1
|
Alukkal CR, Modiri M, Ruiz RA, Choi YJ, Lee LS. Evaluation of PFAS extraction and analysis methods for biosolids. Talanta 2025; 286:127485. [PMID: 39736209 DOI: 10.1016/j.talanta.2024.127485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents. Three biosolids examined included not stabilized, anaerobically digested, and activated sludge with long-term lagoon-stabilized solids, resulting in differing properties. One method is a methanolic extraction with ENVI-Carb clean-up (ME), modified by adding isopropanol (ME-P) to the injection vial to prevent emulsification that can occur with more complex biosolids matrices. The second method was the U.S. EPA 1633 method involving additional solid-phase extraction (SPE) and filtration while the third method was Quick Easy Cheap Effective Rugged and Safe (QuEChERS), yet to be tested on biosolids. Method performance was evaluated based on instrument precision, limit of quantitation (LOQ), and extraction recoveries. PFAS concentrations and recoveries were similar for Me-P and 1633 methods while QuEChERS performed poorly. Method 1633 exhibited better reproducibility with lower relative standard deviations but had higher LOQ values due to sample dilution. Most LOQs ranged between 0.06 and 0.3 μg/kg across methods, while recovery of spiked native PFAS ranged between 70 and 130 % in most cases. Methanol-based mobile phases resulted in better peak shape. ME-P excelled in overall cost-effectiveness showing superior extraction efficiency with fewer operational steps compared to other methods for PFAS quantitation in biosolids.
Collapse
Affiliation(s)
- Caroline Rose Alukkal
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahsa Modiri
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda S Lee
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Ma Y, Sharkey M, Coggins AM, Stubbings W, Healy MG, Harrad S. Concentrations of perfluoroalkyl substances in sediments and wastewater treatment plant-derived biosolids from Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179380. [PMID: 40273518 DOI: 10.1016/j.scitotenv.2025.179380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Concentrations of 39 perfluoroalkyl substances (PFAS) are reported in 120 inland and transitional sediments from Ireland. We also report concentrations in 21 samples of biosolids from seven Irish wastewater treatment plants (WWTPs; n = 3 from each). This is the first report of the presence (% detection frequency) in sediments of: perfluroroundecane sulfonate (PFUdS) (7.4 %), perflurorododecane sulfonate (PFDoS) (8.6 %), perfluorotridecane sulfonate (PFTrDS) (7.4 %), 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate (11Cl-PF3OUdS or 8:2 Cl-PFESA) (7.4 %), and 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (9Cl-PF3ONS or 6:2 Cl-PFESA) (2.5 %) and of the following in biosolids: PFDoS (24 %), PFTrDS (38 %), and perfluoroethylcyclohexane sulfonate (PFECHS) (38 %). Concentrations of all target PFAS in biosolids exceed significantly (p < 0.05) those in sediments. Moreover, the relative abundance of different PFAS classes differs markedly. In sediments, perfluorocarboxylic acids (PFCAs) dominate (on average 55 % ΣPFAS), while in biosolids, PFCAs constitute on average 26 % ΣPFAS, with perfluorosulfonic acids (PFSAs) the main group (37 % ΣPFAS). This suggests PFAS in Irish sediments are a complex integral of many sources, of which WWTPs are just one. Concentrations in sediments were assessed for ecotoxicity by comparison with predicted no effect concentration (PNEC) values promulgated by the NORMAN network. In general, concentrations detected are well below PNECs. However, the PNEC for perfluorooctane sulfonic acid (PFOS) is exceeded for most sediments. While overall, novel PFAS (nPFAS) like sodium 2,2,3-trifluor-3-(1,1,2,2,3,3-hexafluoro-3-trifluormethoxypropoxy) propionate (ADONA), PFECHS, and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propanoic acid (HFPO-DA aka Gen-X) are present in low abundance in biosolids and sediments; 11Cl-PF3OUdS (90 % ΣPFAS) dominates one sediment, while two other sediments contain Gen-X at 59 and 69 % ΣPFAS respectively. This suggests unidentified local sources of these nPFAS at those sites.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Martin Sharkey
- Physics, School of Natural Sciences, University of Galway, Galway H91 CF50, Ireland.
| | - Ann Marie Coggins
- Physics, School of Natural Sciences, University of Galway, Galway H91 CF50, Ireland
| | - Will Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mark G Healy
- Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Galway H91 HX31, Ireland
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Biswas B, Joseph A, Parveen N, Ranjan VP, Goel S, Mandal J, Srivastava P. Contamination of per- and poly-fluoroalkyl substances in agricultural soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124993. [PMID: 40120441 DOI: 10.1016/j.jenvman.2025.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Numerous reviews have focused on the chemistry, fate and transport, and remediation of per- and poly-fluoroalkyl substances (PFAS) across various environmental media. However, there remains a significant gap in the literature regarding a comprehensive review specifically addressing PFAS contamination within agricultural soils. Recognizing the threat PFAS pose to ecosystems and human health, this review critically examines the sources of PFAS in agricultural environments, their uptake and translocation within plant systems, and recent advancements in soil remediation techniques. PFAS ingress into agricultural soils primarily occurs through the application of biowastes, wastewater, and pesticides, necessitating a thorough examination of their pathways and impacts. Factors such as carbon chain length, salinity, temperature, and pH levels affect PFAS uptake and distribution within plants, ultimately influencing their transfer through the food web. Moreover, this review explores a range of physical, chemical, and biological strategies currently employed for the remediation of PFAS-contaminated agricultural soils.
Collapse
Affiliation(s)
- Bishwatma Biswas
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; Civil Engineering Department, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Sudha Goel
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom; Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
4
|
Liang Y, Wang A, Liang S, Sun K, Xie R, Zheng C, Zhang S, Tang C, Cheng D, Wang J, Huang Q, Lin H. Durable Ti 4O 7 Heterojunction Composite Membrane Encapsulating N-Doped Graphene Nanosheets for Efficient Electro-Oxidation of GenX and Other PFAS in Fluorochemical Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4745-4755. [PMID: 40008448 DOI: 10.1021/acs.est.4c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Rational interfacial engineering design of an electrocatalyst, such as a heterojunction structure, can effectively enhance its catalytic activity. This study aims to address a critical challenge associated with the use of carbon material@Ti4O7 heterojunction composite electrodes for wastewater treatment─electrode stability over long-term operation. Herein, we report a highly stabilized interfacial engineering strategy, i.e., the use of conductive inorganic CeO2 as a "cement" to firmly encapsulate N-doped graphene oxide nanosheets (N-GS) on the Ti4O7 surface. The defect-rich N-GS encapsulated on the Ti4O7 surface significantly enhances interfacial charge transfer. This enhancement results in the N-GS/CeO2@Ti4O7 heterojunction composite electrode exhibiting excellent efficiency in the electro-oxidation of hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Furthermore, a flow-through N-GS/CeO2@Ti4O7 reactive electrochemical membrane system effectively mineralizes other 35 PFASs in a real fluorochemical wastewater sample, achieving a high defluorination rate of 70-90% and exhibiting better performance in PFAS destruction and energy efficiency compared to the UV/KI-SO32- process. Results of this study enhance our understanding of the electrochemical oxidation of PFAS and offer valuable insight into the design of stabilized Ti4O7 heterojunction composites. These findings are instrumental in advancing the development of effective treatments for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Yiyang Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Anqi Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Shangtao Liang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Chuanen Zheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Sihan Zhang
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Caiming Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jinxia Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
5
|
Li S, Zhang L, Zhong S, Zhu J, Wei Z. Ternary micro-electrolysis filter media for efficient PFOA removal in water: synthesis, characterization, and performance study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:609-625. [PMID: 40087969 DOI: 10.2166/wst.2025.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/06/2025] [Indexed: 03/17/2025]
Abstract
This study reports the preparation of granular ternary micro-electrolysis materials and their effectiveness in removing the emerging contaminant PFOA. Al/nZVI/C@F granules were synthesized using a liquid-phase reduction method combined with high-temperature calcination. By comparing the removal of methylene blue dye by granules, the optimum preparation conditions were determined as follows: Fe:C = 5:1, fly ash = 50%, calcination temperature = 800 °C, and holding time = 1 h. Static batch experiments revealed that under optimal conditions (PFOA concentration = 25 mg/L, solid-liquid ratio = 30 g/L, pH = 3, reaction temperature = 15 °C), Al/nZVI/C@F achieved a PFOA removal rate of 97.83%. The removal efficiency of Al/nZVI/C@F (93.90%) was significantly higher than that of commercial iron-carbon (12.75%). After 45 days of dynamic column experiments, the removal efficiency of nZVI/C@F and Al/nZVI/C@F for PFOA (50 mg/L) remained above 60%, demonstrating strong practical application potential. Further adsorption-desorption experiments revealed that nZVI/C@F and Al/nZVI/C@F primarily removed 50 mg/L PFOA through adsorption. For a lower PFOA concentration of 0.5 mg/L, the defluorination rates were 53.2% for nZVI/C@F and 68.9% for Al/nZVI/C@F. High-performance liquid chromatography-tandem mass spectrometry was used to analyze the intermediates formed during PFOA removal, leading to a proposed degradation pathway.
Collapse
Affiliation(s)
- Shuilian Li
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Geological Resources and Environmental Testing Laboratory, Pengzhou, Sichuan 611930, China
| | - Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China E-mail:
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| | - Jiayan Zhu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| | - Zengxian Wei
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, Guangxi 541001, China
| |
Collapse
|
6
|
Hyks J, Šyc M, Korotenko E, Cajthaml T, Semerád J, Hjelmar O. Leaching of per- and polyfluoroalkyl substances (PFAS) from municipal solid waste incineration bottom ash intended for utilization as secondary aggregates in road subbase. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136635. [PMID: 39603120 DOI: 10.1016/j.jhazmat.2024.136635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Ten samples of mineral fraction derived from waste incineration bottom ash (MIBA) from Denmark (N = 7), Sweden (N = 1), and the Czech Republic (N = 2) underwent targeted analysis of 59 per- and polyfluoroalkyl substances (PFAS) in the solid phase and eluates from a batch leaching test at a liquid-to-solid ratio of 2 L/kg. The solid content, expressed as Σ59PFAS(S), ranged from 0.21 ± 0.03 µg/kg DM to 21.6 ± 1.47 µg/kg DM. The leached amounts, expressed as Σ59PFAS(L), ranged from 204 ± 63 ng/kg DM to 3250 ± 77 ng/kg DM. The results of the leaching tests were normalized to "PFOA-equivalents" (PFOA-eq) and used to estimate the bulk leaching emissions from the utilization of MIBA in typical road construction scenario. The calculated bulk leaching emissions associated with the utilization of 100 thousand tons of MIBA in road subbase were 6-30 g PFOA-eq per 10-21 years (Danish MIBA), 30 g PFOA-eq per 10-22 years (Swedish MIBA), and 271 g PFOA-eq per 14-30 years (Czech MIBA) depending on the effective infiltration and annual precipitation rates. This first approximation of the source term provides invaluable information for assessment of the environmental impact of MIBA utilization beyond landfill applications, pending further validation by subsequent research.
Collapse
Affiliation(s)
- Jiri Hyks
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark.
| | - Michal Šyc
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, CZ-165 02, Prague, Czech Republic
| | - Ekaterina Korotenko
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, CZ-165 02, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Ole Hjelmar
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark
| |
Collapse
|
7
|
Shukla S, Khan R, Chrzanowski Ł, Vagliasindi FGA, Roccaro P. Advancing sustainable agriculture through multi-omics profiling of biosolids for safe application: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124292. [PMID: 39889433 DOI: 10.1016/j.jenvman.2025.124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
Biosolids, derived from wastewater treatment processes, are valuable resources for soil amendment in agriculture due to their nutrient-rich composition. However, various contaminants of concern (CEC) such as pharmaceuticals, per-and poly-fluoroalkyl substances, endocrine disruptive chemicals, surfactants, pathogens, nanoplastics, and microplastics, are also reported in biosolids. The use of biosolids for agriculture may introduce these CEC into the soil, which raises concerns about their environmental and human health impacts. Moreover, the presence of pathogens (Escherichia coli, Salmonella sp., Shigella, Giardia, Rotavirus, etc.) even after treatment calls for microbial profiling of biosolids, especially in developing countries. Multi-omics approaches can be used as powerful tools for characterizing microbial communities and highlighting metabolic pathways. Moreover, these approaches also help in predicting the ecological and agronomic effects of biosolids application in agricultural soils. This review discusses the advantages and challenges of using biosolids in agriculture, considering the range of different CEC reported in biosolids. Moreover, the current legislation for the use of biosolids in agriculture is also presented, highlighting the limitations with respect to guidelines for emerging contaminants in biosolids. Furthermore, the role of the multi-omics approach in biosolids management, focusing on genomics, transcriptomics, proteomics, and metabolomics is also assessed. Multi-omics also allows for real-time monitoring, ensuring continuous optimization of biosolids towards changing environmental conditions. This dynamic approach not only enhances the safe use, but also enhances the sustainability of waste management practices, minimizing the negative effects. Finally, the future research directions for integrating the multi-omics approach into biosolid management practices are also suggested. The need for updating the legislative framework, continued innovation to promote sustainable and robust agricultural systems, bringing the process closer to the principles of a circular bioeconomy is also empahasized.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Ramsha Khan
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | | | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
Tonelli F, Masiero C, Aresi C, Torriani C, Villani S, Premoli G, Rossi A, Forlino A. Bone cell differentiation and mineralization in wild-type and osteogenesis imperfecta zebrafish are compromised by per- and poly-fluoroalkyl substances (PFAS). Sci Rep 2025; 15:2295. [PMID: 39825095 PMCID: PMC11748624 DOI: 10.1038/s41598-025-85967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates. To this purpose Chi/+ and WT zebrafish expressing the green fluorescent protein under the early osteoblast marker osterix were exposed from 1 to 6 days post fertilization to 0.36, 1.5 and 3.0 mg/L PFOS, 0.005 and 0.5 mg/L PFOA and 0.01, 0.48 and 16.0 mg/L PFHxA, and their development and skeletal phenotype investigated. Morphometric measurements, confocal microscopy evaluation of operculum area delimited by the fluorescent preosteoblasts and mineral deposition analysis following alizarin red staining were employed. PFOS and the highest concentration of PFHxA significantly impaired standard length in both genotypes. Osteoblast differentiation was significantly compromised by PFOS and by PFOA only in Chi/+. Limited to WT exposed to PFOA a reduced mineralization was also observed. No effect was detected after PFHxA exposure. Apoptosis was only activated by PFOA, specifically in Chi/+ mutant operculum osteoblasts. Interestingly, an altered lipid distribution in both WT and mutant fish was revealed after exposure to both pollutants. In conclusion, our data demonstrate that PFAS impair operculum development mainly compromising cell differentiation in mutant fish whereas alter lipid hepatic distribution in both genotypes with a more severe effect on Chi/+ preosteoblast survival. These results represent a first warning sign of the negative impact of PFAS exposure in presence of genetically determined skeletal fragility.
Collapse
Affiliation(s)
- Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Camilla Torriani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Simona Villani
- Department of Public Health and Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100, Pavia, Italy
| | - Guido Premoli
- LabAnalysis Group, Casanova Lonati, 27041, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| |
Collapse
|
9
|
Armanu EG, Bertoldi S, Chrzanowski Ł, Volf I, Heipieper HJ, Eberlein C. Benefits of Immobilized Bacteria in Bioremediation of Sites Contaminated with Toxic Organic Compounds. Microorganisms 2025; 13:155. [PMID: 39858923 PMCID: PMC11768004 DOI: 10.3390/microorganisms13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations. One typical reason for this is the high toxicity of xenobiotics present in large concentrations, stemming from the vulnerability of bacteria introduced to a contaminated site. This is especially true for planktonic bacteria, whereas bacteria within biofilms or microcolonies have significant advantages over their planktonic counterparts. A physical matrix is essential for the formation, maintenance, and survival of bacterial biofilms. By providing such a matrix for bacterial immobilization, the formation of biofilms can be facilitated and accelerated. Therefore, bioremediation combined with bacterial immobilization offers a comprehensive solution for environmental cleanup by harnessing the specialized metabolic activities of microorganisms while ensuring their retention and efficacy at target sites. In many cases, such bioremediation can also eliminate the need for physicochemical methods that are otherwise required to initially reduce contaminant concentrations. Then, it will be possible to use microorganisms for the remediation of higher concentrations of xenobiotics, significantly reducing costs while maintaining a rapid rate of remediation processes. This review explores the benefits of bacterial immobilization, highlighting materials and processes for developing an optimal immobilization matrix. It focuses on the following four key areas: (i) the types of organic pollutants impacting environmental and human health, (ii) the bacterial strains used in bioremediation processes, (iii) the types and benefits of immobilization, and (iv) the immobilization of bacterial cells on various carriers for targeted pollutant degradation.
Collapse
Affiliation(s)
- Emanuel Gheorghita Armanu
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Simone Bertoldi
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Irina Volf
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Hermann J. Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| |
Collapse
|
10
|
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates-A Review. TOXICS 2025; 13:47. [PMID: 39853045 PMCID: PMC11769487 DOI: 10.3390/toxics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity and toxicity to reproduction and development are summarized. This provides a reference to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their alternatives, promotes further research on PFASs in invertebrates, and provides valuable recommendations for the use and regulation of alternatives to PFASs.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| |
Collapse
|
11
|
Ilango AK, Zhang W, Liang Y. Uptake of per- and polyfluoroalkyl substances by Conservation Reserve Program's seed mix in biosolids-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125235. [PMID: 39489320 DOI: 10.1016/j.envpol.2024.125235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
To test the effectiveness of phytoremediation of per- and polyfluoroalkyl substances (PFAS), we cultivated a mixture of nine grass-legume species native to Maine, US, in two types of soil amended with biosolids containing both pre-existing and spiked PFAS. To investigate how biochar amendment affects plant uptake of PFAS, two types of biochar at varying doses (i.e., 0%, 0.05%, 0.2%, 1%) were added to the biosolids before mixing with soil and cultivating plants. Our findings indicate that six representative PFAS, including short- and long-chain perfluoroalkyl carboxylic acids (PFCAs) (C6-C8) and perfluoroalkylsulfonic acids (PFSAs) (C4, C6, and C8), were effectively transferred from the biosolids amended soil (BAS) system to the harvestable grass-legume shoots. During the initial growth stage (Day 33), PFOA, PFHxS and PFOS were primarily detected in the grass shoots, showing a removal efficiency of 2-3%. As the growth period extended to Day 92, the uptake of short-chain PFBS, PFHxA, and PFHpA became increasingly dominant with an average removal efficiency of 5-20%. Notably, more than 10% of PFOA was uptaken by the shoots harvested from the Scantic soil amended with Biochar 2. These results were observed in grass-legume shoots when the soil was amended with a low dose of biochar (0.05%). However, when 1% biochar was added, PFAS were effectively stabilized, preventing their transfer to the above-ground plant compartments. Aside from different effect of different dose of the biochar, this study also revealed that plant's uptake of PFAS is highly dependent on soil properties. Overall, this study demonstrated the feasibility of using a grass-legume mix for removing PFAS from contaminated soil and raised the need of developing site-specific treatment strategies to maximize the performance of phytoremediation.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States.
| |
Collapse
|
12
|
Kim J, Xin X, Hawkins GL, Huang Q, Huang CH. Occurrence, Fate, and Removal of Per- and Polyfluoroalkyl Substances (PFAS) in Small- and Large-Scale Municipal Wastewater Treatment Facilities in the United States. ACS ES&T WATER 2024; 4:5428-5436. [PMID: 39698553 PMCID: PMC11650586 DOI: 10.1021/acsestwater.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Wastewater treatment plants (WWTPs) could be conduits of polyfluoroalkyl substances (PFAS) contaminants in the environment. This study investigated the fate of 40 PFAS compounds across nine municipal WWTPs with varying treatment capacity and processes. High concentrations of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in wastewater, with the ratio of their total concentrations (∑PFCAs/∑PFSAs) always greater than one. Transformation of precursors by activated sludge processes significantly increased the concentrations of short-chain PFCAs (e.g., perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA)), while further advanced treatment processes offered minimal removal of perfluoroalkyl acids. Treatment capacity and PFAS removal efficiency showed no apparent correlation. The maximum possible PFAS loads discharged from WWTPs were 340-9645 g·year-1, similar to those entering the WWTPs. Among six regulated PFAS compounds, detection frequency was 100% for five (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), and perfluorohexanesulfonic acid (PFHxS)) and 67% for hexafluoropropylene oxide dimer acid (HFPO-DA) (Gen-X). Concentrations of PFOA and PFOS in WWTP discharges consistently exceeded 4 ng·L-1. The hazard index (HI) for mixtures containing two or more of the four PFAS (PFNA, PFBS, PFHxS, and HFPO-DA) ranged from 0.2 to 6.1. These findings indicate that wastewater discharges may pose a risk, emphasizing the need for enhanced PFAS removal strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Civil, Environmental and Construction Engineering, University of Hawai′i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Xiaoyue Xin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gary L. Hawkins
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30223, United States
| | - Qingguo Huang
- Department
of Crop and Soil Sciences, University of
Georgia, Griffin, Georgia 30223, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Saliu TD, Liu M, Habimana E, Fontaine J, Dinh QT, Sauvé S. PFAS profiles in biosolids, composts, and chemical fertilizers intended for agricultural land application in Quebec (Canada). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136170. [PMID: 39426151 DOI: 10.1016/j.jhazmat.2024.136170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Biosolids, sewage sludge, and composts are applied to agricultural land for nutrient recovery and soil organic matter replenishment, aligning with sustainable development goals. However, they may contain per- and polyfluoroalkyl substances (PFAS) that can enter the food chain through plant bioaccumulation and leaching into the groundwater. This study analyzed 80 PFAS compounds in sewage sludge, biosolids, commercial composts, and chemical fertilizers in Quebec, Canada, using UHPLC-HRMS (Orbitrap Q-Exactive). PFAS concentrations ranged from 18 to 59 µg/kg in commercial composts, 9.8 to 213 µg/kg in pulp and paper sludge, 15 to 705 µg/kg in sewage sludge, 12 to 1310 µg/kg in biosolids, and 14.6 µg/kg on average in biosolids ash. Dominant PFAS classes included diPAPs, sulfonamides, PFCAs, and PFSAs. High diPAPs concentrations indicated widespread use in domestic, commercial, or industrial applications. This study also observed a negligible correlation between soil organic carbon and PFAS concentration in the biowastes signifying a stronger influence due to different WWTP configurations, the quality of the wastewater inputs and other medium's properties that could affect PFAS partitioning to the biowastes. Environmental assessments showed PFAS loads of up to 30 µg/kg soil from a single application, within some regulatory limits. However, repeated applications could lead to PFAS accumulation in soil, posing risks to crops and groundwater.
Collapse
Affiliation(s)
- Toyin Dunsin Saliu
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Min Liu
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Emile Habimana
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Justine Fontaine
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
14
|
Titov I, Semerád J, Boháčková J, Beneš H, Cajthaml T. Microplastics meet micropollutants in a central european river stream: Adsorption of pollutants to microplastics under environmentally relevant conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124616. [PMID: 39067740 DOI: 10.1016/j.envpol.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastics have emerged as pervasive pollutants in aquatic environments, and their interaction with organic contaminants poses a significant environmental challenge. This study aimed to explore the adsorption of micropollutants onto microplastics in a river, examining different plastic materials and the effect of aging on adsorption capacity. Microplastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC)) were introduced into a river stream, and a comprehensive analysis involving 297 organic pollutants was conducted. Passive samplers were deployed to monitor micropollutant presence in the river. Sixty-four analytes were identified in the river flow, with telmisartan being the most prevalent. Nonaged PVC showed the highest telmisartan concentration at 279 ng/g (168 ng/m2 regarding the microplastic surface), while aged PVC exhibited a fourfold decrease. Conversely, aged LDPE preferentially adsorbed metoprolol and tramadol, with concentrations increasing 12- and 3-fold, respectively, compared to nonaged LDPE. Azithromycin and clarithromycin, positively charged compounds, exhibited higher sorption to PET microplastics, regardless of aging. Diclofenac showed higher concentrations on nonaged PVC compared to aged PVC. Aging induced structural changes in microplastics, including color alterations, smaller particle production, and increased specific surface area. These changes influenced micropollutant adsorption, with hydrophobicity, dissociation constants, and the ionic form of pollutants being key factors. Aged microplastics generally showed different sorption properties. A comparison of microplastics and control sand particles indicated preferential micropollutant sorption to microplastics, underscoring their role as vectors for contaminant transport in aquatic ecosystems. Analysis of river sediment emphasized the significance of contact time in pollutant accumulation. Overall, this study provides insights into the complex interactions between microplastics and organic pollutants under environmental conditions and contributes to a better understanding of the fate and behavior of these two types of contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Ivan Titov
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Boháčková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague, 6, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic.
| |
Collapse
|
15
|
Li L, Li W, Xue Y, Wang Z, Wang Y, Li R, Deng M, Xu Y, Peng L, Song K. Perfluorooctanoic acid effect and microbial mechanism to methane production in anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122412. [PMID: 39236608 DOI: 10.1016/j.jenvman.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 μg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunpeng Xue
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zezheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, 325035, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Pietropoli E, Bardhi A, Simonato V, Zanella M, Iori S, Barbarossa A, Giantin M, Dacasto M, De Liguoro M, Pauletto M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135269. [PMID: 39068881 DOI: 10.1016/j.jhazmat.2024.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Valentina Simonato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Martina Zanella
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| |
Collapse
|
17
|
Wickramasinghe N, Vítková M, Zarzsevszkij S, Ouředníček P, Šillerová H, Ojo OE, Beesley L, Grasserová A, Cajthaml T, Moško J, Hušek M, Pohořelý M, Čechmánková J, Vácha R, Kulhánek M, Máslová A, Komárek M. Can pyrolysis and composting of sewage sludge reduce the release of traditional and emerging pollutants in agricultural soils? Insights from field and laboratory investigations. CHEMOSPHERE 2024; 364:143289. [PMID: 39245220 DOI: 10.1016/j.chemosphere.2024.143289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The potential extractability, crop uptake, and ecotoxicity of conventional and emerging organic and metal(loid) contaminants after the application of pre-treated (composted and pyrolysed) sewage sludges to two agricultural soils were evaluated at field and laboratory scale. Metal(loid) extractability varied with sludge types and pre-treatments, though As, Cu, and Ni decreased universally. In the field, the equivalent of 5 tons per hectare of both composted and pyrolysed sludges brought winter wheat grain metal(loid) concentrations below statutory limits. Carbamazepine, diclofenac, and telmisartan were the only detected organic pollutants in crops decreasing in order of root > shoot > grains, whilst endocrine-disrupting chemicals, such as bisphenol A and perfluorochemicals were heavily reduced by composting (up to 71%) or pyrolysis (up to below detection limit) compared to raw sludges. As a consequence, no detectable concentrations were measured in soils 12 months after field application. This study highlights the potential advantages of processing sewage sludge before soil applications, especially in the context of reducing the mobility of emerging contaminants, though further studies are required on a broad range of soils and crops before land application can be considered.
Collapse
Affiliation(s)
- Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Szimona Zarzsevszkij
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Petr Ouředníček
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Hana Šillerová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Omolola Elizabeth Ojo
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jaroslav Moško
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Matěj Hušek
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Jarmila Čechmánková
- Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27, Prague, Czech Republic
| | - Radim Vácha
- Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27, Prague, Czech Republic
| | - Martin Kulhánek
- Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Alena Máslová
- Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic.
| |
Collapse
|
18
|
Liu S, Duan L, Shi F, Filippelli GM, Naidu R. Concentrations of per- and polyfluoroalkyl substances in vegetables from Sydney and Newcastle, Australia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6667-6675. [PMID: 38545920 DOI: 10.1002/jsfa.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND This study investigated per- and polyfluoroalkyl substances (PFASs) in 53 fruit and vegetable samples collected from a local wholesale and retail market in Sydney and a local supermarket in Newcastle. As there is limited information about PFAS levels in vegetables on the market, this study aimed to fill this gap and assess potential risks for humans through consumption of these vegetables. METHODS QuEChERS extraction - a solid-phase extraction method, a portmanteau word formed from 'quick, easy, cheap, effective, rugged and safe' - followed by enhanced matrix removal-lipid cleaning and liquid chromatography-tandem mass spectrometry analysis were used to detect 30 PFASs in vegetables. RESULTS PFOA was detected in 7 out of the 53 samples, with concentrations of 0.038-1.996 ng g-1 fresh weight; PFOS was detected in 2 samples only, with concentrations ranging from 0.132 to 0.911 ng g-1 fresh weight. PFHxS was not detected in any sample in this study. PFOA and PFOS concentrations measured in vegetables in this study constituted daily intake of 2.03 ng kg-1 body weight (BW) and 1.98 ng kg-1 BW, respectively, according to recommended daily vegetable intake and BW data from the Australian Bureau of Statistics. The most sensitive population group is girls of 4-8 years of age. These estimated exposure levels represent up to 1.3% of the tolerable daily intake for PFOA (160 ng kg-1 BW) and 9.9% for PFOS (20 ng kg-1 BW) according to Food Standards Australia New Zealand. Consumption of the vegetables from the study locations poses a marginal risk to human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Siyuan Liu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, New South Wales, Australia
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, New South Wales, Australia
| | - Feng Shi
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, New South Wales, Australia
| | - Gabriel M Filippelli
- Department of Earth Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
19
|
Xiong J, Li Z. Predicting PFAS fate in fish: Assessing the roles of dietary, respiratory, and dermal uptake in bioaccumulation modeling. ENVIRONMENTAL RESEARCH 2024; 252:119036. [PMID: 38701889 DOI: 10.1016/j.envres.2024.119036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
An increasing number of per- and polyfluoroalkyl substances (PFAS) exposed to the environment may pose a threat to organisms and human beings. However, there is a lack of simulations comprehensively addressing and comparing the bioaccumulation of PFAS across all three major exposure routes (oral, inhalation, and dermal), especially for dermal uptake. In this study, we proposed a physiologically based kinetic (PBK) model for PFAS, aiming to predict bioaccumulation factors (BAF) in fish by considering these diverse exposure routes. 15 PFAS were used for model validation, and 11 PFAS from Taihu Lake were used for exposure contribution modeling. Approximately 64% of estimations fell within 10-fold model bias from measurements in Taihu Lake, underscoring the potential efficacy of the developed PBK model in predicting BAFs for fish. The dermal route emerges as a contributor to short-chain PFAS exposure. For example, it ranged widely from 46% to 75% (mean) for all modeling short-chain PFAS (C6-C7) in Taihu Lake. It indicated the criticality of considering dermal exposure for PFAS in fish, highlighting a gap in field studies to unravel cutaneous intake mechanisms and contributions. For longer carbon chains of PFAS (C8-C12), dermal exposure accounted for 2%-27% for all species of aquatic organisms. The fish's lipid fraction and water content played a significant role in the contribution of PFAS intake through cutaneous exposure and inhalation. Kow had a significant positive correlation with skin intake rate (p < 0.05) and gill intake rate (p < 0.001), while having a significant negative correlation with skin intake (p < 0.05) and skin intake contribution (p < 0.001). Based on the proposed modeling approach, we have introduced a simulation spreadsheet for projecting PFAS BAFs in fish tissues, hopefully broadening the predictive operational tool for a variety of chemical species.
Collapse
Affiliation(s)
- Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
20
|
Miserli K, Boti V, Konstantinou I. Analysis of perfluorinated compounds in sewage sludge and hydrochar by UHPLC LTQ/Orbitrap MS and removal assessment during hydrothermal carbonization treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172650. [PMID: 38649038 DOI: 10.1016/j.scitotenv.2024.172650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Wastewater treatment plants have been recognized as important sinks for per- and polyfluoroalkyl substances (PFAS) because of their ineffectiveness in removing them reflecting both water and sewage sludge discharge routes. Hydrothermal treatment represents an alternative technology for treating sludge to recover energy and other valuable products. In this study, 15 PFAS were determined in sludge and hydrochar substrates using sonication-solid phase extraction procedure and analyzed using LC-Orbitrap-High Resolution-MS/MS. The method was fully validated, exhibiting very good linearity, recoveries in the range of 48 to 126 %, low detection and quantification limits with expanded uncertainty and precision below 32 % and 21.9 %, respectively. The method was applied to sludge samples from the WWTP of Ioannina city (Greece), as well as to hydrothermally treated samples under various conditions. The most abundant PFAS were PFHxA (0.5-38.3 ng g-1) and PFOS (4.4-22.1 ng g-1). Finally, the hydrothermally treated sludge samples spiked with PFAS presented removal efficiencies for total PFAS of 86.9 %, 91.8 % and 95.7 % at three spiking levels namely 10, 50 and 200 ng g-1, respectively. Results indicated that PFCAs were almost completely removed, except for PFOA, while the concentrations of PFSAs increased in the produced hydrochar with the formation of several intermediates, as detected by HR-LC-MS/MS. The results of this study demonstrate the effect of hydrothermal treatment to the fate of PFAS in sewage sludge and contribute for further studies on design and scale up of hydrothermal carbonization technology as a management option for safer disposal of municipal wastewater sludge.
Collapse
Affiliation(s)
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, University of Ioannina, 45110, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, University of Ioannina, 45110, Greece.
| |
Collapse
|
21
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Mitzia A, Böserle Hudcová B, Vítková M, Kunteová B, Casadiego Hernandez D, Moško J, Pohořelý M, Grasserová A, Cajthaml T, Komárek M. Pyrolysed sewage sludge for metal(loid) removal and immobilisation in contrasting soils: Exploring variety of risk elements across contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170572. [PMID: 38309337 DOI: 10.1016/j.scitotenv.2024.170572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Efficient treatment of sewage sludge may transform waste into stable materials with minimised hazardous properties ready for secondary use. Pyrolysed sewage sludge, sludgechar, has multiple environmental benefits including contaminant sorption capacity and nutrient recycling. The properties of five sludgechars were tested firstly for adsorption efficiency in laboratory solutions before prospective application to soils. A wide variety of metal(loid)s (As, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn) was involved. Secondly, the sludgechars (3 % v/v) were incubated in five soils differing in (multi)-metal(loid) presence and the level of contamination. The main aim was to evaluate the metal(loid) immobilisation potential of the sludgechars for soil remediation. Moreover, nutrient supply was investigated to comprehensively assess the material's benefits for soils. All sludgechars were efficient (up to 100 %) for the removal of metal cations while their efficiency for metal(loid) anions was limited in aqueous solutions. Phosphates and sulphates were identified crucial for metal(loid) capture, based on SEM/EDS, XRD and MINTEQ findings. In soils, important fluctuations were observed for Zn, being partially immobilised by the sludgechars in high-Zntot soils, while partially solubilised in moderate to low-Zntot soils. Moreover, pH showed to be crucial for material stability, metal(loid) adsorption ability and their immobilisation in soils. Although metal(loid) retention was generally low in soils, nutrient enrichment was significant after sludgechar application. Long-term evaluation of the material sorption efficiency, nutrient supply, and ageing in soil environments will be necessary in future studies.
Collapse
Affiliation(s)
- Aikaterini Mitzia
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Barbora Böserle Hudcová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic.
| | - Barbora Kunteová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Daniela Casadiego Hernandez
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| | - Jaroslav Moško
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals, The Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic; Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4 - Krč, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| |
Collapse
|
23
|
Humphrey CP, Iverson G, Hvastkovs E, Pradhan S. Occurrence and concentrations of traditional and emerging contaminants in onsite wastewater systems and water supply wells in eastern North Carolina, USA. JOURNAL OF WATER AND HEALTH 2024; 22:550-564. [PMID: 38557570 DOI: 10.2166/wh.2024.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.
Collapse
Affiliation(s)
- Charles P Humphrey
- Department of Health Education and Promotion, East Carolina University, 200 Curry Ct, Greenville, NC 27858, USA E-mail:
| | - Guy Iverson
- Department of Health Education and Promotion, East Carolina University, 200 Curry Ct, Greenville, NC 27858, USA
| | - Eli Hvastkovs
- Department of Chemistry, East Carolina University, 512 Science and Technology Bldg, Greenville, NC 27858, USA
| | - Sushama Pradhan
- NC Division of Public Health, Environmental Health Section, 5605 Six Forks Rd, 1632 Mail Service Center, Raleigh, NC 27699-1632, USA
| |
Collapse
|
24
|
Grasserová A, Pacheco NIN, Semerád J, Filipová A, Innemanová P, Hanč A, Procházková P, Cajthaml T. New insights into vermiremediation of sewage sludge: The effect of earthworms on micropollutants and vice versa. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:496-508. [PMID: 38128368 DOI: 10.1016/j.wasman.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Vermicomposting represents an environmentally friendly method for the treatment of various types of biowastes, including sewage sludge (SS), as documented in numerous studies. However, there are few papers providing insights into the mechanisms and toxicity effects involved in SS vermicomposting to present a comprehensive overview of the process. In this work, the vermiremediation of SS containing various micropollutants, including pharmaceuticals, personal care products, endocrine disruptors, and per/polyfluoroalkyl substances, was studied. Two SSs originating from different wastewater treatment plants (WWTP1 and WWTP2) were mixed with a bulking agent, moistened straw, at ratios of 0, 25, 50, and 75% SS. Eisenia andrei earthworms were introduced into the mixtures, and after six weeks, the resulting materials were subjected to various types of chemical and toxicological analyses, including conventional assays (mortality, weight) as well as tissue- and cell-level assays, such as malondialdehyde production, cytotoxicity tests and gene expression assays. Through the vermiremediation process significant removal of diclofenac (90%), metoprolol (88%), telmisartan (62%), and triclosan (81%) was achieved. Although the concentrations of micropollutants were substantially different in the original SS samples, the micropollutants vermiaccumulated to a similar extent over the incubation period. The earthworms substantially eliminated the present bacterial populations, especially in the 75% SS treatments, in which the average declines were 90 and 79% for WWTP1 and WWTP2, respectively. To the best of our knowledge, this is the first study to investigate the vermiremediation of such a large group of micropollutants in real SS samples and provide a thorough evaluation of the effect of SS on earthworms at tissue and cellular level.
Collapse
Affiliation(s)
- Alena Grasserová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 12801, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Natividad I N Pacheco
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague 2, 12108, Czech Republic; Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45004 Toledo, Spain
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Petra Innemanová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 12801, Czech Republic; DEKONTA a.s, Dřetovice 109, Stehelčeves, 27342, Czech Republic
| | - Aleš Hanč
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500, Czech Republic
| | - Petra Procházková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, 12801, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic.
| |
Collapse
|
25
|
Geiger MJ, Morrison JM, Carmack DJ, Lockwood-O'Brien SY, Stagliano MC, Karrer TA. A high-throughput small volume matrix based calibration using isotope dilution liquid chromatography tandem mass spectrometry analysis for 42 per and polyfluoroalkyl substances in groundwater. J Chromatogr A 2024; 1716:464633. [PMID: 38246069 DOI: 10.1016/j.chroma.2024.464633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
A novel method for the determination of per- and polyfluoroalkyl substances (PFAS) in groundwater is presented using a subsample, matrix-matched calibrators, 96-well plate solid phase extraction (SPE), and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Accuracy, precision, measurement of uncertainty (MOU), method detection limit (MDL), method quantitation limit (MQL), analytical measurement range, interferences/ion suppression, and analyte stability were determined as part of the in-house method validation. The method quantitates 42 PFAS compounds from nine different compound classes. Accuracy for the reference material (RM) and matrix spike (MS) ranged from 52.3 to 117.8 %, and precision for the MS and matrix spike duplicate (MSD) had a coefficient of variation (CV) from 2.0 % to 23.3 %. MDLs spanned from 0.07 to 1.97 ng L-1, with MQLs ranging from 0.20 to 5.90 ng L-1. Suppression studies determined that iron and manganese have effects on analytes that do not have paired isotopically labeled standards. The results from the in-house validation indicated that this Michigan Department of Health and Human Services laboratory developed test meets the necessary accuracy, precision, MDL, MQL and reporting limits requirement established by the laboratory's quality system essentials (QSEs) and select criteria from the Department of Defense (DoD) Quality Systems Manual for Environmental Laboratories and American Industrial Hygiene Association Laboratory Accreditation Program, LLC (AIHA LAP, LLC) accrediting International Standard Organization (ISO/IEC 17025:2017) check list.
Collapse
Affiliation(s)
- Matthew J Geiger
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA; University of South Florida candidate for Doctor of Public Health (DrPH) in Public Health and Clinical Laboratory Science and Practice, 4202 E. Flower Ave, Tampa, FL 33620, USA.
| | - Jessica M Morrison
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Douglas J Carmack
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Sarah Y Lockwood-O'Brien
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Michael C Stagliano
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| | - Timothy A Karrer
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI 48906, USA
| |
Collapse
|
26
|
Morethe MF, Mpenyana-Monyatsi L, Daso AP, Okonkwo OJ. Unveiling the hidden threat: spatiotemporal trends and source apportionments of per-and polyfluorinated alkyl substances in wastewater treatment plants in South Africa. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:71-88. [PMID: 38214987 PMCID: wst_2023_401 DOI: 10.2166/wst.2023.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
At least 11 per-and polyfluorinated alkyl substances (PFASs) were more prevalent during the dry season, whereas only PFBA, L-PFBS, L-PFOS, and PFOA were prevalent during the wet season in 11 WWTPs. The ∑21 PFAS levels in the influent and the effluent ranged from 137 to 3327 ng/L and 265-7,699 ng/L in the dry season and 61-2,953 ng/L and 171-3,458 ng/L in the wet season, respectively. The highest mean concentrations were observed in the influent and effluent for PFOA (586 ng/L) and L-PFBS (552 ng/L); and FOET (1,399 ng/L) and PFNA (811 ng/L) during dry and wet seasons, respectively. During the wet season, 6:2 FTS was observed at the highest concentrations, exhibiting 4,900 ng/L (66%) and 2,351 ng/L (39%), 1,950 ng/L (53%) in SST and BNR, respectively. Principal component analysis (PCA), hierarchical clustering (HCA), and PFHpA/PFOA, PFBA/PFOA, and PFNA/PFOA ratios revealed mixtures of PFAS sources into WWTPs.
Collapse
Affiliation(s)
- Moloko Florence Morethe
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa E-mail:
| | - Lizzy Mpenyana-Monyatsi
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Adegbenro Peter Daso
- Department of Chemistry, Faculty of Science, and Research and Innovation Services (RIS), University of Bath, Claverton Down Campus, Bath BA2 7AY, UK
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
27
|
Jiang T, Pervez MN, Quianes MM, Zhang W, Naddeo V, Liang Y. Effective stabilization of per- and polyfluoroalkyl substances (PFAS) precursors in wastewater treatment sludge by surfactant-modified clay. CHEMOSPHERE 2023; 341:140081. [PMID: 37678594 DOI: 10.1016/j.chemosphere.2023.140081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The application of biosolids or treated sewage sludge containing per- and polyfluoroalkyl substances (PFAS) in agricultural lands and the disposal of sludge in landfills pose high risks to humans and the environment. Although PFAS precursors have not been regulated yet, their potential transformation to highly regulated perfluoroalkyl acids (PFAAs) may enable them to serve as a long-term source and make remediation of PFAAs a continuing task. Therefore, treating precursors in sewage sludge is even more, certainly not less, critical than treating or removing PFAAs. In this study, a green surfactant-modified clay sorbent was evaluated for its efficacy in stabilizing two representative PFAA precursors in sludge, e.g., N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA), in comparison with unmodified clay and powdered activated carbon (PAC). Results showed N-EtFOSAA and 6:2 FTSA exhibited distinct adsorption behaviors in the sludge without sorbents due to their different physicochemical properties, such as hydrophobicity and functional groups. Among the three sorbents, the modified clay reduced the water leachability of N-EtFOSAA and 6:2 FTSA by 91.5% and 95.4%, respectively, compared to controls without amendments at the end of the experiment (47 days). Within the same duration, PAC decreased the water leachability of N-EtFOSAA and 6:2 FTSA by 60.6% and 37.3%, respectively. At the same time, the unmodified clay demonstrated a poor stabilization effect and even promoted the leaching of precursors. These findings suggested that the modified clay had the potential for stabilization of precursors, while negatively charged and/or hydrophilic sorbents, such as the unmodified clay, should be avoided in the stabilization process. These results could provide valuable information for developing effective amendments for stabilizing PFAS in sludge or biosolids. Future research should evaluate the long-term effect of the stabilization approach using actual sludge from wastewater treatment facilities.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Monica M Quianes
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Fisciano, 84084, Italy
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
28
|
Sørmo E, Castro G, Hubert M, Licul-Kucera V, Quintanilla M, Asimakopoulos AG, Cornelissen G, Arp HPH. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131447. [PMID: 37121036 DOI: 10.1016/j.jhazmat.2023.131447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Current treatment options for organic waste contaminated with per- and polyfluoroalkyl substances (PFAS) are generally limited to incineration, composting or landfilling, all resulting in emissions. Dry pyrolysis is a promising emerging alternative to these practices, but there is uncertainty related to the fate of PFAS during this process. The present work first developed a robust method for the determination of PFAS in complex matrices, such as sewage sludge and biochar. Then, a mass balance was established for 56 different PFAS during full-scale pyrolysis (2-10 kg biochar hr-1, 500-800 °C) of sewage sludges, food waste reject, garden waste and waste timber. PFAS were found in all wastes (56-3651 ng g-1), but pyrolysis resulted in a ≥ 96.9% removal. Residual PFAS (0.1-3.4 ng g-1) were detected in biochars obtained at temperatures up to 750 °C and were dominated by long chain PFAS. Emitted PFAS loads ranged from 0.01 to 3.1 mg tonne-1 of biochar produced and were dominated by short chain PFAS. Emissions made up < 3% of total PFAS-mass in the wastes. Remaining uncertainties are mainly related to the presence of thermal degradation products in flue gas and condensation oils.
Collapse
Affiliation(s)
- Erlend Sørmo
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michel Hubert
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Viktória Licul-Kucera
- Institute for Analytical Research, Hochschulen Fresenius gem. Trägesellschaft mbH, Idstein, Germany; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Marjorie Quintanilla
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Gerard Cornelissen
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Hans Peter H Arp
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
29
|
Giari L, Guerranti C, Perra G, Cincinelli A, Gavioli A, Lanzoni M, Castaldelli G. PFAS levels in fish species in the Po River (Italy): New generation PFAS, fish ecological traits and parasitism in the foreground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162828. [PMID: 36924966 DOI: 10.1016/j.scitotenv.2023.162828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.
Collapse
Affiliation(s)
- L Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - C Guerranti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - G Perra
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy.
| | - A Cincinelli
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - A Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - M Lanzoni
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| | - G Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
30
|
Kumar R, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. Occurrence of emerging contaminants in biosolids in northern Queensland, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121786. [PMID: 37156436 DOI: 10.1016/j.envpol.2023.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
This study aims to identify and quantify different classes of emerging contaminants (ECs), such as pharmaceutical and personal care products (PPCPs), per-and polyfluoroalkyl substances (PFAS), heavy metals (HMs), polycyclic musks (PMs) in biosolids from different sewage treatment plants (STPs) from regional councils across Northern Queensland, Australia. Biosolids samples were named BS1 to BS7 for each council. The results revealed significant variations in the concentrations of different ECs in biosolids which could be explained in some instances by the characteristics of the upstream sewage network. For instance, BS4-biosolids from a small agricultural shire (largely sugarcane) showed the highest concentration of zinc and copper, which were 2430 and 1050 mg/kg, respectively. Among PPCPs, the concentration of ciprofloxacin was found to be the highest in BS3 and BS5, two large regional council areas which are a mix of domestic and industrial (predominantly domestic) biosolids of 1010 and 1590 ng/g, respectively. In addition, the quantity of sertraline was consistently high in all biosolids except from BS7, one of the smaller regional councils, which is indicative of the domestic catchments attached. PFAS compounds were detected in all biosolids samples except in BS6, one of the small (agricultural and tourist) catchments. Two PFAS compounds emerged as the most common pollutants that were perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The largest industrial catchment biosolids, BS2 showed the highest concentration of PFOS at 253 ng/g, while the smallest regional council, BS7 showed the maximum concentration of 7.90 ng/g of PFOA. Overall, this study concludes that certain ECs such as HMs, antibiotics, PFOS and PFOA in biosolids may pose high environmental risks.
Collapse
Affiliation(s)
- Ravinder Kumar
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Anna Whelan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Townsville City Council, Wastewater Operations, Townsville, QLD, 4810, Australia
| | | | - Madoc Sheehan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Louise Reeves
- Queensland Water Directorate, Brisbane, QLD, 4009, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
31
|
Thompson JT, Robey NM, Tolaymat TM, Bowden JA, Solo-Gabriele HM, Townsend TG. Underestimation of Per- and Polyfluoroalkyl Substances in Biosolids: Precursor Transformation During Conventional Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3825-3832. [PMID: 36749308 PMCID: PMC10500628 DOI: 10.1021/acs.est.2c06189] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants generate a solid waste known as biosolids. The most common management option for biosolids is to beneficially reuse them as an agricultural amendment, but because of the risk of pathogen exposure, many regulatory bodies require pathogen reduction before biosolids reuse. Per- and polyfluoroalkyl substances (PFAS) are well documented in biosolids, but limited information is available on how biosolids treatment processes impact PFAS. Furthermore, quantification of PFAS has focused on perfluoroalkyl acids (PFAAs) which are a small fraction of thousands of PFAS known to exist. The objective of this study was to quantify 92 PFAS in biosolids collected from eight biosolids treatment facilities before and after four pathogen treatment applications: composting, heat treatment, lime treatment, and anaerobic digestion. Overall, total PFAS concentrations before and after treatment were dominated by PFAA precursor species, in particular, diPAPs which accounted for a majority of the mass of the Σ92PFAS. This differs from historic data that found PFAAs, primarily PFOS, to dominate total PFAS concentrations. Treatment options such as heat treatment and composting changed the ratio of PFAA precursors to PFAAs indicating a transformation of PFAS during treatment. This study finds that PFAA precursors are likely underrepresented by other studies and make up a larger percentage of the total PFAS concentration in biosolids than previously estimated.
Collapse
Affiliation(s)
- Jake T Thompson
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, Florida 32611-6450, United States
| | - Nicole M Robey
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, Florida 32611-6450, United States
| | - Thabet M Tolaymat
- Office of Research and Development, United States Environmental Protection Agency, 26 Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - John A Bowden
- College of Veterinary Medicine, University of Florida, P.O. Box 100144, Gainesville, Florida 32610, United States
| | - Helena M Solo-Gabriele
- Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33124, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, Florida 32611-6450, United States
| |
Collapse
|
32
|
Xing Y, Li Q, Chen X, Huang B, Ji L, Zhang Q, Fu X, Li T, Wang J. PFASs in Soil: How They Threaten Human Health through Multiple Pathways and Whether They Are Receiving Adequate Concern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1259-1275. [PMID: 36622935 DOI: 10.1021/acs.jafc.2c06283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been mass-produced and widely applied in consumer and industrial products, resulting in their widespread presence in the environment. Features such as environmental persistence, bioaccumulation, and high toxicity even at low doses have made PFASs an increasing concern. This brief review focuses on soil PFASs, especially the effect of soil PFASs on other environmental media and their potential threats to human health through daily diet. Specifically, soil PFASs contamination caused by different pathways was first investigated. Soil pollution from application of aqueous film-forming foams (AFFFs) is generally more severe than that from fluorochemical manufacturing plants, followed by biosolid land use, landfill, and irrigation. Factors, such as carbon chain length of PFASs, wastewater treatment technology, geographical conditions, and regional development level, are related to soil PFASs' pollution. Then, the migration, bioaccumulation, and toxicity characteristics of soil PFASs were analyzed. Short-chain PFASs have higher solubility, mobility, and bioavailability, while long-chain PFASs have higher bioaccumulation potential and are more toxic to organisms. Factors such as soil texture, solution chemistry conditions, enzymes, and fertilization conditions also influence the environmental behavior of PFASs. The risk of human exposure to PFASs through agricultural and animal products is difficult to control and varies depending on living region, age, eating habits, lifestyle, ethnicity, etc. Soil PFASs threaten drinking water safety, affect soil function, and enter food webs, threatening human health. Knowledge gaps and perspectives in these research fields are also included in current work to assist future research to effectively investigate and understand the environmental risks of soil PFASs, thereby reducing human exposure.
Collapse
Affiliation(s)
- Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
33
|
Li J, Wang L, Zhang X, Liu P, Deji Z, Xing Y, Zhou Y, Lin X, Huang Z. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158362. [PMID: 36055502 DOI: 10.1016/j.scitotenv.2022.158362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of artificially synthetic organic compounds that are hardly degraded in the natural environment. PFAS have been widely used for many decades, and the persistence and potential toxicity of PFAS are an emerging concern in the world. PFAS exposed via diet can be readily absorbed by the intestine and enter the circulatory system or accumulate directly at intestinal sites, which could interact with the intestine and cause the destruction of intestinal barrier. This review summarizes current relationships between PFAS exposure and intestinal barrier damage with a focus on more recent toxicological studies. Exposure to PFAS could cause inflammation in the gut, destruction of the gut epithelium and tight junction structure, reduction of the mucus layer, and induction of the toxicity of immune cells. PFAS accumulation could also induce microbial disorders and metabolic products changes. In addition, there are limited studies currently, and most available studies converge on the health risk of PFAS exposure for human intestinal disease. Therefore, more efforts are deserved to further understand potential associations between PFAS exposure and intestinal dysfunction and enable better assessment of exposomic toxicology and health risks for humans in the future.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Lei Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yudong Xing
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
34
|
Nighojkar A, Sangal VK, Dixit F, Kandasubramanian B. Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78207-78227. [PMID: 36184702 DOI: 10.1007/s11356-022-23166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Following circular economy principles, the reuse or recycling of saturated adsorbents (SAs or adsorbate-laden adsorbents) into a low-cost engineered product is a valuable alternative to eliminate secondary pollution after adsorption. This review evaluates the application of SAs for the generation of products that can serve as (i) antimicrobial agents or disinfectants, (ii) materials for civil construction, (iii) catalysts, (iv) fertilizers, and (v) secondary adsorbents. The importance of SAs configuration in terms of functional groups, surface area and pore morphology played a crucial role in their reutilization. The SAs-laden silver ions (Ag+) strongly inhibit (~ 99%) the growth of Escherichia coli and Staphylococcus aureus microbes found in drinking and wastewaters. The intra-solidification of SAs containing toxic metal pollutants (As3+ and F-) with cementitious materials can effectively reduce their leaching below permissible limits of USEPA standards for their utility as additives in construction work. The existence of transition metal ions (Cu2+, Cr3+/6+, Ni2+) on the surface of SAs boosted activity and selectivity towards the desired product during catalytic oxidation, degradation, and conversion processes. The thermally recycled SAs can assist in the secondary adsorption of pollutants from another waste solution due to a larger surface area (> 1000 m2g-1). However, there are chances that the SAs discussed above will contain traces of PFAS. The article summarizes the challenges, performance efficacy, and future prospects at the end of each value-added product. We also highlight critical challenges for managing PFAS-laden SAs and stimulate new perspectives to minimize PFAS in air, water, and soils.
Collapse
Affiliation(s)
- Amrita Nighojkar
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India
| | - Vikas Kumar Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, India
| | - Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India.
| |
Collapse
|
35
|
Maranhao Neto GA, Polcrova AB, Pospisilova A, Blaha L, Klanova J, Bobak M, Gonzalez-Rivas JP. Associations between Per- and Polyfluoroalkyl Substances (PFAS) and Cardiometabolic Biomarkers in Adults of Czechia: The Kardiovize Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13898. [PMID: 36360776 PMCID: PMC9656035 DOI: 10.3390/ijerph192113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Even though there is evidence of decreasing trends of per- and polyfluoroalkyl substances (PFAS) in Czechia, there are still major sources of PFAS pollution. Regarding the still-inconsistent results of the relationship between cardiometabolic health and PFAS, the present study sought to determine the association between PFAS levels and the presence of cardiometabolic biomarkers, including blood pressure and dysglycemia drivers in the Czech population. A cross-sectional study with 479 subjects (56.4% women, median: 53 years, range: 25-89) was conducted. Four PFAS were measured in serum: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The associations between natural log (ln)-transformed PFAS and cardiometabolic biomarkers were assessed through generalized additive models using linear regression and smoothing thin plate splines, adjusted for potential confounders. There were positive and significant (p < 0.05) associations between the ln-transformed PFOA and glucose (β = 0.01), systolic (β = 0.76) and diastolic blood pressure (β = 0.65); total cholesterol (β = 0.07) and LDL-c (β = 0.04); and PFOS with glucose (β = 0.03), BMI (β = 2.26), waist circumference (β = 7.89), systolic blood pressure (β = 1.18), total cholesterol (β = 0.13), and HDL-c (β = 0.04). When significant, the correlations of PFNA and PFDA were negative. Of the four PFAS, only PFOA and PFOS showed a positive association, even in serum levels not as high as the values from the literature.
Collapse
Affiliation(s)
- Geraldo A. Maranhao Neto
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
| | - Anna Bartoskova Polcrova
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Anna Pospisilova
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
| | - Ludek Blaha
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Bobak
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Juan P. Gonzalez-Rivas
- International Clinical Research Center (ICRC), St Anne’s University Hospital (FNUSA) Brno, 602 00 Brno, Czech Republic
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas 3001, Venezuela
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
36
|
Taylor RB, Sapozhnikova Y. Comparison and validation of the QuEChERSER mega-method for determination of per- and polyfluoroalkyl substances in foods by liquid chromatography with high-resolution and triple quadrupole mass spectrometry. Anal Chim Acta 2022; 1230:340400. [DOI: 10.1016/j.aca.2022.340400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
|
37
|
Liang X, Yang X, Jiao W, Zhou J, Zhu L. Simulation modelling the structure related bioaccumulation and biomagnification of per- and polyfluoroalkyl substances in aquatic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156397. [PMID: 35660442 DOI: 10.1016/j.scitotenv.2022.156397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Until now, there is no bioaccumulation model to predict bioaccumulation of polyfluoroalkyl substances (PFASs) in aquatic organisms due to their unique amphiphilic properties. For the first time, protein contents instead of lipid contents of organisms were used in bioaccumulation models to predict the concentrations and reveal the accumulation mechanisms of PFASs in various aquatic organisms, based on the available data. Comparison between the modeled and measured results indicated the models were promising to predict the PFAS concentrations in the fishes at different trophic levels very well, as well as their bioaccumulation factors (BAF) and trophic magnification factors (TMF) of PFASs in fish. Both water and sediment are important exposure sources of PFASs in aquatic organisms. As the two main uptake pathways, the contribution of gill respiratory decreases while that of dietary intake increases with the chain length of PFASs increasing. Fecal excretion and gill respiration are the main pathways for fish to eliminate PFASs, and their relative contributions increase and decrease respectively with chain length. The short-chain (C6-C8) perfluoroalkyl acids (PFAAs) are greatly eliminated via gill respiratory quickly, leading to their very low BAFs. As the carbon chain length increases, dietary intake becomes dominant in the uptake, while elimination is mainly through fecal excretion with relatively low rates, especially in the fishes with high protein contents. For the very long chain (C12-C16) PFASs, they are very difficult to excrete with a low total elimination rate constant (ke = 0.463-0.743 d-1), thus leading to their high BAFs and TMFs. The high intake rate but low elimination rate, as well as the high water and sediment concentrations together contribute to the highest accumulated concentration perfluorooctane sulfonic acid in the fish of Taihu Lake.
Collapse
Affiliation(s)
- Xiaoxue Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China
| | - Xinyi Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China
| | - Wenqing Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi Province 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shanxi Province 712100, PR China.
| |
Collapse
|
38
|
Zhang W, Liang Y. Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119724. [PMID: 35809706 DOI: 10.1016/j.envpol.2022.119724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Biosolids containing per- and polyfluoroalkyl substances (PFAS) could contaminate the receiving environments once they are land applied. In this study, we evaluated the feasibility of controlling the bioavailability of PFAS in biosolids to timothy-grass through stabilization or mobilization approaches. Stabilization was accomplished by adding a sorbent (i.e. granular activated carbon (GAC), RemBind, biochar) to biosolids, while mobilization was achieved by adding a surfactant, sodium dodecyl sulphate (SDS), to biosolids. The results showed that the ΣPFAS concentration in grass shoots grown in biosolids amended soil treated by GAC or RemBind at 2% was only 2.77% and 3.35% of the ΣPFAS concentration detected in shoots grown in biosolids amended soil without a sorbent, respectively, indicating the effectiveness of GAC and RemBind for stabilizing PFAS and reduce their bioavailability. On the other hand, mobilization by adding SDS to biosolids at a dose range of 10-100 mg/kg significantly increased the plant uptake of ΣPFAS by 15.48%-108.57%. Thus, mobilization by adding SDS could be a valuable approach for enhancing the PFAS removal if phytoremediation is applied. Moreover, higher rate of PFAS uptake took place after grass cutting was observed in this study. Thus, proper mowing and regrowth of timothy-grass could lead to efficient and cost-effective removal of PFAS from biosolids amended soil through phytoremediation and leave the site clean to be used for other purposes.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
39
|
Zhu Q, Qian J, Huang S, Li Q, Guo L, Zeng J, Zhang W, Cao X, Yang J. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119620. [PMID: 35709920 DOI: 10.1016/j.envpol.2022.119620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are complex emerging pollutants that are widely distributed in soils. The compositions of PFAS vary according to the emission sources. However, the soil distributions of PFAS from different sources are still poorly understood. In this study, the concentrations and compositions of 18 PFAS in soils close to potential sources (industrial areas, airports, landfills, fire stations and agricultural areas) were investigated in Shanghai. The total PFAS concentrations varied from 0.64 to 294 μg kg-1d.w.. Among the sites, the highest PFAS concentration was found near the fire station (average = 57.9 μg kg-1d.w.), followed by the industrial area (average = 8.53 μg kg-1d.w.). The detection frequencies of the 18 PFAS ranged from 47.5% to 100%. Perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) were detected in all samples. The detection frequencies of PFAS near the fire station were higher than those near other sources. The PFAS in soils were mainly composed of short-chain perfluoroalkyl carboxylic acids (C ≤ 8). Elevated concentrations of long-chain perfluoroalkyl carboxylic acids (C > 12) were found in industrial area. Principal component analysis revealed that long-chain PFAS had different factor loadings compared to short-chain PFAS. With the exception of agricultural soils, the correlations between individual PFAS were more positive than negative. Strong positive correlations were found within three groups of perfluoroalkyl carboxylic acids (C5-C7, C9-C12, and C14-C18), suggesting their similar inputs and transportation pathways. The PFAS in soils around the fire station were likely directly emitted from a point source. In contrast, the PFAS in soils near the other sites had multiple input pathways, including both direct emission and precursor degradation.
Collapse
Affiliation(s)
- Qinghe Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jiahao Qian
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shenfa Huang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qingqing Li
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Lin Guo
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
40
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
41
|
Hušek M, Moško J, Pohořelý M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115090. [PMID: 35489186 DOI: 10.1016/j.jenvman.2022.115090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
With the growing emphasis on environmental protection, the ways of sewage sludge treatment are changing. In this review, we analyse different methods of sewage sludge treatment in terms of potential environmental risk and raw materials recovery. The review begins with a comparison and assessment of existing reviews on this topic. Then, it focuses on the properties and current utilisation of sewage sludge in agriculture and a brief description of sludge thermal treatment methods (mono- and co-incineration, pyrolysis, and gasification). The final part of the review is devoted to technologies for treating sludge ash from mono-incinerators to recover phosphorus, a substance listed as a critical raw material by the EU. Our results show that direct use of sewage sludge likewise composts containing sewage sludge should no longer be considered as a direct source of nutrients and organic matter in agriculture, because of its pollutant content. Co-incineration and landfilling represent a dead-end in sludge treatment due to the loss of raw materials, whereas pyrolysis is sustainable for remote locations with low heavy metal content sludge. Heavy metals also pose a problem for the direct use of sludge ash and must be therefore removed. There are already sludge ash processing technologies that are capable of processing ash to form a variety of raw materials such as phosphorus. These regeneration approaches are currently in their infancy, but are gradually being introduced. The sewage sludge treatment industry is rapidly evolving, and we have attempted to summarise and discuss the current state of knowledge in this review, which will provide a baseline towards the future of sewage sludge suitable treatment.
Collapse
Affiliation(s)
- Matěj Hušek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Jaroslav Moško
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, 6, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02, Prague, 6-Suchdol, Czech Republic.
| |
Collapse
|
42
|
Wu C, Wang Q, Chen H, Li M. Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. WATER RESEARCH 2022; 219:118542. [PMID: 35550967 PMCID: PMC10492922 DOI: 10.1016/j.watres.2022.118542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
A rapid analytical method for per- and polyfluoroalkyl substances (PFASs) combining nano-electrospray ionization and high-resolution mass spectrometry (Nano-ESI-HRMS) was developed and applied to aqueous film-forming foams (AFFFs) and wastewater samples collected from three local wastewater treatment plants (WWTPs). This method exhibited high sensitivity with lower limits of detection (LODs) of 3.2∼36.2 ng/L for 22 target PFAS analytes. In AFFF formulations, Nano-ESI-HRMS enabled the first-time detection of trifluoromethanesulfonic acid (TFMS), perfluoroethyl cyclohexanesulfonate (PFECHS), 6:2 fluorotelomer sulfonyl amido sulfonic acid (6:2 FTSAS-SO2), N-ammoniopropyl perfluoroalkanesulfonamidopropylsulfonate (N-AmP-FASAPS, n = 3-6), ketone-perfluorooctanesulfonic acid (Keto-PFOS), fluorotelomer unsaturated amide sulfonic acid (FTUAmS, n = 7), and 6:2 fluorotelomer amide (6:2 FTAm). Their structures were verified by the tandem MS analysis using collision-induced dissociation. Further, the combination of absolute and semi-quantification results revealed 16 PFASs from 9 PFAS classes as dominant AFFF constituents, accounting for 88.2∼96.5% of the total detected anionic and zwitterionic PFASs, including perfluorinated sulfonic acids (PFSAs, n = 1,4∼8), 6:2 fluorotelomer sulfonates (6:2 FTS), fluorotelomer thioether amido sulfonic acid (FTSAS, n = 6,8), fluorotelomer sulfinyl amido sulfonic acid (FTSAS-SO, n = 6,8), N-AmP-FASAPS (n = 6), 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), perfluoroalkylsulfonamido amino carboxylate (PFASAC, n = 6), 2-((perfluorooctyl)thio)acetatic acid (Thio-8:2 FTCA), and 6:2 FTAm. At WWTPs, aerobic and anaerobic biotransformation of PFAS precursors at the aeration tanks and secondary clarifiers were evident by the generation of mid/short-chain perfluoroalkyl acids, such as perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), as well as the emergence of ultrashort trifluoroacetic acid (TFA) and TFMS and several novel fluorotelomer carboxylic acids (FTCAs). Overall, Nano-ESI-HRMS enabled comprehensive PFAS quantitative analysis and suspect screening, applicable for rapid investigation and assessment of PFAS-related exposure and treatment in environmental matrixes. Our results also revealed that AFFFs and municipal wastewaters are two key sources contributing to the prevalent detection of ultrashort-chain PFASs (e.g., TFMS and TFA) in water.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
43
|
Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T, Houot S, Desrosiers M, Liu J, Sauvé S. Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6056-6068. [PMID: 34668380 DOI: 10.1021/acs.est.1c03697] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑46PFAS: 0.66 μg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑46PFAS: 220 μg/kg). Historical municipal biosolids and composts (1976-1998) were dominated by perfluorooctanesulfonate (PFOS), N-ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009-2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑160PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 μg/kg, max: 1300 μg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS.
Collapse
Affiliation(s)
- Gabriel Munoz
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Aurélia Marcelline Michaud
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sung Vo Duy
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Denis Montenach
- INRAE, UE UEAV, Unité d'expérimentation agronomique et viticole, 68000 Colmar, France
| | - Camille Resseguier
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Françoise Watteau
- INRAE, Laboratoire Sols et Environnement, Université de Lorraine, 54000 Nancy, France
| | - Valérie Sappin-Didier
- INRAE, UMR ISPA, Interactions Sol Plante Atmosphère, Bordeaux Sciences Agro, 33140 Villenave d'Ornon, France
| | - Frédéric Feder
- CIRAD, UPR Recyclage et risque, 97408 Saint-Denis, Réunion France
- CIRAD, UPR Recyclage et risque, Université de Montpellier, 34398 Montpellier, France
| | - Thierry Morvan
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Sabine Houot
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC G1P 3W8, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sébastien Sauvé
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| |
Collapse
|
44
|
Mohamed BA, Li LY, Hamid H, Jeronimo M. Sludge-based activated carbon and its application in the removal of perfluoroalkyl substances: A feasible approach towards a circular economy. CHEMOSPHERE 2022; 294:133707. [PMID: 35066079 DOI: 10.1016/j.chemosphere.2022.133707] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
This study explores the recovery of resources and energy from sewage sludge through the production of sludge-based activated carbon (SBAC) considering circular economy principles. The SBAC production costs were estimated under three scenarios considering various sludge dewatering/drying schemes to determine the production feasibility and its role in the circular economy. SBAC was tested in the removal of a mixture of nine commonly detected poly- and perfluoroalkyl substances (PFASs) in environmentally relevant concentrations of ∽50 μg/L in comparison to commercially available activated carbon (AC) using 5 mg of sorbent and 5 mL of a nine-PFAS mixture in deionised water. SBAC can be produced at approximately 1.2 US $/kg, which is substantially lower than the average production cost of commercial AC of >3 US $/kg. A net revenue ranging from 2 to 7 US $/kg SBAC was estimated by recycling the produced non-condensable gases and bio-oil to produce energy and selling the SBAC. Batch adsorption tests showed that the PFASs removal of SBAC was superior to that of granular AC and similar to that of powdered AC, reaching >91% to below the detection limit. The kinetics tests revealed that adsorption by SBAC and AC occurred within 15 min. The overall results demonstrate the potential of SBAC as an effective sorbent for PFASs, achieving waste-to-resources circular economy via resource and energy recovery from sewage sludge, eliminating sludge disposal and contaminant-leaching to the environment, and in enhancing the quality of wastewater effluent before discharge.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Hanna Hamid
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew Jeronimo
- Laboratory Program Manager, School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC, V6T 1Z9, Canada
| |
Collapse
|
45
|
Li C, Le-Minh N, McDonald JA, Kinsela AS, Fisher RM, Liu D, Stuetz RM. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151533. [PMID: 34762955 DOI: 10.1016/j.scitotenv.2021.151533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic co-digestion of sludge increases biogas production and maintains anaerobic digestion stability. However, it is unclear whether the addition of co-substrates may increase the concentration of trace organic contaminants (TrOCs) and metals, limiting potential resource recovery opportunities when applied to agricultural land. This study explored the occurrence of 20 TrOCs and 18 metals in wastewater sludge anaerobically co-digested with beverage rejects (cola, beer and juice) and food wastes. TrOCs results showed that cola reject caused an accumulation of caffeine in final digestate. Bisphenol A also significantly increased in food waste co-digestion when compared with the mono-digestion (control). No significant difference in TrOCs was observed in the juice reject co-digestion. Analysis of the metal composition revealed a significant increase in Cr and Al in juice reject co-digested sludge. While restaurant food waste increased concentrations of K and Ca, both of which may be beneficial when applied to land. All metals in this study were below the maximum permissible concentrations specified for agricultural land use in Australia. Environmental risk assessment of sludge when used as soil fertiliser, showed that caffeine, diuron, triclocarban, triclosan, Cu and Zn exhibited high risks, with the largest risk quotient (RQ) posed by caffeine. Estrone and naproxen implied medium risks, and ibuprofen implied a high risk except for the co-digestion using cola reject (RQ = 0.9, medium risk). The results emphasise the importance for wastewater utility operators to understand the impact of co-substrate selection on the quality of sludge to minimise environmental risk from the use of biosolids on agricultural land.
Collapse
Affiliation(s)
- Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia; Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nhat Le-Minh
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - James A McDonald
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Ruth M Fisher
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
46
|
Semerád J, Horká P, Filipová A, Kukla J, Holubová K, Musilová Z, Jandová K, Frouz J, Cajthaml T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151662. [PMID: 34780822 DOI: 10.1016/j.scitotenv.2021.151662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) represent a group of highly recalcitrant micropollutants, that continuously endanger the environment. The present work describes the geographical trends of fish contamination by individual PFASs (including new compounds, e.g., Gen-X) assessed by analyzing the muscle tissues of 5 separate freshwater fish species from 10 locations on the Czech section of the Elbe River and its largest tributary, the Vltava River. The data of this study also showed that the majority of the detected PFASs consisted of long-chain representatives (perfluorooctane sulfonate (PFOS), perfluorononanoic acid, perfluorodecanoic acid, and perfluoroundecanoic acid), whereas short-chain PFASs as well as other compounds such as Gen-X were detected in relatively small quantities. The maximum concentrations of the targeted 32 PFASs in fish were detected in the lower stretches of the Vltava and Elbe Rivers, reaching 289.9 ng/g dw, 140.5 ng/g dw, and 162.7 ng/g dw for chub, roach, and nase, respectively. Moreover, the relationships between the PFAS (PFOS) concentrations in fish muscle tissue and isotopic ratios (δ15N and δ13C) were studied to understand the effect of feed composition and position in the river continuum as a proxy for anthropogenic activity. Redundancy analysis and variation partitioning showed that the largest part of the data variability was explained by the interaction of position in the river continuum and δ15N (δ13C) of the fish. The PFAS concentrations increased downstream and were positively correlated with δ15N and negatively correlated with δ13C. A detailed study at one location also demonstrated the significant relationship between δ15N (estimated trophic position) and PFASs (PFOS) concentrations. From the tested physicochemical properties, the molecular mass and number of fluorine substituents seem to play crucial roles in PFAS bioaccumulation.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Jaroslav Kukla
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Kateřina Holubová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Zuzana Musilová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
47
|
O'Keeffe J, Akunna J. Assessment of leachable and persistent dissolved organic carbon in sludges and biosolids from municipal wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114565. [PMID: 35066192 DOI: 10.1016/j.jenvman.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Environmental regulation of organic pollutants has not kept pace with the growth in the number and diversity of legacy and emerging organic substances now in use. Simpler and cheaper tools and methodologies are needed to quickly assess the organic pollutant risks in waste materials applied to land such as municipal wastewater treatment sludges and biosolids. This study attempts to provide these, using an approach that consists of chemical leaching and analysis of dissolved organic carbon and determination of its biodegradability by measuring persistent dissolved organic carbon. Primary and secondary sludges, dewatered sludge cake, and anaerobically and thermally treated biosolids obtained from various types of municipal wastewater treatment plants were used in the study. The study found little variability in the levels of dissolved organic carbon leached from primary sludges obtained from different municipal wastewater treatment plants but found significant differences for secondary sludges based on levels of nitrification at the municipal wastewater treatment plants. As predicted treated biosolids leached less dissolved organic carbon than untreated dry sludges but had relatively higher proportions of persistent or poorly biodegradable dissolved organic carbon. Across all tested sludges and biosolids persistent dissolved organic carbon ranged from 14 to 39%, with biosolids that have undergone anaerobic digestion and thermal treatment more likely to contain greater relative proportion of persistent dissolved organic carbon than untreated sludges. The approach presented in this study will be useful in assessing the effectiveness of current and widely employed sludge treatment methods in reducing persistent organic pollutants in biosolids disposed on land.
Collapse
Affiliation(s)
- Juliette O'Keeffe
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| | - Joseph Akunna
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| |
Collapse
|
48
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|
49
|
Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, Wang H, Srivastava P, Kirkham MB, Mickan BS, Rinklebe J, Siddique KHM. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118564. [PMID: 34838711 DOI: 10.1016/j.envpol.2021.118564] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.
Collapse
Affiliation(s)
- Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Vishma Perera
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia, 5064, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
50
|
Gao Y, Sinkkonen A, Li H, Oleszczuk P. Advances in agro-environmental organic contamination: An introduction to the Special Issue. CHEMOSPHERE 2022; 287:132071. [PMID: 34500329 DOI: 10.1016/j.chemosphere.2021.132071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Itäinen Pitkäkatu 4, Turku, Finland
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| |
Collapse
|