1
|
Zhou Y, Tan Z. Application of green waste polyphenols in natural antimicrobial materials for the environmental fields: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114800. [PMID: 40294565 DOI: 10.1016/j.wasman.2025.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
In recent years, green waste polyphenols (GWPs) have attracted global attention due to their abundant renewable resources and excellent antibacterial properties. We analyzed the research progress on the antimicrobial properties of natural polyphenol composites (including polyphenol-metal nanoparticles, polyphenol nanofiber membranes, polyphenol-polymer membranes, and polyphenol hydrogels) in environmental applications. The waste sources of polyphenols and the latest extraction technologies were systematically summarized, and a universal hydrodynamic cavitation-integrated membrane technology combined with polyphenol extraction and purification process was initially constructed. The inhibitory effects of GWPs on pathogenic bacteria and the antibacterial properties of polyphenol composites in the environmental field were systematically analyzed. These composites exhibited outstanding antimicrobial performance, effectively inhibiting E. coli and S. aureus by up to 100%, especially in water treatment and air filtration. In addition, the advantages, challenges, and prospects for the application of green waste polyphenol antibacterial materials (GWPAMs) in the environmental field are discussed. With high efficiency, low toxicity, antimicrobial resistance, and sustainable antimicrobial properties, GWPs exhibit significant application potential in the "resource recycling-pollution control-ecological restoration" synergistic system within the environmental field. Future work should focus on the green synthesis of polyphenol composites, conducting systematic and thorough investigations on their antibacterial mechanisms, and enhancing their antibacterial properties in agriculture, waste treatment, and soil remediation, to improve their environmental adaptability and sustainable application value.
Collapse
Affiliation(s)
- Yuqian Zhou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China.
| |
Collapse
|
2
|
Sun N, Zhu J, Li Y, Hu F, Dong J, Shen S, Xu X, Cao X, Zhou Z, Wong HM, Wu L, Li QL. A multifunctional semi-interpenetrating polymer network hydrogel dressing for wound healing. Colloids Surf B Biointerfaces 2025; 251:114616. [PMID: 40073628 DOI: 10.1016/j.colsurfb.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Hydrogels have exhibited significant application potential in the field of new wound dressings due to their unique physicochemical properties and biological functions. However, traditional hydrogels possess limitations regarding mechanical properties, adhesion, and the promotion of wound healing. Herein, a multifunctional polyvinyl alcohol-tannic acid/polyacrylamide-polydopamine (PVA-TA/PAM-PDA) hydrogels are developed. By combining an amide-rich crosslinked polyacrylamide (PAM) network with a hydroxyl-rich linear polyvinyl alcohol (PVA) structure, a semi-interpenetrating polymer network (semi-IPN) is formed, which serves as a scaffold to enhance mechanical properties. The incorporation of tannic acid (TA) and polydopamine (PDA) into the semi-IPN framework can enhance cell affinity and tissue adhesiveness. This multifunctional composite hydrogel demonstrates outstanding physical and mechanical properties, including excellent elasticity and toughness, stable rheological properties, and favorable swelling properties. It also exhibits strong adhesive properties to various materials and skin, and can promote tissue regeneration and wound healing. This study offers novel ideas for the development and application of multifunctional composite hydrogel wound dressings, and the PVA-TA/PAM-PDA hydrogel shows great promise for clinical applications as an innovative wound dressing.
Collapse
Affiliation(s)
- Ning Sun
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jiaxin Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Fangfang Hu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jianguo Dong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shengjie Shen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiaohua Xu
- The institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiaoma Cao
- The institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48208-2576, United States
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, 999077, Hong Kong
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Quan-Li Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; The institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China.
| |
Collapse
|
3
|
Wu Q, Zhou C, Niu M, Hu J, Feng N, Mhatre S, Lu Y, Niu X, Guo T, Chen J, Bi R, Rojas OJ. Interfacial Stabilization of Green and Food-Safe Emulsions through Complexation of Tannic Acid and Nanochitins. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40449023 DOI: 10.1021/acsami.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
Nanochitins exhibit unique structural attributes that confer distinct physical properties to multiphase systems. Amphiphilic tannic acid (TA) serves as an excellent candidate for interfacial modification via electrostatic adsorption and complexation with nanochitin. In this study, we developed green and food-safe strategies to enhance the stabilizing and functional performance of complexes formed through the coassembly of chitin nanofibers (ChNF) and TA. Their interactions were systematically investigated using spectroscopy, rheological measurements, and molecular simulations, all confirming strong interfacial binding primarily through hydrogen bonding. X-ray diffraction analysis further revealed TA-induced changes in ChNF crystallinity. The resulting ChNF-TA complexes effectively stabilized high internal phase Pickering emulsions (HIPPEs), which exhibited long-term stability and were successfully applied in direct ink writing. The exceptional stability of the HIPPEs was attributed to the synergistic effects of electrostatic charge neutralization and interfacial tension reduction. Quartz crystal microgravimetry demonstrated rapid complexation, with TA binding to ChNF thin films at a level of approximately 450 ng/cm2. The resulting HIPPEs remained stable for at least two months and readily formed cryogels upon freeze-drying. Owing to their enhanced stability and viscoelastic properties, HIPPEs stabilized with ChNF-TA complexes offer a promising platform for the development of sustainable emulsions, with the potential for customization in personalized food and related fields.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chen Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiaxin Hu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Nianjie Feng
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Sameer Mhatre
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tianyu Guo
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ran Bi
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland
| |
Collapse
|
4
|
Zhao Z, Wang W, Ba Z, Zhang Y, Xu H, Liang D. Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials. Biomimetics (Basel) 2025; 10:334. [PMID: 40422164 DOI: 10.3390/biomimetics10050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
An efficient solar water evaporator is an important strategy for addressing the problem of water shortage. Constructing high-performance solar interfacial evaporators through bionic design has become a crucial approach for performance enhancement. Through the study of zebra patterns, it has been found that the black-and-white alternating patterns generate vortices on the surface of the zebra's skin, thereby reducing the temperature. By utilizing the vortices brought about by the temperature difference, the design of a solar water evaporator is created based on the bionic zebra pattern, so as to improve its water evaporation performance. In this work, green and sustainable wood is used as the base of the evaporator, and the bionic design of zebra stripes is adopted. Meanwhile, the following research is conducted: The wood is cut into thin slices with dimensions of 30 × 30 × 5 mm3, and a delignification treatment is performed. Tannic acid-Fe ions are used as the photothermal material for functionalization. A series of stable patterned water evaporators based on delignification wood loaded with tannic acid-Fe ion complex (TA-Fe3+) are successfully prepared. Among them, the wood-based solar water evaporator with 3 mm zebra stripes exhibits excellent photothermal water evaporation performance, achieving a water evaporation rate of 1.44 kg·m-2·h-1 under the illumination intensity of one sun. Its water evaporation performance is significantly superior to that of other coating patterns, proving that the bionic design of zebra patterns is effective and can improve water evaporation efficiency. This work provides new insights into the development of safe and environmentally friendly solar interfacial water evaporation materials through bionic design.
Collapse
Affiliation(s)
- Zebin Zhao
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Wenxuan Wang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Zhichen Ba
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Yuze Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| | - Hongbo Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Daxin Liang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Ruan X, Ren L, Wang T, Pu Y, Yu S, Qiang T. Bionic polydopamine in-situ functionalized keratin double network gel with adsorption and self-adaptability: promoting uranium entrapment from seawater. Int J Biol Macromol 2025; 314:144401. [PMID: 40398765 DOI: 10.1016/j.ijbiomac.2025.144401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/29/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Adsorption behavior driven by surface charge is a challenge for uranyl extraction from seawater (UES), so it is attractive to design uranium adsorbents with charge and environment self-adaptability. In this paper, polyphenolamine (PPA) with a dopamine-like structure was synthesized by a one-step method using tannic acid (TA) and polyethyleneimine (PEI) as raw materials. The PPA with different isoelectric points are obtained by adjusting the ratios of TA and PEI, which enables the charge regulation of PPA within pH 6-9. Then, based on the excellent adhesion of PPA, a novel double network PPA-HK aerogel was constructed by the spatial crosslinking strategy between PPA and keratin peptides. It not only realizes the transformation of PPA from dispersed to condensed state, but also endows PPA-HK with the charge-driven regulable adsorption behavior. When the ratio of TA and PEI was 1:2, the maximum adsorption capacity of PPA-HK (265 mg g-1) was achieved at pH = 8 which was exactly the pH of natural seawater. The saturated adsorption capacity of PPA-HK reached 8.05 mg g-1 after 25 days of adsorption in natural seawater, as well as it exhibited excellent recyclability and antibacterial performance (with an antibacterial rate of over 90 %). What is more important is that it still maintains high mechanical strength. The in-situ spatial crosslinking strategy is used in the modification of keratin by using polydopamine-like PPA for the first time. This study not only endues the adsorbent multi properties, but also expands the application potential of keratin in uranium extraction.
Collapse
Affiliation(s)
- Xiaonan Ruan
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology/National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology/National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Tian Wang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology/National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yadong Pu
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, Hubei, PR China
| | - Sijie Yu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology/National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology/National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
6
|
Huang C, Qin Q, Chen Z, Chen X, Zhang P. Hydratable Janus Membranes with Robust Antiwetting Pores for Stable Membrane Distillation of Saline Oily Wastewater. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377488 DOI: 10.1021/acsami.5c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Janus membranes, composed of a hydrophilic surface layer and a hydrophobic substrate, are potential candidates for membrane distillation (MD) to prevent organic substance induced wetting in saline oily wastewater treatments. However, owing to insufficient hydrophobicity of pore surfaces, traditional hydrophobic substrates suffer from pore wetting and limited MD performance stability when saline water penetrates through the hydrophilic layer. Herein, we present a Janus polyvinylidene fluoride (PVDF) nanocomposite membrane with robust pore surface antiwettability for stable MD desalination of saline oily wastewater. Hydrophobic silica (SiO2) nanoparticles are used to build nanostructures on pore surfaces to significantly enhance their hydrophobicity for preventing pore wetting. The superhydrophilic tannic acid/Fe (TA/Fe) layer provides a hydratable surface to promote water molecule absorption, facilitate the evaporation rate, and effectively impede oil/surfactant/gypsum contaminants. As a result, the TA/Fe-PVDF/SiO2 Janus membrane shows stable desalination (32 h) with a high flux of 25.2 kg m-2 h-1 and salt rejection (>99.9%) for saline oily solution. This work provides a promising approach to develop high-performance Janus membranes with antiwetting ability for stable saline oily wastewater treatment.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Qin
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongao Chen
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao Chen
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| |
Collapse
|
7
|
Xu Y, Zhang H, Zhang Y, Ma J, Jia Q. Epitope molecularly imprinted polymers based on host-guest interaction: specific recognition of CD59. J Chromatogr A 2025; 1755:466056. [PMID: 40382882 DOI: 10.1016/j.chroma.2025.466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The detection of CD59 is of great clinical importance since it is an important glycoprotein that can serve as a biomarker related to kinds of cancers. In this work, we prepared host-guest interaction based oriented epitope molecularly imprinted polymer (hg-EMIP) for the immobilization of CD59 N-terminal epitopes. Cucurbit[7]uril (CB[7]) and l-phenylalanine (L-phe) were employed as the host and guest; and tannic acid (TA) with abundant hydroxyl groups and diethylenetriamine (DETA) were chosen as the functional monomer and crosslinking agent, respectively. The obtained hg-EMIP can specifically recognize CD59 with the adsorption capacity of 88.2 mg/g and imprinting factor of 5.63, and possesses high reusability. The hg-EMIP-based method possesses a wide linear range (1 ng/mL - 1 μg/mL) and low limit of detection (0.44 ng/mL), and can be successfully used for the detection of CD59 in human serum sample. This study provides a scheme for the preparation of host-guest based epitope molecularly imprinted polymers for helping to identify potential disease biomarkers efficiently.
Collapse
Affiliation(s)
- Yitong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huifeng Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, PR China
| | - Ying Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Maia GS, Marangoni Júnior L, Vieira RP. Tannic acid as a multifunctional additive in polysaccharide and protein-based films for enhanced food preservation: A comprehensive review. Adv Colloid Interface Sci 2025; 339:103428. [PMID: 39938158 DOI: 10.1016/j.cis.2025.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025]
Abstract
Fossil-based polymers continue to dominate the market for single-use food packaging, despite increasing concerns about their sustainability. In response, natural and renewable polymers, such as proteins and polysaccharides, are gaining attention as potential alternatives due to their biodegradability and biocompatibility. However, their broader adoption is hindered by the need to improve their mechanical, barrier, and thermal properties. Tannic acid (TA) has emerged as a particularly effective additive for biopolymer-based films, offering strong antioxidant and antimicrobial properties. It also enhances mechanical and barrier characteristics through physical and/or covalent crosslinking. As a result, TA shows great potential as an additive for bioplastics, improving food packaging performance and extending product shelf life, while benefiting both the environment and the food industry. Despite the promising applications of TA, comprehensive reviews that focus on recent developments in its performance and bioactive properties remain limited. This review aims to highlight the effectiveness of TA as both an active ingredient and a crosslinking agent in various biopolymer films, offering valuable insights into its role in sustainable food packaging solutions by critically examining the latest advancements.
Collapse
Affiliation(s)
- Gabriella Simon Maia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Campinas, São Paulo, Brazil.
| | - Luís Marangoni Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Food Engineering (FEA), Campinas, São Paulo, Brazil
| | - Roniérik Pioli Vieira
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering (FEQ), Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Ma Y, Zhen W, Shao T, Jilili Y, Niu Q. Multifunctional poly(lactic acid) membrane assisted by coal-based carbon dots for efficient separation of oil-in-water emulsions and dyes. Int J Biol Macromol 2025; 309:142755. [PMID: 40180085 DOI: 10.1016/j.ijbiomac.2025.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Superhydrophilic separation membranes have broad application prospects in oil-water separation and wastewater purification. However, the accumulation of pollutants on the membrane surface and the secondary environmental pollution caused by waste membranes remain inevitable challenges. In this study, a superhydrophilic self-cleaning multifunctional membrane was fabricated by hydrolytic co-deposition of carbon dots, tetrabutyl titanate (TBT), and tannic acid on the surface of a degradable poly(lactic acid) (PLA) membrane for efficient separation of dye/oil/water emulsions. The results indicate that the superhydrophilic crosslinking network is formed on the surface of PLA-based membranes through co-deposition of TA-based coating, enabling the multifunctional membrane to possess a stable and ultra-strong oleophobic hydrophilic layer. As a result, the membrane exhibits strong underwater oil resistance and excellent performance in the separation of oil-in-water emulsions (rejection rate > 99%). More importantly, the surface of the superhydrophilic crosslinking network is negatively charged, which facilitates the selective removal of positively charged organic soluble substances in water through electrostatic adsorption. For instance, the removal rate of cationic dye MB and amphoteric dye RhB can reach as high as 99.93%. Additionally, with the catalysis of TiO2, the organic pollutants on the membrane surface can be decomposed under UV irradiation, indicating the ideal self-cleaning property of the multifunctional membrane. This novel strategy for constructing a multifunctional surface deposition layer is expected to provide broader prospects for the application of superhydrophilic membranes in oil-water separation and wastewater purification.
Collapse
Affiliation(s)
- Yumiao Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China; College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, Xinjiang, China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Tengfei Shao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Yikelamu Jilili
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Qingqing Niu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| |
Collapse
|
10
|
Wang Y, Liu W, Chen Z, Zheng K, Yi X, Wang J, Chen X, Liu X. Distinct responses of Caenorhabditis elegans to polyethylene microplastics and plant secondary metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126051. [PMID: 40086784 DOI: 10.1016/j.envpol.2025.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Soil worms are among the most abundant and functionally diverse soil animals. However, they have been largely overlooked in studies on microplastic (MP) toxicity. MPs and plant secondary metabolites (PSMs) are ubiquitous in soil due to plant litter decomposition and heavy MP contamination, inevitably interacting and exerting combined toxicity on soil organisms. However, little research has been conducted on their joint effects. This study investigates the individual and combined toxic effects of polyethylene (PE) MPs and three PSMs (glycyrrhizic acid, tannic acid, and matrine) on the model organism Caenorhabditis elegans. Physiological and biochemical responses were assessed using fluorescence microscopy, image analysis, and statistical methods. After 42 h of exposure to PE MPs and/or PSMs, worm growth and development were negatively impacted. Under experimental conditions, matrine and PE MPs synergistically inhibited worm growth, exacerbated neurological damage, and induced oxidative stress. In contrast, glycyrrhizic acid and tannic acid alleviated PE MP-induced growth inhibition, mitigated oxidative stress, and demonstrated antioxidant properties that counteracted oxidative damage. This study offers new insights into the combined effects of MPs and PSMs in soil ecosystems, contributing to ecological risk assessments and pollution management strategies.
Collapse
Affiliation(s)
- Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Wanxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Ziwei Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 116024, China.
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
11
|
Sharifimehr S, Maley J, Ghosh S. Development of faba protein-tannic acid conjugate via free radical grafting: Evaluation of interaction mechanisms and antioxidative properties. Food Chem 2025; 470:142508. [PMID: 39787765 DOI: 10.1016/j.foodchem.2024.142508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein. The conjugate showed about 77 % DPPH, 89 % ABTS, and 83 % hydroxyl radical scavenging activities and superior ferric-reducing ability compared to the protein alone and the mixture of protein and tannic acid. Electron paramagnetic resonance (EPR) spectroscopy revealed 97.8 % radical scavenging ability of the conjugate, comparable to the pure tannic acid. The exceptional antioxidative properties of conjugate can be utilized to delay lipid oxidation in protein-stabilized oil-in-water emulsions.
Collapse
Affiliation(s)
- Shahrzad Sharifimehr
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada
| | - Jason Maley
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon S7N 5C9, Saskatchewan, Canada
| | - Supratim Ghosh
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada.
| |
Collapse
|
12
|
Wang L, Li T, Wu C, Fan G, Zhou D, Li X. Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications. Food Sci Biotechnol 2025; 34:1235-1259. [PMID: 40110409 PMCID: PMC11914671 DOI: 10.1007/s10068-024-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Plant polyphenols are widely distributed in most higher plants, garnering significant attention from researchers due to their remarkable antioxidative, antibacterial, anticancer, and anti-radiation properties. They also offer multiple health benefits for various lifestyle-related diseases and oxidative stress. While there has been considerable research on the extraction and antibacterial application of plant polyphenols, developing a rapid and efficient extraction method remains a persistent challenge. Furthermore, the introduction of novel technologies is imperative to enhance the bioavailability of polyphenolic compounds. This comprehensive review synthesizes recent research findings pertaining to the extraction, antibacterial mechanisms, and applications of plant polyphenols. This research highlights the prevalent issues of low extraction rates of plant polyphenols and the ambiguous antibacterial mechanisms in current research. To address these challenges, this research proposes innovative directions for improving extraction technology and expanding antibacterial applications. Additionally, this review outlines promising future research avenues within the realm of plant polyphenols. Graphical abstract
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Dandan Zhou
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| | - Xiaojing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, No.159 Long pan Road, Nanjing, 210037 Jiangsu People's Republic of China
| |
Collapse
|
13
|
Zhang J, Du Z, Wang Y, Chen H, Ai Q, Chen Q, Hou G, Tang Y. Magnetic Field-Driven Ion Selectivity Boosts LiF-Rich SEI Formation for Enhanced Lithium Metal Battery Performance Across Temperatures. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18329-18338. [PMID: 40079821 DOI: 10.1021/acsami.4c21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Lithium metal anodes are considered highly promising electrode materials due to their exceptional theoretical capacity and low reduction potential. However, their path to large-scale commercialization has been obstructed by significant challenges such as uncontrolled volume expansion, severe side reactions, and dendrite formation. To tackle these issues, our study introduces a covalent modification of separators using tannic acid (TA) and Co2+, coupled with the application of an external magnetic field. This innovative approach promotes the adsorption of CO32- ions while inhibiting the uptake of F- ions on the TA-Co/PP separators, leading to the formation of a LiF-rich solid electrolyte interface on the anode surface. Such modifications significantly enhance the electrochemical performance of lithium metal batteries. Remarkably, with the aid of the magnetic field, batteries featuring these modified separators maintained a Coulombic efficiency of 90% over 650 cycles at 1 mA cm-2. Additionally, under challenging conditions at 60 °C and 4 mA cm-2, the polarization voltage of Li symmetric cells utilizing TA-Co/PP separators is maintained at just 20 mV. This successful demonstration underlines the potential of our method to catalyze the broader adoption and commercialization of lithium metal batteries across varied temperature spectra.
Collapse
Affiliation(s)
- Jianli Zhang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zepu Du
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yao Wang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Haibo Chen
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qinghui Ai
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiang Chen
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangya Hou
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yiping Tang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
14
|
Santoso SP, Angkawijaya AE, Cheng KC, Lin SP, Hsu HY, Hsieh CW, Rahmawati A, Shimomura O, Ismadji S. Unlocking the Potential of Gallic Acid-Based Metal Phenolic Networks for Innovative Adsorbent Design. Molecules 2025; 30:1218. [PMID: 40141997 PMCID: PMC11945622 DOI: 10.3390/molecules30061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Metal phenolic networks (MPNs) have attracted significant attention due to their environmentally benign nature, broad compatibility, and universal adhesive properties, making them highly effective for modifying adsorbent surfaces. These supramolecular complexes are formed through the coordination of metal ions with natural phenolic ligands, resulting in stable structures while retaining the active adsorption sites of the ligands, thereby enhancing the adsorption performance of unmodified substrates. Among various MPNs, metal ion gallic acid (GA) networks are particularly well-known for their exceptional stability, biological activity, and superior adsorption ability. This review offers a comprehensive examination of GA-based MPN adsorbents, focusing on their formation chemistry, characterization techniques, and applications. The coordination chemistry underlying the stability of GA-metal complexes is analyzed through equilibrium studies, which are critical for understanding the robustness of MPNs. The main analytical methods for assessing metal ligand interactions are discussed, along with additional characterization techniques for evaluating adsorbent properties. This review also explores various synthesis and performance enhancement strategies for GA-based MPN adsorbents, including stand-alone MPNs, MPN-mediated mesoporous materials, MPN-MOF composites, and MPN-coated substrates. By consolidating current advancements in MPN-based adsorbents and offering fundamental insights into their chemistry and characterization, this review serves as a valuable resource for researchers seeking to develop stable, functional metal-organic materials. It aims to drive innovation in sustainable and efficient adsorbent technologies for diverse environmental and industrial applications.
Collapse
Affiliation(s)
- Shella Permatasari Santoso
- Chemical Engineering Department, Faculty of Engineering, Universitas Katolik Widya Mandala Surabaya, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia;
- Chemical Engineering Master Program, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, East Java, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | | | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, #1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan;
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Graduate Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan;
- TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China;
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan;
| | - Astrid Rahmawati
- Department of Applied Chemistry, Osaka Institute of Technology, 5-16-1 Omiya, Ashahi-ku, Osaka 535-8585, Japan; (A.R.); (O.S.)
| | - Osamu Shimomura
- Department of Applied Chemistry, Osaka Institute of Technology, 5-16-1 Omiya, Ashahi-ku, Osaka 535-8585, Japan; (A.R.); (O.S.)
| | - Suryadi Ismadji
- Chemical Engineering Department, Faculty of Engineering, Universitas Katolik Widya Mandala Surabaya, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia;
- Chemical Engineering Master Program, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, East Java, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| |
Collapse
|
15
|
Tao S, Yang Y, Wu C, Yang J, Wang Z, Zhou F, Liang K, Deng Y, Li J, Li J. Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411274. [PMID: 39823437 PMCID: PMC11904938 DOI: 10.1002/advs.202411274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/29/2024] [Indexed: 01/19/2025]
Abstract
Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative. The retention of neutrophil extracellular traps (NETs) in chronic infectious niches is found to be a barrier to inflammation resolution. However, whether ruining the existing NETs within the local infectious bone lesions can contribute to inflammation resolve and bone repair remains understudied. Herein, a nanocapsuled delivery system that scavenges NETs dual-responsively to near-infrared light as a switch and to NETs themselves as a microenvironment sensor is designed. Besides, the photothermal and photodynamic effects endow the nanocapsules with antibacterial properties. Together with the ability to clear NETs, these features facilitate the restoration of the normal host response. The immunocorrective properties and inherent pro-osteogenic effects finally promote local bone repair. Together, the NET scavenging nanocapsules address the challenge of impaired bone repair in chronic infections due to biased host response caused by excessive NETs. This study provides new concepts and strategies for repairing bone destruction attributable to chronic infections via correcting biased host responses in chronic infectious diseases.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Gong W, Liu M, Hu B, Fan L, Ye D, Xu J. Room-temperature and recyclable preparation of cellulose nanofibers using deep eutectic solvents for multifunctional sensor applications. Int J Biol Macromol 2025; 296:139739. [PMID: 39798755 DOI: 10.1016/j.ijbiomac.2025.139739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents. A high average yield (~90 %) of CNFs was achieved during the recycling process. The resultant CNFs delivered favorable dispersion in water with an average length of ~5.3 μm and an average diameter of ~44 nm. The application of the resultant CNFs for multifunctional sensors was explored by fabricating the composite films of poly(vinyl alcohol) (PVA), tannic acid-decorated CNFs (CNF@TA) and Ag nanoparticles (AgNPs). As a stretchable strain sensor, the PVA/CNF@TA/AgNPs sample exhibited superior sensitivity (GF = 46.42), low detection limit (<1 %) and fast response (80 ms). This sensor possessed excellent temperature sensing performance with good accuracy (0.1 °C), high TCR (29.84/°C) in the body temperature region of 34-42 °C and desirable linearity (R2 = 0.981). In addition, the sensor could be used to monitor real-time skin moisture information. This simple and economical preparation strategy may facilitate potential applications of CNFs in the development of multifunctional sensors for wearable electronic devices.
Collapse
Affiliation(s)
- Wei Gong
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Meng Liu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Bowen Hu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Lingling Fan
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| | - Dezhan Ye
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Jie Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
17
|
Li P, Li C, Wang J, Jiang C, Gao X, Ma J, Yang W, Chao D, Chen Y. Lattice Reconstruction Engineering Boosts the Extreme Fast Charging/Discharging Performance of Nickel-Rich Layered Cathodes. NANO LETTERS 2025. [PMID: 40014551 DOI: 10.1021/acs.nanolett.4c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The low specific capacity and the poor capacity retention at extreme fast charging/discharging limit the nickel-rich layered cathode commercialization in electric vehicles, and the root causes are interface instability and capacity loss induced by birth defects and irreversible phase transition. In this work, we propose a lattice reconstruction strategy combining polyvinylpyrrolidone-assisted wet chemistry and calcination to prepare the aluminum-modified LiNi0.83Co0.11Mn0.06O2 (ANCM). Our method offers distinct advantages in tailoring birth defects (residual alkali and rocksalt phase), reducing Li vacancies and oxygen vacancies, exhibiting gradient Ni concentration distribution, suppressing the Li/Ni intermixing defects, lowering the lattice strain before and after recycling, and inhibiting the microcracks. The ANCM constructs robust crystal lattices and delivers an initial discharge capacity of 155.3 mAh/g with 89.2% capacity retention after 200 cycles at 5 C. This work highlights the importance of synthesis design and structural modification for cathode materials.
Collapse
Affiliation(s)
- Pengcheng Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Chengyu Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Jun Wang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Cairong Jiang
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xiang Gao
- Chongqing Talent New Energy Co., Ltd., Chongqing 401133, China
| | - Jianjun Ma
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
| | - Yongjin Chen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| |
Collapse
|
18
|
Wu Z, Wang L, Chen X, Bu N, Duan J, Liu W, Ma C, Pang J. Enhancing Waterproof Food Packaging with Janus Structure: Lotus Leaf Biomimicry and Polyphenol Particle Technology for Vegetable Preservation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8248-8261. [PMID: 39846723 DOI: 10.1021/acsami.4c17004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required. This research synthesizes polyphenol particles via metal ion coordination and multiple hydrogen bondings to enhance antioxidant and antimicrobial properties. In addition, inspired by the asymmetric wettability of Janus-structured lotus leaves, this study develops biomimetic multifunctional Janus electrospun fibers via electrostatic spinning. These fibers exhibit exceptional properties, including superhydrophobic, antifouling, ultraviolet-blocking, pH sensitivity, antioxidation, antimicrobial, and freshness retention properties. Experiments and mesoscopic capillary flow simulations elucidate the waterproofing ability and underlying mechanisms of the Janus electrospun fibers, demonstrating their function as hydrophobic shields for preventing water penetration. Overall, this study provides a reference for high-performance waterproof food packaging to enhance vegetable preservation.
Collapse
Affiliation(s)
- Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Special Administrative Region, Hong Kong 999077, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Qin Y, Zhu Y, Lu L, Wu H, Hu J, Wang F, Zhang B, Wang J, Yang X, Luo R, Chen J, Jiang Q, Yang L, Wang Y, Zhang X. Tailored extracellular matrix-mimetic coating facilitates reendothelialization and tissue healing of cardiac occluders. Biomaterials 2025; 313:122769. [PMID: 39208698 DOI: 10.1016/j.biomaterials.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.
Collapse
Affiliation(s)
- Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jinpeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Fan Wang
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jian Wang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Xia Yang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juan Chen
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Zhao Y, Zhao X, Wang X, Ma Z, Yan J, Li S, Wang N, Jiao J, Cui J, Zhang G. Polyphenol-mediated assembly of toll-like receptor 7/8 agonist nanoparticles for effective tumor immunotherapy. Acta Biomater 2025; 193:417-428. [PMID: 39746528 DOI: 10.1016/j.actbio.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects. Upon intravenous administration, the prepared RTP NPs are effectively accumulated at tumor sites, which increase their bioavailability and reduce systemic inflammation. RTP NPs can trigger a potent antitumor immune response in a mouse tumor model to inhibit tumor growth. Additionally, after subcutaneous injection at the tail base, RTP NPs efficiently migrate to the lymph nodes, where they elicit immune memory to prevent tumorigenesis. This study underscores the potential application of polyphenol-mediated assembly in developing nanomedicines with reduced toxicity for tumor-specific immunotherapy. STATEMENT OF SIGNIFICANCE: Toll-like receptor agonist (R848) nanoparticles for tumor-selective immunotherapy were synthesized through polyphenol-mediated assembly, a method that simplifies preparation process and minimizes potential side effects. Intravenously administered these nanoparticles effectively extended circulation time, enhanced tumor enrichment, and reduced systemic inflammation, thus augmenting the bioavailability and minimizing the side effects of R848. The nanoparticles significantly inhibited tumor growth by triggering a potent antitumor immune response, including dendritic cell maturation, macrophage polarization, T-cell infiltration, and cytokine secretion. Moreover, after subcutaneous injection at the tail base, they can elicit immune memory to prevent tumorigenesis.
Collapse
Affiliation(s)
- Yilei Zhao
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaonan Zhao
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuechun Wang
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zilin Ma
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Guiqiang Zhang
- The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
21
|
Bu SH, Cho W, Ham G, Yang B, Jung J, Cha H, Park C. Supramolecular Reconstruction of Self-Assembling Photosensitizers for Enhanced Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202416114. [PMID: 39376066 DOI: 10.1002/anie.202416114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Natural photosynthetic systems require spatiotemporal organization to optimize photosensitized reactions and maintain overall efficiency, involving the hierarchical self-assembly of photosynthetic components and their stabilization through synergistic interactions. However, replicating this level of organization is challenging due to the difficulty in efficiently communicating supramolecular nano-assemblies with nanoparticles or biological architectures, owing to their dynamic instability. Herein, we demonstrate that the supramolecular reconstruction of self-assembled amphiphilic rhodamine B nanospheres (RN) through treatment with metal-phenolic coordination complexes results in the formation of a stable hybrid structure. This reconstructed structure enhances electron transfer efficiency, leading to improved photocatalytic performance. Due to the photoluminescence quenching property of RN and its electronic synergy with tannic acid (T) and zirconium (Z), the supramolecular complexes of hybrid nanospheres (RNTxZy) with Pt nanoparticles or a biological workhorse, Shewanella oneidensis MR-1, showed marked improvement in photocatalytic hydrogen production. The supramolecular hybrid particles with a metal-phenolic coordination layer showed 5.6- and 4.0-fold increases, respectively, in the productivities of hydrogen evolution catalyzed by Pt (Pt/RNTxZy) and MR-1 (M/RNTxZy), respectively. These results highlight the potential for further advancements in the structural and photochemical control of supramolecular nanomaterials for energy harvesting and bio-hybrid systems.
Collapse
Affiliation(s)
- Seok Hyeong Bu
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Wansu Cho
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Gayoung Ham
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Beomjoo Yang
- School of Civil Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jongwon Jung
- School of Civil Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chiyoung Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk institute of Science and Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
22
|
Ren J, Lyu B, Gao D, Fu Y, Ma J. High-Performance Triple-Network Hydrogels Derived from Chrome Leather Scraps: Ultrahigh Compressive Strength, Adhesion, and Self-Recovery. Biomacromolecules 2025; 26:679-688. [PMID: 39680854 DOI: 10.1021/acs.biomac.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The development of engineered hydrogels with high strength, self-recovery, and adhesion is essential for applications requiring resistance to large deformations and cyclic loading. Herein, a triple-network (TN) hydrogel with ultrahigh compressive strength, strong adhesion, and good self-recovery was constructed by using tannic acid-modified chrome leather scrap hydrolysate as the first network, polyacrylamide as the second network, and poly-2-propenamide-2-methylpropanesulfonic acid as the third network. The ultrahigh (70 MPa compressive strength and 95% compression deformation) TN hydrogels were effectively created, which is attributed to the synergy of the three networks. The TN hydrogels display adhesion (adhesion strength > 20 kPa) ascribed to the introduction of phenolic hydroxyl groups in tannic acid. Intriguingly, the TN hydrogels exhibit excellent self-recovery performance (93.6% dissipated energy recovery at 70 °C) and shape memory performance (restored to the original shape in 20 s). These properties are essential for the development of high-performance hydrogels and promote the resource utilization of leather waste.
Collapse
Affiliation(s)
- Jingjing Ren
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Yatong Fu
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| |
Collapse
|
23
|
Liu Y, Guo C, Wang Y, Kong QQ. Application of an Injectable Thermosensitive Hydrogel Drug Delivery System for Degenerated Intervertebral Disc Regeneration. Biomacromolecules 2025; 26:209-221. [PMID: 39670521 DOI: 10.1021/acs.biomac.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intervertebral disc degeneration is characterized by a localized, chronic inflammatory response leading to a synthesis/catabolism imbalance within the nucleus pulposus (NP) and progressive functional impairment within the NP. Polyphenol molecules have been widely used in anti-inflammatory therapies in recent years; therefore, we designed an injectable, temperature-sensitive hydrogel PLGA-PEG-PLGA-based drug delivery system for local and sustained delivery of two drugs tannic acid (TA) and resveratrol (Res), with the hydrogel carrying TA directly and Res indirectly (carried directly by inflammation-responsive nanoparticles). The delivery system presents good injectability at room temperature and forms a gel in situ upon entering the intervertebral disc. The delivery system can rapidly release TA and sustain Res release. In vitro and in vivo experiments have shown that this hydrogel drug delivery system is effective in anti-inflammation of degenerated intervertebral discs and promotes the regeneration of extracellular matrix in the NP.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| |
Collapse
|
24
|
Huo K, Liu W, Shou Z, Wang H, Liu H, Chen Y, Zan X, Wang Q, Li N. Modulating the Interactions of Peptide-Polyphenol for Supramolecular Assembly Coatings with Controllable Kinetics and Multifunctionalities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412194. [PMID: 39587774 PMCID: PMC11744643 DOI: 10.1002/advs.202412194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Indexed: 11/27/2024]
Abstract
Polyphenols and peptides represent two fundamental building blocks in the kingdom of supramolecular assembly (SA) coatings, which have recently attracted considerable interest. Regulating the assembly kinetics of SA coatings is critical to controlling the performance of SA coatings, but this area is still in its infancy, especially in the SA coating of peptide-polyphenol. Herein, a library of oligopeptides with rich diversity, numerous polyphenols, and modulators are explored to reveal their roles in the formation and regulation of SA coating. Citric acid (CA) is an effective regulator of interaction between the polyphenols and peptides to produce peptide-polyphenol coatings, TCP. The electrostatic interaction between tannic acid (TA) and cationic peptide drives the formation of TCP, while the multiple hydrogen bonds between CA and TA and peptide dominate the assembly kinetics. With optimized assembly pH and the mass ratio of TA, CA, and peptide, the thickness of TCP coating deposits onto diverse substrates (glass, silica, titanium, polystyrene) is ≈400 nm with controllable kinetics. The multifunctional TCP coatings are endowed via peptide-coupled functional units, including enhanced cellular adhesion, elevated osteogenic capacity, anti-protein adsorption, and antimicrobial. This work contributes to the understanding of the assembly kinetics and functionalization of peptide-polyphenol coatings.
Collapse
Affiliation(s)
- Kaiyuan Huo
- School of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Wenjie Liu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Zeyu Shou
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
- Department of OrthopedicsThe People's Hospital of ZhujiAffiliated Zhuji HospitalWenzhou Medical UniversityShaoxingZhejiang311800China
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Hongxiang Wang
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Hao Liu
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Yang Chen
- School of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xingjie Zan
- School of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Qing Wang
- Yongkang First People's Hospital of Wenzhou Medical UniversityYongkangZhejiang321300China
| | - Na Li
- School of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| |
Collapse
|
25
|
Zhang G, Yu C, Dong Y, Su W, Xue R, Zhang P, Li Y, Wan G, Tang K, Fan X. Self-expanding cellulose sponge with enhanced hemostatic ability by tannic acid/metal ion composite coating for highly effective hemostasis of difficult-to-control bleeding wounds. BIOMATERIALS ADVANCES 2025; 166:214025. [PMID: 39244828 DOI: 10.1016/j.bioadv.2024.214025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Refractory bleeding presents a critical, life-threatening challenge, and the goal of medical professionals and researchers has always been to achieve safe and effective hemostasis for bleeding wounds. In this study, we utilized the benefits of a self-expanding cellulose sponge to control incompressible bleeding, which is achieved this by creating a tannic acid/metal ion coating on the surface and within the pores of the sponge to improve its hemostatic effectiveness. The effects of various types and concentrations of metal ions (calcium, magnesium, iron, and zinc) on hemostatic efficiency and biosafety is systematically investigated. The results from bacteriostasis and in vitro coagulation experiments identified 0.3 wt% Fe3+ as the optimal metal ion coating. Scanning electron microscope energy spectrum analysis confirmed the uniform distribution of Fe3+ within the cellulose sponge. Furthermore, the in vivo and in vitro results demonstrated that the prepared tannic acid/Fe3+ coated composite hemostatic sponge exhibits excellent coagulation ability and biocompatibility. Both the bleeding time and theblood loss in two bleeding models are significantly reduced, showing promising potential for treating extensive surface bleeding and deep penetrating wounds. Furthermore, the straightforward preparation method for this composite hemostatic sponge facilitates additional research towards market application.
Collapse
Affiliation(s)
- Guorui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Weiguo Su
- Vascular Surgery of Nankai university affiliated NanKai hospital, Tianjin 300110, China
| | - Rong Xue
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Pengcheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yijin Li
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China.
| | - Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China; Zhengzhou Aifuen Biotechnology Co., LTD, Zhengzhou 451100, China.
| |
Collapse
|
26
|
Feng N, Miao S, Guo X, Yang Z, Yan L, Yang P, Kong J. Amyloid Proteins Adhesive for Slippery Liquid-Infused Porous Surfaces. Macromol Rapid Commun 2025; 46:e2400596. [PMID: 39319677 DOI: 10.1002/marc.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Biomimetic slippery liquid-infused porous surfaces (SLIPS) have emerged as a promising solution to solve the limitations of superhydrophobic surfaces, such as inadequate durability in corrosion protection and a propensity for frosting. However, the challenge of ensuring strong, lasting adhesion on diverse materials to enhance the durability of the lubricant layer remains. The research addresses this by leveraging amyloid phase-transitioned lysozyme (PTL) as an adhesive interlayer, conferring stable attachment of SLIPS across a variety of substrates, including metals, inorganics, and polymers. The silica-textured interface robustly secures the lubricant with a notably low sliding angle of 1.15°. PTL-mediated adhesion fortifies the silicone oil attachment to the substrate, ensuring the retention of its repellent efficacy amidst mechanical stressors like ultrasonication, water scrubbing, and centrifugation. The integration of robust adhesion, cross-substrate compatibility, and durability under stress affords the PTL-modified SLIPS exceptional anti-fouling, anti-icing, and anti-corrosion properties, marking it as a leading solution for advanced protective applications.
Collapse
Affiliation(s)
- Na Feng
- School of Materials Science and Engineering, Chang'an University, Xi'an, 710072, China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ziyi Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Luke Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jia Kong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
27
|
Zhang K, Xu Y, Liu F, Wang Q, Zou X, Tang M, Leung MK, Ao Z, Zhao X, Zhang X, An L. Leveraging Interfacial Electric Field for Smart Modulation of Electrode Surface in Nitrate to Ammonia Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410763. [PMID: 39621532 PMCID: PMC11775551 DOI: 10.1002/advs.202410763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 01/30/2025]
Abstract
The efficiency of nitrate reduction reaction (NO3RR) at low nitrate concentration is predominantly hindered by the poor affinity of nitrate ions and competitive hydrogen evolution reaction (HER), particularly in neutral and acidic media. Here, an innovative strategy to leverage the interfacial electric field (IEF) is introduced to boost the NO3RR performance. By in situ constructing tannic acid-metal ion (TA-M2+) crosslinked structure on the electrode surface, the TA-M2+-CuO NW/Cu foam sample exhibits an exceptional Faraday efficiency of 99.4% at -0.2 V versus reversible hydrogen electrode (RHE) and 83.9% at 0.0 V versus RHE under neutral and acidic conditions, respectively. The computational studies unveil that the TA-Cu2+ complex on the CuO (111) plane induces the increasing concentration of nitrate at the interface, accelerating NO3RR kinetics over HER via the IEF effect. This interfacial modulation strategy also contributes the enhanced ammonia production performance when it is employed on commercial electrode materials and flow reactors, exhibiting great potential in practical application. Overall, combined results illustrated multiple merits of the IEF effect, paving the way for future commercialization of NO3RR in the ammonia production industry.
Collapse
Affiliation(s)
- Kouer Zhang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Yifan Xu
- Ability R&D Energy Research CentreSchool of Energy and EnvironmentCity University of Hong KongKowloonHong Kong SAR999077China
| | - Fatang Liu
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqing163318China
| | - Qing Wang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Xiaohong Zou
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Mingcong Tang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Michael K.H. Leung
- Ability R&D Energy Research CentreSchool of Energy and EnvironmentCity University of Hong KongKowloonHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong SARChina
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and EcologyGuangdong Provincial Key Laboratory of Wastewater Information Analysis and Early WarningBeijing Normal UniversityZhuhai519087China
| | - Xunhua Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education School of PhysicsSoutheast UniversityNanjing211189China
| | - Xiao Zhang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Liang An
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
- Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| |
Collapse
|
28
|
Hao Y, Ji H, Gao L, Qu Z, Zhao Y, Chen J, Wang X, Ma X, Zhang G, Zhang T. Self-assembled carrier-free formulations based on medicinal and food active ingredients. Biomater Sci 2024; 12:6253-6273. [PMID: 39523875 DOI: 10.1039/d4bm00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Yuan Hao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Zhican Qu
- Shanxi Nanolattix Health Technology Co., Ltd, Taiyuan 030051, Shanxi, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Jiahui Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xintao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xiaokai Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Guangyu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| |
Collapse
|
29
|
Tarani E, Tara M, Samiotaki C, Zamboulis A, Chrissafis K, Bikiaris DN. Preparation and Characterisation of High-Density Polyethylene/Tannic Acid Composites. Polymers (Basel) 2024; 16:3398. [PMID: 39684142 DOI: 10.3390/polym16233398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This research paper highlights the preparation and characterisation of high-density polyethylene (HDPE)/tannic acid (TA) composites, designed to confer antioxidant properties to HDPE, valorising a biobased filler. Indeed, tannic acid is a natural polyphenol, demonstrating, among others, strong antioxidation properties. Using a melt-mixing process, HDPE/TA composites containing various amounts of TA, ranging between 1 and 20 wt%, were prepared, and analyses on their structural, thermal, mechanical, as well as antioxidant properties were conducted. Infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction showed that TA was successfully incorporated into the HDPE matrix. Thermogravimetric analysis evidenced that the onset of thermal degradation decreased, but overall satisfactory stability was observed. The composites exhibited exceptional antioxidant properties, especially the ones with the highest TA content, although it was observed that a high amount of TA had adverse effects on the mechanical performance of the composites.
Collapse
Affiliation(s)
- Evangelia Tarani
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Myrto Tara
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| |
Collapse
|
30
|
Wang J, Li S, Yang L, Kwan C, Xie C, Cheung KY, Sun RW, Chan ASC, Huang Z, Cai Z, Zeng T, Leung KC. Janus and Amphiphilic MoS 2 2D Sheets for Surface-Directed Orientational Assemblies toward Ex Vivo Dual Substrate Release. SMALL METHODS 2024; 8:e2400533. [PMID: 38874104 PMCID: PMC11671850 DOI: 10.1002/smtd.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The two-dimensional (2-D) Janus and amphiphilic molybdenum disulfide (MoS2) nanosheet with opposite optical activities on each side (amphichiral) is synthesized by modifying sandwich-like bulk MoS2 with tannic acid and cholesterol through biphasic emulsion method. This new type of amphichiral Janus MoS2 nanosheet consists of a hydrophilic and positive optical activity tannic acid side as well as a hydrophobic and negative optical activity cholesterol side thereby characterized by circular dichroism. Surface-directed orientational differentiation assemblies are performed for the as-synthesized 2D material and are characterized by contact angle, infrared spectroscopy, X-ray photoelectron, and circular dichroism spectroscopies. The amphiphilic nature of the materials is demonstrated by the pre-organization of the nanosheets on either hydrophobic or hydrophilic surfaces, providing unprecedented properties of circular dichroism signal enhancement and wettability. Selective detachment of the surface organic groups (cholesterol and tannic acid fragments) is realized by matrix-assisted laser desorption/ionisation - time-of-flight (MALDI-TOF) mass spectrometry, and the dual substrate release in tissue is detected by ex vivo mass spectrometry imaging.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Shuqi Li
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Lin Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Chak‐Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- Department of ChemistryGreat Bay University and Great Bay Institute for Advanced StudyDongguan523000P. R. China
| | - Chengyi Xie
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Kwan Yin Cheung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Albert S. C. Chan
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Tao Zeng
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Ken Cham‐Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| |
Collapse
|
31
|
Pan Y, Zhang L, Fu B, Zhuo J, Zhao P, Xi J, Yang D, Yao L, Wang J. Integrated self-assembly and cross-linking technology engineered photodynamic antimicrobial film for efficient preservation of perishable foods. Food Chem 2024; 460:140543. [PMID: 39053268 DOI: 10.1016/j.foodchem.2024.140543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
A new antibacterial film was constructed to combat the severe spoilage of fruits and vegetables caused by microorganisms. Specifically, photoresponsive cinnamaldehyde-tannic‑iron acetate nanospheres (CTF NPs) were prepared using ultrasonic-triggered irreversible equilibrium self-assembly and ionic cross-linking co-driven processes and were integrated into the matrix of κ-carrageenan (KC) (CTF-KC films) as functional fillers. The CTF0.4-KC film (KC film doped with 0.4 mg/mL CTF NPs) showed a 99.99% bactericidal rate against both E. coli and S. aureus, extended the storage period of cherry tomatoes from 20 to 32 days. The introduction of CTF enhanced the barrier, thermal stability, and mechanical strength properties, albeit with a slight compromise on transparency. Furthermore, the biosafety of the CTF0.4-KC film was confirmed through hemolysis and cytotoxicity tests. Together, the aforementioned results demonstrated the outstanding antibacterial and fresh-keeping properties of CTF0.4-KC. These desirable properties highlight the potential use of CTF0.4-KC films in food preservation applications.
Collapse
Affiliation(s)
- Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
32
|
Wardejn S, Wacławek S, Dudek G. Improving Antimicrobial Properties of Biopolymer-Based Films in Food Packaging: Key Factors and Their Impact. Int J Mol Sci 2024; 25:12580. [PMID: 39684290 DOI: 10.3390/ijms252312580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable films derived from polysaccharides are increasingly considered eco-friendly alternatives to synthetic packaging in the food industry. The study's purpose was to improve the antimicrobial properties of biopolymer-based films made from starch, chitosan, alginate, and their blends (starch/chitosan and starch/alginate) and to evaluate the effects of modifiers, i.e., plant extracts, plasticizers, cross-linking agents, and nanofillers. Films were prepared via the Solution Casting Method and modified with various plasticizers, calcium chloride, oxidized sucrose, and nanofiber cellulose (NC). Chestnut, nettle, grape, and graviola extracts were tested for antimicrobial activity against Staphylococcus epidermidis, Escherichia coli, and Candida albicans. The film's mechanical and hydrophilic properties were studied as well. The chestnut extract showed the strongest antimicrobial properties, leading to its incorporation in all the films. The chitosan films displayed better antibacterial activity against Gram-positive than Gram-negative bacteria but were ineffective against C. albicans. NC significantly improved the mechanical and antimicrobial properties of the chitosan films. The alginate films, modified with various plasticizers cross-linked with calcium chloride, demonstrated the highest antimicrobial efficacy against E. coli. The starch films, cross-linked with oxidized sucrose, exhibited slightly lower antimicrobial resistance due to a more compact structure. Films such as ALG6 and ALG5, including plasticizers EPGOS and PGOS, respectively, indicated optimal hydrophilicity and mechanical properties and achieved the best antimicrobial performance against all the investigated microorganisms. All these findings highlight the potential of these biodegradable films for food packaging, offering enhanced antimicrobial activity that prolongs shelf life and reduces spoilage, making them promising candidates for sustainable food preservation.
Collapse
Affiliation(s)
- Sonia Wardejn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
33
|
Chen X, Wang L, Zhang D, Bu N, Liu W, Wu Z, Mu R, Tan P, Zhong Y, Pang J. Enhancing Strawberry Freshness: Multifunction Sustainable Films Utilizing Two Types of Modified Carbon Nanotubes for Photothermal Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63964-63977. [PMID: 39504039 DOI: 10.1021/acsami.4c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Currently, antimicrobial films with stable and efficient antibacterial activities are receiving considerable attention in the food packaging industry. Herein, a chemically/physically linked konjac glucomannan-sodium alginate (KGM-SA)@carbon nanotubes (CNTs)/Fe3+ composite film with outstanding resistance to ultraviolet radiation, oxidation, and bacteria, as well as excellent photothermal effects and mechanical properties, was successfully prepared using a solvent flow method. Tannic acid-modified carboxyl-functionalized CNTs (TCCNTs), l-cysteine-modified carboxyl-functionalized CNTs (LCCNTs), and Fe3+ were incorporated into the prepared film. The film structure of KGM-SA@CNTs/Fe3+ was characterized using various methods, confirming the formation of a dual-cross-linked network through metal-coordination bonds and hydrogen bonding. This unique structure endowed the film with excellent water vapor permeability (3.58 g mm/m2 day kPa), water resistance (water contact angle = 93.66°), and thermal stability. Further, the film exhibited outstanding photothermal conversion efficiency and stability under near-infrared irradiation (300 mW/cm2) as well as excellent bactericidal properties against Staphylococcus aureus and Escherichia coli, achieving a bacterial inhibition rate of >99%. In a strawberry preservation experiment, the KGM-SA@CNTs/Fe3+ composite film exhibited remarkable preservation effects, extending the shelf life of strawberries by 4-6 d. Thus, this photothermal antibacterial film offers a new approach for the application of CNTs in food packaging.
Collapse
Affiliation(s)
- Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Kinfu HH, Rahman MM, Cevallos-Cueva N, Abetz V. Nanofiltration Membranes Containing a Metal-Polyphenol Network Layer: Using Casting Solution pH as a Tool to Tailor the Separation Performance. ACS OMEGA 2024; 9:45870-45883. [PMID: 39583717 PMCID: PMC11579772 DOI: 10.1021/acsomega.4c04804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Thin-film composite (TFC) membranes containing metal-polyphenol network (MPN) selective layers were fabricated using a supramolecular self-assembly between tannic acid (TA) and ferric ion (Fe3+). The TA-Fe3+ thin film was coated on a porous polyacrylonitrile support using aqueous solutions of TA and FeCl3 via a layer-by-layer deposition technique. The pH of the TA solution was used as a tool to alter the membrane characteristics. The surface porosity and water contact angle of the fabricated membranes gradually decreased as the pH of TA casting solutions was increased from 3 to 8.5 for both single-layered and double-layered TA-Fe3+ TFC membranes. This allowed us to tune the water permeance and the retentions of water-soluble neutral and anionic molecules by the MPN membranes by varying the pH of the casting solution. It has been shown that the water permeance decreased from 184 to 156 L·m-2·h-1·bar-1 for single TA-Fe3+ layer coated membranes when the pH was increased from 3 to 8.5, while it declined from 51 to 17 for the double TA-Fe3+ layer. Anionic solutes in aqueous solutions were highly retained compared to neutral components as the TFC membranes had a negative surface charge. Retentions of 95 and 90% were achieved for naphthol green B and orange II dyes by a double-layered M4 membrane fabricated at pH 8.5, while only 13% retention was found for the neutral riboflavin. The neutral dye riboflavin permeated 30.8 times higher than the anionic dye naphthol green B during a mixed dye filtration test through the TFC membrane prepared by using a TA solution of pH 8.5. To the best of our knowledge, this is the highest selectivity of a neutral/anionic dye pair so far reported for a TFC membrane having an MPN selective layer. Moreover, fouling tests have demonstrated that the MPN separation layers exhibit robust stability and adequate antifouling performance with a flux recovery ratio as high as 82%.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md. Mushfequr Rahman
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Nicolás Cevallos-Cueva
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Institute
of Membrane Research, Helmholtz-Zentrum
Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- Institute
of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
35
|
Chen SK, Liu JJ, Wang X, Luo H, He WW, Song XX, Nie SP, Yin JY. Hericium erinaceus β-glucan/tannic acid hydrogels based on physical cross-linking and hydrogen bonding strategies for accelerating wound healing. Int J Biol Macromol 2024; 279:135381. [PMID: 39244132 DOI: 10.1016/j.ijbiomac.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
The majority of natural fungal β-glucans exhibit diverse biological functionalities, such as immunomodulation and anti-inflammatory effects, attributed to their distinctive helix or highly branched conformation This study utilized β-glucan with helix conformation and high-viscosity extracted from Hericium erinaceus, employing freeze-thaw and solvent exchange strategies to induce multiple hydrogen bonding between molecules, thereby initiating the self-assembly process of β-glucan from random coil to stable helix conformation without chemical modifications. Subsequently, the natural bioactive compound tannic acid was introduced through physical entanglement, imparting exceptional antioxidant properties to the hydrogel. The HEBG/TA hydrogel exhibited injectable properties, appropriate mechanical characteristics, degradability, temperature-responsive tannic acid release, antioxidant activity, and hemostatic potential. In vivo experiments using skin full-thickness defect and deep second-degree burn wound models demonstrated significant therapeutic efficacy, including neovascularization, and tissue regeneration. Moreover, the HEBG/TA hydrogel demonstrated its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators (TNF-α, IL-6), while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. This study highlights the potential of combining natural β-glucan with bioactive molecules for skin repair.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Hui Luo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
36
|
Al-Musawi MH, Al-Sudani BT, Fadhil SAN, Al-Bahrani MH, Ghorbani M, Maleki F, Mortazavi Moghadam F. Tannic acid-reinforced soy protein/oxidized tragacanth gum-based multifunctional hemostatic film for regulation of wound healing. Int J Biol Macromol 2024; 280:135750. [PMID: 39299419 DOI: 10.1016/j.ijbiomac.2024.135750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
With recent advances in the field of tissue engineering, composite films with biocompatibility, antimicrobial properties, and wound healing properties have gained potential applications in the field of wound dressings. In this research work, composite films of soy protein (S)/oxidized tragacanth gum (G) were successfully made using the solution casting process. The metal-organic framework containing curcumin (MOF) with concentrations of 5 and 10 wt% and tannic acid (TA) with concentrations of 6 and 12 wt% were entered into the polymer film. Surface morphology with scanning electron microscope (FE-SEM), thermal stability, mechanical properties, chemical structure, antioxidant, water absorption, cell viability, antibacterial activity, and biodegradability of the prepared films were investigated in laboratory conditions. In addition, the toxicity of the films in the cell environment was investigated, and the results showed that cell growth and proliferation improved in the presence of the prepared films, especially films SG/MOF10/TA6 and SG/MOF10/TA12 due to the presence of TA and MOF containing curcumin. Also, the antibacterial activity of the films showed that the presence of tannic acid and curcumin in the structure of the films increases their ability against pathogens. According to the obtained results, the newly produced nanocomposite film (SG/MOF10/TA12) has a high potential to be used for wound dressing due to its favorable characteristics and was considered the optimal film.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Safa Abdul Naser Fadhil
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maha Hameed Al-Bahrani
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran.
| | - Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Al-Qahtani SD, Abu Al-Ola KA, Al-Senani GM. Tannin-encapsulated electrospun nanofibrous membrane of cellulose nanowhiskers-reinforced polysulfone for colorimetric detection of iron(III). Int J Biol Macromol 2024; 281:136516. [PMID: 39396600 DOI: 10.1016/j.ijbiomac.2024.136516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
A nanocomposite of tannic acid and cellulose nanowhiskers (CNW)-reinforced polysulfone (PSF) was used to develop a metallochromic nanofibrous membrane sensor for iron(III) in aqueous media. Tannic acid was used as an active detecting probe, whereas the CNW@PSF composite was employed as a hosting material. Cellulose nanowhiskers (7-12 nm) were obtained from microcrystalline cellulose (MCC). According to the coloration parameters, a bathochromic shift from colorless (415 nm) to purple (561 nm) occurs when ferric cations bind to the phenolic hydroxyls of the tannic acid probe. The concentration of ferric was found to be directly correlated to the extent of the color change, demonstrating a detection limit of 0.1-250 ppm. This could be attributed to the creation of a coordinative complex between ferric ions and phenolic tannic acid. The generated nanofibers were inspected by energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). The electrospun nanofibrous membrane showed an average diameter between 75 and 150 nm. The tannic acid-containing nanofibers are remarkably reusable and simple. The tannic acid-encapsulated polysulfone nanofibrous membrane was used to detect various metal ions, demonstrating a high selectivity for Fe3+. The ideal pH range for the identification of Fe3+ was determined to be in the range of 4.25-6.75.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khulood A Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
38
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
39
|
Li L, Lv Z, Wang X, Cao X, Yuan X, Wei Q, Wang Q. Spray-assisted layer-by-layer deposition of quaternized chitosan/tannic acid for the construction of multifunctional bio-based nonwoven dressings. Int J Biol Macromol 2024; 277:134055. [PMID: 39038583 DOI: 10.1016/j.ijbiomac.2024.134055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Gauze wound dressings have received considerable attention due to their cost-effectiveness, excellent mechanical properties, and widespread applications. However, their inability to actively combat microorganisms and effectively scavenge free radicals results in suboptimal wound management. In this study, a novel nonwoven-based gauze dressing coated with quaternized chitosan/tannic acid (QCS/TA), based on electrostatic interaction and hydrogen bonding, was successfully prepared using a spray-assisted layer-by-layer assembly method. The bio-based nonwoven dressing, assembled with multiple interlacing bilayers, demonstrated outstanding antimicrobial properties, eliminating 99.99 % of Staphylococcus aureus (S. aureus) and 85 % of Escherichia coli (E. coli). Compared to the pristine nonwoven dressing, the QCS/TA-coated nonwoven dressing scavenged >85 % of the surrounding radicals within 2 h. Additionally, the nonwoven dressing exhibits excellent coagulation properties. Notably, the facile spraying procedure preserved most of the softness and breathability of the nonwoven substrate. After the deposition of seven bilayers, the bending stiffness and drape coefficient increased by only 37.63 % and 3.85 %, respectively, while the air permeability and moisture permeability reached 1712 mm/s and 3683.58 g/m2/d, respectively. This bio-based nonwoven dressing, derived from safe and non-toxic ingredients, holds promise as the next generation of multifunctional gauze dressings.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zihao Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xinyi Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Xiuming Cao
- Jiangsu Sunshine Co., Jiangyin 214400, China
| | - Xiaohong Yuan
- Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian, PR China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
40
|
Cheng Q, Geng H, Zhang C, Zhang X, Tian Y, Cui J. Interfacial Assembly of Free-Standing Polymer-Phenolic Films for Antibacterial and Antiultraviolet Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48607-48618. [PMID: 39186593 DOI: 10.1021/acsami.4c10314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report a facile interfacial assembly strategy for the preparation of flexible polyphenol-based films for antibacterial and antiultraviolet applications. The free-standing films can be instantaneously formed via spraying tannic acid (TA) at the surface of carboxymethyl chitosan (CMCS) solutions. Compared with the traditional casting-evaporation procedure on solid substrates, the liquid interfacial assembly method for the construction of free-standing films is rapid and facile, which prevents the interface separation procedure from the substrates. The thickness and mechanical properties of the films are well controlled by changing the incubation time. The low-field nuclear magnetic resonance was used to analyze the water distributions inside the films and to distinguish the cross-linked structure of CMCS-TA films with different thicknesses, revealing the dynamics of the film formation process. Importantly, the films exhibit outstanding antibacterial and antiultraviolet properties, which are promising in the applications of wound dressings. This study provides a new avenue for the assembly of flexible free-standing films with multifunctionality via a facile and low-cost fabrication process.
Collapse
Affiliation(s)
- Qian Cheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Chunyue Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
41
|
He C, Yuan L, Bi S, Zhou C, Yang Q, Gu J, Yan B, He J. Modified Chitosan-Based Coating/Packaging Composites with Enhanced Antibacterial, Antioxidant, and UV-Resistant Properties for Fresh Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48352-48362. [PMID: 39221854 DOI: 10.1021/acsami.4c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.
Collapse
Affiliation(s)
- Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
42
|
Chen Y, Wei Q, Chen Y, Feng A, Zhang W. Enhancement of hydrogen bonds between proteins and polyphenols through magnetic field treatment: Structure, interfacial properties, and emulsifying properties. Food Res Int 2024; 192:114822. [PMID: 39147514 DOI: 10.1016/j.foodres.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Aiguo Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
43
|
Huang H, Zhang Z, Xie W, Fan B, Wu C, Jiang R, Huang J, Zhang B, Hou Y, Yu Z. Ultrathin layer TAFC on BiVO 4 with ligand-to-metal charge transfer enhances built-in electric field for boosting photoelectrochemical water oxidation. J Colloid Interface Sci 2024; 668:551-564. [PMID: 38691964 DOI: 10.1016/j.jcis.2024.04.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
To reveal the mechanism of charge transfer between interfaces of BiVO4-based heterogeneous materials in photoelectrochemical water splitting system, the cocatalyst was grown in situ using tannic acid (TA) as a ligand and Fe and Co ions as metal centers (TAFC), and then uniformly and ultra-thinly coated on BiVO4 to form photoanodes. The results show that the BiVO4/TAFC achieves a superior photocurrent density (4.97 mA cm-2 at 1.23 VRHE). The charge separation and charge injection efficiencies were also significantly higher, 82.0 % and 78.9 %, respectively. From XPS, UPS, KPFM, and density functional theory calculations, Ligand-to-metal charge transfer (LMCT) acts as an electron transport highway in TAFC ultrathin layer to promote the concentration of electrons towards metal center, leading to an increase in the work function, which enhances the built-in electric field and further improves the charge transport. This study demonstrated that the LMCT pathway on TA-metal complexes enhances the built-in electric field in BiVO4/TAFC to promote charge transport and thus enhance water oxidation, providing a new understanding of the performance improvement mechanism for the surface-modified composite photoanodes.
Collapse
Affiliation(s)
- Hongcheng Huang
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zimu Zhang
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Wenhui Xie
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Ben Fan
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Cheng Wu
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| | - Jun Huang
- School of Civil Engineering and Architecture, Guangxi Minzu University, Nanning 530004, China
| | - Boge Zhang
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.
| |
Collapse
|
44
|
Mercadal PA, Montesinos MDM, Macchione MA, Dalosto SD, Bierbrauer KL, Calderón M, González A, Picchio ML. Freezing-Tolerant Supramolecular Adhesives from Tannic Acid-Based Low-Transition-Temperature Mixtures. ACS MATERIALS LETTERS 2024; 6:3726-3735. [PMID: 39119359 PMCID: PMC11307168 DOI: 10.1021/acsmaterialslett.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Natural polyphenols like tannic acid (TA) have recently emerged as multifunctional building blocks for designing advanced materials. Herein, we show the benefits of having TA in a dynamic liquid state using low-transition-temperature mixtures (LTTMs) for developing freezing-tolerant glues. TA was combined with betaine or choline chloride to create LTTMs, which direct the self-assembly of guanosine into supramolecular viscoelastic materials with high adhesion. Molecular dynamics simulations showed that the structural properties of the material are linked to strong hydrogen bonding in TA-betaine and TA-choline chloride mixtures. Notably, long-term and repeatable adhesion was achieved even at -196 °C due to the binding ability of TA's catechol and gallol units and the mixtures' glass transition temperature. Additionally, the adhesives demonstrated injectability and low toxicity against fibroblasts in vitro. These traits reveal the potential of these systems as bioadhesives for tissue repair, opening new avenues for creating multifunctional soft materials with bioactive properties.
Collapse
Affiliation(s)
- Pablo A. Mercadal
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Departamento
de Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Maria del Mar Montesinos
- Centro
de Investigaciones en Bioquímica Clínica e Inmunología
(CIBICI-CONICET), Departamento de Bioquímica Clínica,
Facultad de Ciencias Químicas, Universidad
Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Micaela A. Macchione
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Centro
de Investigaciones y Transferencia de Villa María (CIT Villa
María-CONICET-UNVM), X5900LQC Villa María, Córdoba, Argentina
| | - Sergio D. Dalosto
- Instituto
de Física del Litoral (IFIS-Litoral, CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina
| | - Karina L. Bierbrauer
- Centro
de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón
CEPROCOR, Santa Maria de Punilla, 5164 Córdoba, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CCT
Córdoba), 5000 Córdoba, Argentina
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Agustín González
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
45
|
Yu H, Wang Y, Wang R, Ge Y, Wang L. Tannic acid crosslinked chitosan/gelatin/SiO 2 biopolymer film with superhydrophobic, antioxidant and UV resistance properties for prematuring fruit packaging. Int J Biol Macromol 2024; 275:133368. [PMID: 38945712 DOI: 10.1016/j.ijbiomac.2024.133368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The environmental pollution caused by plastic films urgently requires the development of non-toxic, biodegradable, and renewable biopolymer films. However, the poor waterproof and UV resistance properties of biopolymer films have limited their application in fruit packaging. In this work, a novel tannic acid cross-linked chitosan/gelatin film with hydrophobic silica coating (CGTS) was prepared. Relying on the adhesion of tannic acid and gelatin to silica, the coating endows CGTS film with excellent superhydrophobic properties. Especially, the contact angle reaches a maximum value 152.6°. Meanwhile, tannic acid enhanced the mechanical strength (about 36.1 %) through the forming of hydrogen bonding and the network structure. The prepared CGTS films showed almost zero transmittance to ultraviolet light and exhibited excellent radical scavenging ability (∼76.5 %, DPPH). Hence, CGTS film is suitable as a novel multifunctional packaging material for the agriculture to protect premature fruits, or the food industry used in environments exposed to ultraviolet radiation and rainwater.
Collapse
Affiliation(s)
- Huanyang Yu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China.
| | - Yan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Rundong Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yuan Ge
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Liyan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China; Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| |
Collapse
|
46
|
Swielam EM, Hussien ZM, Hasanin MS. Design, characterizations, and antimicrobial activity of sustainable home furnishing-based waste fabric treated using biobased nanocomposite. BIORESOUR BIOPROCESS 2024; 11:75. [PMID: 39052166 PMCID: PMC11272763 DOI: 10.1186/s40643-024-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Clothing and textile industries are major contributors to environmental pollution including textile manufacturing through garment production, spinning, weaving, and dyeing. In this context, the sustainability textile industry is a big challenge and contributes to serving a large segment of society. Also, textile wastes could be used as a raw material for added-value products. Herein, in this study, recycling of residues fabric was treated with antimicrobial nanocomposite to reach the best use of exhausts and obtain multifunction products of aesthetic via the technical design of the waste raw materials. Besides, solving the unemployment problem by opening fields for small industry projects capable of producing high-value textile artifacts, especially when treated against microbes, can be applied to home furnishings. The waste fabric was treated via green synthesis nanocomposite based on chitosan and in situ prepared ZnONPs and cross-linked with tannic acid. The prepared nanocomposite was characterized using physicochemical analysis including attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Additionally, the nanocomposite and treated fabric topographical behavior were studied using scanning electron microscopy (SEM) attachment with energy dispersive X-ray analysis (EDX), and images were processed to evaluate the roughness structure. Additionally, high-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) were performed to ensure the size and stability of the nanocomposite. The obtained results affirmed the green synthesis of nanocomposite with a size around 130 nm, as well as the doped ZnONPs average size of 26 nm and treated waste fabric, performed a promising attraction between nanocomposite and fabric fibers. Moreover, the antimicrobial study observed excellent activity of nanocomposite against bacteria and unicellular fungi as well.
Collapse
Affiliation(s)
- Eman M Swielam
- Clothing and Knitting Industrial Research Department, Textile Research and Technology Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Zeinab M Hussien
- Ready Made Garments Division, Industrial Arts Department, Faculty of Education, Helwan University, Cairo, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department. Chemical Industries Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
47
|
Hu M, Chiao YH, Fu W, Zhang P, Fang S, Guan K, Gonzales RR, Li Z, Xu P, Mai Z, Dai L, Matsuyama H. One-Step Phase Separation and Mineralization Fabrication of Membranes for Oily Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38723-38732. [PMID: 38993041 DOI: 10.1021/acsami.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Oily wastewater threatens the environment and the human health. Membrane technology offers a simple and efficient alternative to separating oil and water. However, complex membrane modifications are usually employed to optimize the separation performance. In this research, we develop an extremely simple one-step method to in situ calcium carbonate (CaCO3) nanoparticles onto a porous polyketone (PK) membrane via a nonsolvent induced phase separation (NIPS)-mineralization strategy. We utilized the unique chemical property of PK, which allows it to dissolve in a resorcinol aqueous solution. PK was mixed with tannic acid (TA) and calcium chloride (CaCl2) in a resorcinol aqueous solution to fabricate a casting solution. The activated membrane was cast and immersed into a sodium carbonate (Na2CO3) aqueous solution for taking the one-step NIPS-mineralization process. This proposed NIPS-mineralization mechanism comes to two conclusions: (i) the resulting membrane with comprehensive oleophobic properties and enhanced permeation flux for applications of oil/water separation with ultralow fouling and (ii) simplified the procedure to optimize the membrane performance using regular NIPS steps. The current work explores a one-step NIPS-mineralization technique that offers a novel approach to preparing membranes with highly efficient oil/water separation performance.
Collapse
Affiliation(s)
- Mengyang Hu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Yu-Hsuan Chiao
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Wenming Fu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shang Fang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ping Xu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Liheng Dai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
48
|
Zheng Y, Bu F, Xu C, Wu T, Zhou J, Shen W, Yin T. A coordinative modular assembly-constructed self-reinforced nano-therapeutic agent for effective antitumor-immune activation. J Control Release 2024; 371:588-602. [PMID: 38866245 DOI: 10.1016/j.jconrel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Immunosuppressive microenvironment and poor immunogenicity are two stumbling blocks in anti-tumor immune activation. Tumor associated macrophages (TAMs) play crucial roles in immunosuppressive microenvironment, while immunogenic cell death (ICD) is a typical strategy to boost immunogenicity. Herein, we developed a coordinative modular assembly-based self-reinforced nanoparticle, (CaO2/TA)-(Fe3+/BSA) which integrated CaO2, Fe3+-tannic acid coordinated networks and albumin under the instruction of molecular dynamics simulation. (CaO2/TA)-(Fe3+/BSA) could significantly enhance Fenton reaction through Fe3+ self-reduction and H2O2 self-sufficiency, and simultaneously increased intracellular accumulation of Ca2+. The self-augmented Fenton reaction with sufficient reactive oxygen species effectively repolarized TAMs and elicited ICD with Ca2+ overload. Besides, (CaO2/TA)-(Fe3+/BSA) was confirmed to self-reinforce deep tumor drug delivery by "treatment-delivery" positive feedback based on gp60-mediated transcytosis and M2-like macrophages repolarization-mediated perfusion promotion. Resultantly, (CaO2/TA)-(Fe3+/BSA) effectively alleviated immunosuppression, provoked local and systemic immune response and potentiated anti-PD-1 antibody therapy. Our strategy highlights a facile and controllable approach to construct penetrated effective antitumor nano-immunotherapeutic agent.
Collapse
Affiliation(s)
- Yuzhao Zheng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Fanxue Bu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chenfeng Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Tongyu Wu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
49
|
Yuan S, Yang J, Fu X, Yu H, Guo Y, Xie Y, Xiao Y, Cheng Y, Yao W. Effect of tannic acid binding on the thermal degradation behavior and product toxicity of boscalid. Food Chem 2024; 444:138654. [PMID: 38335685 DOI: 10.1016/j.foodchem.2024.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The effect of tannic acid (TA) binding on the thermal degradation of boscalid was studied in this work. The results revealed that TA binding has a significant impact on boscalid degradation. The degradation rate constant of bound boscalid was reduced, and its corresponding half-life was significantly prolonged compared to the free state. Four identical degradation products were detected in both states through UHPLC-Q-TOF-MS, indicating that degradation products were not affected by TA binding. Based on DFT and MS analysis, the degradation pathways of boscalid included hydroxyl substitution of chlorine atoms and cleavage of CN and CC bonds. The toxicity of B2 and B3 exceeded that of boscalid. In summary, the binding of TA and boscalid significantly affected the thermal degradation rate of boscalid while preserving the types of degradation products. This study contributed to a fundamental understanding of the degradation process of bound pesticide residues in complex food matrices.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jian Yang
- China Academy of Launch Vehicle Technology, Beijing, China
| | - Xiaoyan Fu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
50
|
Yu Z, Huang W, Wang F, Nie X, Chen G, Zhang L, Shen AZ, Zhang Z, Wang CH, You YZ. An adhesion-switchable hydrogel dressing for painless dressing removal without secondary damage. J Mater Chem B 2024; 12:5628-5644. [PMID: 38747238 DOI: 10.1039/d4tb00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hydrogels with strong adhesion to wet tissues are considered promising for wound dressings. However, the clinical application of adhesive hydrogel dressing remains a challenge due to the issues of secondary damage during dressing changes. Herein, we fabricated an adhesion-switchable hydrogel formed with poly(acrylamide)-co-poly(N-isopropyl acrylamide), quaternary ammonium chitosan and tannic acid. This hydrogel forms instant and robust adhesion to the skin at body temperature. However, as the temperature rises above the lower critical solution temperature (LCST), the hydrogel loses its adhesion towards the wound area due to the temperature-dependent volume phase transition of the copolymer, occurring around 45 °C. Consequently, the designed hydrogel can be easily detached from adhered tissues upon demand, providing a facile and effective method for painless dressing changes without secondary damage. This hydrogel holds great promise for long-term application in wound dressings.
Collapse
Affiliation(s)
- Zhiling Yu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weiqiang Huang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ai-Zong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chang-Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Ye-Zi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|