP, Suresh K, Pillai D. Impact of sub-chronic polystyrene nanoplastics exposure on hematology, histology, and endoplasmic reticulum stress-related protein expression in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110982. [PMID: 38688406 DOI: 10.1016/j.cbpb.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics (NPs) are one of the most hazardous marine litters, having the potential to cause far-reaching impacts on the environment and humankind. The effect of NPs on fish health has been studied, but their impact on the subcellular organelles remains unexplored. The present investigation studied the possible implications of polystyrene-nanoplastics (PS-NPs) on the hematology, tissue organization, and endoplasmic reticulum (ER) stress-related proteins in Nile tilapia (Oreochromis niloticus). Fish were exposed to ∼100 nm PS-NPs at environmentally relevant (0.1 mg/L), and sublethal (1, 10 mg/L) concentrations for 14 days through water exposure. The growth performance and hematological parameters such as erythrocytes, hemoglobin, hematocrit, and leucocytes decreased, while thrombocytes increased with PS-NPs dose-dependently. The gills, liver, kidney, and heart tissues displayed increasing degrees of pathology with increased concentrations of PS-NPs. The gills showed severe epithelial hyperplasia and lamellar fusion. The liver had an abstruse cellular framework, membrane breakage, and vacuolation. While glomerular and tubular atrophy was the most prominent pathology in the kidney tissue, the heart displayed extensive myofibrillar loss and disorderly arranged cardiac cells. The ER-stress-related genes such as bip, atf6, ire1, xbp1, pkr, and apoptotic genes such as casp3a, and bax were over-expressed, while, the anti-apoptotic bcl2 was under-expressed with increasing concentrations of PS-NPs. Immunohistochemistry and blotting results of GRP78, CHOP, EIF2S, and ATF6 in gills, liver, kidney, and heart tissues affirmed the translation to ER stress proteins. The results revealed the sub-lethal adverse effects and the activation of the ER-stress pathway in fish with sub-chronic exposure to PS-NPs.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| | - Kummari Suresh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi 682506, Kerala, India.
| |
Collapse
|
28
|
Hamed M, Kotob MH, Abou Khalil NS, Anwari EA, El Gazzar WB, Idriss SKA, Fakhry ME, Farag AA, Sabra MS, Salaah SM, Abdel-Zaher S, Yehia Saad FA, Naguib M, Lee JS, Sayed AEDH. Hyaluronic acid impacts hematological endpoints and spleen histological features in African catfish (Clarias gariepinus). BMC Vet Res 2024; 20:294. [PMID: 38970005 PMCID: PMC11225171 DOI: 10.1186/s12917-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Mohamed H Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Nasser S Abou Khalil
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assuit, Egypt
- Department of Medical Physiology, Faculty of Medicine, Assuit University, Assiut, 71516, Egypt
| | - Esraa A Anwari
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, 13133, Jordan
- 9Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Shaimaa K A Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Michel E Fakhry
- Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sally M Salaah
- Fresh Water Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Fatma Alzahraa Yehia Saad
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
29
|
Li Z, Zhao M, Feng Z, Zhu L, Sui Q, Sun X, Xia B. Combined toxicity of polyvinyl chloride microplastics and copper to marine jacopever (Sebastes schlegelii). MARINE ENVIRONMENTAL RESEARCH 2024; 199:106598. [PMID: 38865873 DOI: 10.1016/j.marenvres.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Marine organisms commonly encounter co-stress resulting from the coexistence of microplastics (MPs) and heavy metals pollution in marine environments. Nevertheless, the combined effects and toxicity mechanisms of MPs and heavy metals on marine organisms remain unclear. This study integrated growth, physiological, morphological, and biochemical markers to assess the individual and combined toxicity of polyvinyl chloride MPs (PVC MPs, 1 × 104 particles/L) and copper (Cu, 200 μg/L) on marine jacopever (Sebastes schlegelii). The results revealed that co-exposure to MPs and Cu had a more detrimental impact on jacopever compared to the single-exposure groups, as evidenced by the enhanced growth inhibition, respiratory stress, and hepatotoxicity. This phenomenon may be attributed to PVC MPs accelerating the accumulation of Cu in jacopever liver. Therefore, peroxidation damage occurred in the co-exposed liver and may result in liver dysfunction. These findings contribute valuable insights into the risks associated with the coexistence of MPs and heavy metal pollution in marine ecosystems.
Collapse
Affiliation(s)
- Zike Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Meijing Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhihua Feng
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
30
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
31
|
Yang H, Ju J, Wang Y, Zhu Z, Lu W, Zhang Y. Micro-and nano-plastics induce kidney damage and suppression of innate immune function in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172952. [PMID: 38703841 DOI: 10.1016/j.scitotenv.2024.172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Aquatic environments serve as critical repositories for pollutants and have significantly accumulated micro- and nanoplastics (MNPs) due to the extensive production and application of plastic products. While the disease resistance and immunity of fish are closely linked to the condition of their aquatic habitats, the specific effects of nanoplastics (NPs) and microplastics (MPs) within these environments on fish immune functions are still not fully understood. The present study utilized zebrafish (Danio rerio) embryos and larvae as model organisms to examine the impacts of polystyrene NPs (100 nm) and MPs (5 μm) on fish immune responses. Our findings reveal that NPs and MPs tend to accumulate on the surfaces of embryos and within the intestines of larvae, triggering oxidative stress and significantly increasing susceptibility to Edwardsiella piscicida infection in zebrafish larvae. Transmission electron microscopy examined that both NPs and MPs inflicted damage to the kidney, an essential immune organ, with NPs predominantly inducing endoplasmic reticulum stress and MPs causing lipid accumulation. Transcriptomic analysis further demonstrated that both NPs and MPs significantly suppress the expression of key innate immune pathways, notably the C-type lectin receptor signaling pathway and the cytosolic DNA-sensing pathway. Within these pathways, the immune factor interleukin-1 beta (il1b) was consistently downregulated in both exposure groups. Furthermore, exposure to E. piscicida resulted in restricted upregulation of il1b mRNA and protein levels, likely contributing to diminished disease resistance in zebrafish larvae exposed to MNPs. Our findings suggest that NPs and MPs similarly impair the innate immune function of zebrafish larvae and weaken their disease resistance, highlighting the significant environmental threat posed by these pollutants.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
32
|
Sabra MS, Sayed AEDH, Idriss SKA, Soliman HAM. Single and combined toxicity of tadalafil (Cilais) and microplastic in Tilapia fish (Oreochromis niloticus). Sci Rep 2024; 14:14576. [PMID: 38914580 PMCID: PMC11196265 DOI: 10.1038/s41598-024-64282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
The joint impact of tadalafil (Cilais) as a pharmaceutical residue and microplastics on fish is not well comprehended. The current study examined haematological, biochemical, and antioxidant parameters, along with immunohistochemical and histological indications in tilapia (Oreochromis niloticus) after being exposed to tadalafil, polyethylene microplastics (PE-MPs), and their mixtures for 15 days. The fish were distributed into 1st group control group (The fish was maintained in untreated water without any supplements); 2nd group exposed to 10 mg/L PE-MPs;3rd group exposed to 20 mg/l tadalafil (Cilais); 4th group exposed to 20 mg/l tadalafil (Cilais) + 10 mg/LPE-MPs (in triplicate). The levels of creatinine, uric acid, glucose, AST, ALT, and albumin in fish treated with tadalafil alone or in combination with PE-MPs were significantly higher than those in the control group. Fish exposed to PE-MPs, tadalafil, and tadalafil plus PE-MPs showed significantly lower levels of RBCs, Hb, Ht, neutrophils, and lymphocytes compared to the control group. Serum levels of total antioxidant capacity and reduced glutathione (GSH) were notably lowered in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations in comparison to the control group. Malondialdehyde (MDA) serum levels were notably elevated in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations compared to the control group. The most severe impact was observed in the tadalafil + PE-MPs combination group. Interleukin-6 (IL-6) levels were significantly increased in liver tissues following exposure to both tadalafil and microplastics compared to tissues exposed to only one substance or the control group. Changes in the gills, liver, and renal tissues were seen following exposure to PE-MPs, tadalafil, and tadalafil + PE-MPs combination in comparison to the control group of fish. Ultimately, the mixture of tadalafil and PE-MPs resulted in the most detrimental outcomes. Tadalafil and PE-MPs exhibited showed greater adverse effects, likely due to tadalafil being absorbed onto PE-MPs.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Shaimaa K A Idriss
- Department of Fish Disease and Management, Faculty of Veterinary of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
33
|
Yahaya TO, Ibrahim AB, Kalgo AS, Adewale MK, Emmanuela CC, Abdulkadir B, Fari AZ, Attahiru AK, Saadatu A, Wanda JD. Microplastics exposure altered hematological and lipid profiles as well as liver and kidney function parameters in albino rats (Rattus norvegicus). Environ Anal Health Toxicol 2024; 39:e2024021-0. [PMID: 39054835 PMCID: PMC11294664 DOI: 10.5620/eaht.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The global occurrence of microplastics and their poorly understood health implications underscore the need for scientific investigation. This study aimed to assess the effects of microplastics exposure. Twenty-five (25) albino rats (Rattus norvegicus) were divided into five (5) groups, each consisting of five rats. Group 1 (the negative control) received normal feed; group 2 (the positive control) was administered a 10 % lead acetate solution; and groups 3, 4, and 5 were administered 1 %, 5 %, and 10 % microplastic solutions, respectively. The rats were monitored for 28 days, after which blood samples were taken for hematological and lipid profiles as well as liver and kidney function parameters. The results revealed dose-dependent significant (p < 0.05) alterations in the health indices of the treated rats and the positive control compared with the negative control. Specifically, the hematological parameters, including the white blood cells (WBC) and its subtypes, were reduced, indicating immunosuppressive effects, and the red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), platelets, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were reduced, indicating anemia. The 1 % and 5 % microplastic solutions raised the lipid profiles of the treated rats, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), while the 10 % concentration decreased them, causing hyperlipidemia and hypolipidemia, respectively. The liver function parameters, including total protein (TP), albumin (ALB), aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), were elevated, indicating liver damage. Elevation of kidney function parameters, including sodium ion (Na+), potassium ion (K+), chloride ion (Cl-), urea, and creatinine (CRT), were noticed, suggesting kidney injuries. It can be inferred from these results that microplastics are toxic. Hence, human exposure to microplastics should be reduced to a minimum.
Collapse
Affiliation(s)
| | | | - Abdulrahman Sani Kalgo
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | | | - Baliqees Abdulkadir
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Adamu Zainab Fari
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Asiya Koko Attahiru
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Abdullahi Saadatu
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Joseph Dahali Wanda
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State, Nigeria
| |
Collapse
|
34
|
Sabra MS, El-Aal MA, Idriss SK, Soliman HA, Salaah SM, Sayed AEDH. Possible beneficial effects of nano chitosan against doxycycline toxicity in Nile tilapia (Oreochromis niloticus). AQUACULTURE 2024; 587:740855. [DOI: 10.1016/j.aquaculture.2024.740855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
35
|
Eid Z, Mahmoud UM, Sayed AEDH. Deleterious effects of polypropylene released from paper cups on blood profile and liver tissue of Clarias gariepinus: bioremediation using Spirulina. Front Physiol 2024; 15:1380652. [PMID: 38846421 PMCID: PMC11155391 DOI: 10.3389/fphys.2024.1380652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Despite numerous studies on microplastics, the biological impacts of polypropylene microplastics (PP-MPs) and its toxicity on freshwater fish have yet to be fully revealed. The purpose of this research was to look at the potentially harmful effects of PP-MPs in freshwater African catfish Clarias gariepinus and bioremediation using Spirulina. After acclimatization to laboratory conditions, 108 fish (125 ± 3 gm and 27 ± 2 cm) were assigned into triplicate six experimental groups (12 fish/group), a control group, Spirulina group (SP), PP-MP-treated groups (0.14 and 0.28 mg/l PP-MPs), and PP-MP + Spirulina-treated groups (0.14 mg/l PP-MPs + 200 mg/L SP and 0.28 mg/l PP-MPs +200 mg/L SP) for 15-day exposure and 45-day recovery after that. The hematological parameters exhibiting significance (RBCs, Hct, Hb, and MCV) or non-significance (MCH and MCHC) either decreased with the increase in PP-MP doses from 0.0 in the control to 0.28 mg/L red blood cells (RBCs), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) and platelets or increased with such an increase in doses (mean corpuscular volume (MCV)). The liver enzyme activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) exhibited non-significant (p ≥ 0.05) or significant (p < 0.05) increases in (0.14 and 0.28 mg/L) PP-MP-exposed groups, respectively, except ALP. Furthermore, there was a significant (p < 0.05) or non-significant (p ≥ 0.05) increase in 0.14 and 0.28 mg/l PP-MP +200 mg/L-exposure groups, respectively, compared to the control group and the same exposure group without Spirulina. In comparison to the control group, PP-MPs (0.14 and 0.28 mg/L) induced a significant (p < 0.05) increase in the percentage of poikilocytosis and nuclear abnormalities of RBCs. The liver tissue from fish exposed to PP-MPs exhibited varying degrees of pathological changes. These results indicated that these pathological changes increased with PP-MP concentration, suggesting that the effect of PP-MPs was dose-dependent. After 45 days of recovery under normal conditions, it was obvious that there was a significant improvement in the percentage of poikilocytosis and nuclear abnormalities of RBCs, as well as a non-significant improvement in hemato-biochemical parameters and liver tissue.
Collapse
Affiliation(s)
- Zainab Eid
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Usama M. Mahmoud
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Zhang P, Lu G, Sun Y, Yan Z, Zhang L, Liu J. Effect of microplastics on oxytetracycline trophic transfer: Immune, gut microbiota and antibiotic resistance gene responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134147. [PMID: 38565017 DOI: 10.1016/j.jhazmat.2024.134147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
37
|
König Kardgar A, Doyle D, Warwas N, Hjelleset T, Sundh H, Carney Almroth B. Microplastics in aquaculture - Potential impacts on inflammatory processes in Nile tilapia. Heliyon 2024; 10:e30403. [PMID: 38726173 PMCID: PMC11079099 DOI: 10.1016/j.heliyon.2024.e30403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Darragh Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Warwas
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Terese Hjelleset
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Shahriar SIM, Islam N, Emon FJ, Ashaf-Ud-Doulah M, Khan S, Shahjahan M. Size dependent ingestion and effects of microplastics on survivability, hematology and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). CHEMOSPHERE 2024; 356:141827. [PMID: 38583529 DOI: 10.1016/j.chemosphere.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 μm (smaller microplastic); T2, 300 μm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.
Collapse
Affiliation(s)
- Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Saleha Khan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
39
|
Sayed AEDH, Emeish WFA, Bakry KA, Al-Amgad Z, Lee JS, Mansour S. Polystyrene nanoplastic and engine oil synergistically intensify toxicity in Nile tilapia, Oreochromis niloticus : Polystyrene nanoplastic and engine oil toxicity in Nile tilapia. BMC Vet Res 2024; 20:143. [PMID: 38622626 PMCID: PMC11020678 DOI: 10.1186/s12917-024-03987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1β (IL-1β), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Assiut University, Assiut, 71516, Egypt.
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | | | - Karima A Bakry
- Fish Diseases Department, South Valley University, Qena, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Salwa Mansour
- Zoology Department, South Valley University, Qena, Egypt
| |
Collapse
|
40
|
Sun Y, Deng Q, Zhang Q, Zhou X, Chen R, Li S, Wu Q, Chen H. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106423. [PMID: 38442589 DOI: 10.1016/j.marenvres.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microplastics (5 mm - 1 μm) have become one of the major pollutants in the environment. Numerous studies have shown that microplastics can have negative impacts on aquatic organisms, affecting their liver function levels. However, the extent of these effects and their potential toxicological mechanisms are largely unknown. In this study, a meta-analysis and systematic review were conducted to assess the effects of microplastics on fish liver function and summarize the potential toxicological mechanisms of microplastic-induced liver toxicity. The meta-analysis results indicate that compared to the control group, exposure to microplastics significantly affects fish liver indicators: aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), alkaline phosphatase (ALP) (p < 0.001), total protein (TP) (p < 0.001), and lactate dehydrogenase (LDH) (p < 0.001), including oxidative stress indicators: superoxide dismutase (SOD) (p < 0.001), glutathione S-transferase (GST) (p < 0.001), glutathione (GSH) (p < 0.001), and malondialdehyde (MDA) (p < 0.001) in fish liver. For fish living in different environments, the potential toxicological mechanisms of microplastics exposure on fish liver may exhibit some differences. For freshwater fish, the mechanism may be that microplastics exposure causes overproduction of reactive oxygen species (ROS) in fish hepatocyte mitochondria. ROS promotes the expression of toll-like receptor 2 (TLR2) and activates downstream molecules myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) of the TLR2 signaling pathway, leading to phosphorylation of NF-κB p65. This leads to the release of inflammatory factors and oxidative stress and inflammation in fish liver. In addition, for seawater fish, the mechanism may be that microplastics exposure can cause damage or death of fish hepatocytes, leading to continuous pathological changes, inflammation, lipid and energy metabolism disorders, thereby causing significant changes in liver function indexes.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
41
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Jahan I, Chowdhury G, Rafi S, Ashab MA, Sarker M, Chakraborty A, Couetard N, Kabir MA, Hossain MA, Iqbal MM. Assessment of dietary polyvinylchloride, polypropylene and polyethylene terephthalate exposure in Nile tilapia, Oreochromis niloticus: Bioaccumulation, and effects on behaviour, growth, hematology and histology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123548. [PMID: 38355089 DOI: 10.1016/j.envpol.2024.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Microplastics (MPs) have been recognized as emerging aquatic pollutants receiving major concern due to their detrimental effects on aquatic life. Nile Tilapia, Oreochromis niloticus is a model species considered in toxicological studies to address the effects of pollutants in freshwater animals. However, comprehensive knowledge comparing the impacts on fish across various MPs polymers is scarce. Therefore, the overarching aim of the current study was to examine the bioconcentration of MPs polymers: polyvinylchloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET), and their toxic effects on growth, and behavioral responses, hematology, and histology of gills, liver, and intestine in O. niloticus. Fishes were subjected to a 21-day dietary exposure to MPs by assigning them into six treatment groups: T1 (4% of PVC), T2 (4% of PP), T3 (4% of PET), T4 (8% of PVC), T5 (8% of PP), T6 (8% of PET), and control (0% of MPs), to assess the effects on fish across the polymers and dosage. Results showed several abnormalities in anatomical and behavioral parameters, lower growth, and high mortality in MPs-exposed fish, indicating a dose-dependent relationship. The elevated dosage of polymers raised the bioavailability of PVC, PP, and PET in gills and gut tissues. Noteworthy erythrocyte degeneration referred to cytotoxicity and stress imposed by MPs, whereas the alterations in hematological parameters were possibly due to blood cell damage, also indicating mechanisms of defense against MPs toxicity. Histopathological changes in the gills, liver, and intestine confirmed the degree of toxicity and associated dysfunctions in fish. A higher sensitivity of O. niloticus to PET-MPs compared to other polymers is likely due to its chemical properties and species-specific morphological and physiological characteristics. Overall, the present study reveals valuable insights into the emerging threat of MPs toxicity in freshwater species, which could be supportive of future toxicological research.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Saba Rafi
- Research Centre for Experimental Marine Biology and Biotechnology, Plentzia Marine Station, University of the Basque Country (PiE-UPV/EHU), 48620, Plentzia, Bizkaia, Spain.
| | - Md Atique Ashab
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Mukta Sarker
- Department of Coastal and Marine Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Ananya Chakraborty
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650, Banyuls-sur-mer, France.
| | - Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Coastal Marine Ecosystem Research Centre, Central Queensland University, Gladstone, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, QLD 4701, Australia.
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
43
|
Temiz Ö, Kargın D. Physiological responses of oxidative damage, genotoxicity and hematological parameters of the toxic effect of neonicotinoid-thiamethoxam in Oreochromis niloticus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104377. [PMID: 38272153 DOI: 10.1016/j.etap.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The purpose of investigation assessed the impacts of neonicotinoid thiamethoxam (TMX) at sublethal concentrations in hematological profile and renal function of Oreochromis niloticus. In the experiment, fish were exposed to TMX in four groups (0, 50, 100 and 150 ppm) for 7 days. At the end of the experiment, biochemical analysis of blood samples showed that the parameters indicating renal function showed a significant increase in serum enzymes ALT, AST, ALP and metabolites (BUN, urea, uric acid, creatinine and cortisol) concentrations, while albumin concentration decreased in a dose-dependent manner compared to the control group. In parallel with the decrease in Na+, K+ and Ca+2 in blood ion levels, there was a significant decrease in the activity of Na+/K+ ATPase, Ca+2 ATPase and AChE enzyme, levels of GSH and HSP70 in kidney tissue in TMX groups compared to the control group. It was determined that the toxic effect of TMX caused a significant increase in TBARS, PC, 8-OHdG levels, respectively. In conclusion, our study shows that TMX causes dose-dependent toxic effects, with knock-on effects on physiological processes regarding the hematological profile and renal function of O. niloticus.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey.
| | - Dicle Kargın
- Faculty of Health Sciences, Marmara University, 34865 Istanbul, Turkey
| |
Collapse
|
44
|
Wu D, Lu X, Dong LX, Tian J, Deng J, Wei L, Wen H, Zhong S, Jiang M. Nano polystyrene microplastics could accumulate in Nile tilapia (Oreochromis niloticus): Negatively impacts on the intestinal and liver health through water exposure. J Environ Sci (China) 2024; 137:604-614. [PMID: 37980043 DOI: 10.1016/j.jes.2023.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Microplastics (MPs) have become a significant concern for their potential toxicity. However, the correlation between the size of plastic particles and their toxicity remains inconclusive. Here, we investigate the toxic effects of different sizes (80 nm, 800 nm, 8 µm and 80 µm) polystyrene MPs (PS-MPs) on the model organism Nile tilapia (Oreochromis niloticus). The results of bioluminescent imaging indicate that the 80 nm PS-MPs are more likely to invade the body. H&E staining shows severe damage on the intestinal villi and distinct hepatic steatosis in the 80 nm group. EdU labeling shows that the proliferation activity of intestinal and liver cells reduces significantly in the 80 nm group. The gut microbiome analysis shows a severe imbalance of gut microbiota homeostasis in the 80 nm group. The analysis of liver transcriptomics and metabolomics shows that the liver lipid metabolism is disordered in the 80 nm group. In conclusion, this study confirms that the 80 nm PS-MPs are more likely to induce intestinal and liver toxicity. All the above lay the foundation for further study on the pathological damage of MPs to other organisms.
Collapse
Affiliation(s)
- Di Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li-Xue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Deng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
45
|
Di Fiore C, Ishikawa Y, Wright SL. A review on methods for extracting and quantifying microplastic in biological tissues. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132991. [PMID: 37979423 DOI: 10.1016/j.jhazmat.2023.132991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Literature about the occurrence of microplastic in biological tissues has increased over the last few years. This review aims to synthesis the evidence on the preparation of biological tissues, chemical identification of microplastic and accumulation in tissues. Several microplastic's extraction approaches from biological tissues emerged (i.e., alkaline, acids, oxidizing and enzymatic). However, criteria used for the selection of the extraction method have yet to be clarified. Similarly, analytical methodologies for chemical identification often does not align with the size of particles. Furthermore, sizes of microplastics found in biological tissues are likely to be biologically implausible, due to the size of the biological barriers. From this review, it emerged that further assessment are required to determine whether microplastic particles were truly internalized, were in the vasculature serving these organs, or were an artefact of the methodological process. The importance of a standardisation of quality control/quality assurance emerged. Findings arose from this review could have a broad implication, and could be used as a basis for further investigations, to reduce artifact results and clearly assess the fate of microplastics in biological tissues.
Collapse
Affiliation(s)
- Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, I-86100 Campobasso, Italy.
| | - Yukari Ishikawa
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| | - Stephanie L Wright
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Khan T, Hodson M. Polyethylene microplastic can adsorb phosphate but is unlikely to limit its availability in soil. Heliyon 2024; 10:e23179. [PMID: 38192803 PMCID: PMC10772576 DOI: 10.1016/j.heliyon.2023.e23179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
In plant growth experiments, the presence of microplastics (MPs) often reduces plant growth. We conducted laboratory experiments to investigate the potential of microplastics to adsorb the major soil nutrient phosphate; adsorption to MPs was then compared to adsorption to soil. Adsorption experiments used two contrasting soils, pristine high density polyethylene and artificially weathered material (the same material but exposed to 185 nm UV light for 420 h over 105 days), phosphate solutions (dissolved KH2PO4) ranging from 0.2 to 200 mg L-1 and a solid (g) to liquid (mL) ratio of 1: 150 at different values of pH (2-12) and different concentrations of background electrolyte (0.00-0.10 M NaNO3). The adsorption data were best fitted to linear and Freundlich isotherms. In initial experiments where pH was not fixed and with a background electrolyte of 0.10 M NaNO3, Kd values ranged from 3.37 to 27.65 L kg-1, log Kf from 1.21 to 1.96 and 1/n from 0.36 to 0.84. Exposure of the MP to 185 nm UV radiation led to the appearance of a C=O functional group in the MP; the partition coefficient Kd, calculated from the linear isotherm did not increase but the logKf value derived from fits to the Freundlich isotherm increased by a factor of 1.5. Kd values for soils were 3-7.5 times greater than those for MPs and log Kf values 1.1-1.7 greater. In the experiments in which initial pH and ionic strength were varied, adsorption was similar across all treatments with adsorption parameters for the higher organic content soil sometimes having the highest values and the pristine microplastic the lowest. In the desorption experiments most of the adsorbed phosphate desorbed. Overall our findings indicate that despite their ability to adsorb phosphate, MPs are unlikely to control the fate and behaviour of phosphate in soil.
Collapse
Affiliation(s)
- T.F. Khan
- Environment and Geography Department, University of York, York, YO10 5NG, UK
- Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh
| | - M.E. Hodson
- Environment and Geography Department, University of York, York, YO10 5NG, UK
| |
Collapse
|
47
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
48
|
Abdullah S, Naguib M, Salah El-Din AED, Sayed AEDH. Hematobiochemical and histopathological alterations in Nile Tilapia (Oreochromis niloticus) exposed to ethidium bromide: The protective role of Spirulina platensis. AQUACULTURE AND FISHERIES 2024; 9:93-103. [DOI: 10.1016/j.aaf.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Xu J, Yang W, Wang D, Wang Z, Liu C, Li J. Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress. TOXICS 2023; 12:9. [PMID: 38250965 PMCID: PMC10819112 DOI: 10.3390/toxics12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L-1) and combined with METH (250 and 500 μg L-1) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10-20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51-74%) and lower velocity (0.09-0.55 cm s-1) compared with the control (1.07 cm s-1). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish's intestinal tract, triggering inflammatory responses (histological scores: 1.6-2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments.
Collapse
Affiliation(s)
- Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Wenqi Yang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Dongyi Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Chuang Liu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Jiana Li
- Ningbo Academy of Ecological and Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
50
|
Scaria SS, Balasubramanian B, Dandin VS, Meyyazhagan A, Pappuswamy M, Sattanathan G, Liu WC, Kadanthottu Sebastian J, Park S. Review on impacts of micro- and nano-plastic on aquatic ecosystems and mitigation strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106759. [PMID: 37977011 DOI: 10.1016/j.aquatox.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The rapid proliferation of microplastics (MPs) and nanoplastics (NPs) in our environment presents a formidable hazard to both biotic and abiotic components. These pollutants originate from various sources, including commercial production and the breakdown of larger plastic particles. Widespread contamination of the human body, agroecosystems, and animals occurs through ingestion, entry into the food chain, and inhalation. Consequently, the imperative to devise innovative methods for MPs and NPs remediation has become increasingly apparent. This review explores the current landscape of strategies proposed to mitigate the escalating threats associated with plastic waste. Among the array of methods in use, microbial remediation emerges as a promising avenue for the decomposition and reclamation of MPs and NPs. In response to the growing concern, numerous nations have already implemented or are in the process of adopting regulations to curtail MPs and NPs in aquatic habitats. This paper aims to address this gap by delving into the environmental fate, behaviour, transport, ecotoxicity, and management of MPs and NPs particles within the context of nanoscience, microbial ecology, and remediation technologies. Key findings of this review encompass the intricate interdependencies between MPs and NPs and their ecosystems. The ecological impact, from fate to ecotoxicity, is scrutinized in light of the burgeoning environmental imperative. As a result, this review not only provides an encompassing understanding of the ecological ramifications of MPs and NPs but also highlights the pressing need for further research, innovation, and informed interventions.
Collapse
Affiliation(s)
- Shilpa Susan Scaria
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029, India
| | | | | | - Arun Meyyazhagan
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029, India
| | | | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|