1
|
Yamashita SI, Arai R, Hada H, Padman BS, Lazarou M, Chan DC, Kanki T, Waguri S. The mitophagy receptors BNIP3 and NIX mediate tight attachment and expansion of the isolation membrane to mitochondria. J Cell Biol 2025; 224:e202408166. [PMID: 40358358 PMCID: PMC12071194 DOI: 10.1083/jcb.202408166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ritsuko Arai
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hada
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Benjamin Scott Padman
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Australia
- The University of Western Australia, Crawley, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
2
|
Javanainen M, Šimek J, Tranter D, O'Keefe S, Karki S, Biriukov D, Šachl R, Paavilainen VO. Lipid Scrambling Pathways in the Sec61 Translocon Complex. J Am Chem Soc 2025; 147:15970-15984. [PMID: 40325981 DOI: 10.1021/jacs.4c11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cellular homeostasis depends on the rapid, ATP-independent translocation of newly synthesized lipids across the endoplasmic reticulum (ER) membrane. Lipid translocation is facilitated by membrane proteins known as scramblases, a few of which have recently been identified in the ER. Our previous structure of the translocon-associated protein (TRAP) bound to the Sec61 translocation channel revealed local membrane thinning, suggesting that the Sec61/TRAP complex might be involved in lipid scrambling. Using complementary fluorescence spectroscopy assays, we detected nonselective scrambling by reconstituted translocon complexes. This activity was unaffected by Sec61 inhibitors that block its lateral gate, suggesting a second lipid scrambling pathway within the complex. Molecular dynamics simulations indicate that the trimeric TRAP subunit forms this alternative route, facilitating lipid translocation via a "credit card" mechanism, using a crevice lined with polar residues to shield lipid head groups from the hydrophobic membrane interior. Kinetic and thermodynamic analyses confirmed that local membrane thinning enhances scrambling efficiency and that both Sec61 and TRAP scramble phosphatidylcholine faster than phosphatidylethanolamine and phosphatidylserine, reflecting the intrinsic lipid flip-flop tendencies of these lipid species. As the Sec61 scrambling site lies in the lateral gate region, it is likely inaccessible during protein translocation, in line with our experiments on Sec61-inhibited samples. Hence, our findings suggest that the metazoan-specific trimeric TRAP bundle is a viable candidate for lipid scrambling activity that is insensitive to the functional state of the translocon.
Collapse
Affiliation(s)
- Matti Javanainen
- Unit of Physics, University of Tampere, FI-33720 Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Jan Šimek
- J. Heyrovský Institute of Physical Chemistry, CZ-18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, CZ-12800 Prague 2, Czech Republic
| | - Dale Tranter
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Sarah O'Keefe
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Sudeep Karki
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
- Onego Bio, Hämeentie 157, FI-00560 Helsinki, Finland
| | - Denys Biriukov
- Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, CZ-18223 Prague 8, Czech Republic
| | - Ville O Paavilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| |
Collapse
|
3
|
Xun J, Tan JX. Lysosomal Repair in Health and Disease. J Cell Physiol 2025; 240:e70044. [PMID: 40349217 PMCID: PMC12066097 DOI: 10.1002/jcp.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Jinrui Xun
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Chen A, Nguyen K, Jiang X, Yu X, Xie Y, Liu W, Davidson NO, Ding WX, Ni HM. Distinct yet Overlapping Functions of VMP1 and TMEM41B in Modulating Hepatic Lipoprotein Secretion and Autophagy in MASH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647617. [PMID: 40291711 PMCID: PMC12026991 DOI: 10.1101/2025.04.07.647617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Background Transmembrane protein 41B (TMEM41B) and vacuolar membrane protein 1 (VMP1) are endoplasmic reticulum (ER) transmembrane scramblase proteins that have been recently identified to have important roles in autophagy and hepatic lipoprotein secretion. While TMEM41B and VMP1 are structurally and functionally similar, the nature of their interactions and how they coordinately regulate hepatic lipoprotein secretion and autophagy in metabolic-associated steatotic liver disease (MASLD) and metabolic-associated steatohepatitis (MASH) remains unclear. Methods Liver-specific and hepatocyte-specific Tmem41b knockout (KO) mice as well as Tmem41b knock-in (KI) mice were generated from Tmem41b flox or Tmem41b KI mice by crossing with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid metabolism in these mice was characterized by lipidomic analyses. Mice with hepatic overexpression of TMEM41B that were fed a MASH diet were also characterized. To explore the relationship between TMEM41B and VMP1, Tmem41b/Vmp1 double KO (DKO), Tmem41b KO/ Vmp1 KI, and Vmp1 KO/ Tmem41b KI mice were generated, and steatosis and autophagy were characterized. Results The loss of hepatic Tmem41b severely impaired very low-density lipoprotein (VLDL) secretion, resulting in significant microsteatosis, increased hepatic triglycerides, inflammation, fibrosis, and ultimately the MASH development. TMEM41B protein was decreased in human MASLD livers. Overexpression of TMEM41B mitigated the effects of diet-induced MASLD. Mice lacking both Vmp1 and Tmem41b (DKO) showed further impairment in VLDL secretion compared to single Tmem41b KO, but were similar that of Vmp1 KO mice. Lipidomic analysis of liver tissues revealed decreased levels of phosphatidylcholine and phosphatidylethanolamine, along with increased neutral lipids. Cellular fractionation studies indicated that VMP1 and TMEM41B localize at the mitochondrial-associated membrane (MAM). Electron microscopy analysis showed reduced contact between mitochondria and the ER in hepatocytes deficient in either VMP1 or TMEM41B. The loss of hepatic VMP1 or TMEM41B led to markedly increased levels of LC3B-II and p62/SQSTM1, which were not further affected by double deletion of VMP1 and TMEM41B. Restoring VMP1 in Tmem41b KO mice partially improved defective VLDL secretion, though autophagy was only partially corrected by overexpression of VMP1 at a low but not high level. In contrast, restoring TMEM41B in Vmp1 KO mice dose-dependently improved both defective VLDL secretion and autophagy. Conclusion Loss of hepatic VMP1 or TMEM41B decreases MAM and phospholipid content and reduces VLDL secretion, resulting in the development of MASH. TMEM41B and VMP1 may have overlapping but distinct mechanisms in regulating lipoprotein secretion and autophagy.
Collapse
|
5
|
Li H, Song C, Li Y, Zhang T, Yang X, Wang H. Genome-wide CRISPR screen reveals host factors for gama- and delta-coronavirus infection in Huh7 cells. Int J Biol Macromol 2025; 304:140728. [PMID: 39920943 DOI: 10.1016/j.ijbiomac.2025.140728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Genome-wide CRISPR screening has emerged as a powerful tool for identifying novel host factors involved in viral infections. In recent years, host factors for several Alpha- and Beta-coronaviruses have been systematically screened and characterized. However, knowledge regarding Gamma- and Delta-coronavirus infections remains limited. In this study, we conducted genome-scale CRISPR knockout (KO) screening in Huh7 cells infected with infectious bronchitis virus (IBV), a Gamma-coronavirus, and porcine deltacoronavirus (PDCoV), a Delta-coronavirus. We identified known host factors for PDCoV, including APN and TMEM41B. We confirmed that human APN does not serve as a critical host factor for IBV. Notably, SPPL3 was identified as a key factor involved in viral particle entry and S protein-induced syncytium formation through the modulation of cellular N-glycosylation. Furthermore, we performed a meta-analysis integrating all Huh7 cell-based genome-wide CRISPR screens across the four genera of coronaviruses (Alpha-, Beta-, Gamma-, and Delta-coronaviruses). Our analysis highlighted conserved host pathways, particularly those related to proteoglycans, glycoproteins, and vesicle trafficking. TMEM41B, SCAP, and FAM98A emerged as the most frequently targeted host genes. These findings provide valuable insights into the life cycles of IBV and PDCoV infections and facilitate the development of host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yuqing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
6
|
Mejía-Guzmán JE, Belmont-Hernández RA, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Metabolic-Dysfunction-Associated Steatotic Liver Disease: Molecular Mechanisms, Clinical Implications, and Emerging Therapeutic Strategies. Int J Mol Sci 2025; 26:2959. [PMID: 40243565 PMCID: PMC11988898 DOI: 10.3390/ijms26072959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a highly prevalent metabolic disorder characterized by hepatic steatosis in conjunction with at least one cardiometabolic risk factor, such as obesity, type 2 diabetes, hypertension, or dyslipidemia. As global rates of obesity and metabolic syndrome continue to rise, MASLD is becoming a major public health concern, with projections indicating a substantial increase in prevalence over the coming decades. The disease spectrum ranges from simple steatosis to metabolic-dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepatocellular carcinoma, contributing to significant morbidity and mortality worldwide. This review delves into the molecular mechanisms driving MASLD pathogenesis, including dysregulation of lipid metabolism, chronic inflammation, oxidative stress, mitochondrial dysfunction, and gut microbiota alterations. Recent advances in research have highlighted the role of genetic and epigenetic factors in disease progression, as well as novel therapeutic targets such as peroxisome proliferator-activated receptors (PPARs), fibroblast growth factors, and thyroid hormone receptor beta agonists. Given the multifaceted nature of MASLD, a multidisciplinary approach integrating early diagnosis, molecular insights, lifestyle interventions, and personalized therapies is critical. This review underscores the urgent need for continued research into innovative treatment strategies and precision medicine approaches to halt MASLD progression and improve patient outcomes.
Collapse
Affiliation(s)
- Jeysson E. Mejía-Guzmán
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
| | - Ramón A. Belmont-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Postgraduate Program in Experimental Biology, División de Ciencias Básicas y de la Salud (DCBS), Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Norberto C. Chávez-Tapia
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (J.E.M.-G.); (R.A.B.-H.); (N.C.C.-T.)
- Surgery Department, Faculty of Medicine, The National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
7
|
Wang X, Li T, Guo Y, Chen XW. License to drive: Receptor-mediated ER exit of proteins and lipids. Curr Opin Cell Biol 2025; 94:102501. [PMID: 40117676 DOI: 10.1016/j.ceb.2025.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
The secretory pathway, which begins at the endoplasmic reticulum (ER) through the COPII complex, is responsible for transporting proteins and lipid carriers to various destined cellular compartments or extracellular space. The fundamental mechanism by which the COPII operates is evolutionarily conserved. Nevertheless, the vast diversity of mammalian cargos poses significant challenges to the secretory pathway, especially considering the intricate physiology in vivo. Particularly, certain physiologically essential cargos, including procollagen and lipoproteins, appear to be oversized for these canonical carriers, implying the need for additional sophisticated regulation at the onset step so-called ER exit. Emerging evidence highlights the critical role of cargo receptors in selective sorting for ER export, illuminating the complex biology of the trafficking dynamics, which holds broad implications for human health and diseases.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tiantian Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhen, 518057, China; Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou, 511453, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China; Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Ma Y, Wang Y, Zhao X, Jin G, Xu J, Li Z, Yin N, Gao Z, Xia B, Peng M. TMEM41B is an endoplasmic reticulum Ca 2+ release channel maintaining naive T cell quiescence and responsiveness. Cell Discov 2025; 11:18. [PMID: 40038246 DOI: 10.1038/s41421-024-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/26/2024] [Indexed: 03/06/2025] Open
Abstract
In mammalian cells, endoplasmic reticulum (ER) passively releases Ca2+ under steady state, but channels involved remain elusive. Here, we report that TMEM41B, an ER-resident membrane protein critical for autophagy, lipid metabolism, and viral infection, functions as an ER Ca2+ release channel. Biochemically, purified recombinant TMEM41B forms a concentration-dependent Ca2+ channel in single-channel electrophysiology assays. Cellularly, TMEM41B deficiency causes ER Ca2+ overload, while overexpression of TMEM41B depletes ER Ca2+. Immunologically, ER Ca2+ overload leads to upregulation of IL-2 and IL-7 receptors in naive T cells, which in turn increases basal signaling of JAK-STAT, AKT-mTOR, and MAPK pathways. This dysregulation drives TMEM41B-deficient naive T cells into a metabolically activated yet immunologically naive state. ER Ca2+ overload also downregulates CD5, lowering the activation threshold of TMEM41B-deficient T cells and leading to heightened T cell responses during infections. In summary, we identify TMEM41B as a concentration-dependent ER Ca2+ release channel, revealing an unexpected role of ER Ca2+ in naive T cell quiescence and responsiveness.
Collapse
Affiliation(s)
- Yuying Ma
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yi Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jing Xu
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Bingqing Xia
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Zhang L, Wang X, Chen XW. The biogenesis and transport of triglyceride-rich lipoproteins. Trends Endocrinol Metab 2025; 36:262-277. [PMID: 39164120 DOI: 10.1016/j.tem.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.
Collapse
Affiliation(s)
- Linqi Zhang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China; Peking University (PKU)-Tsinghua University (THU) Joint Center for Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
10
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
11
|
Hirayama H. Commentary for: a lipid scramblase TMEM41B is involved in the processing and transport of GPI-anchored proteins. J Biochem 2025; 177:69-71. [PMID: 39658195 DOI: 10.1093/jb/mvae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a conserved post-translational modification in eukaryotes. This modification allows acceptor proteins to be expressed at the cell surface as GPI-anchored proteins (GPI-APs), which play critical roles in various biological processes. It has been proposed that remodelling of GPI after transferring acceptor proteins, including the PGAP1-dependent deacylation of GPI-inositol, functions as a checkpoint for transporting mature GPI-APs from the endoplasmic reticulum (ER) to the Golgi. A previous study identified several factors involved in regulating PGAP1-dependent GPI-inositol deacylation, including proteins associated with the calnexin cycles, SELT and CLPTM1. A recent report by Cao et al., revealed that the loss of TMEM41B, an ER-resident lipid scramblase, rescues the defect in GPI-inositol deacylation in SELT-KO cells. Further investigation demonstrated that TMEM41B is essential for the efficient transport of both GPI-APs and transmembrane proteins from the ER to the Golgi. The study also found that PGAP1 proteins accumulate in the ER of TMEM41B-KO cells, suggesting that perturbations in the ER-membrane lipid integrity stabilize PGAP1 proteins, thereby enhancing the PGAP1 activity within the ER. These findings highlight that defects in TMEM41B impact two distinct processes: (i) the transport of GPI-APs from the ER to the Golgi, and (ii) the deacylation of GPI-APs.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Chen F, Yang A, Lu Y, Zhang Y, Zhang J, Bu J, Guo R, Han Y, Wu D, Wu Y. Differential transport pathways of saturated and unsaturated fatty acid esters in male mouse hepatocytes. Nat Commun 2025; 16:1344. [PMID: 39905035 PMCID: PMC11794647 DOI: 10.1038/s41467-025-56620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Saturated fatty acid (SFA) and unsaturated fatty acid (UFA) have distinct impacts on health. Whether SFA and UFA are differentially transported in liver remains elusive. Here, we find the secretion of UFA but not SFA esters is retarded in a male mouse hepatic endoplasmic reticulum (ER) stress model. Among 13 members of protein disulfide isomerase (PDI) family, only PDIA1 (PDI) deficiency leads to hepatosteatosis and hypolipidemia. In PDI-deficient male mouse liver, there is a severe accumulation but secretory blockade of UFA esters, whereas the accumulation and secretion of SFA esters remain normal. PDI catalyzes the oxidative folding of microsomal triglyceride transfer protein (MTP). In addition, PDI deficiency in hepatocytes abolishes Apolipoprotein B-100 (ApoB-100) very low-density lipoprotein (VLDL) secretion while maintaining partial ApoB-48 VLDL secretion. In summary, we find that the secretion of UFA esters is PDI-MTP indispensable, while SFA esters could be transferred out of liver via ApoB-48 VLDL through a PDI-MTP-independent pathway.
Collapse
Grants
- 81970128, 82170129, 82470132, 31970890, 8217011021, 82020108003, 82270136 National Natural Science Foundation of China (National Science Foundation of China)
- Translational Research Grant of NCRCH (2020ZKPA02, 2020WSA04), the collaboration fund from State Key Laboratory of Radiation Medicine and Protection (GZN1201802), the Suzhou Science and Technology Development Project (SKJY2021043), the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
Affiliation(s)
- Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Lu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yuxin Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyu Zhang
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jianan Bu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Runlin Guo
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
13
|
Sheng L, Gao J, Wei Q, Gong Y, Xu ZX. The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila. Cell Rep 2025; 44:115099. [PMID: 39723892 DOI: 10.1016/j.celrep.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan. By integrating multiomics data, we demonstrated that glial Ugt35b plays key roles in regulating glycerolipid and glycerophospholipid metabolism in the brain. Notably, we found that Ugt35b and Lsd-2 are co-expressed in glia and confirmed their protein interaction in vivo. Knockdown of Ugt35b significantly reduced LD formation by downregulating Lsd-2 expression, while overexpression of Lsd-2 partially rescued the shortened lifespan in glial Ugt35b RNAi flies. Our findings reveal the crucial role of glial Ugt35b in regulating LD formation to maintain brain lipid homeostasis and support Drosophila lifespan.
Collapse
Affiliation(s)
- Lihong Sheng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jianpeng Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qingyuan Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Xiang Xu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Holzner M, Sonicki T, Hunn H, Uliana F, Jiang W, Gade VR, Weis K, Wutz A, Di Minin G. The scramblases VMP1 and TMEM41B are required for primitive endoderm specification by targeting WNT signaling. Cell Death Differ 2024:10.1038/s41418-024-01435-x. [PMID: 39695329 DOI: 10.1038/s41418-024-01435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
The ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs). We observed that ESCs carrying mutations in Vmp1 and Tmem41b show robust self-renewal and an unperturbed pluripotent expression profile but accumulate LC3-positive autophagosomes and lipid droplets consistent with defects in autophagy and lipid metabolism. ESCs carrying combined mutations in Vmp1 and Tmem41b can differentiate into a wide range of embryonic cell types. However, differentiation into primitive endoderm-like cells in culture is impaired, and the establishment of extra-embryonic endoderm stem (XEN) cells is delayed. Mechanistically, we show the deregulation of genes that are associated with WNT signaling. This is further confirmed by cell surface proteome profiling, which identified a significant reduction of the WNT-receptor FZD2 at the plasma membrane in Vmp1 and Tmem41b double mutant ESCs. Importantly, we show that transgenic expression of Fzd2 rescues XEN differentiation. Our findings identify the role of the lipid scramblases VMP1 and TMEM41B in WNT signaling during extra-embryonic endoderm development and characterize their distinct and overlapping functions.
Collapse
Affiliation(s)
- Markus Holzner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tea Sonicki
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Hugo Hunn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Weijun Jiang
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Vamshidhar R Gade
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Xu M, Chen ZY, Li Y, Li Y, Guo G, Dai RZ, Ni N, Tao J, Wang HY, Chen QL, Wang H, Zhou H, Yang YN, Chen S, Chen L. Rab2A-mediated Golgi-lipid droplet interactions support very-low-density lipoprotein secretion in hepatocytes. EMBO J 2024; 43:6383-6409. [PMID: 39496977 PMCID: PMC11649929 DOI: 10.1038/s44318-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Lipid droplets (LDs) serve as crucial hubs for lipid trafficking and metabolic regulation through their numerous interactions with various organelles. While the interplay between LDs and the Golgi apparatus has been recognized, their roles and underlying mechanisms remain poorly understood. Here, we reveal the role of Ras-related protein Rab-2A (Rab2A) in mediating LD-Golgi interactions, thereby contributing to very-low-density lipoprotein (VLDL) lipidation and secretion in hepatocytes. Mechanistically, our findings identify a selective interaction between Golgi-localized Rab2A and 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) protein residing on LDs. This complex facilitates dynamic organelle communication between the Golgi apparatus and LDs, thus contributing to lipid transfer from LDs to the Golgi apparatus for VLDL2 lipidation and secretion. Attenuation of Rab2A activity via AMP-activated protein kinase (AMPK) suppresses the Rab2A-HSD17B13 complex formation, impairing LD-Golgi interactions and subsequent VLDL secretion. Furthermore, genetic inhibition of Rab2A and HSD17B13 in the liver reduces the serum triglyceride and cholesterol levels. Collectively, this study provides a new perspective on the interactions between the Golgi apparatus and LDs.
Collapse
Affiliation(s)
- Min Xu
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Zi-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Yang Li
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Yue Li
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ge Guo
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Rong-Zheng Dai
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Na Ni
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Jing Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Qiao-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Hong Zhou
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Yi-Ning Yang
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China.
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830000, Urumqi, China.
- Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China.
| | - Liang Chen
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230001, Hefei, China.
| |
Collapse
|
16
|
Sebinelli HG, Syska C, Čopič A, Lenoir G. Established and emerging players in phospholipid scrambling: A structural perspective. Biochimie 2024; 227:111-122. [PMID: 39304020 DOI: 10.1016/j.biochi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The maintenance of a diverse and non-homogeneous lipid composition in cell membranes is crucial for a multitude of cellular processes. One important example is transbilayer lipid asymmetry, which refers to a difference in lipid composition between the two leaflets of a cellular membrane. Transbilayer asymmetry is especially pronounced at the plasma membrane, where at resting state, negatively-charged phospholipids such as phosphatidylserine (PS) are almost exclusively restricted to the cytosolic leaflet, whereas sphingolipids are mostly found in the exoplasmic leaflet. Transbilayer movement of lipids is inherently slow, and for a fast cellular response, for example during apoptosis, transmembrane proteins termed scramblases facilitate the movement of polar/charged lipid headgroups through the membrane interior. In recent years, an expanding number of proteins from diverse families have been suggested to possess a lipid scramblase activity. Members of TMEM16 and XKR proteins have been implicated in blood clotting and apoptosis, whereas the scrambling activity of ATG9 and TMEM41B/VMP1 proteins contributes to the synthesis of autophagosomal membrane during autophagy. Structural studies, in vitro reconstitution of lipid scrambling, and molecular dynamics simulations have significantly advanced our understanding of the molecular mechanisms of lipid scrambling and helped delineate potential lipid transport pathways through the membrane. A number of examples also suggest that lipid scrambling activity can be combined with another activity, as is the case for TMEM16 proteins, which also function as ion channels, rhodopsin in the photoreceptor membrane, and possibly other G-protein coupled receptors.
Collapse
Affiliation(s)
- Heitor Gobbi Sebinelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Camille Syska
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
18
|
Burks KH, Stitziel NO, Davidson NO. Molecular Regulation and Therapeutic Targeting of VLDL Production in Cardiometabolic Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101409. [PMID: 39406347 PMCID: PMC11609389 DOI: 10.1016/j.jcmgh.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
There exists a complex relationship between steatotic liver disease (SLD) and atherosclerotic cardiovascular disease (CVD). CVD is a leading cause of morbidity and mortality among individuals with SLD, particularly those with metabolic dysfunction-associated SLD (MASLD), a significant proportion of whom also exhibit features of insulin resistance. Recent evidence supports an expanded role of very low-density lipoprotein (VLDL) in the pathogenesis of CVD in patients, both with and without associated metabolic dysfunction. VLDL represents the major vehicle for exporting neutral lipid from hepatocytes, with each particle containing one molecule of apolipoproteinB100 (APOB100). VLDL production becomes dysregulated under conditions characteristic of MASLD including steatosis and insulin resistance. Insulin resistance not only affects VLDL production but also mediates the pathogenesis of atherosclerotic CVD. VLDL assembly and secretion therefore represents an important pathway in the setting of cardiometabolic disease and offers several candidates for therapeutic targeting, particularly in metabolically complex patients with MASLD at increased risk of atherosclerotic CVD. Here we review the clinical significance as well as the translational and therapeutic potential of key regulatory steps impacting VLDL initiation, maturation, secretion, catabolism, and clearance.
Collapse
Affiliation(s)
- Kendall H Burks
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
19
|
Kan J, Morales A, Hernandez Y, Ternei MA, Lemetre C, Maclntyre LW, Biais N, Brady SF. Oxydifficidin, a potent Neisseria gonorrhoeae antibiotic due to DedA assisted uptake and ribosomal protein RplL sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596031. [PMID: 38854004 PMCID: PMC11160649 DOI: 10.1101/2024.05.27.596031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Gonorrhea, which is caused by Neisseria gonorrhoeae, is the second most reported sexually transmitted infection worldwide. The increasing appearance of isolates that are resistant to approved therapeutics raises the concern that gonorrhea may become untreatable. Here, we serendipitously identified oxydifficidin as a potent N. gonorrhoeae antibiotic through the observation of a Bacillus amyloliquefaciens contaminant in a lawn of N. gonorrhoeae. Oxydifficidin is active against both wild-type and multidrug-resistant N. gonorrhoeae. It's potent activity results from a combination of DedA-assisted uptake into the cytoplasm and the presence of an oxydifficidin-sensitive ribosomal protein L7/L12 (RplL). Our data indicates that oxydifficidin binds to the ribosome at a site that is distinct from other antibiotics and that L7/L12 is uniquely associated with its mode of action. This study opens a potential new avenue for addressing antibiotic resistant gonorrhea and underscores the possibility of identifying overlooked natural products from cultured bacteria, particularly those with activity against previously understudied pathogens.
Collapse
Affiliation(s)
- Jingbo Kan
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Graduate Center, City University of New York, New York, NY 10016
- Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Adrian Morales
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Melinda A. Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Logan W. Maclntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Nicolas Biais
- Graduate Center, City University of New York, New York, NY 10016
- Brooklyn College, City University of New York, Brooklyn, NY 11210
- Laboratoire Jean Perrin, UMR 8237 Sorbonne Université/CNRS, Paris, France
| | - Sean F. Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
20
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
21
|
Zhou JX, Yang MY, Zhai DG, Jiang Q, Zhang Q. Overexpression of METTL14 mediates steatohepatitis and insulin resistance in mice. Heliyon 2024; 10:e35467. [PMID: 39165987 PMCID: PMC11334898 DOI: 10.1016/j.heliyon.2024.e35467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background Lipid accumulation and redox imbalance, resulting from dysregulation of hepatic fatty acids oxidation, contribute to the development of steatohepatitis and insulin resistance. Recently, dysregulated RNA N6-methyladenosine (m6A) methylation modification has been found involving fatty liver. However, the role of methyltransferase-like 14 (METTL14), the core component of m6A methylation, in the development of steatohepatitis is unknown. Herein, we aimed to explore the role of METTL14 on steatohepatitis and insulin resistance in mice with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods The liver tissues of mice and patients with MASLD were collected to detect the expression of METTL14. METTL14 overexpression and METTL14 silence were used to investigate the effect of METTL14 on lipid metabolism disorder in vivo and in vitro. Knockout of METTL14 in primary hepatocytes was used to investigate the role of Sirtuin 1 (SIRT1) on lipid accumulation induced by METTL14. Results METTL14 was dramatically up-regulated in the livers of db/db mice, high-fat diet (HFD)-fed mice, and patients with MASLD. METTL14 overexpression exacerbated MASLD and promoted lipid metabolism disorder and insulin resistance in mice. Conversely, METTL14 knockout ameliorated lipid deposition and insulin resistance in HFD-fed mice. Furthermore, METTL14 overexpression facilitated lipid accumulation, while METTL14 knockout reduced lipid accumulation in HepG2 cells and primary hepatocytes. In addition, METTL14 lost up-regulated SIRT1 expression in hepatocytes. SIRT1 deficiency abrogated the ameliorating effects of METTL14 downregulation in MASLD mice. Conclusions These findings suggest that dysfunction of the METTL14-SIRT1 pathway might promote hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Ji-Xiang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Man-Yi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Changsha, 410008, China
- NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Deng-Gao Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Changsha, 410008, China
| |
Collapse
|
22
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Tong J, Wang Q, Gao Z, Liu Y, Lu C. VMP1: a multifaceted regulator of cellular homeostasis with implications in disease pathology. Front Cell Dev Biol 2024; 12:1436420. [PMID: 39100095 PMCID: PMC11294092 DOI: 10.3389/fcell.2024.1436420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Vacuole membrane protein 1 (VMP1) is an integral membrane protein that plays a pivotal role in cellular processes, particularly in the regulation of autophagy. Autophagy, a self-degradative mechanism, is essential for maintaining cellular homeostasis by degradation and recycling damaged organelles and proteins. VMP1 involved in the autophagic processes include the formation of autophagosomes and the subsequent fusion with lysosomes. Moreover, VMP1 modulates endoplasmic reticulum (ER) calcium levels, which is significant for various cellular functions, including protein folding and cellular signaling. Recent studies have also linked VMP1 to the cellular response against viral infections and lipid droplet (LD). Dysregulation of VMP1 has been observed in several pathological conditions, including neurodegenerative diseases such as Parkinson's disease (PD), pancreatitis, hepatitis, and tumorogenesis, underscoring its potential as a therapeutic target. This review aims to provide an overview of VMP1's multifaceted roles and its implications in disease pathology.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Biological Psychiatry (Xinxiang Medical University), The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Henan International Joint Laboratory for Non-Invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
25
|
Feng Z, Di Zanni E, Alvarenga O, Chakraborty S, Rychlik N, Accardi A. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins. Cell Calcium 2024; 121:102896. [PMID: 38749289 PMCID: PMC11178363 DOI: 10.1016/j.ceca.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Phospholipid scramblases mediate the rapid movement of lipids between membrane leaflets, a key step in establishing and maintaining membrane homeostasis of the membranes of all eukaryotic cells and their organelles. Thus, impairment of lipid scrambling can lead to a variety of pathologies. How scramblases catalyzed the transbilayer movement of lipids remains poorly understood. Despite the availability of direct structural information on three unrelated families of scramblases, the TMEM16s, the Xkrs, and ATG-9, a unifying mechanism has failed to emerge thus far. Among these, the most extensively studied and best understood are the Ca2+ activated TMEM16s, which comprise ion channels and/or scramblases. Early work supported the view that these proteins provided a hydrophilic, membrane-exposed groove through which the lipid headgroups could permeate. However, structural, and functional experiments have since challenged this mechanism, leading to the proposal that the TMEM16s distort and thin the membrane near the groove to facilitate lipid scrambling. Here, we review our understanding of the structural and mechanistic underpinnings of lipid scrambling by the TMEM16s and discuss how the different proposals account for the various experimental observations.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar Alvarenga
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Nicole Rychlik
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
26
|
Carlini MJ, Van Alstyne M, Yang H, Yadav S, Shneider NA, Pellizzoni L. Stasimon/Tmem41b is required for cell proliferation and adult mouse survival. Biochem Biophys Res Commun 2024; 712-713:149923. [PMID: 38640735 PMCID: PMC11066899 DOI: 10.1016/j.bbrc.2024.149923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Stasimon/Tmem41b is a transmembrane protein with phospholipid scrambling activity that resides in the endoplasmic reticulum and has been implicated in autophagy, lipid metabolism, and viral replication. Stasimon/Tmem41b has also been linked to the function of sensory-motor circuits and the pathogenesis of spinal muscular atrophy. However, the early embryonic lethality of constitutive knockout in mice has hindered the analysis of spatial and temporal requirements of Stasimon/Tmem41b in vivo. To address this, we developed a novel mouse line harboring a conditional knockout allele of the Stasimon/Tmem41b gene in which exon 4 has been flanked by loxP sites (Stas/Tmem41bCKO). Cre-mediated recombination of Stas/Tmem41bCKO generates a functionally null allele (Stas/Tmem41bΔ4) resulting in loss of protein expression and embryonic lethality in the homozygous mouse mutant. Here, using a ubiquitously expressed, tamoxifen inducible Cre recombinase in the homozygous Stas/Tmem41bCKO mice, we demonstrate that postnatal depletion of Stasimon/Tmem41b rapidly arrests weight gain in adult mice and causes motor dysfunction and death approximately three weeks after tamoxifen treatment. Moreover, we show that depletion of Stasimon/Tmem41b severely affects cell proliferation in mouse embryonic fibroblasts. This study provides new insights into the essential requirement of Stasimon/Tmem41b for cellular and organismal fitness and expands the experimental toolkit to investigate its functions in the mammalian system.
Collapse
Affiliation(s)
- Maria J Carlini
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Hua Yang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Shubhi Yadav
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Chen S, Pei CX, Xu S, Li H, Liu YS, Wang Y, Jin C, Dean N, Gao XD. Rft1 catalyzes lipid-linked oligosaccharide translocation across the ER membrane. Nat Commun 2024; 15:5157. [PMID: 38886340 PMCID: PMC11182771 DOI: 10.1038/s41467-024-48999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Mathiowetz AJ, Meymand ES, Deol KK, Parlakgül G, Lange M, Pang SP, Roberts MA, Torres EF, Jorgens DM, Zalpuri R, Kang M, Boone C, Zhang Y, Morgens DW, Tso E, Zhou Y, Talukdar S, Levine TP, Ku G, Arruda AP, Olzmann JA. CLCC1 promotes hepatic neutral lipid flux and nuclear pore complex assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597858. [PMID: 38895340 PMCID: PMC11185754 DOI: 10.1101/2024.06.07.597858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.
Collapse
Affiliation(s)
- Alyssa J. Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily S. Meymand
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Güneş Parlakgül
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephany P. Pang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa A. Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily F. Torres
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle M. Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Casadora Boone
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yaohuan Zhang
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David W. Morgens
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily Tso
- Merck & Co., Inc., South San Francisco, CA 94080, USA
| | | | | | - Tim P. Levine
- University College London InsYtute of Ophthalmology, Bath Street London, EC1V 9EL, UK
| | - Gregory Ku
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Division of Endocrinology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Paula Arruda
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of NutriYonal Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Nähse V, Stenmark H, Schink KO. Omegasomes control formation, expansion, and closure of autophagosomes. Bioessays 2024; 46:e2400038. [PMID: 38724256 DOI: 10.1002/bies.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Autophagy, an essential cellular process for maintaining cellular homeostasis and eliminating harmful cytoplasmic objects, involves the de novo formation of double-membraned autophagosomes that engulf and degrade cellular debris, protein aggregates, damaged organelles, and pathogens. Central to this process is the phagophore, which forms from donor membranes rich in lipids synthesized at various cellular sites, including the endoplasmic reticulum (ER), which has emerged as a primary source. The ER-associated omegasomes, characterized by their distinctive omega-shaped structure and accumulation of phosphatidylinositol 3-phosphate (PI3P), play a pivotal role in autophagosome formation. Omegasomes are thought to serve as platforms for phagophore assembly by recruiting essential proteins such as DFCP1/ZFYVE1 and facilitating lipid transfer to expand the phagophore. Despite the critical importance of phagophore biogenesis, many aspects remain poorly understood, particularly the complete range of proteins involved in omegasome dynamics, and the detailed mechanisms of lipid transfer and membrane contact site formation.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kay O Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. Proc Natl Acad Sci U S A 2024; 121:e2319476121. [PMID: 38621120 PMCID: PMC11047089 DOI: 10.1073/pnas.2319476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Cristian Rocha-Roa
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Stefano Vanni
- Department of Biology, University of Fribourg, FribourgCH-1700, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
32
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
33
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
34
|
Ke PY. Regulation of Autophagosome-Lysosome Fusion by Human Viral Infections. Pathogens 2024; 13:266. [PMID: 38535609 PMCID: PMC10974352 DOI: 10.3390/pathogens13030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 02/11/2025] Open
Abstract
Autophagy plays a fundamental role in maintaining cellular homeostasis by eliminating intracellular components via lysosomes. Successful degradation through autophagy relies on the fusion of autophagosomes to lysosomes, which leads to the formation of autolysosomes containing acidic proteases that degrade the sequestered materials. Viral infections can exploit autophagy in infected cells to balance virus-host cell interactions by degrading the invading virus or promoting viral growth. In recent years, cumulative studies have indicated that viral infections may interfere with the fusion of autophagosomes and lysosomes, thus benefiting viral replication and associated pathogenesis. In this review, I provide an overview of the current understanding of the molecular mechanism by which human viral infections deregulate autophagosome-lysosome fusion and summarize the physiological significance in the virus life cycle and host cell damage.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
35
|
Yamamoto H, Matsui T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J NIPPON MED SCH 2024; 91:2-9. [PMID: 37271546 DOI: 10.1272/jnms.jnms.2024_91-102] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autophagy is a self-digestive process that is conserved in eukaryotic cells and responsible for maintaining cellular homeostasis through proteolysis. By this process, cells break down their own components in lysosomes. Autophagy can be classified into three categories: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy involves membrane elongation and microautophagy involves membrane internalization, and both pathways undergo selective or non-selective processes that transport cytoplasmic components into lysosomes to be degraded. CMA, however, involves selective incorporation of cytosolic materials into lysosomes without membrane deformation. All three categories of autophagy have attracted much attention due to their involvement in various biological phenomena and their relevance to human diseases, such as neurodegenerative diseases and cancer. Clarification of the molecular mechanisms behind these processes is key to understanding autophagy and recent studies have made major progress in this regard, especially for the mechanisms of initiation and membrane elongation in macroautophagy and substrate recognition in microautophagy and CMA. Furthermore, it is becoming evident that the three categories of autophagy are related to each other despite their implementation by different sets of proteins and the involvement of completely different membrane dynamics. In this review, recent progress in macroautophagy, microautophagy, and CMA are summarized.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School
| |
Collapse
|
36
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Luo F, Wang Y, Wang X, Chen X. “Manganese bullet” targeting for dyslipidemia and plaque reversal. CHINESE SCIENCE BULLETIN 2024. [DOI: 10.1360/tb-2023-1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
38
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
39
|
Chen J, Fang Z, Luo Q, Wang X, Warda M, Das A, Oldoni F, Luo F. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis 2024; 23:14. [PMID: 38216994 PMCID: PMC10785355 DOI: 10.1186/s12944-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/14/2024] Open
Abstract
Reducing circulating lipid levels is the centerpiece of strategies for preventing and treating atherosclerotic cardiovascular disease (ASCVD). Despite many available lipid-lowering medications, a substantial residual cardiovascular risk remains. Current clinical guidelines focus on plasma levels of low-density lipoprotein (LDL). Recent attention has been given to very low-density lipoprotein (VLDL), the precursor to LDL, and its role in the development of coronary atherosclerosis. Preclinical investigations have revealed that interventions targeting VLDL production or promoting VLDL metabolism, independent of the LDL receptor, can potentially decrease cholesterol levels and provide therapeutic benefits. Currently, methods, such as mipomersen, lomitapide, and ANGPTL3 inhibitors, are used to reduce plasma cholesterol and triglyceride levels by regulating the lipidation, secretion, and metabolism of VLDL. Targeting VLDL represents an avenue for new lipid-lowering strategies. Interventions aimed at reducing VLDL production or enhancing VLDL metabolism, independent of the LDL receptor, hold promise for lowering cholesterol levels and providing therapeutic benefits beyond LDL in the management of ASCVD.
Collapse
Affiliation(s)
- Jingfei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhenfei Fang
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215-5400, USA
| | - Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fei Luo
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
40
|
Tsuji T. Subcellular distribution of membrane lipids revealed by freeze-fracture electron microscopy. Anat Sci Int 2024; 99:1-6. [PMID: 37314684 DOI: 10.1007/s12565-023-00731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Cell membranes are composed of a large variety of lipids and proteins. While the localization and function of membrane proteins have been extensively investigated, the distribution of membrane lipids, especially in the non-cytoplasmic leaflet of organelle membranes, remains largely unknown. Fluorescent biosensors have been widely used to study membrane lipid distribution; however, they have some limitations. By utilizing the quick-freezing and freeze-fracture replica labeling electron microscopy technique, we can uncover the precise distribution of membrane lipids within cells and assess the function of lipid-transporting proteins. In this review, I summarize recent progress in analyzing intracellular lipid distribution by utilizing this method.
Collapse
Affiliation(s)
- Takuma Tsuji
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
41
|
Wang Y, Feng X, Zhou W, Huang R, Hu Y, Hui H, Tian J, Wang X, Chen XW. Manganese therapy for dyslipidemia and plaque reversal in murine models. LIFE METABOLISM 2023; 2:load040. [PMID: 39872857 PMCID: PMC11749556 DOI: 10.1093/lifemeta/load040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2025]
Abstract
Precise control of circulating lipid levels is vital in both health and disease. We recently uncovered that bulk lipids, transported by lipoproteins, enter the circulation initially via the coat protein complex II (COPII) in a condensation-dependent manner. Divalent manganese, acting as a signaling messenger, selectively controls COPII condensation to regulate lipid homeostasis in vivo. Here, we present evidence for a manganese-based therapy in murine models of hypolipidemia and hyperlipidemia, aided by advanced in vivo multimodal imaging of atherosclerosis. Dietary titration of manganese supply enables tailored control of circulating lipid levels in whole animals, with no apparent toxicity. Strikingly, elevating the manganese signal through diets could not only effectively treat pathological hyperlipidemia but also further achieve significant reversal of atherosclerotic plaques. Hence, the study provides critical proof-of-principle for a novel therapy for deadly cardiovascular diseases with a potentially broad impact.
Collapse
Affiliation(s)
- Yawei Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100080, China
| | - Wenjing Zhou
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Runze Huang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yating Hu
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Le TV, Truong NH, Holterman AXL. Autophagy modulates physiologic and adaptive response in the liver. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:304-320. [PMID: 39958781 PMCID: PMC11792069 DOI: 10.1016/j.livres.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025]
Abstract
Autophagy is a physiological process that is ubiquitous and essential to the disposal or recycling of damaged cellular organelles and misfolded proteins to maintain organ homeostasis and survival. Its importance in the regulation of liver function in normal and pathological conditions is increasingly recognized. This review summarizes how autophagy regulates epithelial cell- and non-epithelial cell-specific function in the liver and how it differentially participates in hepatic homeostasis, hepatic injury response to stress-induced liver damage such as cholestasis, sepsis, non-alcoholic and alcohol-associated liver disease, viral hepatitis, hepatic fibrosis, hepatocellular and cholangiocellular carcinoma, and aging. Autophagy-based interventional studies for liver diseases that are currently registered in clinicatrials.gov are summarized. Given the broad and multidirectional autophagy response in the liver, a more refined understanding of the liver cell-specific autophagy activities in a context-dependent manner is necessary.
Collapse
Affiliation(s)
- Trinh Van Le
- Laboratory of Stem Cell Research and Application, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, University of Science-VNUHCM, Ho Chi Minh City, Vietnam
| | - Ai Xuan L. Holterman
- Department of Pediatrics and Surgery, University of Illinois College of Medicine, Chicago and Peoria, IL, USA
| |
Collapse
|
43
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
van Zwol W, Rimbert A, Wolters JC, Smit M, Bloks VW, Kloosterhuis NJ, Huijkman NCA, Koster MH, Tharehalli U, de Neck SM, Bournez C, Fuh MM, Kuipers J, Rajan S, de Bruin A, Ginsberg HN, van Westen GJP, Hussain MM, Scheja L, Heeren J, Zimmerman P, van de Sluis B, Kuivenhoven JA. Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion. Hepatology 2023; 78:1418-1432. [PMID: 36053190 PMCID: PMC10581432 DOI: 10.1002/hep.32709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Justina C. Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J. Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicolette C. A. Huijkman
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Umesh Tharehalli
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Simon M. de Neck
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Colin Bournez
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marceline M. Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Alain de Bruin
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gerard J. P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | | | - Bart van de Sluis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Wang X, Huang R, Wang Y, Zhou W, Hu Y, Yao Y, Cheng K, Li X, Xu B, Zhang J, Xu Y, Zeng F, Zhu Y, Chen XW. Manganese regulation of COPII condensation controls circulating lipid homeostasis. Nat Cell Biol 2023; 25:1650-1663. [PMID: 37884645 DOI: 10.1038/s41556-023-01260-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Precise control of circulating lipids is instrumental in health and disease. Bulk lipids, carried by specialized lipoproteins, are secreted into the circulation, initially via the coat protein complex II (COPII). How the universal COPII machinery accommodates the abundant yet unconventional lipoproteins remains unclear, let alone its therapeutic translation. Here we report that COPII uses manganese-tuning, self-constrained condensation to selectively drive lipoprotein delivery and set lipid homeostasis in vivo. Serendipitously, adenovirus hijacks the condensation-based transport mechanism, thus enabling the identification of cytosolic manganese as an unexpected control signal. Manganese directly binds the inner COPII coat and enhances its condensation, thereby shifting the assembly-versus-dynamics balance of the transport machinery. Manganese can be mobilized from mitochondria stores to signal COPII, and selectively controls lipoprotein secretion with a distinctive, bell-shaped function. Consequently, dietary titration of manganese enables tailored lipid management that counters pathological dyslipidaemia and atherosclerosis, implicating a condensation-targeting strategy with broad therapeutic potential for cardio-metabolic health.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Runze Huang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yawei Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenjing Zhou
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yating Hu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yuanhang Yao
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Kunlun Cheng
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xin Li
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Bolin Xu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Yaowen Xu
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Hospital, Dazhou, Sichuan, China
| | - Yuangang Zhu
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- PKU-THU Joint Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
46
|
Wang Y, Kinoshita T. The role of lipid scramblases in regulating lipid distributions at cellular membranes. Biochem Soc Trans 2023; 51:1857-1869. [PMID: 37767549 DOI: 10.1042/bst20221455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Glycerophospholipids, sphingolipids and cholesterol assemble into lipid bilayers that form the scaffold of cellular membranes, in which proteins are embedded. Membrane composition and membrane protein profiles differ between plasma and intracellular membranes and between the two leaflets of a membrane. Lipid distributions between two leaflets are mediated by lipid translocases, including flippases and scramblases. Flippases use ATP to catalyze the inward movement of specific lipids between leaflets. In contrast, bidirectional flip-flop movements of lipids across the membrane are mediated by scramblases in an ATP-independent manner. Scramblases have been implicated in disrupting the lipid asymmetry of the plasma membrane, protein glycosylation, autophagosome biogenesis, lipoprotein secretion, lipid droplet formation and communications between organelles. Although scramblases in plasma membranes were identified over 10 years ago, most progress about scramblases localized in intracellular membranes has been made in the last few years. Herein, we review the role of scramblases in regulating lipid distributions in cellular membranes, focusing primarily on intracellular membrane-localized scramblases.
Collapse
Affiliation(s)
- Yicheng Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Banerjee S, Prinz WA. Early steps in the birth of four membrane-bound organelles-Peroxisomes, lipid droplets, lipoproteins, and autophagosomes. Curr Opin Cell Biol 2023; 84:102210. [PMID: 37531895 PMCID: PMC10926090 DOI: 10.1016/j.ceb.2023.102210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Membrane-bound organelles allow cells to traffic cargo and separate and regulate metabolic pathways. While many organelles are generated by the growth and division of existing organelles, some can also be produced de novo, often in response to metabolic cues. This review will discuss recent advances in our understanding of the early steps in the de novo biogenesis of peroxisomes, lipid droplets, lipoproteins, and autophagosomes. These organelles play critical roles in cellular lipid metabolism and other processes, and their dysfunction causes or is linked to several human diseases. The de novo biogenesis of these organelles occurs in or near the endoplasmic reticulum membrane. This review summarizes recent progress and highlights open questions.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Dept of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William A Prinz
- Dept of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
48
|
Roberts MA, Deol KK, Mathiowetz AJ, Lange M, Leto DE, Stevenson J, Hashemi SH, Morgens DW, Easter E, Heydari K, Nalls MA, Bassik MC, Kampmann M, Kopito RR, Faghri F, Olzmann JA. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation. Dev Cell 2023; 58:1782-1800.e10. [PMID: 37494933 PMCID: PMC10530302 DOI: 10.1016/j.devcel.2023.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function. We further demonstrate a role for the E3 ligase MARCH6 in regulating triacylglycerol biosynthesis, thereby influencing LD abundance and PLIN2 stability. Finally, our CRISPR screens and several published screens provide the foundation for CRISPRlipid (http://crisprlipid.org), an online data commons for lipid-related functional genomics data. Our study identifies mechanisms of PLIN2 and LD regulation and provides an extensive resource for the exploration of LD biology and lipid metabolism.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirandeep K Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dara E Leto
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Julian Stevenson
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - David W Morgens
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emilee Easter
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kartoosh Heydari
- Cancer Research Laboratory FACS Core Facility, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike A Nalls
- Data Tecnica International, LLC, Washington, DC, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Faraz Faghri
- Data Tecnica International, LLC, Washington, DC, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Li D, Rocha-Roa C, Schilling MA, Reinisch KM, Vanni S. Lipid scrambling is a general feature of protein insertases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555937. [PMID: 37693532 PMCID: PMC10491306 DOI: 10.1101/2023.09.01.555937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases". These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit-card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place, and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far overlooked role in membrane dynamics as scramblases.
Collapse
Affiliation(s)
- Dazhi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew A. Schilling
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
50
|
Melia TJ. Growing thin - How bulk lipid transport drives expansion of the autophagosome membrane but not of its lumen. Curr Opin Cell Biol 2023; 83:102190. [PMID: 37385155 PMCID: PMC10528516 DOI: 10.1016/j.ceb.2023.102190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The key event in macroautophagy is the de novo formation of a new organelle called the autophagosome which when complete, will have captured bits of cytoplasm within its double-membrane structure. Eventual fusion with the lysosome allows this captured material to be degraded back to simple molecules which can be recycled to support cell function during starvation. How autophagosomes form has been a challenging question for over 60 years. This review highlights work that forms the basis for an autophagosome membrane expansion model grounded in protein-mediated lipid transport.
Collapse
|