1
|
Yokoyama Y, Takashina Y, Morel JD, Taworntawat T, Kitamura N, Nagano U, Tanigaki T, Nakamura A, Miyazaki T, Taoka H, Mottis A, Perino A, Shinjo A, Suzuki N, Takekawa S, Fukuda S, Honda A, Ishihara K, Arita M, Tsubota K, Auwerx J, Watanabe M. Porphyran from discolored nori prevents metabolic syndrome through microbiota-bile acid-ceramide pathway. iScience 2025; 28:112603. [PMID: 40491488 PMCID: PMC12148601 DOI: 10.1016/j.isci.2025.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/10/2025] [Accepted: 05/02/2025] [Indexed: 06/11/2025] Open
Abstract
Nori is a component of the traditional Japanese diet. The Japanese have a low prevalence of obesity and cardiovascular disease worldwide, and components of nori may have disease-preventive effects. Here, we focused on porphyran, which is abundant in nori that is discarded due to discoloration, and investigated the effects of nori-derived porphyran on gut microbiota, bile acid composition, and ceramide synthesis. Administration of porphyran to mice prevented obesity, diabetes, metabolic dysfunction-associated steatohepatitis (MASH), and hepatocellular carcinoma (HCC). This improvement correlates with a decrease in secondary bile acids, a decrease in intestinal farnesoid X receptor (FXR) signaling, and a marked decrease in blood ceramide. Porphyran, abundant in discolored nori, should be the subject of future translational research to prevent diseases with significant unmet medical needs and improve global environmental sustainability.
Collapse
Affiliation(s)
- Yoko Yokoyama
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Lab Laboratories, Shonan Keiiku Hospital, 4360 Endo, Fujisawa, Kanagawa 252-0816, Japan
| | - Yoko Takashina
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tanon Taworntawat
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Naho Kitamura
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Utana Nagano
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Tatsuya Tanigaki
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Anna Nakamura
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Hiroki Taoka
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Atsushi Shinjo
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Norihiro Suzuki
- Health Science Lab Laboratories, Shonan Keiiku Hospital, 4360 Endo, Fujisawa, Kanagawa 252-0816, Japan
| | - Setsuo Takekawa
- Health Science Lab Laboratories, Shonan Keiiku Hospital, 4360 Endo, Fujisawa, Kanagawa 252-0816, Japan
| | - Shinji Fukuda
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Tokyo 113-8421, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Kenji Ishihara
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648 Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo 105-0011, Japan
| | - Kazuo Tsubota
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., 35 Shinanomachi, CRIK E7, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mitsuhiro Watanabe
- Graduate School of Media and Governance, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Laboratory, Keio Research Institute at SFC, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Health Science Lab Laboratories, Shonan Keiiku Hospital, 4360 Endo, Fujisawa, Kanagawa 252-0816, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Naderi J, Johnson AK, Thakkar H, Chandravanshi B, Ksiazek A, Anand A, Vincent V, Tran A, Kalimireddy A, Singh P, Sood A, Das A, Talbot CL, Distefano IA, Maschek JA, Cox J, Li Y, Summers SA, Atkinson DJ, Turapov T, Ratcliff JA, Fung J, Shabbir A, Shabeer Yassin M, Shiow SATE, Holland WL, Pitt GS, Chaurasia B. Ceramide-induced FGF13 impairs systemic metabolic health. Cell Metab 2025; 37:1206-1222.e8. [PMID: 40169001 PMCID: PMC12058412 DOI: 10.1016/j.cmet.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Ceramide accumulation impairs adipocytes' ability to efficiently store and utilize nutrients, leading to energy and glucose homeostasis deterioration. Using a comparative transcriptomic screen, we identified the non-canonical, non-secreted fibroblast growth factor FGF13 as a ceramide-regulated factor that impairs adipocyte function. Obesity robustly induces FGF13 expression in adipose tissue in mice and humans and is positively associated with glycemic indices of type 2 diabetes. Pharmacological or genetic inhibition of ceramide biosynthesis reduces FGF13 expression. Using mice with loss and gain of function of FGF13, we demonstrate that FGF13 is both necessary and sufficient to impair energy and glucose homeostasis independent of ceramides. Mechanistically, FGF13 exerts these effects by inhibiting mitochondrial content and function, metabolic elasticity, and caveolae formation, which cumulatively impairs glucose utilization and thermogenesis. These studies suggest the therapeutic potential of targeting FGF13 to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
- Jamal Naderi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Kelsey Johnson
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ajay Anand
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Vinnyfred Vincent
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron Tran
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Anish Kalimireddy
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Pratibha Singh
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aasthika Das
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Isabella A Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Donald J Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Javis Fung
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - William L Holland
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Liu C, Zheng X, Ji J, Zhu X, Liu X, Liu H, Guo L, Ye K, Zhang S, Xu YJ, Sun X, Zhou W, Wong HLX, Tian Y, Qian H. The carotenoid torularhodin alleviates NAFLD by promoting Akkermanisa muniniphila-mediated adenosylcobalamin metabolism. Nat Commun 2025; 16:3338. [PMID: 40199868 PMCID: PMC11978934 DOI: 10.1038/s41467-025-58500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Torularhodin, a unique carotenoid, confers beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the precise mechanism underlying its therapeutic effects remains unknown. Here, we report that torularhodin alleviates NAFLD in male mice by modulating the gut microbiota. Additionally, transplanting fecal microbiota from torularhodin-treated mice to germ-free mice also improves NAFLD. Mechanistically, torularhodin specifically enriches the abundance of Akkermansia muciniphila, which alleviates NAFLD by promoting the synthesis of adenosylcobalamin. Utilizing a human gastrointestinal system and a colonic organoid model, we further demonstrate that adenosylcobalamin confers protective effects against NAFLD through reducing ceramides, a well-known liver damaging compound, and this effect is mediated by inhibition of the hypoxia-inducible factor 2α pathway. Notably, we construct electrospun microsphere-encapsulated torularhodin, which facilitates the slow release of torularhodin in the colon. Together, our findings indicate the therapeutic potential of microbial utilization of carotenoids, such as torularhodin, for treating NAFLD.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiaoning Liu
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 138673, Singapore
| | - He Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Kun Ye
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Shuang Zhang
- Analysis and Testing Center, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | | | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- Analysis and Testing Center, Jiangnan University, Wuxi, China.
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Yang G, Tan X, Zhai Q, Wang Y, Zhang X, Zhao P, Liang F, Lu J, Bao L. Plasma Lipidomics, Gut Microbiota Profile, and Phenotype of Adipose Tissue in an ApoE-/- Mouse Model of Plaque Instability. FRONT BIOSCI-LANDMRK 2025; 30:27236. [PMID: 40152393 DOI: 10.31083/fbl27236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/12/2025] [Accepted: 02/08/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND An appropriate animal model that can simulate the pathological process of atherosclerosis is urgently needed to improve treatment strategies. This study aimed to develop a new atherosclerosis model using ApoE-/- mice and to characterize lipidomics, gut microbiota profiles, and phenotypic alterations in adipose tissue using this model. METHODS After a 14- or 18-week high-fat diet (HFD), male ApoE-/- mice were randomly divided into four groups and treated separately with or without short-term and strong co-stimulation, including ice water bath and intraperitoneal injection of lipopolysaccharide and phenylephrine. As a control group, C57BL/6 mice were fed with conventional chow. The serum lipid levels, aortic arch pathology, adipose tissue phenotypic changes, plasma lipidomics, and 16S rDNA gene sequencing of colon feces were investigated. RESULTS The serum lipid levels were significantly lowered following extended HFD feeding for four weeks. However, co-stimulation increased serum interleukin (IL)-1β levels but did not affect serum lipid profiles. Co-stimulation revealed typical vulnerable atherosclerotic plaque characteristics and defective adipose hypertrophy associated with peroxisome proliferator-activated receptor γ (PPARγ) regulation in adipose tissue and a reduction in mitochondrial uncoupling protein 1 (UCP1) within brown adipose tissue. Plasma lipidomic analysis showed that sphingomyelin (SM), ceramide (Cer), and monohexosylceramide (HexCer) levels in plasma were significantly elevated by HFD feeding, whereas co-stimulation further elevated HexCer levels. Additionally, glycerophosphocholines (16:0/16:0, 18:2/20:4, 18:1/18:1) and HexCer (C12:1, C16:0), Cer (d18:1/16:0), and SM (C16:0) were the most sensitive to co-stimulation. Combined co-stimulation and HFD-fed increased the abundance of Firmicutes, the abundance of f_Erysipelotrichaceae, and the Firmicutes/Bacteroidota ratio but decreased the abundance of microflora promoting bile acid metabolism and short-chain fatty acids (SCFAs) in mouse feces. The results were consistent with the findings of epidemiologic atherosclerotic cardiovascular disease studies. CONCLUSIONS This study established an ApoE-/- mouse atherosclerotic vulnerable plaque model using a multi-index evaluation method. Adipogenic disorders, dysregulation of lipid metabolism at the molecular level, and increasing harmful gut microbiota are significant risk factors for vulnerable plaques, with sphingolipid metabolism receiving the most attention.
Collapse
Affiliation(s)
- Guanlin Yang
- Laboratory of Pharmacology, Zaozhuang Thoracic Hospital, 277500 Zaozhuang, Shandong, China
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Xin Tan
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Qiong Zhai
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Yuewu Wang
- School of Pharmacy, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Xuan Zhang
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Pengwei Zhao
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Fangyuan Liang
- School of Pharmacy, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Jingkun Lu
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - LiLi Bao
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, Singh A, Rinsch C, Marcinek DJ, D’Amico D. Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers. iScience 2025; 28:111814. [PMID: 40034121 PMCID: PMC11875685 DOI: 10.1016/j.isci.2025.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the primary cause of global mortality. Nutritional interventions hold promise to reduce CVD risks in an increasingly aging population. However, few nutritional interventions are proven to support heart health and act mostly on blood lipid homeostasis rather than at cardiac cell level. Here, we show that mitochondrial quality dysfunctions are common hallmarks in human cardiomyocytes upon heart aging and in chronic conditions. Preclinically, the post-biotic and mitophagy activator, urolithin A (UA), reduced both systolic and diastolic cardiac dysfunction in models of natural aging and heart failure. At a cellular level, this was associated with a recovery of mitochondrial ultrastructural defects and mitophagy. In humans, UA supplementation for 4 months in healthy older adults significantly reduced plasma ceramides clinically validated to predict CVD risks. These findings extend and translate UA's benefits to heart health, making UA a promising nutritional intervention to support cardiovascular function as we age.
Collapse
Affiliation(s)
- Sophia Liu
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anurag Singh
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | | |
Collapse
|
6
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Fang Z, Wang L, Wang Y, Ma Y, Fang Y, Zhang W, Cao R, Zhang Y, Li H, Chen S, Tian L, Shen X, Cao F. Protective effects and bioinformatic analysis of narciclasine on vascular aging via cross-talk between inflammation and metabolism through inhibiting skeletal muscle-specific ceramide synthase 1. Mech Ageing Dev 2025; 223:112021. [PMID: 39706373 DOI: 10.1016/j.mad.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE The senescence of smooth muscle is one of the independent risk factors in atherosclerosis progression in which the vascular inflammation plays an important role on vascular dysfunction. This study is designed to explore the novel vascular aging biomarkers and screen the potential molecular interventional targets through bioinformatic analysis. RESULTS Transcriptional analysis was conducted based on the GSE16487 open access database, which included 15 human vascular tissue samples from two groups: young group (≤ 60 years old, n = 8) and aged group (≥ 75 years old, n = 7). There were 275 differential expression genes (119 upregulated and 156 downregulated genes) with minimum 1.5-fold change between two groups. 9 genes were mainly participated in inflammation-related signaling pathways, in which narciclasine was validated as the most effective candidate for modulation the ceramide synthesis. In vitro and animal study demonstrated that narciclasine reversed vascular aging by inhibiting skeletal muscle-specific ceramide synthase 1 (CerS1), reducing the ceramide level derived from CerS1, and improving fat deposition and circulating glycolipid metabolism. CONCLUSION Narciclasine attenuates vascular aging and modulates the cross-talk between inflammation and metabolism via inhibiting skeletal muscle-specific ceramide synthase 1.
Collapse
Affiliation(s)
- Zhiyi Fang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Linghuan Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yabin Wang
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yan Ma
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yan Fang
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Weiwei Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Ruihua Cao
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yingjie Zhang
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Hui Li
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Sijia Chen
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Lei Tian
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Xiaoying Shen
- Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Feng Cao
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China.
| |
Collapse
|
8
|
Gengatharan JM, Handzlik MK, Chih ZY, Ruchhoeft ML, Secrest P, Ashley EL, Green CR, Wallace M, Gordts PLSM, Metallo CM. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab 2025; 37:274-290.e9. [PMID: 39547233 DOI: 10.1016/j.cmet.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr-/- mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.
Collapse
Affiliation(s)
- Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zoya Y Chih
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maureen L Ruchhoeft
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Secrest
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ethan L Ashley
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Kleynerman A, Rybova J, McKillop WM, Dlugi TA, Faber ML, Fuller M, O'Meara CC, Medin JA. Cardiac dysfunction and altered gene expression in acid ceramidase-deficient mice. Am J Physiol Heart Circ Physiol 2025; 328:H141-H156. [PMID: 39665198 DOI: 10.1152/ajpheart.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Farber disease (FD) is an ultrarare, autosomal-recessive, lysosomal storage disorder attributed to ASAH1 gene mutations. FD is characterized by acid ceramidase (ACDase) deficiency and the accumulation of ceramide in various tissues. Classical FD patients typically manifest symptoms including lipogranulomatosis, respiratory complications, and neurological deficits, often leading to mortality during infancy. Cardiac abnormalities in several FD patients have been described; however, a detailed examination of cardiac pathology in FD has not been conducted. Here we report pronounced cardiac pathophysiology in a new P361R-FD mouse model of ACDase deficiency that we generated. P361R-FD mice displayed smaller hearts, altered cardiomyocyte architecture, disrupted tissue composition, and inclusion-containing macrophages. Echocardiography suggested ventricular atrophy, valve dysfunction, decreased cardiac output, and lowered stroke volumes. Troponin I was significantly elevated in P361R-FD mice. Hearts from P361R-FD mice were found to have increased ceramide, cholesterol, and other lipids. Histopathological analysis of heart tissue from neonatal P361R-FD mice revealed lysosomal disruption as early as postnatal day 1. Finally, we report cardiac conduction, striated muscle contraction, and sphingolipid homeostasis gene expression differences during cardiac development in P361R-FD mice. In summary, we investigated the heart in a mouse model of ACDase deficiency, demonstrating that ACDase deficiency induced lysosomal dysfunction, sphingolipid and cholesterol imbalances, tissue disruption, and significant inflammation, leading to impaired cardiac function in these animals.NEW & NOTEWORTHY This is the first characterization of cardiac function and histopathology in a mouse model of acid ceramidase deficiency. We report physiologic disruption suggestive of heart failure with preserved ejection fraction, progressive histopathology, and aberrant gene expression. We found significant lysosomal disruption at both neonatal and adult ages, suggesting a crucial role of acid ceramidase, and potentially ceramides, in cardiac development and function.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - William M McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Theresa A Dlugi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mary L Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Caitlin C O'Meara
- Department of Physiology, Cardiovascular Center, and Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
10
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
11
|
Wang Z, Lu B, Zhang L, Xia Y, Shao X, Zhong S. Causality of Blood Metabolites on Proliferative Diabetic Retinopathy: Insights From a Genetic Perspective. J Diabetes Res 2024; 2024:6828908. [PMID: 39512998 PMCID: PMC11540900 DOI: 10.1155/2024/6828908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Our goal was to examine the causal link between blood metabolites, their ratios, and the risk of developing proliferative diabetic retinopathy (PDR) from a genetic insight. Methods: Summary-level data about 1400 blood metabolites and their ratios, as well as PDR, were sourced from prior genome-wide association studies (GWAS). A two-sample univariate and multivariate Mendelian randomization (MR) approach was utilized. Additionally, metabolic pathway analysis and sensitivity analysis were also conducted. Results: After adjusting for multiple tests, four blood metabolites significantly correlated with PDR risk. Two ceramides, including glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) (odds ratio [OR] = 1.12, 95% confidence interval (CI): 1.06-1.17, p < 0.001, false discovery rate (FDR) = 0.005) and glycosyl-N-behenoyl-sphingadienine (d18:2/22:0) (OR = 1.11, 95% CI: 1.06-1.16, p < 0.001, FDR = 0.017), were linked to increased risk. Additionally, 3-methylcytidine (OR = 1.05, 95% CI: 1.03-1.08, p < 0.001, FDR = 0.021) also posed a risk, whereas (N(1)+N(8))-acetylspermidine (OR = 0.91, 95% CI: 0.87-0.94, p < 0.001, FDR = 0.002) appeared protective. Multivariable MR analysis further confirmed a direct, protective effect of (N(1)+N(8))-acetylspermidine on PDR risk (OR = 0.94, 95% CI: 0.89-1.00, p = 0.040). The sensitivity analysis results indicated that evidence for heterogeneity and pleiotropy was absent. Conclusion: These metabolites have the potential to be used as biomarkers and are promising for future research into the mechanisms and drug targets for PDR.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Bing Lu
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Yuwen Xia
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Xiaoping Shao
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Shao Zhong
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| |
Collapse
|
12
|
Rossi A, Ruoppolo M, Fedele R, Pirozzi F, Rosano C, Auricchio R, Melis D, Strisciuglio P, Oosterveer MH, Derks TGJ, Parenti G, Caterino M. A specific serum lipid signature characterizes patients with glycogen storage disease type Ia. J Lipid Res 2024; 65:100651. [PMID: 39306041 PMCID: PMC11526085 DOI: 10.1016/j.jlr.2024.100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterize the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, (FC) 2.2, P < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, P < 0.0001), and ceramide (FC 2.4, P < 0.0001) levels and bile acid (FC 0.7, P < 0.001), acylcarnitines (FC 0.7, P < 0.001), and cholesterol esters (FC 1.0, P < 0.001) than those of healthy controls, and higher di- (FC 1.1, P < 0.0001; FC 0.9, P < 0.01) and triacylglycerol (FC 6.3, P < 0.0001; FC 3.9, P < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol and triglyceride values correlated with Cer (d16:1/22:0), Cer (d18:1/20:0), Cer (d18:1/20:0(OH)), Cer (d18:1/22:0), Cer (d18:1/23:0), Cer (d18:1/24:1), Cer (d18:2/22:0), Cer (d18:2/24:1). Total cholesterol also correlated with Cer (d18:1/24:0), Cer (d18:2/20:0), HexCer (d16:1/22:0), HexCer (d18:1/18:0), and Hex2Cer (d18:1/20:0). Triglyceridelevels correlated with Cer (d18:0/24:1). Alanine aminotransferase values correlated with Cer (d18:0/22:0), insulin with Cer (d18:1/22:1) and Cer (d18:1/24:1), and HDL with hexosylceramide (HexCer) (d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | | | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Renata Auricchio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pietro Strisciuglio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maaike H Oosterveer
- Department of Pediatrics and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Giancarlo Parenti
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy.
| |
Collapse
|
13
|
Fux E, Lenski M, Bendt AK, Otvos JD, Ivanisevic J, De Bruyne S, Cavalier E, Friedecký D. A global perspective on the status of clinical metabolomics in laboratory medicine - a survey by the IFCC metabolomics working group. Clin Chem Lab Med 2024; 62:1950-1961. [PMID: 38915248 DOI: 10.1515/cclm-2024-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700 Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.
Collapse
Affiliation(s)
- Elie Fux
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Marie Lenski
- ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Univ. Lille, Institut Pasteur de Lille et Unité Fonctionnelle de Toxicologie, CHU Lille, Lille, France
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - James D Otvos
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, CHU de Liège, Liège, Belgium
| | - David Friedecký
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
14
|
Junqueira DL, Cavalcanti AB, Sallum JMF, Yasaki E, de Andrade Jesuíno I, Stach A, Negrelli K, de Oliveira Silva L, Lopes MA, Caixeta A, Chan MY, Ching J, Carvalho VM, Faccio AT, Tsutsui J, Rizzatti E, Fonseca RA, Summers S, Fonseca HA, Rochitte CE, Krieger JE, de Carvalho LP. Plasma ceramides as biomarkers for microvascular disease and clinical outcomes in diabetes and myocardial infarction. Clin Diabetes Endocrinol 2024; 10:32. [PMID: 39285502 PMCID: PMC11406755 DOI: 10.1186/s40842-024-00186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Ceramides have recently been identified as novel biomarkers associated with diabetes mellitus (DM) and major adverse cardiac and cerebrovascular events (MACCE). This study aims to explore their utility in diagnosing microvascular disease. METHODS This study prospectively enrolled 309 patients from 2018 to 2020 into three groups: healthy controls (Group 1, N = 51), DM patients without acute myocardial infarction (AMI) (Group 2, N = 150), and DM patients with AMI (Group 3, N = 108). We assessed outcomes using stress perfusion cardiac magnetic resonance (CMR) imaging for coronary microvascular disease (CMD) (Outcome 1), retinography for retinal microvascular disease (RMD) (Outcome 2), both CMD and RMD (Outcome 3), and absence of microvascular disease (w/o MD) (outcome 4). We evaluated the classification performance of ceramides using receiver operating characteristic (ROC) analysis and multiple logistic regression. 11-ceramide panel previously identified by our research group as related to macrovascular disease were used. RESULTS Average glycated hemoglobin (HbA1c) values were 5.1% in Group 1, 8.3% in Group 2, and 7.6% in Group 3. Within the cohort, CMD was present in 59.5% of patients, RMD in 25.8%, both CMD and RMD in 18.8%, and w/o MD in 38.5%. The AUC values for the reference ceramide ratios were as follows: CMD at 0.66 (p = 0.012), RMD at 0.61 (p = 0.248), CMD & RMD at 0.64 (p = 0.282), and w/o MD at 0.67 (p = 0.010). In contrast, the AUC values using 11-ceramide panel showed significant improvement in the outcomes prediction: CMD at 0.81 (p = 0.001), RMD at 0.73 (p = 0.010), CMD & RMD at 0.73 (p = 0.04), and w/o MD at 0.83 (p = 0.010). Additionally, the plasma concentration of C14.0 was notably higher in the w/o MD group (p < 0.001). CONCLUSIONS Plasma ceramides serve as potential predictors for health status and microvascular disease phenotypes in diabetic patients.
Collapse
Affiliation(s)
- Debora Leonor Junqueira
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil.
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil.
| | | | - Juliana Maria Ferraz Sallum
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Erika Yasaki
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | | | - Alline Stach
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Karina Negrelli
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Leila de Oliveira Silva
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Marcela Almeida Lopes
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Adriano Caixeta
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Mark Yy Chan
- Yong Loo-Lin School of Medicine, Cardiac Department, National University of Singapore, NUHCS, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Jianhong Ching
- Duke-NUS Graduate Medical School, Metabolomics Research Center, 8 College Rd, Singapore, 169857, Singapore
| | | | | | - Jeane Tsutsui
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Edgar Rizzatti
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
| | - Rafael Almeida Fonseca
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Scott Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Henrique Almeida Fonseca
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Carlos Eduardo Rochitte
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - José Eduardo Krieger
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Leonardo Pinto de Carvalho
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| |
Collapse
|
15
|
Heinitz S, Traurig M, Krakoff J, Rabe P, Stäubert C, Kobes S, Hanson RL, Stumvoll M, Blüher M, Bogardus C, Baier L, Piaggi P. An E115A Missense Variant in CERS2 Is Associated With Increased Sleeping Energy Expenditure and Hepatic Insulin Resistance in American Indians. Diabetes 2024; 73:1361-1371. [PMID: 38776413 PMCID: PMC11262042 DOI: 10.2337/db23-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Genetic determinants of interindividual differences in energy expenditure (EE) are largely unknown. Sphingolipids, such as ceramides, have been implicated in the regulation of human EE via mitochondrial uncoupling. In this study, we investigated whether genetic variants within enzymes involved in sphingolipid synthesis and degradation affect EE and insulin-related traits in a cohort of American Indians informative for 24-h EE and glucose disposal rates during a hyperinsulinemic-euglycemic clamp. Association analysis of 10,084 genetic variants within 28 genes involved in sphingolipid pathways identified a missense variant (rs267738, A>C, E115A) in exon 4 of CERS2 that was associated with higher sleeping EE (116 kcal/day) and increased rates of endogenous glucose production during basal (5%) and insulin-stimulated (43%) conditions, both indicators of hepatic insulin resistance. The rs267738 variant did not affect ceramide synthesis in HepG2 cells but resulted in a 30% decrease in basal mitochondrial respiration. In conclusion, we provide evidence that the CERS2 rs267738 missense variant may influence hepatic glucose production and postabsorptive sleeping metabolic rate. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sascha Heinitz
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
- Department of Internal Medicine, Clinic for Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Philipp-Rosenthal-Strasse 27, Leipzig, Germany
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Philipp Rabe
- Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Claudia Stäubert
- Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Michael Stumvoll
- Department of Internal Medicine, Clinic for Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Philipp-Rosenthal-Strasse 27, Leipzig, Germany
| | - Matthias Blüher
- Department of Internal Medicine, Clinic for Endocrinology, Nephrology and Rheumatology, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, Philipp-Rosenthal-Strasse 27, Leipzig, Germany
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Leslie Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Fiorenza M, Checa A, Sandsdal RM, Jensen SBK, Juhl CR, Noer MH, Bogh NP, Lundgren JR, Janus C, Stallknecht BM, Holst JJ, Madsbad S, Wheelock CE, Torekov SS. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep Med 2024; 5:101629. [PMID: 38959886 PMCID: PMC11293340 DOI: 10.1016/j.xcrm.2024.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rasmus M Sandsdal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon B K Jensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian R Juhl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel H Noer
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai P Bogh
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie R Lundgren
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bente M Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
18
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
19
|
Wang X, Zhou S, Hu X, Ye C, Nie Q, Wang K, Yan S, Lin J, Xu F, Li M, Wu Q, Sun L, Liu B, Zhang Y, Yun C, Wang X, Liu H, Yin WB, Zhao D, Hang J, Zhang S, Jiang C, Pang Y. Candida albicans accelerates atherosclerosis by activating intestinal hypoxia-inducible factor2α signaling. Cell Host Microbe 2024; 32:964-979.e7. [PMID: 38754418 DOI: 10.1016/j.chom.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chuan Ye
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qixing Nie
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jun Lin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Xu
- Clinical Pharmacology and Pharmacometrics, Janssen China Research & Development, Beijing, China
| | - Meng Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qing Wu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongyu Zhao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
20
|
Kovacevic I, Schmidt PH, Kowalski A, Helms BJ, Lest CHAVD, Kluttig A, Posern G. ER stress inhibition enhances formation of triacylglcerols and protects endothelial cells from lipotoxicity. Cell Commun Signal 2024; 22:304. [PMID: 38831326 PMCID: PMC11145897 DOI: 10.1186/s12964-024-01682-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Elevated concentrations of palmitate in serum of obese individuals can impair endothelial function, contributing to development of cardiovascular disease. Although several molecular mechanisms of palmitate-induced endothelial dysfunction have been proposed, there is no consensus on what signaling event is the initial trigger of detrimental palmitate effects. Here we report that inhibitors of ER stress or ceramid synthesis can rescue palmitate-induced autophagy impairment in macro- and microvascular endothelial cells. Furthermore, palmitate-induced cholesterol synthesis was reverted using these inhibitors. Similar to cell culture data, autophagy markers were increased in serum of obese individuals. Subsequent lipidomic analysis revealed that palmitate changed the composition of membrane phospholipids in endothelial cells and that these effects were not reverted upon application of above-mentioned inhibitors. However, ER stress inhibition in palmitate-treated cells enhanced the synthesis of trilglycerides and restored ceramide levels to control condition. Our results suggest that palmitate induces ER-stress presumably by shift in membrane architecture, leading to impaired synthesis of triglycerides and enhanced production of ceramides and cholesterol, which altogether enhances lipotoxicity of palmitate in endothelial cells.
Collapse
Affiliation(s)
- Igor Kovacevic
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| | - Paula Henriette Schmidt
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Annkatrin Kowalski
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Bernd J Helms
- Department Biomolecular Health Sciences, Veterinary Medicine, Utrecht University, Utrecht, 3584CM, The Netherlands
| | - Chris H A van de Lest
- Department Biomolecular Health Sciences, Veterinary Medicine, Utrecht University, Utrecht, 3584CM, The Netherlands
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Guido Posern
- Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| |
Collapse
|
21
|
Norris MK, Tippetts TS, Wilkerson JL, Nicholson RJ, Maschek JA, Levade T, Medin JA, Summers SA, Holland WL. Adiponectin overexpression improves metabolic abnormalities caused by acid ceramidase deficiency but does not prolong lifespan in a mouse model of Farber Disease. Mol Genet Metab Rep 2024; 39:101077. [PMID: 38595987 PMCID: PMC11002753 DOI: 10.1016/j.ymgmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.
Collapse
Affiliation(s)
- Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Jeffrey A. Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Gurung RL, M Y, Tham WK, Liu S, Zheng H, Lee J, Ang K, Wenk M, Subramaniam T, Sum CF, Torta F, Liu JJ, Lim SC. Association of plasma ceramide with decline in kidney function in patients with type 2 diabetes. J Lipid Res 2024; 65:100552. [PMID: 38704028 PMCID: PMC11176756 DOI: 10.1016/j.jlr.2024.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Circulating ceramide levels are dysregulated in kidney disease. However, their associations with rapid decline in kidney function (RDKF) and end-stage kidney disease (ESKD) in patients with type 2 diabetes (T2D) are unknown. In this prospective study of 1746 T2D participants, we examined the association of plasma ceramide Cer16:0, Cer18:0, Cer24:0, and Cer24:1 with RDKF, defined as an estimated glomerular filtration rate (eGFR) decline of 5 ml/min/1.73 m2 per year or greater, and ESKD defined as eGFR <15/min/1.73 m2 for at least 3 months, on dialysis or renal death at follow-up. During a median follow-up period of 7.7 years, 197 patients experienced RDKF. Ceramide Cer24:0 (odds ratio [OR] = 0.71, 95% CI 0.56-0.90) and ratios Cer16:0/Cer24:0 (OR = 3.54 [1.70-7.35]), Cer18:0/Cer24:0 (OR = 1.89 [1.10-3.25]), and Cer24:1/Cer24:0 (OR = 4.01 [1.93-8.31]) significantly associated with RDKF in multivariable analysis; 124 patients developed ESKD. The ratios Cer16:0/Cer24:0 (hazard ratio [HR] = 3.10 [1.44-6.64]) and Cer24:1/Cer24:0 (HR = 4.66 [1.93-11.24]) significantly associated with a higher risk of ESKD. The Cer24:1/Cer24:0 ratio improved risk discrimination for ESKD beyond traditional risk factors by small but statistically significant margin (Harrell C-index difference: 0.01; P = 0.022). A high ceramide risk score also associated with RDKF (OR = 2.28 [1.26-4.13]) compared to lower risk score. In conclusion, specific ceramide levels and their ratios are associated with RDKF and conferred an increased risk of ESKD, independently of traditional risk factors, including baseline renal functions in patients with T2D.
Collapse
Affiliation(s)
- Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Wai Kin Tham
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Markus Wenk
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Federico Torta
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore; Saw Swee Hock School of Public Health, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
23
|
Leiherer A, Muendlein A, Mink S, Mader A, Saely CH, Festa A, Fraunberger P, Drexel H. Machine Learning Approach to Metabolomic Data Predicts Type 2 Diabetes Mellitus Incidence. Int J Mol Sci 2024; 25:5331. [PMID: 38791370 PMCID: PMC11120685 DOI: 10.3390/ijms25105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolomics, with its wealth of data, offers a valuable avenue for enhancing predictions and decision-making in diabetes. This observational study aimed to leverage machine learning (ML) algorithms to predict the 4-year risk of developing type 2 diabetes mellitus (T2DM) using targeted quantitative metabolomics data. A cohort of 279 cardiovascular risk patients who underwent coronary angiography and who were initially free of T2DM according to American Diabetes Association (ADA) criteria was analyzed at baseline, including anthropometric data and targeted metabolomics, using liquid chromatography (LC)-mass spectroscopy (MS) and flow injection analysis (FIA)-MS, respectively. All patients were followed for four years. During this time, 11.5% of the patients developed T2DM. After data preprocessing, 362 variables were used for ML, employing the Caret package in R. The dataset was divided into training and test sets (75:25 ratio) and we used an oversampling approach to address the classifier imbalance of T2DM incidence. After an additional recursive feature elimination step, identifying a set of 77 variables that were the most valuable for model generation, a Support Vector Machine (SVM) model with a linear kernel demonstrated the most promising predictive capabilities, exhibiting an F1 score of 50%, a specificity of 93%, and balanced and unbalanced accuracies of 72% and 88%, respectively. The top-ranked features were bile acids, ceramides, amino acids, and hexoses, whereas anthropometric features such as age, sex, waist circumference, or body mass index had no contribution. In conclusion, ML analysis of metabolomics data is a promising tool for identifying individuals at risk of developing T2DM and opens avenues for personalized and early intervention strategies.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
- Central Medical Laboratories, A-6800 Feldkirch, Austria; (S.M.); (P.F.)
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
| | - Sylvia Mink
- Central Medical Laboratories, A-6800 Feldkirch, Austria; (S.M.); (P.F.)
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein
| | - Arthur Mader
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, A-6800 Feldkirch, Austria
| | - Christoph H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, A-6800 Feldkirch, Austria
| | - Andreas Festa
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
| | - Peter Fraunberger
- Central Medical Laboratories, A-6800 Feldkirch, Austria; (S.M.); (P.F.)
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), A-6800 Feldkirch, Austria; (A.M.); (A.M.); (C.H.S.); (A.F.); (H.D.)
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein
- Vorarlberger Landeskrankenhausbetriebsgesellschaft, Academic Teaching Hospital Feldkirch, A-6800 Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
24
|
Wu H, Yang L, Ren D, Gu Y, Ding X, Zhao Y, Fu G, Zhang H, Yi L. Combinatory data-independent acquisition and parallel reaction monitoring method for revealing the lipid metabolism biomarkers of coronary heart disease and its comorbidities. J Sep Sci 2024; 47:e2300848. [PMID: 38682821 DOI: 10.1002/jssc.202300848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Disorders of lipid metabolism are a common cause of coronary heart disease (CHD) and its comorbidities. In this study, ultra-performance liquid chromatography-high-resolution mass spectrometry in data-independent acquisition (DIA) mode was applied to collect abundant tandem mass spectrometry data, which provided valuable information for lipid annotation. For the lipid isomers that could not be completely separated by chromatography, parallel reaction monitoring (PRM) mode was used for quantification. A total of 223 plasma lipid metabolites were annotated, and 116 of them were identified for their fatty acyl chain composition and location. In addition, 152 plasma lipids in patients with CHD and its comorbidities were quantitatively analyzed. Multivariate statistical analysis and metabolic pathway analysis demonstrated that glycerophospholipid and sphingolipid metabolism deserved more attention for CHD. This study proposed a method combining DIA and PRM for high-throughput characterization of plasma lipids. The results also improved our understanding of metabolic disorders of CHD and its comorbidities, which can provide valuable suggestions for medical intervention.
Collapse
Affiliation(s)
- Hao Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lijuan Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Guanghui Fu
- School of Science, Kunming University of Science and Technology, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- College of Medicine, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
27
|
Xie T, Fang Q, Zhang Z, Wang Y, Dong F, Gong X. Structure and mechanism of a eukaryotic ceramide synthase complex. EMBO J 2023; 42:e114889. [PMID: 37953642 PMCID: PMC10711658 DOI: 10.15252/embj.2023114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Ceramide synthases (CerS) catalyze ceramide formation via N-acylation of a sphingoid base with a fatty acyl-CoA and are attractive drug targets for treating numerous metabolic diseases and cancers. Here, we present the cryo-EM structure of a yeast CerS complex, consisting of a catalytic Lac1 subunit and a regulatory Lip1 subunit, in complex with C26-CoA substrate. The CerS holoenzyme exists as a dimer of Lac1-Lip1 heterodimers. Lac1 contains a hydrophilic reaction chamber and a hydrophobic tunnel for binding the CoA moiety and C26-acyl chain of C26-CoA, respectively. Lip1 interacts with both the transmembrane region and the last luminal loop of Lac1 to maintain the proper acyl chain binding tunnel. A lateral opening on Lac1 serves as a potential entrance for the sphingoid base substrate. Our findings provide a template for understanding the working mechanism of eukaryotic ceramide synthases and may facilitate the development of therapeutic CerS modulators.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Qi Fang
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Zike Zhang
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Yanfei Wang
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Feitong Dong
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| | - Xin Gong
- Department of Chemical Biology, School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
28
|
Hussain AA, Bilgin M, Carlsson J, Foged MM, Mortensen EL, Bulik CM, Støving RK, Sjögren JM. Elevated lipid class concentrations in females with anorexia nervosa before and after intensive weight restoration treatment-A lipidomics study. Int J Eat Disord 2023; 56:2260-2272. [PMID: 37715358 DOI: 10.1002/eat.24063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To study the plasma lipidome of patients with anorexia nervosa (AN) before and after weight restoration treatment and report associations with AN subtypes and oral contraceptive pill (OCP) usage. METHODS Quantitative shotgun lipidomics analysis was used to study plasma lipids of 50 female patients with AN before and after weight restoration treatment and 50 healthy female controls (HC). The AN group was assessed with blood samples and questionnaires before and after weight restoration. RESULTS In total we quantified 260 lipid species representing 26 lipid classes of which 13 lipid class concentrations were elevated in patients with AN at admission compared with HC. Lipid classes remained elevated after weight restoration treatment of 84 days (median; interquartile range 28), and only the concentration of the ceramide lipid class increased between pre- and post-treatment (p = .03), whereas lysophosphatidylcholine (LPC, p = .02), ether-linked Phosphatidylcholine (LPCO, p = .02), and lysophosphatidylethanolamine (LPE, p = .009) decreased. CONCLUSION In AN, 13 out of 26 lipid class concentrations were elevated at admission and remained elevated post-treatment. Ceramides increased further between pre- and post-weight restoration treatment, which could be related to the rapid weight gain during re-nutrition. Further research is needed to elucidate the effects of weight restoration treatment on short- and long-term lipid profiles in individuals with AN. PUBLIC SIGNIFICANCE STATEMENT Lipidomics research can increase the understanding of AN, a complex and potentially life-threatening eating disorder. By analyzing lipids, or fats, in the body, we can identify biological markers that may inform diagnosis and develop more effective treatments. This research can also shed light on the underlying mechanisms of the disorder, leading to a better understanding of the processes involved in eating behavior.
Collapse
Affiliation(s)
- Alia Arif Hussain
- Eating Disorder Research Unit, Mental Health Center, Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Jessica Carlsson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Competence Centre for Transcultural Psychiatry, Mental Health Centre Ballerup, Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Mads Møller Foged
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Unit of Medical Psychology, Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Cynthia M Bulik
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - René Klinkby Støving
- Center for Eating Disorders, Odense University Hospital, Odense, Denmark
- Research Unit for Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Research Unit, Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Magnus Sjögren
- Eating Disorder Research Unit, Mental Health Center, Ballerup, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark
- Institute of Clinical Science, Department of Psychiatry, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Vekic J, Stromsnes K, Mazzalai S, Zeljkovic A, Rizzo M, Gambini J. Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines 2023; 11:2897. [PMID: 38001900 PMCID: PMC10669174 DOI: 10.3390/biomedicines11112897] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is the consequence of an overproduction of reactive oxygen species (ROS) that exceeds the antioxidant defense mechanisms. Increased levels of ROS contribute to the development of cardiovascular disorders through oxidative damage to macromolecules, particularly by oxidation of plasma lipoproteins. One of the most prominent features of atherogenic dyslipidemia is plasma accumulation of small dense LDL (sdLDL) particles, characterized by an increased susceptibility to oxidation. Indeed, a considerable and diverse body of evidence from animal models and epidemiological studies was generated supporting oxidative modification of sdLDL particles as the earliest event in atherogenesis. Lipid peroxidation of LDL particles results in the formation of various bioactive species that contribute to the atherosclerotic process through different pathophysiological mechanisms, including foam cell formation, direct detrimental effects, and receptor-mediated activation of pro-inflammatory signaling pathways. In this paper, we will discuss recent data on the pathophysiological role of oxidative stress and atherogenic dyslipidemia and their interplay in the development of atherosclerosis. In addition, a special focus will be placed on the clinical applicability of novel, promising biomarkers of these processes.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Stefania Mazzalai
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (J.V.); (A.Z.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (K.S.); (S.M.); (J.G.)
| |
Collapse
|
31
|
Yu B, Hu M, Jiang W, Ma Y, Ye J, Wu Q, Guo W, Sun Y, Zhou M, Xu Y, Wu Z, Wang Y, Lam SM, Shui G, Gu J, Li JZ, Fu Z, Gong Y, Zhou H. Ceramide d18:1/24:1 as a potential biomarker to differentiate obesity subtypes with unfavorable health outcomes. Lipids Health Dis 2023; 22:166. [PMID: 37794463 PMCID: PMC10548646 DOI: 10.1186/s12944-023-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The criteria for metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) remain controversial. This research aimed to identify a potential biomarker to differentiate the subtypes of obesity. METHODS The study conducted a lipidomic evaluation of ceramide in the serum of 77 Chinese adults who had undergone hyperinsulinemic-euglycemic clamps. These adults were divided into three groups according to the clinical data: normal weight control group (N = 21), MHO (N = 20), and MUO (N = 36). RESULTS The serum Cer d18:1/24:1 level in the MHO group was lower than that in the MUO group. As the Cer d18:1/24:1 level increased, insulin sensitivity decreased, and the unfavorable parameters increased in parallel. Multivariate logistic regression analysis revealed that serum Cer d18:1/24:1 levels were independently correlated with MUO in obesity. Individuals with higher levels of Cer d18:1/24:1 also had an elevated risk of cardiovascular disease. Most ceramide subtype levels increased in obesity compared to normal-weight individuals, but the levels of serum Cer d18:0/18:0 and Cer d18:1/16:0 decreased in obesity. CONCLUSIONS The relationships between ceramide subtypes and metabolic profiles might be heterogeneous in populations with different body weights. Cer d18:1/24:1 could be a biomarker that can be used to differentiate MUO from MHO, and to better predict who will develop unfavorable health outcomes among obese individuals. TRIAL REGISTRATION The First Affiliated Hospital of Nanjing Medical University's Institutional Review Board authorized this study protocol, and all participants provided written informed consent (2014-SR-003) prior to study entry.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Moran Hu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzi Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yizhe Ma
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingya Ye
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinyi Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Guo
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoulu Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Gu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Zhong Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenzhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yingyun Gong
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
33
|
Bal Topcu D, Er B, Ozcan F, Aslan M, Coplu L, Lay I, Oztas Y. Decreased plasma levels of sphingolipids and total cholesterol in adult cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102590. [PMID: 37741047 DOI: 10.1016/j.plefa.2023.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sphingolipid species in the lung epithelium have a critical role for continuity of membrane structure, vesicular transport, and cell survival. Sphingolipid species were reported to have a role in the inflammatory etiology of cystic fibrosis by previous work. The aim of the study was to investigate the levels of plasma sphingomyelin and ceramide in adult cystic fibrosis (CF) patients and compared with healthy controls. MATERIALS AND METHODS Blood samples were obtained from CF patients at exacerbation (n = 15), discharge (n = 13) and stable periods (n = 11). Healthy individuals (n = 15) of similar age served as control. Levels of C16-C24 sphingomyelin and C16-C24 ceramide were measured in the plasma by LC-MS/MS. Also, cholesterol and triglyceride levels were determined in plasma samples of the patients at stable period. RESULTS All measured sphingomyelin and ceramide levels in all periods of CF patients were significantly lower than healthy controls except C16 sphingomyelin level in the stable period. However, plasma Cer and SM levels among exacerbation, discharge, and stable periods of CF were not different. CF patients had significantly lower cholesterol levels compared to healthy individuals. We found significant correlation of cholesterol with C16 sphingomyelin. CONCLUSION We observed lower plasma Cer and SM levels in adult CF patients at exacerbation, discharge, and stable periods compared to healthy controls. We didn't find any significant difference between patient Cer and SM levels among these three periods. Our limited number of patients might have resulted with this statistical insignificance. However, percentage of SM16 levels were increased at discharge compared to exacerbation levels, while percentage of Cer16 and Cer 20 decreased at stable compared to exacerbation. Inclusion of a larger number of CF patients in such a follow up study may better demonstrate any possible difference between exacerbation, discharge, and stable periods.
Collapse
Affiliation(s)
- Dilara Bal Topcu
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Berrin Er
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Filiz Ozcan
- Antalya Bilim University, Vocational School of Health Services, Department of Dialysis, 07190, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Konyaaltı, 07070, Antalya, Turkey
| | - Lutfi Coplu
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Incilay Lay
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Yesim Oztas
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey.
| |
Collapse
|
34
|
Leiherer A, Muendlein A, Saely CH, Geiger K, Brandtner EM, Heinzle C, Gaenger S, Mink S, Laaksonen R, Fraunberger P, Drexel H. Coronary Event Risk Test (CERT) as a Risk Predictor for the 10-Year Clinical Outcome of Patients with Peripheral Artery Disease. J Clin Med 2023; 12:6151. [PMID: 37834795 PMCID: PMC10573503 DOI: 10.3390/jcm12196151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: Ceramides are a new kind of lipid biomarker and have already been demonstrated to be valuable risk predictors in coronary patients. Patients with peripheral artery disease (PAD) are a population with a worse prognosis and higher mortality risk compared to coronary artery disease (CAD) patients. However, the value of ceramides for risk prediction in PAD patients is still vague, as addressed in the present study. (2)Methods: This observational study included 379 PAD patients. The primary endpoint was all-cause mortality at 10 years of follow-up. A set of ceramides was measured by LC-MS/MS and combined according to the Coronary Event Risk Test (CERT) score, which categorizes patients into one of four risk groups (low risk, moderate risk, high risk, very high risk). (3) Results: Kaplan-Meier survival curves revealed that the overall survival of patients decreased with the increasing risk predicted by the four CERT categories, advancing from low risk to very high risk. Cox regression analysis demonstrated that each one-category increase resulted in a 35% rise in overall mortality risk (HR = 1.35 [1.16-1.58]). Multivariable adjustment, including, among others, age, LDL-cholesterol, type 2 diabetes, and statin treatment before the baseline, did not abrogate this significant association (HR = 1.22 [1.04-1.43]). Moreover, we found that the beneficial effect of statin treatment is significantly stronger in patients with a higher risk, according to CERT. (4) Conclusions: We conclude that the ceramide-based risk score CERT is a strong predictor of the 10-year mortality risk in patients with PAD.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
- Medical Central Laboratories, A-6800 Feldkirch, Austria
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
| | - Christoph H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
- Department of Internal Medicine III, Academic Teaching Hospital Feldkirch, A-6800 Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Medical Central Laboratories, A-6800 Feldkirch, Austria
| | - Eva-Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Medical Central Laboratories, A-6800 Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
| | - Sylvia Mink
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
- Medical Central Laboratories, A-6800 Feldkirch, Austria
| | - Reijo Laaksonen
- Finnish Cardiovascular Research Center, University of Tampere, FI-33014 Tampere, Finland;
- Zora Biosciences, FI-02150 Espoo, Finland
| | - Peter Fraunberger
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
- Medical Central Laboratories, A-6800 Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Academic Teaching Hospital Feldkirch, Carinagasse 47, A-6800 Feldkirch, Austria; (A.M.); (K.G.); (E.-M.B.); (S.G.); (H.D.)
- Private University of the Principality of Liechtenstein, FL-9495 Triesen, Liechtenstein; (S.M.); (P.F.)
- Vorarlberger Landeskrankenhausbetriebsgesellschaft, Academic Teaching Hospital Feldkirch, A-6800 Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
35
|
Arroyo CB, Ocariz MG, Rogova O, Al-Majdoub M, Björck I, Tovar J, Spégel P. A randomized trial involving a multifunctional diet reveals systematic lipid remodeling and improvements in cardiometabolic risk factors in middle aged to aged adults. Front Nutr 2023; 10:1236153. [PMID: 37781111 PMCID: PMC10538628 DOI: 10.3389/fnut.2023.1236153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background A multifunctional diet (MFD) combining foods and ingredients with proven functional properties, such as fatty fish and fiber-rich foods, among others, was developed and shown to markedly reduce cardiometabolic risk-associated factors. Objective Here, we aim at examining metabolic physiological changes associated with these improvements. Methods Adult overweight individuals without other risk factors were enrolled in an 8-week randomized controlled intervention following a parallel design, with one group (n = 23) following MFD and one group (n = 24) adhering to a control diet (CD) that followed the caloric formula (E%) advised by the Nordic Nutritional Recommendations. Plasma metabolites and lipids were profiled by gas chromatography and ultrahigh performance liquid chromatography/mass spectrometry. Results Weight loss was similar between groups. The MFD and CD resulted in altered levels of 137 and 78 metabolites, respectively. Out of these, 83 were uniquely altered by the MFD and only 24 by the CD. The MFD-elicited alterations in lipid levels depended on carbon number and degree of unsaturation. Conclusion An MFD elicits weight loss-independent systematic lipid remodeling, promoting increased circulating levels of long and highly unsaturated lipids. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT02148653?term=NCT02148653&draw=2&rank=1, NCT02148653.
Collapse
Affiliation(s)
| | - Maider Greño Ocariz
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Oksana Rogova
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Mahmoud Al-Majdoub
- Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | | | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition, Food for Health Science Centre Lund University, Lund, Sweden
| | - Peter Spégel
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Du J, Wu W, Zhu B, Tao W, Liu L, Cheng X, Zhao M, Wu J, Li Y, Pei K. Recent advances in regulating lipid metabolism to prevent coronary heart disease. Chem Phys Lipids 2023; 255:105325. [PMID: 37414117 DOI: 10.1016/j.chemphyslip.2023.105325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The pathogenesis of coronary heart disease is a highly complex process, with lipid metabolism disorders being closely linked to its development. Therefore, this paper analyzes the various factors that influence lipid metabolism, including obesity, genes, intestinal microflora, and ferroptosis, through a comprehensive review of basic and clinical studies. Additionally, this paper delves deeply into the pathways and patterns of coronary heart disease. Based on these findings, it proposes various intervention pathways and therapeutic methods, such as the regulation of lipoprotein enzymes, lipid metabolites, and lipoprotein regulatory factors, as well as the modulation of intestinal microflora and the inhibition of ferroptosis. Ultimately, this paper aims to offer new ideas for the prevention and treatment of coronary heart disease.
Collapse
Affiliation(s)
- Jingchun Du
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wu
- Key laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Boran Zhu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lina Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
37
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
38
|
Du Z, Li F, Jiang L, Li L, Du Y, Yu H, Luo Y, Wang Y, Sun H, Hu C, Li J, Yang Y, Jiao X, Wang L, Qin Y. Metabolic systems approaches update molecular insights of clinical phenotypes and cardiovascular risk in patients with homozygous familial hypercholesterolemia. BMC Med 2023; 21:275. [PMID: 37501168 PMCID: PMC10375787 DOI: 10.1186/s12916-023-02967-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is an orphan metabolic disease characterized by extremely elevated low-density lipoprotein cholesterol (LDL-C), xanthomas, aortic stenosis, and premature atherosclerotic cardiovascular disease (ASCVD). In addition to LDL-C, studies in experimental models and small clinical populations have suggested that other types of metabolic molecules might also be risk factors responsible for cardiovascular complications in HoFH, but definitive evidence from large-scale human studies is still lacking. Herein, we aimed to comprehensively characterize the metabolic features and risk factors of human HoFH by using metabolic systems strategies. METHODS Two independent multi-center cohorts with a total of 868 individuals were included in the cross-sectional study. First, comprehensive serum metabolome/lipidome-wide analyses were employed to identify the metabolomic patterns for differentiating HoFH patients (n = 184) from heterozygous FH (HeFH, n = 376) and non-FH (n = 100) subjects in the discovery cohort. Then, the metabolomic patterns were verified in the validation cohort with 48 HoFH patients, 110 HeFH patients, and 50 non-FH individuals. Subsequently, correlation/regression analyses were performed to investigate the associations of clinical/metabolic alterations with typical phenotypes of HoFH. In the prospective study, a total of 84 HoFH patients with available follow-up were enrolled from the discovery cohort. Targeted metabolomics, deep proteomics, and random forest approaches were performed to investigate the ASCVD-associated biomarkers in HoFH patients. RESULTS Beyond LDL-C, various bioactive metabolites in multiple pathways were discovered and validated for differentiating HoFH from HoFH and non-FH. Our results demonstrated that the inflammation and oxidative stress-related metabolites in the pathways of arachidonic acid and lipoprotein(a) metabolism were independently associated with the prevalence of corneal arcus, xanthomas, and supravalvular/valvular aortic stenosis in HoFH patients. Our results also identified a small marker panel consisting of high-density lipoprotein cholesterol, lipoprotein(a), apolipoprotein A1, and eight proinflammatory and proatherogenic metabolites in the pathways of arachidonic acid, phospholipid, carnitine, and sphingolipid metabolism that exhibited significant performances on predicting first ASCVD events in HoFH patients. CONCLUSIONS Our findings demonstrate that human HoFH is associated with a variety of metabolic abnormalities and is more complex than previously known. Furthermore, this study provides additional metabolic alterations that hold promise as residual risk factors in HoFH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Fan Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Long Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Linyi Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yunhui Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Huahui Yu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yan Luo
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yu Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Haili Sun
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Chaowei Hu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Ya Yang
- Suzhou Municipal Hospital, Suzhou, 215002, Jiangsu Province, China
| | - Xiaolu Jiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310020, Zhejiang Province, China
| | - Luya Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| | - Yanwen Qin
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
39
|
Mucinski JM, McCaffrey JM, Rector RS, Kasumov T, Parks EJ. Relationship between hepatic and mitochondrial ceramides: a novel in vivo method to track ceramide synthesis. J Lipid Res 2023; 64:100366. [PMID: 37028768 PMCID: PMC10193228 DOI: 10.1016/j.jlr.2023.100366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.
Collapse
Affiliation(s)
- Justine M Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jonas M McCaffrey
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA; Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, Missouri, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA; Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
40
|
Rigamonti AE, Dei Cas M, Caroli D, De Col A, Cella SG, Paroni R, Sartorio A. Identification of a Specific Plasma Sphingolipid Profile in a Group of Normal-Weight and Obese Subjects: A Novel Approach for a "Biochemical" Diagnosis of Metabolic Syndrome? Int J Mol Sci 2023; 24:ijms24087451. [PMID: 37108620 PMCID: PMC10138812 DOI: 10.3390/ijms24087451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome is nosographically defined by using clinical diagnostic criteria such as those of the International Diabetes Federation (IDF) ones, including visceral adiposity, blood hypertension, insulin resistance and dyslipidemia. Due to the pathophysiological implications of the cardiometabolic risk of the obese subject, sphingolipids, measured in the plasma, might be used to biochemically support the diagnosis of metabolic syndrome. A total of 84 participants, including normal-weight (NW) and obese subjects without (OB-SIMET-) and with (OB-SIMET+) metabolic syndrome, were included in the study, and sphingolipidomics, including ceramides (Cer), dihydroceramides (DHCer), hexosyl-ceramides (HexCer), lactosyl-ceramides (LacCer), sphingomyelins (SM) and GM3 ganglosides families, and sphingosine-1-phosphate (S1P) and its congeners, was performed in plasma. Only total DHCers and S1P were significantly higher in OB-SIMET+ than NW subjects (p < 0.05), while total Cers decreased in both obese groups, though statistical significance was reached only in OB-SIMET- (vs. NW) subjects (p < 0.05). When considering the comparisons of the single sphingolipid species in the obese groups (OB-SIMET- or OB-SIMET+) vs. NW subjects, Cer 24:0 was significantly decreased (p < 0.05), while Cer 24:1, DHCer 16:0, 18:0, 18:1 and 24:1, and SM 18:0, 18:1 and 24:1 were significantly increased (p < 0.05). Furthermore, taking into account the same groups for comparison, HexCer 22:0 and 24:0, and GM3 22:0 and 24:0 were significantly decreased (p < 0.05), while HexCer 24:1 and S1P were significantly increased (p < 0.05). After having analyzed all data via a PLS-DA-based approach, the subsequent determination of the VIP scores evidenced the existence of a specific cluster of 15 sphingolipids endowed with a high discriminating performance (i.e., VIP score > 1.0) among the three groups, including DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, GM3 24:0, Cer C24:1, SM 18:1, SM 18:0, DHCer 18:1, HexCer 24:0, SM 24:1, S1P, SM 16:0, HexCer 24:1 and LacCer 22:0. After having run a series of multiple linear regressions, modeled by inserting each sphingolipid having a VIP score > 1.0 as a dependent variable, and waist circumference (WC), systolic/diastolic blood pressures (SBP/DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), high-density lipoprotein (HDL), triglycerides (TG) (surrogates of IDF criteria) and C-reactive protein (CRP) (a marker of inflammation) as independent variables, WC was significantly associated with DHCer 18:0, DHCer 24:1, Cer 18:0, HexCer 22:0, Cer 24:1, SM 18:1, and LacCer 22:0 (p < 0.05); SBP with Cer 18:0, Cer 24:1, and SM 18:0 (p < 0.05); HOMA-IR with DHCer 18:0, DHCer 24:1, Cer 18:0, Cer 24:1, SM 18:1, and SM 18:0 (p < 0.05); HDL with HexCer 22:0, and HexCer 24:0 (p < 0.05); TG with DHCer 18:1, DHCer 24:1, SM 18:1, and SM 16:0 (p < 0.05); CRP with DHCer 18:1, and SP1 (p < 0.05). In conclusion, a cluster of 15 sphingolipid species is able to discriminate, with high performance, NW, OB-SIMET- and OB-SIMET+ groups. Although (surrogates of) the IDF diagnostic criteria seem to predict only partially, but congruently, the observed sphingolipid signature, sphingolipidomics might represent a promising "biochemical" support for the clinical diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
41
|
Medina J, Borreggine R, Teav T, Gao L, Ji S, Carrard J, Jones C, Blomberg N, Jech M, Atkins A, Martins C, Schmidt-Trucksass A, Giera M, Cazenave-Gassiot A, Gallart-Ayala H, Ivanisevic J. Omic-Scale High-Throughput Quantitative LC-MS/MS Approach for Circulatory Lipid Phenotyping in Clinical Research. Anal Chem 2023; 95:3168-3179. [PMID: 36716250 DOI: 10.1021/acs.analchem.2c02598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid analysis at the molecular species level represents a valuable opportunity for clinical applications due to the essential roles that lipids play in metabolic health. However, a comprehensive and high-throughput lipid profiling remains challenging given the lipid structural complexity and exceptional diversity. Herein, we present an 'omic-scale targeted LC-MS/MS approach for the straightforward and high-throughput quantification of a broad panel of complex lipid species across 26 lipid (sub)classes. The workflow involves an automated single-step extraction with 2-propanol, followed by lipid analysis using hydrophilic interaction liquid chromatography in a dual-column setup coupled to tandem mass spectrometry with data acquisition in the timed-selective reaction monitoring mode (12 min total run time). The analysis pipeline consists of an initial screen of 1903 lipid species, followed by high-throughput quantification of robustly detected species. Lipid quantification is achieved by a single-point calibration with 75 isotopically labeled standards representative of different lipid classes, covering lipid species with diverse acyl/alkyl chain lengths and unsaturation degrees. When applied to human plasma, 795 lipid species were measured with median intra- and inter-day precisions of 8.5 and 10.9%, respectively, evaluated within a single and across multiple batches. The concentration ranges measured in NIST plasma were in accordance with the consensus intervals determined in previous ring-trials. Finally, to benchmark our workflow, we characterized NIST plasma materials with different clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our quantitative lipidomic platform allowed for a clear distinction between different NIST materials and revealed the sex-specificity of the serum lipidome, highlighting numerous statistically significant sex differences.
Collapse
Affiliation(s)
- Jessica Medina
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Rebecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Liang Gao
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Christina Jones
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Martin Jech
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Alan Atkins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Claudia Martins
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Arno Schmidt-Trucksass
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, Basel CH-4052, Switzerland
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, Lausanne CH-1005, Switzerland
| |
Collapse
|
42
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
43
|
Guo J, Feng J, Qu H, Xu H, Zhou H. Potential Drug Targets for Ceramide Metabolism in Cardiovascular Disease. J Cardiovasc Dev Dis 2022; 9:434. [PMID: 36547431 PMCID: PMC9782850 DOI: 10.3390/jcdd9120434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease poses a significant threat to the quality of human life. Metabolic abnormalities caused by excessive caloric intake have been shown to lead to the development of cardiovascular diseases. Ceramides are structural molecules found in biological membranes; they are crucial for cell survival and lipid metabolism, as they maintain barrier function and membrane fluidity. Increasing evidence has demonstrated that ceramide has a strong correlation with cardiovascular disease progression. Nevertheless, it remains a challenge to develop sphingolipids as therapeutic targets to improve the prognosis of cardiovascular diseases. In this review, we summarize the three synthesis pathways of ceramide and other intermediates that are important in ceramide metabolism. Furthermore, mechanistic studies and therapeutic strategies, including clinical drugs and bioactive molecules based on these intermediates, are discussed.
Collapse
Affiliation(s)
- Jiaying Guo
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Jiling Feng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Hongxi Xu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, No. 1200, Cailun Road, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
44
|
Deng P, Durham J, Liu J, Zhang X, Wang C, Li D, Gwag T, Ma M, Hennig B. Metabolomic, Lipidomic, Transcriptomic, and Metagenomic Analyses in Mice Exposed to PFOS and Fed Soluble and Insoluble Dietary Fibers. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117003. [PMID: 36331819 PMCID: PMC9635512 DOI: 10.1289/ehp11360] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) is a persistent environmental pollutant that has become a significant concern around the world. Exposure to PFOS may alter gut microbiota and liver metabolic homeostasis in mammals, thereby increasing the risk of cardiometabolic diseases. Diets high in soluble fibers can ameliorate metabolic disease risks. OBJECTIVES We aimed to test the hypothesis that soluble fibers (inulin or pectin) could modulate the adverse metabolic effects of PFOS by affecting microbe-liver metabolism and interactions. METHODS Male C57BL/6J mice were fed an isocaloric diet containing different fibers: a) inulin (soluble), b) pectin (soluble), or c) cellulose (control, insoluble). The mice were exposed to PFOS in drinking water (3 μ g / g per day ) for 7 wk. Multi-omics was used to analyze mouse liver and cecum contents. RESULTS In PFOS-exposed mice, the number of differentially expressed genes associated with atherogenesis and hepatic hyperlipidemia were lower in those that were fed soluble fiber than those fed insoluble fiber. Shotgun metagenomics showed that inulin and pectin protected against differences in microbiome community in PFOS-exposed vs. control mice. It was found that the plasma PFOS levels were lower in inulin-fed mice, and there was a trend of lower liver accumulation of PFOS in soluble fiber-fed mice compared with the control group. Soluble fiber intake ameliorated the effects of PFOS on host hepatic metabolism gene expression and cecal content microbiome structure. DISCUSSIONS Results from metabolomic, lipidomic, and transcriptomic studies suggest that inulin- and pectin-fed mice were less susceptible to PFOS-induced liver metabolic disturbance, hepatic lipid accumulation, and transcriptional changes compared with control diet-fed mice. Our study advances the understanding of interaction between microbes and host under the influences of environmental pollutants and nutrients. The results provide new insights into the microbe-liver metabolic network and the protection against environmental pollutant-induced metabolic diseases by high-fiber diets. https://doi.org/10.1289/EHP11360.
Collapse
Affiliation(s)
- Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaofei Zhang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Dong Li
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
45
|
Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease. Mol Diagn Ther 2022; 26:655-664. [PMID: 36197604 DOI: 10.1007/s40291-022-00615-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atherosclerosis, a progressive manifestation of coronary artery disease, has been observed to be regulated by microRNAs (miRNAs) targeting various protein-coding genes involved in several pathophysiological events of coronary artery disease. OBJECTIVE In our previous report, we identified differential expression profiles of candidate miRNAs, miR-133b and miR-21, in patients with coronary artery disease as compared with controls, suggesting their possible implication in the pathophysiology of coronary artery disease. To better understand the functional role of these miRNAs, we sought to predict and validate their target genes while assessing the expression pattern of these genes in patients with coronary artery disease, as well as in macrophages. METHODS Potential target genes of miR-133b and miR-21 were predicted bioinformatically followed by validation through the identification of their expression at the protein level in patients with coronary artery disease (n-30), as well as in macrophages treated with respective miRNA inhibitors (antagomiRs), through immunoblotting. RESULTS SGPP1, a gene associated with the sphingolipid pathway, was predicted to be a potential target gene of miR-133b while ATG5 and LRP6 were target genes of miR-21 while being associated with autophagy and Wnt signalling pathways, respectively. SGPP1 was observed to be upregulated significantly (p = 0.019) by 2.07-fold, whereas ATG5 and LRP6 were found to be downregulated (p = 0.026 and 0.007, respectively) by 3.28-fold and 8.46-fold, respectively, in patients with coronary artery disease as compared with controls. Expression patterns of all the genes were also found to be modulated when cells were treated with respective miRNA inhibitors. CONCLUSIONS Results from the present study suggest that SGPP1, ATG5 and LRP6, target genes of miR-133b and miR-21, may serve as potential therapeutic hotspots in the management of coronary artery disease, which undoubtedly merit further experimental confirmation.
Collapse
|
46
|
Ramos P, Meeusen JW. Ceramide Risk Scores Can Bring Lipidomics to Clinical Medicine. Clin Chem 2022; 68:1479-1480. [DOI: 10.1093/clinchem/hvac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Paola Ramos
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN , USA
| | - Jeffrey W Meeusen
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
47
|
Zarini S, Brozinick JT, Zemski Berry KA, Garfield A, Perreault L, Kerege A, Bui HH, Sanders P, Siddall P, Kuo MS, Bergman BC. Serum dihydroceramides correlate with insulin sensitivity in humans and decrease insulin sensitivity in vitro. J Lipid Res 2022; 63:100270. [PMID: 36030929 PMCID: PMC9508341 DOI: 10.1016/j.jlr.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joseph T Brozinick
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Hoang Bui
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Phil Sanders
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Parker Siddall
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Ming Shang Kuo
- Division of Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
48
|
Nicholson RJ, Norris MK, Poss AM, Holland WL, Summers SA. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annu Rev Nutr 2022; 42:115-144. [PMID: 35584813 PMCID: PMC9399075 DOI: 10.1146/annurev-nutr-062220-112920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Annelise M. Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
49
|
Gao X, Lin L, Hu A, Zhao H, Kang L, Wang X, Yuan C, Yang P, Shen H. Shotgun lipidomics combined targeted MRM reveals sphingolipid signatures of coronary artery disease. Talanta 2022; 245:123475. [DOI: 10.1016/j.talanta.2022.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
|
50
|
Simeone CA, Wilkerson JL, Poss AM, Banks JA, Varre JV, Guevara JL, Hernandez EJ, Gorsi B, Atkinson DL, Turapov T, Frodsham SG, Morales JCF, O'Neil K, Moore B, Yandell M, Summers SA, Krolewski AS, Holland WL, Pezzolesi MG. A dominant negative ADIPOQ mutation in a diabetic family with renal disease, hypoadiponectinemia, and hyperceramidemia. NPJ Genom Med 2022; 7:43. [PMID: 35869090 PMCID: PMC9307825 DOI: 10.1038/s41525-022-00314-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/06/2022] [Indexed: 01/26/2023] Open
Abstract
Adiponectin, encoded by ADIPOQ, is an insulin-sensitizing, anti-inflammatory, and renoprotective adipokine that activates receptors with intrinsic ceramidase activity. We identified a family harboring a 10-nucleotide deletion mutation in ADIPOQ that cosegregates with diabetes and end-stage renal disease. This mutation introduces a frameshift in exon 3, resulting in a premature termination codon that disrupts translation of adiponectin's globular domain. Subjects with the mutation had dramatically reduced circulating adiponectin and increased long-chain ceramides levels. Functional studies suggest that the mutated protein acts as a dominant negative through its interaction with non-mutated adiponectin, decreasing circulating adiponectin levels, and correlating with metabolic disease.
Collapse
Affiliation(s)
- Christopher A Simeone
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Annelise M Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - James A Banks
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Jose Lazaro Guevara
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Edgar Javier Hernandez
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Bushra Gorsi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Donald L Atkinson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Scott G Frodsham
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Julio C Fierro Morales
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Kristina O'Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, 02115, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, 84112, USA
| | - Marcus G Pezzolesi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.
| |
Collapse
|