1
|
Kohli M, Bansal H, Aski M, Mishra GP, Shashidhar BR, Roy A, Gupta S, Sinha SK, Mishra BK, Kumari N, Kumar A, Kumar RR, Nair RM, Dikshit HK. Genome-wide association mapping of biochemical traits and its correlation with MYMIV resistance in mungbean (Vigna radiata L. Wilczek). Sci Rep 2024; 14:31805. [PMID: 39738266 PMCID: PMC11685830 DOI: 10.1038/s41598-024-82836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection. A wide range was recorded for the Area Under Disease Progress Curve (AUDPC; 1.75-1266.98) and coefficient of infection (CI; 0.33-45.53). In YMD susceptible genotypes, significant variations were observed for TPC [2001.27-2834.13 mgGAE/100 g dry weight (DW)], TFC (252.65-341.30 mg/100 g DW), AA (40.33-64.69 mg/100 g DW), DPPH (32.11-53.47% scavenging effect DW), and FRAP (48.99-101.22 µmol Fe2+/g DW). Similarly, in resistant genotypes also wide range was recorded for TPC (1788.50-2286.38 mgGAE/100 g DW), TFC (206.12-337.32 mg/100 gDAS samples varied from 384.6.46-47.64% scavenging effect DW), and FRAP (53.68-114.24 µmol Fe2+/g DW). Except for FRAP, other studied parameters were in the lower range in the resistant genotypes than the susceptible genotypes. Genome-wide association studies (GWAS) of 132 genotypes have identified 31,953 single nucleotide polymorphism (SNPs). MLM (Mixed Linear Model) and BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway) models have identified 119 shared SNPs for various biochemical traits and MYMIV resistance. The key candidate genes include VRADI09G06940 (YMD resistance, TIR-NBS-LRR class, chr. 9), VRADI01G05030 [flavonoid biosynthesis; MYB65 transcription factor (TF); chr. 1], VRADI03G07600 (phenol biosynthesis; GATA TF 16; chr. 3), VRADI04G08470 (ascorbic acid; heat shock protein 70 kDa protein; chr. 4), VRADI04G07510 (FRAP; subtilisin-like protease SBT1.9; chr. 4), and VRADI05G02870 (DPPH; vacuolar protein sorting-associated protein 2; chr. 5). The identified genomic resources will enhance mungbean genomics and facilitate the advancement of genomic-assisted breeding in mungbean.
Collapse
Affiliation(s)
- Manju Kohli
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
- Center for Computational Biology and Bioinformatics, Amity University, Uttar Pradesh, 201301, India
| | - Hina Bansal
- Center for Computational Biology and Bioinformatics, Amity University, Uttar Pradesh, 201301, India
| | - Muraleedhar Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gyan P Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - B R Shashidhar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Soma Gupta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subodh K Sinha
- National Institute for Plant Biotechnology, New Delhi, India
| | - Brijesh Kumar Mishra
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nikki Kumari
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ramakrishnan M Nair
- World Vegetable Center, South Asia, ICRISAT Campus Patancheru, Hyderabad, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Multescu M, Culetu A, Susman IE. Screening of the Nutritional Properties, Bioactive Components, and Antioxidant Properties in Legumes. Foods 2024; 13:3528. [PMID: 39593944 PMCID: PMC11593270 DOI: 10.3390/foods13223528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study provides an assessment of nutrients (protein, amino acid profiles, fiber, starch), phenolic content TPC, flavonoid content TFC, and antioxidant capacity through different in vitro methods in 12 legume species (red, green, yellow, brown, and black lentils; mung, pinto, black, and kidney beans; chickpea, soy, and lupin) and hemp. Legumes with a protein content above 30% were black lentil, lupin, and soy. Chickpea, soy, black bean, kidney bean, and mung bean did not have any limiting amino acids. All samples had moderate overall protein quality, except green and brown lentils. Black bean was less digestible (68.1%), while soy, hemp, and red lentil had higher protein digestibility (79.3-84.7%). Pinto bean had the highest TPC (425.19 mg GAE/100 g), comparable with hemp, but the lowest TFC (0.24 mg QE/100 g). Yellow and red lentils showed the lowest TPC (69-85.89 mg GAE/100 g). Mung bean presented the highest concentration of flavonoids (45.47 mg QE/100 g), followed by black lentil (28.57 mg QE/100 g). There were distinct variations in the antioxidant capacity across different legume samples and assays. Pinto bean, hemp, and green lentil had the highest relative antioxidant capacity index, while yellow lentil, red lentil, and chickpea presented the lowest. Dark-colored legume samples showed a higher TPC and a lower antioxidant capacity (CUPRAC and PCL assays), while yellow legumes had less antioxidant capacity (DPPH assay). A high correlation coefficient was observed between TPC and DPPH (r = 0.8133), TPC and FRAP (r = 0.8528), TPC and CUPRAC (r = 0.9425), and TPC and ACL (r = 0.8261) methods. The results highlight large variations in the legume properties and support the exploitation of the nutritional properties of legumes as raw materials for the development of products designed to fulfil modern consumer demands.
Collapse
Affiliation(s)
| | - Alina Culetu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | | |
Collapse
|
3
|
Chin TGJ, Ruethers T, Chan BA, Lopata AL, Du J. Techno-functional properties and allergenicity of mung bean (Vigna radiata) protein isolates from Imara and KPS2 varieties. Food Chem 2024; 457:140069. [PMID: 38936132 DOI: 10.1016/j.foodchem.2024.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.
Collapse
Affiliation(s)
- Tak Gun Jeremy Chin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bing Aleo Chan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Andreas Ludwig Lopata
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN 47907, USA; Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore 15 168582, Singapore.
| |
Collapse
|
4
|
Cho HW, Seo K, Lee MY, Lee SY, So KM, Kim KH, Chun JL. Nutritional value of common carbohydrate sources used in pet foods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1282-1290. [PMID: 39691608 PMCID: PMC11647412 DOI: 10.5187/jast.2024.e91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2024]
Abstract
Diet digestibility can vary based on factors such as the type of ingredients, processing techniques, formulation, fiber content, and nutrient interactions. Unlike proteins and fats, there is no specific carbohydrate requirement, which typically constitutes 30%-60% of commercial dried dog foods. Because of the significant proportion of carbohydrates in dog food, this study aimed to evaluate the differences in nutrient digestibility among barley, brown rice, corn, mung bean, and rice, which are common carbohydrate sources in commercial dog foods. All experimental diets had consistent chemical compositions. The digestibility of each carbohydrate source was evaluated using the total feces collection method in four castrated male and four neutered female beagles with an average age of 4.58 ± 0.14 years. The average daily dry matter intake of the five experimental diets was 203.0 ± 3.23 g/day. The percentage of dry matter digestibility of the apparent total tract digestibility (ATTD) was the highest for rice and corn at 92.45% and 92.95%, respectively, followed by brown rice (91.61%), barley (88.81%), and mung beans (80.74%). The percentage of nitrogen-free extract digestibility was also high for rice, corn, and brown rice at 97.08%, 96.14%, and 95.56%, respectively, followed by barley at 90.10% and mung bean at 83.38%. Amino acid digestibility analysis revealed no statistically significant differences between rice, corn, brown rice, and barley, except for methionine, which is an essential amino acid. Although the ATTD and amino acid profile of the mung bean-based diet were less efficient than those of the other test diets, the overall digestibility was satisfactory and there were no significant differences in palatability. The differences in digestibility observed in mung bean-based diets compared to other grain-based diets can be attributed to variations in the starch and fiber content of the raw materials. By leveraging these characteristics, mung bean-based diets may offer strategic benefits for glycemic control and weight management in dogs. Our results may serve as a basis for formulating appropriate diets for dogs.
Collapse
Affiliation(s)
- Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Min Young Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Yeob Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Kyoung-Min So
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Academic-Industrial Cooperation Organization, Sunchon National University, Suncheon 57922, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
5
|
Desta KT, Choi YM, Yi J, Shin MJ, Jeon YA, Yoon H. Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans ( Vigna radiate L.) of Different Seed Weights. Foods 2024; 13:3387. [PMID: 39517171 PMCID: PMC11545297 DOI: 10.3390/foods13213387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This study examined the levels of major flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in 136 mung bean accessions and statistically analyzed the effect of seed weight difference on each. Vitexin and isovitexin were detected in all the mung bean accessions, with isovitexin being in a higher concentration regardless of seed weight difference. The contents of total protein and total starch were in the ranges of 22.01-28.96 and 32.62-49.03 g/100 g, respectively. Five fatty acids were detected by GC-FID analysis in all mung bean accessions, with linoleic acid being the most dominant (37.96-50.71 g/100 g). Total saponin content (TSC), total phenol content (TPC), DPPH• scavenging activity, ABTS•+ scavenging activity, and ferric reducing antioxidant power (FRAP) showed more than five-fold differences. Analysis of variance supported by multivariate analysis demonstrated that seed weight difference had a significant effect on total starch, all individual fatty acids except for stearic acid and oleic acid, TSC, and all antioxidant activities except for ABTS•+ scavenging activity. On the other hand, vitexin, isovitexin, total protein, total phenol, and total fatty acid contents remained unaffected by seed weight difference. Overall, this study showed the diversity of key flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in mung bean genetic materials. Moreover, the study unveiled how seed weight affects the analyzed parameters in mung beans for the first time. These findings could maximize the use of mung beans in food industries and breeding programs as well as lead to more studies in metabolomics and genomics.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
- Department of Applied Chemistry, College of Natural and Computational Sciences, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| |
Collapse
|
6
|
Sharma M, Bains A, Dhull SB, Chawla P, Goksen G, Ali N. Extraction, characterization, and utilization of mung bean starch as an edible coating material for papaya fruit shelf-life enhancement. Food Sci Nutr 2024; 12:5188-5200. [PMID: 39055197 PMCID: PMC11266876 DOI: 10.1002/fsn3.4166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/27/2024] Open
Abstract
This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraPunjabIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaHaryanaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
7
|
Polyiam P, Thukhammee W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024; 29:2990. [PMID: 38998943 PMCID: PMC11243576 DOI: 10.3390/molecules29132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.
Collapse
Affiliation(s)
- Pontapan Polyiam
- Department of Physiology, Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukhammee
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Tampanna N, Chansuwan W, Wichienchot S. Effect of Plant-Based Mung Bean Products on Digestibility and Gut Microbiome Profiling Using In Vitro Fecal Fermentation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:460-467. [PMID: 38642195 DOI: 10.1007/s11130-024-01176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
The concept of plant-based protein consumption has been increasing recently because of the growing health consciousness among people. Mung bean is one of the most consumed legumes with a dense nutrient profile. Hence, current research is aimed to study the effect of mung bean protein-based products including mung bean snack (MBS) and textured vegetable protein (TVP) for treatment groups against the control groups, commercial ingredients group consisting of mung bean powder (MBP) and pea powder (PP) and commercial products group include commercial pea texture (cPT) and commercial textured vegetable protein (cTVP) for their proximate composition, digestibility, gut microbial profile and fatty acid metabolite profiling. The MBS and TVP samples had significantly higher digestibility of 74.43% and 73.24% than the commercial products. The protein content of TVP was 0.8 times higher than its commercial control. Gut microbiome profiling showed that all the samples shared around 162 similar genera. Post-fermentation analysis provided promising results by reflecting the growth of beneficial bacteria (Parabacteroides, Bifidobacterium and Lactobacillus) and the suppression of pathogens (Escherichia-Shigella, Dorea and Klebsiella). The dual relationship between gut microbiota and nutrient interaction proved the production of abundant short- and branched-chain fatty acids. The MBS sample was able to produce SCFAs (41.27 mM) significantly and BCFAs (2.02 mM) than the TVP sample (27.58 mM and 2.14 mM, respectively). Hence, our research outcomes proved that the mung bean protein-based products might infer numerous health benefits to the host due to enriched probiotics in the gut and the production of their corresponding metabolites.
Collapse
Affiliation(s)
- Nattha Tampanna
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Worapanit Chansuwan
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Dietetics and Nutrition for Health Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
9
|
Guo F, Danielski R, Santhiravel S, Shahidi F. Unlocking the Nutraceutical Potential of Legumes and Their By-Products: Paving the Way for the Circular Economy in the Agri-Food Industry. Antioxidants (Basel) 2024; 13:636. [PMID: 38929075 PMCID: PMC11201070 DOI: 10.3390/antiox13060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Legumes, including beans, peas, chickpeas, and lentils, are cultivated worldwide and serve as important components of a balanced and nutritious diet. Each legume variety contains unique levels of protein, starch, fiber, lipids, minerals, and vitamins, with potential applications in various industries. By-products such as hulls, rich in bioactive compounds, offer promise for value-added utilization and health-focused product development. Various extraction methods are employed to enhance protein extraction rates from legume by-products, finding applications in various foods such as meat analogs, breads, and desserts. Moreover, essential fatty acids, carotenoids, tocols, and polyphenols are abundant in several residual fractions from legumes. These bioactive classes are linked to reduced incidence of cardiovascular diseases, chronic inflammation, some cancers, obesity, and type 2 diabetes, among other relevant health conditions. The present contribution provides a comprehensive review of the nutritional and bioactive composition of major legumes and their by-products. Additionally, the bioaccessibility and bioavailability aspects of legume consumption, as well as in vitro and in vivo evidence of their health effects are addressed.
Collapse
Affiliation(s)
- Fanghua Guo
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (F.G.); (R.D.); (S.S.)
| |
Collapse
|
10
|
Sudhakaran SMN, Mathew SE, Shakappa D. Accurate assessment of macronutrients and micro-elements of ten newly developed green gram (Vigna radiata (L.) Wilczek) cultivars grown in Uttar Pradesh, India. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3606-3613. [PMID: 38148709 DOI: 10.1002/jsfa.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Green gram is a rich source of protein, carbohydrates, dietary fibre, and minerals. However, accurate data on the nutritional composition of green gram remains scarce since most researchers reported the carbohydrate content using the 'by difference method'. The objective of the current study is to accurately estimate the nutritional and mineral composition of green gram (Vigna radiata (L.) Wilczek). RESULTS Ten newly developed varieties and three local varieties of green gram were subjected to proximate and mineral composition analysis. The green gram varieties differed significantly (P < 0.05) for proximate and mineral content. From the results, they contain 62.5 to 84.6 g/kg of moisture, 28.3-37.4 g/kg of ash, 21.9-3.08 g/kg of fat, 484.6-535.7 g/kg of carbohydrate, 228.7-277.6 g/kg of protein, and 118.3-157.9 g/kg of dietary fibre. The most abundant mineral found was phosphorus, ranging 2716.66-4473.49 mg/kg followed by 3183.31-3597.61 mg/kg of potassium, 1506.51-1713.93 mg/kg of magnesium, 166.38-340.62 mg/kg of calcium, 40.16-348.79 mg/kg of iron, 27.60-34.35 mg/kg of zinc, 5.95-12.86 mg/kg of copper and 8.65-19.47 mg/kg of manganese. CONCLUSION The newly developed varieties of green gram showed high protein and dietary fibre content, while the local varieties were high in calcium and iron. Hence, both types of varieties are nutritionally significant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Shreyas Elma Mathew
- Department of Dietetics, ICMR - National Institute of Nutrition, Hyderabad, India
| | - Devindra Shakappa
- Department of Dietetics, ICMR - National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
11
|
Dai Y, Li C, Liu J, Xing L, Zhu T, Liu S, Yan Z, Zheng X, Wang L, Lu J, Zhou S. Enhancing the stability of mung bean-based milk: Insights from protein characteristics and raw material selection. Int J Biol Macromol 2024; 265:131030. [PMID: 38518949 DOI: 10.1016/j.ijbiomac.2024.131030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Plant-based milk (PBM) alternatives are gaining popularity worldwide as the change of consumers' nutritional habits and health attitudes. Mung beans, recognized for their nutritional value, have gained attention as potential ingredients for PBM. Nevertheless, mung bean-based milk (MBM) faces instability issues common to other plant-based milks. This study investigated the factors influencing MBM stability focusing on raw materials. We selected 6 out of 20 varieties based on their MBM centrifugation sedimentation rates, representing both stable and unstable MBM. Stable MBM exhibited distinct advantages, including reduced separation rate, smaller particle size, lower viscosity, fewer protein aggregates, higher soluble protein content, and increased consumer acceptance. Major nutritional components such as protein, starch, and lipids were not significant different between stable and unstable MBM varieties. The pivotal distinction may lay in the protein properties and composition. Stable MBM varieties exhibited significantly improved protein solubility and emulsion stability, along with elevated concentrations of legume-like acidic subunits, basic 7S proteins, and 28 kDa and 26 kDa vicilin-like subunits. The increasement of these proteins likely contributed to the improvement in protein characteristics that affect MBM stability. These findings offer valuable insights for raw material selection and guidance for future mung bean breeding to enhance mung bean milk production.
Collapse
Affiliation(s)
- Ying Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chunhong Li
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Jinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lina Xing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuangneng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Xiaowei Zheng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Santoso I, Fadhilah QG, Maryanto AE, Dwiranti A, Wang P, Al-Rais MF, Sigar IM. Characteristics of isolated lactic acid bacilli bacteria from black glutinous rice (Oryza sativa L.) tapai and its antimicrobial activity in mung bean (Vigna radiata L.) milk. KUWAIT JOURNAL OF SCIENCE 2024; 51:100161. [DOI: 10.1016/j.kjs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Thomas E, Panjagari NR, Singh AK, Sabikhi L, Deshwal GK. Alternative food processing techniques and their effects on physico- chemical and functional properties of pulse starch: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2705-2724. [PMID: 37711574 PMCID: PMC10497490 DOI: 10.1007/s13197-022-05557-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 09/16/2023]
Abstract
Thermal processing remains the key processing technology for food products. However, there are some limitations for thermal processing such as loss of sensory and nutritional quality. Furthermore, nowadays consumers are looking forward for fresh like products which are free from chemical preservatives, yet having longer shelf life. Thus, alternative processing techniques are gaining popularity among food processors to replace conventional thermal processing keeping nutritional quality, sensory attributes and food safety in mind. The alternative processing techniques such as ultrasound, gamma irradiation, high pressure processing and microwave treatment causes several modifications (structural changes, effects on swelling and solubility index, gelatinization behaviour, pasting or rheological properties, retrogradation and cooking time) in physicochemical and functional properties of pulse starches which offers several advantages from commercial point of view. This review aims to summarize the effect of different alternative processing techniques on the structure, solubility, gelatinization, retrogradation and pasting properties of various pulse starches. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05557-3.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Narender Raju Panjagari
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Ashish Kumar Singh
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Latha Sabikhi
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Gaurav Kr Deshwal
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
14
|
Plamada D, Teleky BE, Nemes SA, Mitrea L, Szabo K, Călinoiu LF, Pascuta MS, Varvara RA, Ciont C, Martău GA, Simon E, Barta G, Dulf FV, Vodnar DC, Nitescu M. Plant-Based Dairy Alternatives-A Future Direction to the Milky Way. Foods 2023; 12:foods12091883. [PMID: 37174421 PMCID: PMC10178229 DOI: 10.3390/foods12091883] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.
Collapse
Affiliation(s)
- Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Călina Ciont
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Elemer Simon
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gabriel Barta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Nitescu
- Department of Preclinical-Complementary Sciences, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
| |
Collapse
|
15
|
Dang K, Gong X, Liang H, Guo S, Zhang S, Feng B. Phosphorous fertilization alleviates shading stress by regulating leaf photosynthesis and the antioxidant system in mung bean (Vigna radiata L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1111-1121. [PMID: 36931210 DOI: 10.1016/j.plaphy.2023.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Shading can limit photosynthesis and plant growth. Understanding how phosphorus (P) application mitigates the effects of shading stress on morphology and physiology of mung beans (Vigna radiata L.) is of great significance for the establishment of efficient planting structures and optimizing P-use management. The effects of various light environments (non-shading stress, S0; low light stress, S1; severe shading stress, S2) on the growth of two mung bean cultivars (Xilv1 and Yulv1) and the role of P application (0 kg ha-1, P0; 90 kg ha-1, P1; 150 kg ha-1, P2) in such responses were investigated in a field experiment. Our results demonstrated that shading decreased the dry matter accumulation of mung bean markedly by limiting photosynthesis capacity and disrupting agronomic traits. For the leaf areas of the two cultivars, chlorophyll a+b, the net photosynthetic and electron transport rates were increased by 16.8%, 20.0%, 15.5%, and 12.5% under P1 treatment, and by 32.4%, 40.3%, 16.3% and 12.8% under P2 treatment, respectively, when compared to those for the non-fertilized plants under shading stress. These responses resulted in increased light capture and weak light utilization. Moreover, the activities of superoxide dismutase and peroxidase were enhanced by 20.9% and 43.7%, respectively; malondialdehyde and superoxide anion contents were reduced by 18.6% and 14.1%, respectively, under P application. These findings suggest that P application moderately mitigates the damage caused by shading stress and enhances tolerance by regulating mung bean growth. In addition, Xilv1 was more sensitive to P under shading stress than Yulv1.
Collapse
Affiliation(s)
- Ke Dang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangwei Gong
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, PR China
| | - Haofeng Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shuqing Guo
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Suiqi Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
16
|
Shrestha S, van 't Hag L, Haritos VS, Dhital S. Lentil and Mungbean protein isolates: Processing, functional properties, and potential food applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Yu S, Wu Y, Li Z, Wang C, Zhang D, Wang L. Effect of different milling methods on physicochemical and functional properties of mung bean flour. Front Nutr 2023; 10:1117385. [PMID: 36908915 PMCID: PMC9998992 DOI: 10.3389/fnut.2023.1117385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
There needs to be more information concerning the effect of different milling methods on the physicochemical properties of whole-grain mung bean flour. Therefore, the physicochemical properties of whole grain mung bean flour were analyzed using universal grinders (UGMB), ball mills (BMMB), and vibration mills (VMMB). The results showed that the particle size of the sample after ultrafine grinding treatment was significantly reduced to 21.34 μm (BMMB) and 26.55 μm (VMMB), and the specific surface area was increased. The particle distribution was uniform to a greater extent, and the color was white after treatment. Moreover, the water holding capacity (WHC), oil holding capacity (OHC), and swelling power (SP) increased, and the bulk density and solubility (S) decreased. The Rapid Viscosity Analyzer (RVA) indicated that the final viscosity of the sample after ultrafine grinding was high. Furthermore, rheological tests demonstrated that the consistency coefficient K, shear resistance, and viscosity were decreased. The results of functional experiments showed that the treated samples (BMMB and VMMB) increased their capacity for cation exchange by 0.59 and 8.28%, respectively, bile acid salt adsorption capacity increased from 25.56 to 27.27 mg/g and 26.38 mg/g, and nitrite adsorption capacity increased from 0.58 to 1.17 mg/g and 1.12 mg/g.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
18
|
Wu M, Li Y, Yuan Y, Li S, Song X, Yin J. Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Antidiabetic Activity of Mung Bean or Vigna radiata (L.) Wilczek Seeds in Alloxan-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6990263. [PMID: 36337582 PMCID: PMC9629934 DOI: 10.1155/2022/6990263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Introduction Despite the development of oral hypoglycemic medications, diabetes and its associated complications continue to be significant clinical issues. The purpose of this study was to examine the antidiabetic effects of Vigna radiata (L.) Wilczek seeds in mice that had been given alloxan to cause diabetes. Methods In Swiss albino mice, diabetes was brought on by a single intraperitoneal injection of the drug alloxan (150 mg/kg). For 14 days, glibenclamide (5 mg/kg) and methanol extract of V. radiata seeds (100, 200, and 400 mg/kg) were given orally. Following oral administration of V. radiata to mice, the blood glucose levels (BGL) and body weight were measured at 7 and 14 days. The mice were sacrificed at the end of the trial, and blood samples were taken for the evaluation of insulin, glycated hemoglobin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), high-density lipoprotein (HDL), total cholesterol (TC), and triglyceride (TG) levels. It was determined how much glycogen was present in the liver. Additionally, the total phenolic and flavonoid contents of V. radiata were determined, along with the in vitro DPPH (2, 2 diphenyl-1-picrylhrazyl) free radical-scavenging activity. P < 0.05 was chosen as the cutoff for statistical significance. Results Following oral administration of V. radiata for 14 days, diabetic mice's BGL and bad cholesterol (TC and TG) levels significantly decreased, while HDL levels increased. Treatment with V. radiata significantly decreased the levels of AST, ALT, and glycated hemoglobin when compared with diabetes control. On the other hand, it raised insulin levels and the amount of liver glycogen. V. radiata underwent phytochemical analysis, which identified the presence of tannins, saponins, phenols, alkaloids, terpenoids, steroids, flavonoids, and glycosides. Per gram of V. radiata seed extract, the total phenolic content was 43.12 ± 3.14 mg of gallic acid equivalents, while the total flavonoid content was 38.35 ± 2.6 mg of quercetin equivalents. Ascorbic acid was shown to have an IC50 value of 18.64 µg/ml during a DPPH-scavenging assay, while V. radiata had an IC50 value of 73.35 µg/ml. Conclusion According to the findings of the current study, the methanolic extract of the seeds from the plant V. radiata possesses significant antidiabetic characteristics that are on par with those of the commonly used drug glibenclamide. Hence, V. radiata seems to be effective as a natural antidiabetic.
Collapse
|
20
|
Bacterial inoculants as effective agents in minimizing the non-target impact of azadirachtin pesticide and promoting plant growth of Vigna radiata. Arch Microbiol 2022; 204:555. [PMID: 35962834 DOI: 10.1007/s00203-022-03162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Microbes regulate soil health by negating ecological disturbances, and improve plant productivity in a sustainable manner. Indiscriminate application of pesticides creates a detrimental impact on the rhizospheric microbiota, thereby affecting soil health. Azadirachtin, earlier believed to be an environment-friendly alternative to chemical pesticides, exhibits a non-target impact on microbial communities. This study aimed to employ potent bacteria to promote the growth of mungbean plant (Vigna radiata), and mitigate the non-target impact of azadirachtin. Bacterial strains were isolated by enrichment from mungbean rhizosphere. A plant growth experiment was performed with mungbean, amended with azadirachtin to assess the impact of bacterial bioinoculants on the rhizospheric microbiota. The impact of azadirachtin on rhizospheric bacterial community was analyzed qualitatively and quantitatively by 16S rRNA PCR-DGGE and qPCR of various markers, respectively. Residual concentration of azadirachtin in the soil was estimated by HPLC. The bacterial inoculants used in combination significantly promoted plant growth and enhanced the diversity and abundance of total bacterial community in the presence of azadirachtin. Further, the abundance of specific bacterial groups (α-Proteobacteria, β-Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes) were significantly boosted. Compared to the control, the isolates significantly facilitated the reduction in residual concentration of azadirachtin in the mungbean rhizosphere. Bacterial inoculants can serve a tripartite role in reducing the stress imparted by botanical pesticides, together with promoting plant growth and enriching the rhizospheric bacterial community structure.
Collapse
|
21
|
Iqbal Z, Javad S, Naz S, Shah AA, Shah AN, Paray BA, Gulnaz A, Abdelsalam NR. Elicitation of the in vitro Cultures of Selected Varieties of Vigna radiata L. With Zinc Oxide and Copper Oxide Nanoparticles for Enhanced Phytochemicals Production. FRONTIERS IN PLANT SCIENCE 2022; 13:908532. [PMID: 35958222 PMCID: PMC9360770 DOI: 10.3389/fpls.2022.908532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to develop a protocol for in vitro shoot multiplication and callus induction of various mung bean varieties to obtain enhanced phytochemical content with the help of elicitors. For shoot multiplication, two types of explants (shoot tips and nodal tips) of three varieties of mung bean (Mung NCM-13, MgAT-7, and MgAT-4) were used. Both types of explants from in vitro and in vivo sources were cultured on the MS medium supplemented with different concentrations (0.25-3.0 mg/L, increment of 0.5 mg/L) and combinations of BAP and IBA as independent treatments. For callus induction, leaf explants (in vitro source) were cultured on MS medium supplemented with 2,4-D (1-3 mg/L) alone or in combination with BAP or NAA (0.5 and 1.0 mg/L). For the enhanced production of phenolics and glycosides, calli were cultured on MS media supplemented with zinc oxide (0.5 mg/L) and copper oxide nanoparticles (0.5 mg/L) as nano-elicitors. Results showed that in vitro explants responded better in terms of shoot length, number of shoots, and number of leaves per explant when compared to in vivo explants. Moreover, shoot tips were better than nodal explants to in vitro culturing parameters. All three varieties showed the optimized results in the MS medium supplemented with 1 mg/L BAP, while roots were produced only in cultures fortified with 1 mg/L IBA. The leaf explants of in vitro and soil-grown plantlets showed a maximum callogenic response of 90 and 80%, respectively, on MS medium supplemented with 2,4-D (3 mg/ml). Maximum phenolic content (101.4 μg of gallic acid equivalent/g) and glycoside content (34 mg of amygdalin equivalent/g of plant material) was observed in the calli cultured on MS medium supplemented with 3 mg/L of 2,4-D. Furthermore, the addition of zinc oxide (0.5 mg/L) and copper oxide (0.5 mg/L) nanoparticles to the callus culture medium significantly enhanced the phenolic content of Mung NCM-13 (26%), MgAT-7 (25.6%), and MgAT-4 (22.7%). Glycosidic content was also found to be increased in Mung NCM-13 (50%), MgAT-7 (37.5%), and MgAT-4 (25%) varieties when compared to the control. It is suggested that elicitation of in vitro cultures of mung beans with nanoparticles could be an effective strategy for the enhanced production of secondary metabolites.
Collapse
Affiliation(s)
- Zunera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Anis Ali Shah
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun, South Korea
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Agronomic Traits, Fresh Food Processing Characteristics and Sensory Quality of 26 Mung Bean ( Vigna radiata L.) Cultivars (Fabaceae) in China. Foods 2022; 11:foods11121687. [PMID: 35741885 PMCID: PMC9222593 DOI: 10.3390/foods11121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, with the expansion of mung bean (Vigna radiata L.) planting areas and the increase of consumer demand, it has become imperative to screen high-quality mung bean cultivars. In this study, the agronomic traits, fresh bean characteristics, and sensory evaluation of boiled beans were analyzed for 26 mung bean cultivars. The results showed that the variation coefficient and genetic diversity index of six agronomic traits of mung bean ranged from 9.04% to 44.98%, 1.68 to 1.96, respectively, with abundant genetic variation, and the highest was the grain yield. Mung bean cultivars with higher grain yield had more advantage in the number of branches, number of pods per plant, and 100-seed weight. The fresh bean traits were relatively stable, with an average coefficient variation of 8.48%. The trait with the highest genetic diversity index was the number of seeds per pod (2.03). The cultivar with the highest total sensory evaluation score of boiled beans was Zhanglv 3 (75.67), which had more advantages in taste and color. Through the comprehensive evaluation of grey relational analysis, the cultivars suitable for fresh food processing were Zhonglv 3 (0.960), Jilv 11 (0.942), Zhonglv 1 (0.915), CES-78 (0.899) and Kelv 2 (0.896). Generally, the high-quality cultivars with higher yield and fresh food processing characteristics were CES-78, Kelv 2, Zhonglv 16, and Zhonglv 2. This study provided a preference for the breeding of fresh mung bean cultivars, development of new products and improvement of mung bean resource utilization.
Collapse
|
23
|
Mojoodi M, Nourani M. Mung bean protein films incorporated with cumin essential oil: development and characterization. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biodegradable films based on mung bean protein (1, 3 and 5%) incorporated with cumin essential oil (EO) (0, 0.25 and 0.5 ml/g protein) were developed. Adding cumin oil and increasing the protein content enhanced the thickness, tensile strength and yellowness. Films incorporated with EO exhibited less water vapor permeability and water solubility, as compared to the control films. A higher antioxidant activity was also obtained by increasing the EO and protein ratios. Films with higher levels of protein displayed lower thermal stability with a lower degradation temperature, as suggested by thermo-gravimetric analyses. In addition, the incorporation of EO reduced thermal stability, as confirmed by the higher weight loss and lower degradation temperature. Furthermore, mung bean protein films containing 0.5 ml cumin oil/g protein had suitable physical characteristics, antioxidant activities, water barrier properties and thermal stability; thus, they can be used as appropriate biodegradable packaging materials for food preservation.
Collapse
Affiliation(s)
- Majid Mojoodi
- Department of Food Science and Technology , Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan , Iran
| | - Moloud Nourani
- Department of Food Science and Technology , Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan , Iran
| |
Collapse
|
24
|
Keawpeng I, Lekjing S, Paulraj B, Venkatachalam K. Application of Clove Oil and Sonication Process on the Influence of the Functional Properties of Mung Bean Flour-Based Edible Film. MEMBRANES 2022; 12:535. [PMID: 35629861 PMCID: PMC9146281 DOI: 10.3390/membranes12050535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
The present study was aimed to investigate the effects of sonication and clove oil incorporation on the improvement of physical, antioxidant, and antimicrobial properties and lipid oxidation inhibiting abilities of mung bean flour (MF)-based films. There were three groups of films tested (1) MF: mung bean flour alone, (2) MFC: MF incorporated with 2% clove oil (C), and (3) MFCU: MFC prepared with sonication (25 kHz, 100% amplitude, 10 min). Film thickness and bulk density showed slight differences, and moisture content, solubility, and water vapor permeability significantly differed between the formulations. Tensile strength, elongation at break, and Young’s modulus were highest for the MFCU films, followed by MFC and MF in rank order. Furthermore, the Fourier-transform infrared spectroscopy results also demonstrated that the clove oil and sonication treatment had improved the interconnections of the biopolymers, thus increasing the physical strength of the film. Phytochemicals in terms of total phenolics and total flavonoids were elevated in the MFCU films and contributed to stronger radical scavenging abilities (p < 0.05). MFC and MFCU films showed a strong antibacterial control of the Gram-positive Staphylococcus aureus (S. aureus) and also of the Gram-negative Campylobacter jejuni (C. jejuni). Overall, the lipid oxidation indicators Thiobarbituric acid reactive substances (TBARS, peroxide value, p-anisidine value, and totox value) showed significantly high inhibition, attributed to radical scavenging activities in the MFCU and MFC samples. The mung bean flour films incorporated with clove oil and prepared with sonication have good potential as packaging materials for food due to strong physical, antimicrobial, and antioxidant properties, as well as lipid oxidation inhibiting abilities.
Collapse
Affiliation(s)
- Ittiporn Keawpeng
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Muang, Songkhla 90000, Thailand;
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, Tamil Nadu, India;
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| |
Collapse
|
25
|
Ma Y, Zhou S, Lu J. Metabolomic Analysis Reveals Changes of Bioactive Compounds in Mung Beans (Vigna radiata) during γ-Aminobutyric Acid Enrichment Treatment. Foods 2022; 11:foods11101423. [PMID: 35626988 PMCID: PMC9141900 DOI: 10.3390/foods11101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Soaking together with Heat and Relative Humidity (HRH) treatment has been applied successfully to enrich γ-aminobutyric acid (GABA) in mung beans. However, whether and how the above GABA enrichment processing influences the other bioactive molecules is elusive. In the present study, mung beans were soaked and then treated by HRH for 5 or 7 h. By using metabolomics techniques, the changes of 496 metabolites were determined. The relative content of flavonoids and phenolic acids increased during soaking but slightly decreased during HRH. Intriguingly, soaking and HRH had the opposite effects on the glycosylation of polyphenols. The relative content of glycosylated or un-glycosylated polyphenols increased during soaking or HRH, respectively. The relative content of α-ketoglutaric acid increased more than 20 times after 5 h HRH treatment. Bioactive molecules could be enriched during GABA enrichment processing. Depending on the desired bioactive compounds, soaking and different duration of HRH treatment could be selected.
Collapse
Affiliation(s)
- Yuling Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.M.); (S.Z.)
- Correspondence:
| |
Collapse
|
26
|
Wan F, Hou C, Luo K, Cheng A. Steam explosion enhances phenolic profiles and antioxidant activity in mung beans. Food Sci Nutr 2022; 10:1039-1050. [PMID: 35432969 PMCID: PMC9007312 DOI: 10.1002/fsn3.2711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Steam explosion (SE), as a physicochemical pretreatment process, has the dual effect of high temperature and high pressure. In this study, SE was applied to pretreat mung beans to increase phenolic extraction and their antioxidant activity. It can make the material loose and porous, which is beneficial to the release of phenolic compounds from mung beans. Insoluble‐bound phenolics (IBPs) were the dominating fraction, followed by glycosidic phenolics (GPs) and esterified phenolics (EPs), and free phenolics (FPs) were the lowest in mung beans. After SE, the maximum contents of FPs, EPs, GPs, IBPs, and total phenolics were detected at 0.75 MPa for 30 s, which were 1.47‐, 1.87‐, 1.73‐, 1.48‐, and 1.58‐fold compared with the untreated samples, respectively. On the whole, the effect of SE on phenolics in mung beans first increased and then decreased. SE increased the contents of protocatechuic acid, p‐coumaric acid, ferulic acid, catechin, and epicatechin; but there was a decrease in caffeic acid. Compared with the untreated samples, the antioxidant activity of FPs, GPAs, EPs, and IBPs was also improved by SE. The relationship between the phenolic content and antioxidant activity was very high with coefficients of 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐ sulfonic acid) > 2,2′‐diphenyl‐1‐picrylhydrazyl > ferric reducing antioxidant power. In conclusion, an appropriate SE can lead to a more efficient extraction of phenolics and improvement of antioxidant activity in mung beans.
Collapse
Affiliation(s)
- Fachun Wan
- College of Animal Science and Technology Hunan Agricultural University Changsha China
| | - Chunyu Hou
- Institute of Agro-food Science and Technology Shandong Academy of Agricultural Sciences Jinan China
| | - Kaiyun Luo
- College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and In-depth Development in Hunan Province Hunan Agricultural University Changsha China
| | - Anwei Cheng
- Institute of Agro-food Science and Technology Shandong Academy of Agricultural Sciences Jinan China.,College of Food Science and Technology/Engineering Center of Rapeseed Oil Nutrition Health and In-depth Development in Hunan Province Hunan Agricultural University Changsha China
| |
Collapse
|
27
|
Identification of Baha'sib mung beans based on Fourier transform near infrared spectroscopy and partial least squares. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lee E, Kim J, Kim E, Choi YJ, Hahn J. The effect of curdlan and the resting process on the quality of the dried whole tofu noodles. Food Sci Biotechnol 2022; 31:61-68. [PMID: 35059230 PMCID: PMC8733043 DOI: 10.1007/s10068-021-01020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study is to make dried noodles having high contents of whole tofu (60% (w/w)). To control the high moisture of the whole tofu, curdlan was added and a high-temperature resting process was applied. The elasticity of the dough sample rested at 45°C for 45 min increased over 50% more than the non-rested one. The addition of curdlan and the high-temperature resting process helped to form a compact internal structure in the dough, which might have been induced by the gelation of curdlan and the swelling of starch. In addition, these treatments resulted in about 20% and 15% reduction in cooking time and cooking loss, respectively. Whole tofu noodles having high protein content with improved texture and cookability was developed. These results could be helpful to the development of the bread based on a high hydration dough. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-01020-9.
Collapse
Affiliation(s)
- Euiji Lee
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Junghoon Kim
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdongro, 8 Kwangjin-gu, Seoul, 05006 Korea
| | - Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| | - Jungwoo Hahn
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
29
|
Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Wang F, Huang L, Yuan X, Zhang X, Guo L, Xue C, Chen X. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiate L.) genotypes. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
This study aimed to investigate the proximate and phytochemicals present in seeds of 24 mung bean (Vigna radiate L.) genotypes from four provinces of China for estimating their nutritional and antioxidant properties. Proximate analysis of mung bean genotypes revealed that starch, protein, fat, ash and water-soluble polysaccharide ranged from 39.54–60.66, 17.36–24.89, 4.24–12.18, 2.78–3.53 and 1.99–2.96 g/100 g respectively. The five principal fatty acids detected in mung beans were stearic acid, palmitic acid, linoleic acid, oleic acid, and linolenic acid. The contents of insoluble-bound phenolic compounds, soluble phenolic compounds, and flavonoids ranged from 0.78 to 1.5 mg GAE g− 1, 1.78 to 4.10 mg GAE g− 1, and 1.25 to 3.52 mg RE g− 1, respectively. The black seed coat mung bean genotype M13 (Suheilv 1) exhibited highest flavonoid and phenolic contents which showed strong antioxidant activity. Two flavonoids (vitexin and isovitexin) and four phenolic acids (caffeic, syringic acid, p-coumaric, and ferulic acids) were identified by HPLC. Vitexin and isovitexin were the major phenolic compounds in all mung bean genotypes. The content of soluble phenolic compounds had positive correlation with DPPH (r2 = 0.713) and ABTS (r2 = 0.665) radical scavenging activities. Principal component analysis indicated that the first two principal components could reflect most details on mung bean with a cumulative contribution rate of 66.1%. Twenty-four mung bean genotypes were classified into four groups based on their phenolic compounds contents and antioxidant activities. The present study highlights the importance of these mung bean genotypes as a source of nature antioxidant ingredient for the development of functional foods or a source of health promoting food.
Graphical Abstract
Collapse
|
31
|
Liu Z, Fu Y, Zhang J, Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem 2021. [DOI: 10.1002/cche.10472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenyu Liu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Jing Zhang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Qun Shen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| |
Collapse
|
32
|
Kim IS, Yang WS, Kim CH. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int J Mol Sci 2021; 22:8570. [PMID: 34445273 PMCID: PMC8395274 DOI: 10.3390/ijms22168570] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoul 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology, Seoul 16419, Gyunggi-Do, Korea
| |
Collapse
|
33
|
Food Security and Nutrition in Mozambique: Comparative Study with Bean Species Commercialised in Informal Markets. SUSTAINABILITY 2021. [DOI: 10.3390/su13168839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Mozambique (South-eastern Africa), Phaseolus vulgaris and Vigna spp. are important staple foods and a major source of dietary protein for local populations, particularly for people living in rural areas who lack the financial capacity to include meat in their daily dietary options. This study focuses on the potential for improving diets with locally produced nutritious legumes whilst increasing food security and income generation among smallholder farmers. Using bean species and varieties commercialised as dry legumes in the country, it sets out to characterize and compare the chemical properties of Phaseolus vulgaris and Vigna spp. among the most commercialised dry legume groups in Mozambique. The principal component analysis showed a clear separation between Phaseolus and Vigna species in terms of proximate composition, whereas protein content was quite uniform in both groups. It concludes that the introduction of improved cultivars of Phaseolus vulgaris and Vigna species maize–legume intercropping benefits yield, diets and increases household income with limited and low-cost inputs while enhancing the resilience of smallholder farmers in vulnerable production systems affected by recurrent drought and the supply of legumes to urban informal markets.
Collapse
|
34
|
Effects of Different Processing Methods and Internal Components on Physicochemical Properties and Glycemic Index of Adzuki Bean Powder. Foods 2021; 10:foods10081685. [PMID: 34441463 PMCID: PMC8391287 DOI: 10.3390/foods10081685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The estimated glycemic index (eGI) value of adzuki bean powder prepared by steamed cooking (SC), extruded cooking (EC) and roller cooking (RC) was studied comparatively. Results showed that RC had the highest eGI, with 80.1, and both EC and SC resulted in a lower eGI value of 70.0 and 49.7, respectively. Compared with the EC and RC methods, the SC method provided a more intact physical barrier for starch digestion, resulting in a less destroyed cell structure. As the essential components that form the cell wall, the study further investigated the effects of protein and fiber on physicochemical properties, in vitro starch digestibility and the eGI of adzuki bean powder processed with the SC method. Viscozyme and Protamax were used to obtain the deprotein and defiber samples. Results showed that the SC treatment with Viscozyme and Protamax, respectively, had significant effects on in vitro starch digestibility. The eGI of different samples were given as follows: steamed cooking adzuki bean powder (49.7) < deproteined adzuki bean powder (60.5) < defibered adzuki bean powder (83.1), which indicates that fiber may have a greater influence on the eGI than protein.
Collapse
|
35
|
Kumari S, Phogat D, Sehrawat KD, Choudhary R, Rajput VD, Ahlawat J, Karunakaran R, Minkina T, Sehrawat AR. The Effect of Ascophyllum nodosum Extract on the Nutraceutical Antioxidant Potential of Vigna radiata Sprout under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:1216. [PMID: 34203887 PMCID: PMC8232706 DOI: 10.3390/plants10061216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | | | - Krishnan D. Sehrawat
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Jyoti Ahlawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| |
Collapse
|
36
|
El-Beltagy AE, Alharthi S. Free Radical Scavenging Activity of Some Legumes Hulls Extract and Its Efficacy on Oil Oxidative Stability. J AOAC Int 2021; 104:472-478. [PMID: 33259627 DOI: 10.1093/jaoacint/qsaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Synthetic antioxidants have toxigenic effects, there is therefore growing interest in substituting them with natural antioxidants. Attention is being focused on extracting them from agricultural industry residuals to minimize costs. Legume seed hulls could be cheap sources of such natural antioxidants. OBJECTIVE This study aims to unravel potential free radical scavenging activity, antioxidant activity, and total phenolic and flavonoid contents of some legumes' hulls extracted by different solvents and evaluate their efficacy to enhance sunflower oil stability. METHOD Legume hulls extracted by different solvents were evaluated for their antioxidant activity coefficient (AAC), free radical scavenging activity [by 2,2-diphenyl-1- picrylhydrazyl (DPPH)], and phenolic and flavonoids contents. The protection factor and induction periods (rancimat test) of the highest activity extracts were evaluated. RESULTS Sunflower seed hull ethyl acetate extract, lupine seed hull ethanol extract, and mung bean hull petroleum ether extract exhibited stronger DPPH scavenging activity, AAC, and protection factor values than other solvents. Ethyl acetate extracts of sunflower seed hulls showed an antioxidant and scavenging activity close (P>0.05) to that detected for α-tocopherol. CONCLUSIONS Legume hulls may possess strong free radical scavenging and antioxidant activity. The analogous effect between sunflower hull extract and α-tocopherol make it a potential, cheaper substitute of α-tocopherol in food systems. HIGHLIGHTS The analogous effect between sunflower hull extract and α-tocopherol give it the potency to allow substitution at a concentration of 0.5% of sunflower hull ethyl acetate or 1% of lupine hull ethanol extract instead of 0.5% α-tocopherol to enhance induction periods and protection factors of sunflower oil.
Collapse
Affiliation(s)
- Alaa ElDein El-Beltagy
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salman Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
37
|
Mekkara Nikarthil Sudhakaran S, Bukkan DS. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 2021; 45:e13743. [PMID: 33934386 DOI: 10.1111/jfbc.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.
Collapse
|
38
|
Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00872-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Nadaf S, Jadhav A, Killedar S. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion. Int J Biol Macromol 2020; 167:345-357. [PMID: 33253744 DOI: 10.1016/j.ijbiomac.2020.11.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel Vigna radiata based porous starch (PS) is prepared by solvent exchange technique and explored as a solubilizer for model drug albendazole (ABZ). PS carrier was investigated for different chemical, functional, and micromeritic properties. Solubilizing potential of PS is evaluated by formulating ABZ-PS solid dispersion (1:0.5-1:2) based tablets (SDT). ABZ-PS solid dispersions were evaluated for micromeritic properties, dissolution studies, and anthelmintic activity. Direct compression suitability and susceptibility of mung bean starch were studied by SeDem diagram, Heckel, and Kawakita analysis respectively. PS had an A-type crystallinity pattern and evinced functional properties similar to other legume starches. PS was determined to be suitable for direct compression (good compressibility index = 5.50). SD (1:2) manifested 36.18 fold and 1.6-3.04 fold improvement in the % dissolution and anthelmintic activity of ABZ respectively. All SD batches (R2 = 0.949-0.996) and ABZ (R2 = 0.168) followed the Higuchi-matrix release kinetic model. DSC and P-XRD analysis corroborated the amorphous form of ABZ. SDT showed ≈ a 1.90 fold improvement in dissolution rate than the marketed formulation. Conclusively, Vigna radiata PS could be explored as an alternative to reduce the large burden on the established starches.
Collapse
Affiliation(s)
- Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, site Chinchewadi, Mahagaon, 416503, Maharashtra, India.
| | - Amrita Jadhav
- Adarsh College of Pharmacy, Bhavaninagar, Vita 415311, Maharashtra, India
| | - Suresh Killedar
- Sant Gajanan Maharaj College of Pharmacy, site Chinchewadi, Mahagaon, 416503, Maharashtra, India
| |
Collapse
|
40
|
Wang J, Li J, Liu Z, Yuan X, Wang S, Chen H, Chen X, Cheng X, Wang L. Construction of a High-Density Genetic Map and Its Application for QTL Mapping of Leaflet Shapes in Mung Bean ( Vigna radiata L.). Front Genet 2020; 11:1032. [PMID: 33133136 PMCID: PMC7571465 DOI: 10.3389/fgene.2020.01032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Mung bean (Vigna radiata L.) is an important but understudied food legume in Asia and now worldwide. Genetic studies may help to accelerate the exploitation of new genes for breeding in this crop. Here, we used a recombination inbred line population to construct an SNP genetic linkage map by genome sequencing technology. We obtained 21,508 high-quality SNP markers integrated into 1,946 bin markers that were mapped onto 11 linkage groups (LGs) with 99-258 bin markers per LG. The total genetic length of the map was 1060.2 cM (38.76-168.03 cM per LG), with an average distance between markers of 0.54 cM. However, there were 18 gaps >5 cM, distribution on LG1, 3, 5, 7, and 9. Gene mapping for lobed and indented leaflets was conducted using the map. A major quantitative trait locus (QTL) associated with indented leaflets was detected on chromosome 10, with phenotypic variation explained (PVE) values of 39.7% and 45.4% under two different environments. Several QTLs for lobed leaflets were detected and most of them were tightly linked together on Chromosome 3. However, only one major QTL, which explained the largest phenotypic variation (27.7-69.5%), was stably detected under two different environments using both R and Q methods. In the two main stable QTLs regions on chromosomes 3 and 10, candidate genes for regulating the molecular mechanism of different leaflet shapes were detected by functional annotation. The overlap of major QTLs under different environments indicated that the present map would be good enough for precisely mapping genes, and both the QTL analysis and gene prediction were useful for investigating the mechanism of leaf development in mung bean or legumes.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianling Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Yangtze University, Jingzhou, China
| | - Zhenxing Liu
- Tangshan Academy of Agricultural Sciences, Tangshan, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Suhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Lin S, Liu X, Cao Y, Liu S, Deng D, Zhang J, Huang G. Effects of xanthan and konjac gums on pasting, rheology, microstructure, crystallinity and in vitro digestibility of mung bean resistant starch. Food Chem 2020; 339:128001. [PMID: 33152856 DOI: 10.1016/j.foodchem.2020.128001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022]
Abstract
The effects of different concentrations of xanthan and konjac gums on the pasting, rheological properties, microstructure, crystallinity, and digestibility of mung bean resistant starch (MRS) were investigated. Based on the results of pasting properties, the adjunction of gums increased the peak, breakdown, and final viscosities of resistant starch. Compared with resistant starch, the addition of gum significantly increased the K value and dynamic moduli (G', G") of MRS with increasing gum concentration. This finding indicates that the mixtures had higher viscoelasticity. Mixtures with xanthan gum of MRS had larger starch particle compared with MRS, as revealed by SEM. All starches showed B and V-type crystallinity with high crystallinity. MRS had the highest summation of resistant starch (RS) and slowly digestible starch (SDS) of 71.89%. MRS had the lowest hydrolysis rate, which obviously decreased from 71.89% to 57.71% with increasing konjac gum from 0 to 0.30%.
Collapse
Affiliation(s)
- Siyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiane Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yao Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Suchen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Danwen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
42
|
Antioxidant Potential of Mung Bean ( Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods. Foods 2020; 9:foods9091241. [PMID: 32899856 PMCID: PMC7554906 DOI: 10.3390/foods9091241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to investigate the biochemical antioxidant potential of peptides derived from enzymatically hydrolyzed mung bean (Vigna radiata) albumins using an 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay, a ferrous ion chelating assay and an oxygen radical absorbance capacity (ORAC) assay. Peeled raw mung bean was ground into flour and mixed with buffer (pH 8.3, 1:20 w/v ratio) before being stirred, then filtered using 3 kDa and 30 kDa molecular weight cut-off (MWCO) centrifugal filters to obtain albumin fraction. The albumin fraction then underwent enzymatic hydrolysis using either gastrointestinal enzymes (pepsin and pancreatin) or thermolysin. Peptides in the hydrolysates were sequenced. The peptides showed low ABTS radical-scavenging activity (90-100 μg ascorbic acid equivalent/mL) but high ferrous ion chelating activity (1400-1500 μg EDTA equivalent/mL) and ORAC values (>120 μM Trolox equivalent). The ferrous ion chelating activity was enzyme- and hydrolysis time-dependent. For thermolysin hydrolysis, there was a drastic increase in ferrous ion chelating activity from t = 0 (886.9 μg EDTA equivalent/mL) to t = 5 min (1559.1 μg EDTA equivalent/mL) before plateauing. For pepsin-pancreatin hydrolysis, there was a drastic decrease from t = 0 (878.3 μg EDTA equivalent/mL) to t = 15 (138.0 μg EDTA equivalent/mL) after pepsin was added, but this increased from t = 0 (131.1 μg EDTA equivalent/mL) to t = 15 (1439.2 μg EDTA equivalent/mL) after pancreatin was added. There was no significant change in ABTS radical scavenging activity or ORAC values throughout different hydrolysis times for either the thermolysin or pepsin-pancreatin hydrolysis. Overall, mung bean hydrolysates produced peptides with high potential antioxidant capacity, being particularly effective ferrous ion chelators. Other antioxidant assays that use cellular lines should be performed to measure antioxidant capacity before animal and human studies.
Collapse
|
43
|
Ma Y, Tong L, Li J, Ashraf J, Wang S, Zhao B, Liu L, Blecker C, Zhou S. Comparison of γ‐aminobutyric acid accumulation capability in different mung bean (
Vigna radiata
L.) varieties under heat and relative humidity treatment, and its correlation with endogenous amino acids and polyamines. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuling Ma
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
- Department of Food Science and Formulation Gembloux Agro‐Bio Tech Université de Liège Passage des Déportés 2 Gembloux Belgium
| | - Litao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Juan Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Jawad Ashraf
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Shanshan Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Bo Zhao
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Liya Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| | - Christophe Blecker
- Department of Food Science and Formulation Gembloux Agro‐Bio Tech Université de Liège Passage des Déportés 2 Gembloux Belgium
| | - Sumei Zhou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road Haidian District Beijing100193China
| |
Collapse
|
44
|
Effect of Controlled Hydrothermal Treatments on Mung Bean Starch Structure and Its Relationship with Digestibility. Foods 2020; 9:foods9050664. [PMID: 32455544 PMCID: PMC7278614 DOI: 10.3390/foods9050664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
The changes in structure and digestion properties of mung bean starch due to hydrothermal treatment at various controlled temperatures were investigated. Results showed the increase in onset temperature (To) from 66.33 °C to 76.69 °C and decrease in enthalpies (∆Hg and ∆Hr) until the starch was completely gelatinized. The degree of molecular order (DMO) and degree of double helix (DDH) were significantly (p < 0.05) reduced from 1.35 to 1.01 and 1.38 to 0.98 respectively. X-ray diffraction (XRD) indicated the consecutive decrease in relative crystallinity (RC) while RVA analysis showed that peak and final viscosities were decreased significantly (p < 0.05). However, digestion kinetics indicated that degree of gelatinization increased the access of enzymes. As starch was partially gelatinized it yielded significantly lower glycemic index but no significant (p > 0.05) change in starch digestibility was observed after 70 °C. Hence, 70 °C can be considered as the critical hydrothermal treatment temperature in mung bean starch. Pearson's correlation analysis indicated that controlled hydrothermal treatment had negative effect on the DMO, DDH, RC and the granular damage increased vulnerability of mung bean starch to digestion. These findings gave insight into sequential changes in the structure and digestibility occurring during gelatinization process due to hydrothermal treatment. Controlled gelatinization in mung beans at 70 °C is useful and must be employed to produce the foods with lower starch digestibility.
Collapse
|
45
|
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0020-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Legumes and cereals contain high amounts of macronutrients and micronutrients but also anti-nutritional factors. Major anti-nutritional factors, which are found in edible crops include saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, and goitrogens. Anti-nutritional factors combine with nutrients and act as the major concern because of reduced nutrient bioavailability. Various other factors like trypsin inhibitors and phytates, which are present mainly in legumes and cereals, reduce the digestibility of proteins and mineral absorption. Anti-nutrients are one of the key factors, which reduce the bioavailability of various components of the cereals and legumes. These factors can cause micronutrient malnutrition and mineral deficiencies. There are various traditional methods and technologies, which can be used to reduce the levels of these anti-nutrient factors. Several processing techniques and methods such as fermentation, germination, debranning, autoclaving, soaking etc. are used to reduce the anti-nutrient contents in foods. By using various methods alone or in combinations, it is possible to reduce the level of anti-nutrients in foods. This review is focused on different types of anti-nutrients, and possible processing methods that can be used to reduce the level of these factors in food products.
Graphical abstract
A brief overview of beneficial effects of anti-nutrients and reduction strategy.
Collapse
|
46
|
Venkidasamy B, Selvaraj D, Nile AS, Ramalingam S, Kai G, Nile SH. Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean ( Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019; 11:E1238. [PMID: 31159173 PMCID: PMC6627095 DOI: 10.3390/nu11061238] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Mung bean (Vigna radiata L.) is an important pulse consumed all over the world, especially in Asian countries, and has a long history of usage as traditional medicine. It has been known to be an excellent source of protein, dietary fiber, minerals, vitamins, and significant amounts of bioactive compounds, including polyphenols, polysaccharides, and peptides, therefore, becoming a popular functional food in promoting good health. The mung bean has been documented to ameliorate hyperglycemia, hyperlipemia, and hypertension, and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities. These health benefits derive primarily from the concentration and properties of those active compounds present in the mung bean. Vitexin and isovitexin are identified as the major polyphenols, and peptides containing hydrophobic amino acid residues with small molecular weight show higher bioactivity in the mung bean. Considering the recent surge in interest in the use of grain legumes, we hope this review will provide a blueprint to better utilize the mung bean in food products to improve human nutrition and further encourage advancement in this field.
Collapse
Affiliation(s)
- Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jihong Wu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China.
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
48
|
Lu Y, Chang X, Guo X. Dynamic Changes of Ascorbic Acid, Phenolics Biosynthesis and Antioxidant Activities in Mung Beans ( Vigna radiata) until Maturation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E75. [PMID: 30934563 PMCID: PMC6473823 DOI: 10.3390/plants8030075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/17/2022]
Abstract
To better understand the regulatory mechanism of phenolics and ascorbic acid accumulation as well as antioxidant activities in mung beans during legume development, the gene expression profiles of 25 key-coding genes in ascorbic acid and phenolics metabolic pathways were analyzed. As well as the dynamitic changes of ascorbic acid, phenolic profiles and antioxidant activities with legume development were studied. The results indicated that gene expression profiles were closely related to the ascorbic acid and phenolics accumulation regularity during legume development. VrVTC2 and VrGME played important roles for ascorbic acid accumulation from 8 to 17 days after flowering (DAF). VrPAL and VrCHS exhibited positive correlations with daidzein and glycitin accumulation, and VrIFS had a strong positive correlation with glycitin biosynthesis. Antioxidant activities dramatically increased during mung bean maturing, which were significantly related to ascorbic acid and phenolics accumulation. Eight days after flowering was the essential stage for ascorbic acid and phenolics biosynthesis in mung beans.
Collapse
Affiliation(s)
- Yanyan Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Xiaoxiao Chang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Key laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangzhou 510640, China.
- Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China.
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
49
|
Yao M, Tian Y, Yang W, Huang M, Zhou S, Liu X. The multi-scale structure, thermal and digestion properties of mung bean starch. Int J Biol Macromol 2019; 131:871-878. [PMID: 30905756 DOI: 10.1016/j.ijbiomac.2019.03.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Identification and selection one special variety mung bean for lower GI food is very useful, however, the fundamental study for mung bean starch is still insufficient to meet its demand. In this study, four varieties of mostly planted mung bean in China were selected as model materials. The multi-scale structure of mung bean starch was characterized by SEC, HPAEC, XRD, SAXS, and SEM. SEC and HPAEC give the amylose contents, amylose and amylopectin fine structure of mung bean starch. Mung bean starch from XRD spectrum display CA type semi crystallinity. The crystalline lamellar thickness from SAXS curves were 7.34-7.60 nm. DSC indicated that the peak gelatinization temperature is at 67 °C-68 °C. Resistant starch in mung bean disappears rapidly after cooking, although the amount of slowly digested starch was still more than half of the total starch. Since the gene backgrounds of the mung bean starch samples are very close, there was no obvious difference in their molecular and aggregated state structure, and the digestion properties were similar, too. Unique SEC and HPAEC profiles of starch chain length distribution can be utilized to help find more genetic resources and cultivate variety to meet the needs for starch applications.
Collapse
Affiliation(s)
- Mengdi Yao
- Institute of Food Science and Technology (IFST), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Tian
- Institute of Food Science and Technology (IFST), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Mingquan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Sumei Zhou
- Institute of Food Science and Technology (IFST), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xingxun Liu
- Institute of Food Science and Technology (IFST), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
50
|
Kumar S, Gautam S. A combination process to ensure microbiological safety, extend storage life and reduce anti-nutritional factors in legume sprouts. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|