1
|
Loft A, Emont MP, Weinstock A, Divoux A, Ghosh A, Wagner A, Hertzel AV, Maniyadath B, Deplancke B, Liu B, Scheele C, Lumeng C, Ding C, Ma C, Wolfrum C, Strieder-Barboza C, Li C, Truong DD, Bernlohr DA, Stener-Victorin E, Kershaw EE, Yeger-Lotem E, Shamsi F, Hui HX, Camara H, Zhong J, Kalucka J, Ludwig JA, Semon JA, Jalkanen J, Whytock KL, Dumont KD, Sparks LM, Muir LA, Fang L, Massier L, Saraiva LR, Beyer MD, Jeschke MG, Mori MA, Boroni M, Walsh MJ, Patti ME, Lynes MD, Blüher M, Rydén M, Hamda N, Solimini NL, Mejhert N, Gao P, Gupta RK, Murphy R, Pirouzpanah S, Corvera S, Tang S, Das SK, Schmidt SF, Zhang T, Nelson TM, O'Sullivan TE, Efthymiou V, Wang W, Tong Y, Tseng YH, Mandrup S, Rosen ED. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nat Metab 2025:10.1038/s42255-025-01296-9. [PMID: 40360756 DOI: 10.1038/s42255-025-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Adipose tissue (AT) is a complex connective tissue with a high relative proportion of adipocytes, which are specialized cells with the ability to store lipids in large droplets. AT is found in multiple discrete depots throughout the body, where it serves as the primary repository for excess calories. In addition, AT has an important role in functions as diverse as insulation, immunity and regulation of metabolic homeostasis. The Human Cell Atlas Adipose Bionetwork was established to support the generation of single-cell atlases of human AT as well as the development of unified approaches and consensus for cell annotation. Here, we provide a first roadmap from this bionetwork, including our suggested cell annotations for humans and mice, with the aim of describing the state of the field and providing guidelines for the production, analysis, interpretation and presentation of AT single-cell data.
Collapse
Affiliation(s)
- Anne Loft
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Margo P Emont
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| | - Ada Weinstock
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Adhideb Ghosh
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carey Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Changhai Ding
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Chenkai Ma
- Human Health, Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Christian Wolfrum
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- Departments of Cell Biology and Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Hannah X Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jutta Jalkanen
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Kyle D Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lindsey A Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Lucas Massier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Marc D Beyer
- Immunogenomics and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center (WGGC), Bonn, Germany
| | - Marc G Jeschke
- Centre for Burn Research, Hamilton Health Sciences Centre, Department of Surgery and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary-Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Department of Medicine - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Nicole L Solimini
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peng Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Corvera
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Su'an Tang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Swapan K Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Søren F Schmidt
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore M Nelson
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vissarion Efthymiou
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wenjing Wang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yihan Tong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Lecoutre S, Rebière C, Maqdasy S, Lambert M, Dussaud S, Abatan JB, Dugail I, Gautier EL, Clément K, Marcelin G. Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health. Nat Rev Endocrinol 2025; 21:272-288. [PMID: 39757324 DOI: 10.1038/s41574-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| | - Clémentine Rebière
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine, Karolinska Institutet Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Institut National de la Santé et de la Recherche Médicale, Bobigny, France
- Labex Inflamex, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Bobigny, France
| | - Sébastien Dussaud
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Emmanuel L Gautier
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
- Department of Nutrition, Pitie-Salpêtriere Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, Paris, France.
| |
Collapse
|
3
|
Rial SA, You Z, Vivoli A, Paré F, Sean D, AlKhoury A, Lavoie G, Civelek M, Martinez-Sanchez A, Roux PP, Durcan TM, Lim GE. 14-3-3ζ allows for adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation. Mol Metab 2025; 97:102159. [PMID: 40306359 DOI: 10.1016/j.molmet.2025.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but whether 14-3-3ζ exerted its regulatory functions in mature adipocytes or in adipose progenitor cells (APCs) remained unclear. METHODS To decipher which cell type accounted for 14-3-3ζ-regulated adiposity, adipocyte- (Adipoq14-3-3ζKO) and APC-specific (Pdgfra14-3-3ζKO) 14-3-3ζ knockout mice were generated. To further understand how 14-3-3ζ regulates adipogenesis, Tandem Affinity Purification (TAP)-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes (TAP-3T3-L1) were generated with CRISPR-Cas9, and affinity proteomics was used to examine how the nuclear 14-3-3ζ interactome changes during the initial stages of adipogenesis. ATAC-seq was used to determine how 14-3-3ζ depletion modulates chromatin accessibility during differentiation. RESULTS We show a pivotal role for 14-3-3ζ in APC differentiation, whereby male and female Pdgfra14-3-3ζKO mice displayed impaired or potentiated weight gain, respectively, as well as fat mass. Proteomics revealed that regulators of chromatin remodeling, like DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1), were significantly enriched in the nuclear 14-3-3ζ interactome and their activities were impacted upon 14-3-3ζ depletion. Enhancing DNMT activity with S-Adenosyl methionine rescued the differentiation of 14-3-3ζ-depleted 3T3-L1 cells. ATAC-seq revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Finally, 14-3-3ζ-regulated chromatin accessibility correlated with the expression of key adipogenic genes. CONCLUSION Our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
Collapse
Affiliation(s)
- Sabri A Rial
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Alexis Vivoli
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Fédéric Paré
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daphné Sean
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Amal AlKhoury
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States; Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, United States
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
4
|
Keane J, Longhi MP. Perivascular Adipose Tissue Niches for Modulating Immune Cell Function. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207368 DOI: 10.1161/atvbaha.124.321696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Perivascular adipose tissue is a unique fat depot surrounding most blood vessels with a significant role in vascular function. While adipocytes compose the vast majority of the perivascular adipose tissue by area, they only account for around 20% of the total cell number. Most of the cellular component belongs to resident immune cells, with macrophages and lymphoid cells representing ≈30% and 15% of total cells, respectively. Recently, new evidence has shown that aside from their well-known role in modulating the inflammatory tone, immune cells in perivascular adipose tissue can control adipogenesis, vessel integrity, and vascular contractility through complex cellular interactions. These interactions are spatially coordinated and influenced by the environmental state. Here, we review the mechanism by which immune cells regulate perivascular adipose tissue function with a special focus on the spatial organization of immune cells and their heterotypic interactions, supporting tissue function in health and disease.
Collapse
Affiliation(s)
- Jack Keane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
5
|
Zeng F, Zhang Q, Tsui YM, Ma H, Tian L, Husain A, Lu J, Lee JMF, Zhang VX, Li PM, Cheung GCH, Cheung TT, Ho DWH, Ng IOL. Multimodal sequencing of neoadjuvant nivolumab treatment in hepatocellular carcinoma reveals cellular and molecular immune landscape for drug response. Mol Cancer 2025; 24:110. [PMID: 40205519 PMCID: PMC11980310 DOI: 10.1186/s12943-025-02314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
A striking characteristic of liver cancer is its extensive heterogeneity, particularly with regard to its varied response to immunotherapy. In this study, we employed multimodal sequencing approaches to explore the various aspects of neoadjuvant nivolumab treatment in liver cancer patients. We used spatially-resolved transcriptomics, single- and bulk-cell transcriptomics, and TCR clonotype analyses to examine the spatiotemporal dynamics of the effects of nivolumab. We observed a significantly higher clonal expansion of T cells in the tumors of patients who responded to the treatment, while lipid accumulation was detected in those of non-responders, likely due to inherent differences in lipid metabolic processes. Furthermore, we found a preferential enrichment of T cells, which was associated with a better drug response. Our results also indicate a functional antagonism between tumor-associated macrophages (TAMs) and CD8 cells and their spatial separation. Notably, we identified a UBASH3B/NR1I2/CEACAM1/HAVCR2 signaling axis, highlighting the intense communication among TAMs, tumor cells, and T-cells that leads to pro-tumorigenic outcomes resulting in poorer nivolumab response. In summary, using integrative multimodal sequencing investigations, combined with the multi-faceted exploration of pre- and post-treatment samples of neoadjuvant nivolumab-treated HCC patients, we identified useful mechanistic determinants of therapeutic response. We also reconstructed the spatiotemporal model that recapitulates the physiological restoration of T cell cytotoxicity by anti-PD1 blockade. Our findings could provide important biomarkers and explain the mechanistic basis differentiating the responders and non-responders.
Collapse
Grants
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- University Development Fund of The University of Hong Kong
Collapse
Affiliation(s)
- Fanhong Zeng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qingyang Zhang
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Tian
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Abdullah Husain
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Po-Man Li
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Grytten E, Laupsa-Borge J, Cetin K, Bohov P, Nordrehaug JE, Skorve J, Berge RK, Strand E, Bjørndal B, Nygård OK, Rostrup E, Mellgren G, Dankel SN. Inflammatory markers after supplementation with marine n-3 or plant n-6 PUFAs: A randomized double-blind crossover study. J Lipid Res 2025; 66:100770. [PMID: 40058591 PMCID: PMC11999210 DOI: 10.1016/j.jlr.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
Omega-3 (n-3) (e.g., EPA/DHA) and omega-6 (n-6) (e.g., linoleic acid [LA]) FAs are suggested to have opposite effects on inflammation, but results are inconsistent and direct comparisons of n-3 and n-6 are lacking. In a double-blind, randomized, and crossover study, females (n = 16) and males (n = 23) aged 30-70 years with abdominal obesity were supplemented with 3-4 g/d EPA/DHA (fish oil) or 15-20 g/d LA (safflower oil) for 7 weeks, with a 9-week washout phase. Cytokines and chemokines (multiplex assay), acute-phase proteins (MALDI-TOF mass spectrometry), endothelial function (vascular reaction index), blood pressure, FA composition (red blood cell membranes/serum/adipose tissue, GC-MS/MS), and adipose gene expression (microarrays, quantitative PCR) were measured. While significant differences between treatments in relative change scores were found for systolic blood pressure (n-3 vs. n-6: -1.81% vs. 2.61%, P = 0.003), no differences between n-3 and n-6 were found for any circulatory inflammatory markers. However, compared with baseline, n-3 was followed by reductions in circulating TNF (-24.9%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-12.1%, P < 0.001), and macrophage inflammatory protein 1-beta (-12.5%, P = 0.014), and n-6 by lowered TNF (-18.8%, P < 0.001), regulated upon activation, normal T cell expressed and secreted (-7.37%, P = 0.027), monocyte chemoattractant protein-1 (-7.81%, P = 0.020), and macrophage inflammatory protein 1-beta (-14.2%, P = 0.010). Adipose tissue showed significant treatment differences in weight percent of EPA (n-3 vs. n-6: 50.2%∗ vs. -1.38%, P < 0.001, ∗: significant within-treatment change score), DHA (16.0%∗ vs. -3.67%, P < 0.001), and LA (-0.033 vs. 4.91%∗, P < 0.001). Adipose transcriptomics revealed overall downregulation of genes related to inflammatory processes after n-3 and upregulation after n-6, partly correlating with changes in circulatory markers. These data point to tissue-specific proinflammatory effects of high n-6 intake, but a net systemic anti-inflammatory effect as for n-3.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Bevital AS, Bergen, Norway
| | - Kaya Cetin
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2025; 292:1868-1883. [PMID: 39428707 PMCID: PMC12001177 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C. Sinton
- Division of Immunology, Immunity to Infection and Respiratory MedicineUniversity of ManchesterUK
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterUK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
9
|
Saeed S, la Cour Poulsen L, Visnovska T, Hoffmann A, Ghosh A, Wolfrum C, Rønningen T, Dahl MB, Wang J, Cayir A, Mala T, Kristinsson JA, Svanevik M, Hjelmesæth J, Hertel JK, Blüher M, Valderhaug TG, Böttcher Y. Chromatin landscape in paired human visceral and subcutaneous adipose tissue and its impact on clinical variables in obesity. EBioMedicine 2025; 114:105653. [PMID: 40118008 PMCID: PMC11976249 DOI: 10.1016/j.ebiom.2025.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Obesity is a global health challenge and adipose tissue exhibits distinct depot-specific characteristics impacting differentially on the risk of metabolic comorbidities. METHODS Here, we integrate chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) data from intra-individually paired human subcutaneous (SAT) and omental visceral adipose tissue (OVAT) samples to unveil depot-specific regulatory mechanisms. FINDINGS We identified twice as many depot-specific differentially accessible regions (DARs) in OVAT compared to SAT. SAT-specific regions showed enrichment for adipose tissue enhancers involving genes controlling extracellular matrix organization and metabolic processes. In contrast, OVAT-specific regions showed enrichment in promoters linked to genes associated with cardiomyopathies. Moreover, OVAT-specific regions were enriched for bivalent transcription start site and repressive chromatin states, suggesting a "lingering" regulatory state. Motif analysis identified CTCF and BACH1 as most significantly enriched motifs in SAT and OVAT-specific DARs, respectively. Distinct gene sets correlated with important clinical variables of obesity, fat distribution measures, as well as insulin, glucose, and lipid metabolism. INTERPRETATION We provide an integrated analysis of chromatin accessibility and transcriptional profiles in paired human SAT and OVAT samples, offering new insights into the regulatory landscape of adipose tissue and highlighting depot-specific mechanisms in obesity pathogenesis. FUNDING SS received EU-Scientia postdoctoral Fellowship and project funding from the European Union's Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Grant, (agreement No. 801133). LlCP and TR were supported by Helse Sør-Øst grants to Y.B (ID 2017079, ID 278908). MB received funding from grants from the DFG (German Research Foundation)-Projekt number 209933838-SFB 1052 (project B1) and by Deutsches Zentrum für Diabetesforschung (DZD, Grant: 82DZD00601).
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Tina Visnovska
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Torunn Rønningen
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Mai Britt Dahl
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Junbai Wang
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akin Cayir
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Tom Mala
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Jon A Kristinsson
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Marius Svanevik
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jens Kristoffer Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany; Department of Medicine, University of Leipzig, Leipzig, Germany.
| | | | - Yvonne Böttcher
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
10
|
Beeghly GF, Pincus MI, Varshney RR, Giri DD, Falcone DJ, Rudolph MC, Antonyak MA, Iyengar NM, Fischbach C. Hypertrophic adipocytes increase extracellular vesicle-mediated lipid release and reprogram breast cancer cell metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645549. [PMID: 40236195 PMCID: PMC11996363 DOI: 10.1101/2025.03.28.645549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Obesity worsens cancer-specific survival and all-cause mortality for women diagnosed with breast cancer. Rich in adipose tissue, the breast exhibits increased adipocyte size in obesity, which correlates with poor prognosis. However, adipocyte size is highly heterogeneous as adipose tissue expands through both hyperplasia and hypertrophy; and adipocyte size can increase independently of weight gain. Despite these observations, the impact of adipocyte size on breast cancer cell behavior remains unclear due to insufficient approaches to isolate adipocytes based on size and maintain them in culture for mechanistic studies. Here, we develop strategies to culture size-sorted adipocytes from two mouse models of obesity and test their functional impact on tumor cell malignancy. We find that large adipocytes are transcriptionally distinct from small adipocytes and are enriched for gene sets related to adipose tissue dysfunction, including altered lipid processing. In coculture studies, large adipocytes promote lipid accumulation in breast cancer cells, and enhance their migration, proliferation, and aerobic metabolism in a manner dependent on fatty acid oxidation. These changes coincide with increased release of extracellular vesicles by large versus small adipocytes, which transfer lipid to recipient tumor cells. Moving forward, our findings suggest that adipocyte size could serve as a prognostic biomarker for women with breast cancer and help identify new therapeutic targets to advance clinical outcomes for these patients.
Collapse
|
11
|
Wang H, Li J, Jing S, Lin P, Qiu Y, Yan X, Yuan J, Tang Z, Li Y, Zhang H, Chen Y, Wang Z, Li H. SOAPy: a Python package to dissect spatial architecture, dynamics, and communication. Genome Biol 2025; 26:80. [PMID: 40158115 PMCID: PMC11954224 DOI: 10.1186/s13059-025-03550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Advances in spatial omics enable deeper insights into tissue microenvironments while posing computational challenges. Therefore, we developed SOAPy, a comprehensive tool for analyzing spatial omics data, which offers methods for spatial domain identification, spatial expression tendency, spatiotemporal expression pattern, cellular co-localization, multi-cellular niches, cell-cell communication, and so on. SOAPy can be applied to diverse spatial omics technologies and multiple areas in physiological and pathological contexts, such as tumor biology and developmental biology. Its versatility and robust performance make it a universal platform for spatial omics analysis, providing diverse insights into the dynamics and architecture of tissue microenvironments.
Collapse
Affiliation(s)
- Heqi Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiarong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Jing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ping Lin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiling Qiu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiao Yuan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - ZhiXuan Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yujie Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Bjerre FA, Nielsen JV, Burton M, Dhumale P, Jørgensen MG, Hansen ST, Lund L, Thomassen M, Sørensen JA, Andersen DC, Jensen CH. Single-cell transcriptomics of clinical grade adipose-derived regenerative cells reveals consistency between donors independent of gender and BMI. Stem Cell Res Ther 2025; 16:109. [PMID: 40038777 PMCID: PMC11881426 DOI: 10.1186/s13287-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Adipose-derived regenerative cells (ADRCs) also referred to as the stromal vascular fraction, provide an ample source of stem cells with widespread regenerative therapeutic use. Being heterogenous in nature, possibly affecting the clinical outcome after stem cell treatment, the ADRC- donor, -BMI, and -gender may have a large impact on ADRC composition and quality but this remains largely unexplored. Herein, we provide a comprehensive single-cell RNA sequencing ADRC mapping across two cell trial intervention studies but found no gender- or BMI-related variations, except for a minor female increase in PI16/CD55-expressing stem cells. Indeed, ADRC heterogeneity was surprisingly minimal between donors. This provides important decision-making support on adipose stem cell donor selection for stem cell treatments, and suggest that donor, gender and BMI should be regarded as less influential.
Collapse
Affiliation(s)
- Frederik Adam Bjerre
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Andersen Group, University of Southern Denmark, Odense, Denmark
| | - Jakob Vennike Nielsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Mark Burton
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Pratibha Dhumale
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Mads Gustaf Jørgensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Sabrina Toft Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jens Ahm Sørensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit for Plastic Surgery, Odense University Hospital, Odense, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Andersen Group, University of Southern Denmark, Odense, Denmark
| | - Charlotte Harken Jensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark.
- Andersen Group, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Reinisch I, Ghosh A, Noé F, Sun W, Dong H, Leary P, Dietrich A, Hoffmann A, Blüher M, Wolfrum C. Unveiling adipose populations linked to metabolic health in obesity. Cell Metab 2025; 37:640-655.e4. [PMID: 39694039 DOI: 10.1016/j.cmet.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/06/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024]
Abstract
Precision medicine is still not considered as a standard of care in obesity treatment, despite a large heterogeneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals with metabolically healthy and unhealthy obesity. By combining single-nucleus RNA-sequencing data with bulk transcriptomics and clinical parameters, we identified that mesothelial cells, adipocytes, and adipocyte-progenitor cells exhibit the strongest correlation with metabolic disease. Furthermore, we uncovered cell-specific transcriptional programs, such as the transitioning of mesothelial cells to a mesenchymal phenotype, that are involved in uncoupling obesity from metabolic disease. Together, these findings provide valuable insights by revealing biological drivers of clinical endpoints.
Collapse
Affiliation(s)
- Isabel Reinisch
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland; Stem Cell Bio Regenerative Med Institute, Stanford University, Stanford, CA, USA
| | - Peter Leary
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
14
|
Zhu J, Xu B, Wu Z, Yu Z, Ji S, Lian J, Lu H. Integrative analysis of semaphorins family genes in colorectal cancer: implications for prognosis and immunotherapy. Front Immunol 2025; 16:1536545. [PMID: 40103807 PMCID: PMC11913869 DOI: 10.3389/fimmu.2025.1536545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Background Semaphorins (SEMAs), originally identified as axon guidance factors, have been found to play crucial roles in tumor growth, invasiveness, neoangiogenesis, and the modulation of immune responses. However, the prognostic value of SEMA-related genes in colorectal cancer (CRC) remains unclear. Methods We applied a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a SEMAs-related score (SRS). Multi-omics analysis was performed, including single-cell RNA sequencing (scRNA-seq), and spatial transcriptome (ST) to gain a more comprehensive understanding of the SRS. A series of cell experiments were conducted to prove the impact of key genes on CRC biological behavior. Result A consensus SRS was finally constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting overall survival. Moreover, distinct biological functions, mutation burden, immune cell infiltration, and immunotherapy response were observed between the high- and low-SRS groups. scRNA-seq and ST demonstrated unique cellular heterogeneity in CRC. We observed that SRS-high and SRS-low malignant epithelial cells exhibit different biological characteristics. High SRS malignant epithelial cells interact with myeloid and endothelial cells via SPP1 and COL4A2-ITGAV-ITGB8 pathways, respectively. Low SRS cells engage with myeloid and endothelial cells through MIF and JAG1-NOTCH4 pathways. Additionally, knocking down SEMA4C significantly inhibits the proliferation and invasion of CRC cells, while promoting apoptosis in vitro. Conclusion SRS could serve as an effective tool to predict survival and identify potential patients benefiting from immunotherapy in CRC. It also reveals tumor heterogeneity and provides valuable biological insights in CRC.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Benjie Xu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhixing Wu
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Zhiwei Yu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jie Lian
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haibo Lu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Wang X, Chen C, Li C, Chen X, Xu R, Chen M, Li Y, Liu Y, Liu X, Chen Y, Mo D. Integrating spatial transcriptomics and single-nucleus RNA-seq revealed the specific inhibitory effects of TGF-β on intramuscular fat deposition. SCIENCE CHINA. LIFE SCIENCES 2025; 68:746-763. [PMID: 39422812 DOI: 10.1007/s11427-024-2696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Intramuscular fat (IMF) is a complex adipose tissue within skeletal muscle, appearing specially tissue heterogeneous, and the factors influencing its formation remain unclear. In conditions such as diabetes, aging, and muscle wasting, IMF was deposited in abnormal locations in skeletal muscle, damaged the normal physiological functions of skeletal muscle. Here, we used Longissimus dorsi muscles from pigs with different IMF contents as samples and adopted a method combining spatial transcriptome (ST) and single-nucleus RNA-seq to identify the spatial heterogeneity of IMF. ST revealed that genes involved in TGF-β signaling pathways were specifically highly enriched in IMF. In lean pigs, IMF autocrine produces more TGF-β2, while in obese pigs, IMF received more endothelial-derived TGF-β1. In vitro experiments have proven that porcine endothelial cells in a simulated high-fat environment released more TGF-β1 than TGF-β2. Moreover, under obesity mice, the addition of TGF-β after muscle injury abolished IMF production and slowed muscle repair, whereas TGF-β inhibition accelerated muscle repair. Our findings demonstrate that the TGF-β pathway specifically regulates these processes, suggesting it as a potential therapeutic target for managing muscle atrophy in obese patients and enhancing muscle repair while reducing IMF deposition.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuchu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaochang Chen
- Shaanxi Basic and Clinical Translational Research Team for Atherosclerotic Cardiovascular Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yihao Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Zhang Q, Wei Y, Huang S, Mo Y, Yan B, Jin X, Xu M, Mai X, Tang C, Lan H, Liu R, Li M, Mo Z, Xie W. Association of metabolic score for insulin resistance with incident metabolic syndrome: a cohort study in middle-aged and older adult Chinese population. Front Public Health 2025; 13:1453144. [PMID: 40051521 PMCID: PMC11883690 DOI: 10.3389/fpubh.2025.1453144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Background Recent studies suggest that the metabolic score for insulin resistance (MetS-IR) is an effective indicator of metabolic disorders. However, evidence on the relationship between MetS-IR and metabolic syndrome (MetS) among the Chinese middle-aged and older adult population is limited. Objective This cohort study aims to assess the associations of MetS-IR levels with MetS risk and its components. Methods Data used in this study from the National Basic Public Health Service Project Management System (2020-2023). Multivariable Cox proportional hazards model and restricted cubic spline (RCS) were employed to evaluate the associations of baseline MetS-IR levels with MetS risk and its components, receiver operating characteristic (ROC) curves were further utilized to assess the efficacy of MetS-IR in predicting the risk of MetS and its component. Results Of 1,498 subjects without MetS at baseline, 392 incident MetS cases were observed during a median of 27.70 months of follow-up. The adjusted multivariable Cox regression analysis indicated an elevated 15% risk of developing MetS for 1-SD increment of MetS-IR [hazard ratios (HRs) and 95% confidence intervals: 1.16 (1.13-1.18)]. Compared to the first tertile of MetS-IR, the HRs of the third tertile and second tertile were 6.31 (95% CI 4.55-8.76) and 2.72 (95% CI 1.92-3.85), respectively. Consistent findings were further detected across subgroups. Moreover, nonlinear associations were observed between MetS-IR and the risk of MetS, abdominal obesity, and reduced high-density lipoprotein concentration (HDL-C) (P nonlinear < 0.01), with the cutoff of MetS-IR was 32.89. The area under the curve for MetS-IR in predicting MetS was 0.740 (95% CI 0.713-0.768), which was better than those of other indicators. Conclusion Our cohort study indicates a positive nonlinear association between MetS-IR with incident MetS, abdominal obesity, and reduced HDL-C, but positive linear associations of MetS-IR and elevated blood pressure (BP), elevated fasting blood glucose (FBG), elevated triglycerides (TG) in middle-aged and older adult people, more studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Qiuling Zhang
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Yushuang Wei
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengzhu Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - YeMei Mo
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Boteng Yan
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xihui Jin
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingjie Xu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyou Mai
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoyan Tang
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Haiyun Lan
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Rongrong Liu
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| | - Mingli Li
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenchao Xie
- The First People’s Hospital of Yulin, Yulin, Guangxi, China
| |
Collapse
|
17
|
Müller L, Oelkrug R, Mittag J, Hoffmann A, Ghosh A, Noé F, Wolfrum C, Guiu Jurado E, Klöting N, Dietrich A, Blüher M, Kovacs P, Krause K, Keller M. Sex-specific role of epigenetic modification of a leptin upstream enhancer in adipose tissue. Clin Epigenetics 2025; 17:21. [PMID: 39934931 PMCID: PMC11816557 DOI: 10.1186/s13148-025-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE Maternal hormonal status can have long-term effects on offspring metabolic health and is likely regulated via epigenetic mechanisms. We elucidated the effects of maternal thyroid hormones on the epigenetic regulation of leptin (Lep) transcription in adipose tissue (AT) and subsequently investigated the role of DNA methylation at a Lep upstream enhancer (UE) in adipocyte biology. RESULTS Pregnant mice treated with triiodothyronine (T3) produced offspring with reduced body weight, total fat mass, and gonadal white adipose tissue (gWAT) mass at 6 months of age (treatment: N = 8; control: N = 12). Compared with control offspring, exclusively female offspring of T3-treated mothers presented lower Lep mRNA levels and higher Lep UE methylation in gWAT. In murine preadipocytes, targeted demethylation of the Lep UE via a dCas9-SunTag-TET1 system reduced methylation by ~ 20%, but this effect was insufficient to alter Lep expression or lipid accumulation after differentiation. In human omental visceral AT (OVAT) samples from the Leipzig Obesity BioBank (LOBB, N = 52), LEP UE methylation was associated with body fat percentage, and mediation analysis indicated that leptin serum levels partially mediate this association exclusively in females. CONCLUSION Findings from the animal model suggest that maternal thyroid hormones influence offspring gWAT Lep expression in a sex-specific manner, potentially through changes in Lep UE methylation. However, in vitro experiments indicate that Lep UE methylation alone is not sufficient to regulate Lep expression or adipocyte lipid accumulation. In humans with obesity, LEP UE methylation is associated with body fat percentage, with leptin serum levels potentially acting as a mediator exclusively in females.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Rebecca Oelkrug
- Institute for Experimental Endocrinology - Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Jens Mittag
- Institute for Experimental Endocrinology - Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Phillip-Rosenthal Str. 27, 04103, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Esther Guiu Jurado
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Phillip-Rosenthal Str. 27, 04103, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Phillip-Rosenthal Str. 27, 04103, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Phillip-Rosenthal Str. 27, 04103, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung E.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung E.V., 85764, Neuherberg, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung E.V., 85764, Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany.
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Phillip-Rosenthal Str. 27, 04103, Leipzig, Germany.
| |
Collapse
|
18
|
Lazarescu O, Ziv-Agam M, Haim Y, Hekselman I, Jubran J, Shneyour A, Muallem H, Zemer A, Rosengarten-Levin M, Kitsberg D, Levin L, Liberty IF, Yoel U, Dukhno O, Adam M, Braune J, Müller C, Raulien N, Gericke M, Körner A, Murphy R, Blüher M, Habib N, Rudich A, Yeger-Lotem E. Human subcutaneous and visceral adipocyte atlases uncover classical and nonclassical adipocytes and depot-specific patterns. Nat Genet 2025; 57:413-426. [PMID: 39856219 PMCID: PMC11821520 DOI: 10.1038/s41588-024-02048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Human adipose depots are functionally distinct. Yet, recent single-nucleus RNA sequencing (snRNA-seq) analyses largely uncovered overlapping or similar cell-type landscapes. We hypothesized that adipocyte subtypes, differentiation trajectories and/or intercellular communication patterns could illuminate this depot similarity-difference gap. For this, we performed snRNA-seq of human subcutaneous or visceral adipose tissues (five or ten samples, respectively). Of 27,665 adipocyte nuclei in both depots, most were 'classical', namely enriched in lipid metabolism pathways. However, we also observed 'nonclassical' adipocyte subtypes, enriched in immune-related, extracellular matrix deposition (fibrosis), vascularization or angiogenesis or ribosomal and mitochondrial processes. Pseudo-temporal analysis showed a developmental trajectory from adipose progenitor cells to classical adipocytes via nonclassical adipocytes, suggesting that the classical state stems from loss, rather than gain, of specialized functions. Last, intercellular communication routes were consistent with the different inflammatory tone of the two depots. Jointly, these findings provide a high-resolution view into the contribution of cellular composition, differentiation and intercellular communication patterns to human fat depot differences.
Collapse
Grants
- Chan Zuckerberg Initiative Foundation, grant CZIF2019-002441
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, subproject C5.
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, subproject B1.
- N.H. holds the Goren-Khazzam Chair in Neurobiology and supported by the Myers Foundation.
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, subproject B2.
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, subproject B9 (M.G.).
Collapse
Affiliation(s)
- Or Lazarescu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maya Ziv-Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Shneyour
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Habib Muallem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Zemer
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marina Rosengarten-Levin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The Pathology Institute, Maccabi Healthcare Services, Rehovot, Israel
| | - Daniel Kitsberg
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idit F Liberty
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Yoel
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oleg Dukhno
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miriam Adam
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia Braune
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Claudia Müller
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- German Center for Child and Adolescent Health, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Matthias Blüher
- German Center for Child and Adolescent Health, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Rauchenwald T, Benedikt-Kühnast P, Eder S, Grabner GF, Forstreiter S, Lang M, Sango R, Eisenberg T, Rattei T, Haschemi A, Wolinski H, Schweiger M. Clearing the path for whole-mount labeling and quantification of neuron and vessel density in adipose tissue. J Cell Sci 2025; 138:JCS263438. [PMID: 39878039 PMCID: PMC11832183 DOI: 10.1242/jcs.263438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025] Open
Abstract
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works have indicated that WAT responds to environmental cues by adapting the abundance of these 'communication routes'; however, the high intra-tissue heterogeneity questions the informative value of bulk or single-cell analyses and underscores the necessity of whole-mount imaging. The applicability of whole-mount WAT-imaging is currently limited by two factors - (1) methanol-based tissue clearing protocols restrict the usable antibody portfolio to methanol-resistant antibodies and (2) the vast amounts of data resulting from 3D imaging of whole-tissue samples require high computational expertise and advanced equipment. Here, we present a protocol for whole-mount WAT clearing, overcoming the constraints of antibody-methanol sensitivity. Additionally, we introduce TiNeQuant (for 'tissue network quantifier') a Fiji tool for automated 3D quantification of neuron or vascular network density, which we have made freely available. Given TiNeQuants versatility beyond WAT, it simplifies future efforts studying neuronal or vascular alterations in numerous pathologies.
Collapse
Affiliation(s)
- Thomas Rauchenwald
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Pia Benedikt-Kühnast
- Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Sandra Eder
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gernot F. Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | | | - Michaela Lang
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Roko Sango
- Centre for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Microbiology and Environmental Systems’ Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth - University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems’ Science, University of Vienna, 1030 Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine (KILM), Medical University of Vienna, 1090 Vienna, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth - University of Graz, 8010 Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth - University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
21
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
22
|
Blüher M. Understanding Adipose Tissue Dysfunction. J Obes Metab Syndr 2024; 33:275-288. [PMID: 39734091 PMCID: PMC11704217 DOI: 10.7570/jomes24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass. Rather than excess fat accumulation, AT dysfunction may represent the mechanistic link between obesity and comorbid diseases. There are people who remain metabolically healthy despite obesity, whereas people with normal weight or very low subcutaneous AT mass may develop typically obesity-related diseases. AT dysfunction is characterized by adipocyte hypertrophy, impaired subcutaneous AT expandability (ectopic fat deposition), hypoxia, a variety of stress, inflammatory processes, and the release of proinflammatory, diabetogenic, and atherogenic signals. Genetic and environmental factors might contribute to AT heterogeneity either alone or via interaction with intrinsic biological factors. However, many questions remain regarding the mechanisms of AT dysfunction initiation and whether and how it could be reversed. Do AT signatures define clinically relevant subtypes of obesity? Is the cellular composition of AT associated with variation in obesity phenotypes? What roles do environmental compounds play in the manifestation of AT dysfunction? Answers to these and other questions may explain AT disease mechanisms and help to define strategies for improving AT health. This review focuses on recent advances in our understanding of AT biology.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
23
|
De Siqueira MK, Li G, Zhao Y, Wang S, Ahn IS, Tamboline M, Hildreth AD, Larios J, Schcolnik-Cabrera A, Nouhi Z, Zhang Z, Tol MJ, Pandey V, Xu S, O'Sullivan TE, Mack JJ, Tontonoz P, Sallam T, Wohlschlegel JA, Hulea L, Xiao X, Yang X, Villanueva CJ. PPARγ-dependent remodeling of translational machinery in adipose progenitors is impaired in obesity. Cell Rep 2024; 43:114945. [PMID: 39579770 PMCID: PMC12002411 DOI: 10.1016/j.celrep.2024.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024] Open
Abstract
Adipose tissue regulates energy homeostasis and metabolic function, but its adaptability is impaired in obesity. In this study, we investigate the impact of acute PPARγ agonist treatment in obese mice and find significant transcriptional remodeling of cells in the stromal vascular fraction (SVF). Using single-cell RNA sequencing, we profile the SVF of inguinal and epididymal adipose tissue of obese mice following rosiglitazone treatment and find an induction of ribosomal factors in both progenitor and preadipocyte populations, while expression of ribosomal factors is reduced with obesity. Notably, the expression of a subset of ribosomal factors is directly regulated by PPARγ. Polysome profiling of the epididymal SVF shows that rosiglitazone promotes translational selectivity of mRNAs that encode pathways involved in adipogenesis and lipid metabolism. Inhibition of translation using a eukaryotic translation initiation factor 4A (eIF4A) inhibitor is sufficient in blocking adipogenesis. Our findings shed light on how PPARγ agonists promote adipose tissue plasticity in obesity.
Collapse
Affiliation(s)
- Mirian Krystel De Siqueira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yutian Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Siqi Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jakeline Larios
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Schcolnik-Cabrera
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Zhengyi Zhang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia J Mack
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Sysoeva V, Semina E, Klimovich P, Kulebyakin K, Dzreyan V, Sotskaya E, Shchipova A, Popov V, Shilova A, Brodsky I, Khabibullin N, Voloshin N, Tkachuk V, Rubina K. T-cadherin modulates adipogenic differentiation in mesenchymal stem cells: insights into ligand interactions. Front Cell Dev Biol 2024; 12:1446363. [PMID: 39717846 PMCID: PMC11663858 DOI: 10.3389/fcell.2024.1446363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive. Previously, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene, which encodes the T-cadherin protein, and characterized their phenotype. Methods Using wild-type (WT) and T-cadherin-deficient mice (Cdh13ΔExon3), we isolated and cultured mesenchymal stem cells to explore the role of T-cadherin in adipogenic differentiation. The experimental approaches employed include culturing cells under standard or adipogenic conditions, performing Oil Red O and Nile Red staining followed by quantitative analysis, conducting rescue experiments to reintroduce T-cadherin using lentiviral constructs in T-cadherin-deficient cells combined with automated adipocyte differentiation quantification via a neural network. Additionally, Western blotting, ELISA assays, and statistical analysis were utilized to verify the results. Results In this study, we demonstrate for the first time that T-cadherin influences the adipogenic differentiation of MSCs. The presence of T-cadherin dictates distinct morphological characteristics in MSCs. Lack of T-cadherin leads to spontaneous differentiation into adipocytes with the formation of large lipid droplets. T-cadherin-deficient cells (T-/- MSCs) exhibit an enhanced adipogenic potential upon induction with differentiating factors. Western Blot, ELISA assays, and rescue experiments collectively corroborate the conclusion that T-/- MSCs are predisposed toward adipogenic differentiation. We carried out an original comparative analysis to explore the effects of T-cadherin ligands on lipid droplet accumulation. LDL stimulate adipogenic differentiation, while T-cadherin expression mitigates the impact of LDL on lipid droplet accumulation. We also examined the effects of both low molecular weight (LMW) and high molecular weight (HMW) adiponectin on lipid droplet accumulation relative to T-cadherin. LMW adiponectin suppressed lipid droplet accumulation independently of T-cadherin, while the absence of T-cadherin enhanced susceptibility to the suppressive effects of HMW adiponectin on adipogenesis. Discussion These findings shed light on the role of T-cadherin in adipogenic differentiation and suggest an interplay with other receptors, such as LDLR and AdipoRs, wherein downstream signaling may be modulated through lateral interactions with T-cadherin.
Collapse
Affiliation(s)
- Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Valentina Dzreyan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna Shchipova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Shilova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita Khabibullin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
25
|
Dias Araújo AR, Bello AA, Bigay J, Franckhauser C, Gautier R, Cazareth J, Kovács D, Brau F, Fuggetta N, Čopič A, Antonny B. Surface tension-driven sorting of human perilipins on lipid droplets. J Cell Biol 2024; 223:e202403064. [PMID: 39297796 PMCID: PMC11413419 DOI: 10.1083/jcb.202403064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Perilipins (PLINs), the most abundant proteins on lipid droplets (LDs), display similar domain organization including amphipathic helices (AH). However, the five human PLINs bind different LDs, suggesting different modes of interaction. We established a minimal system whereby artificial LDs covered with defined polar lipids were transiently deformed to promote surface tension. Binding of purified PLIN3 and PLIN4 AH was strongly facilitated by tension but was poorly sensitive to phospholipid composition and to the presence of diacylglycerol. Accordingly, LD coverage by PLIN3 increased as phospholipid coverage decreased. In contrast, PLIN1 bound readily to LDs fully covered by phospholipids; PLIN2 showed an intermediate behavior between PLIN1 and PLIN3. In human adipocytes, PLIN3/4 were found in a soluble pool and relocated to LDs upon stimulation of fast triglyceride synthesis, whereas PLIN1 and PLIN2 localized to pre-existing LDs, consistent with the large difference in LD avidity observed in vitro. We conclude that the PLIN repertoire is adapted to handling LDs with different surface properties.
Collapse
Affiliation(s)
- Ana Rita Dias Araújo
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Abdoul Akim Bello
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Joëlle Bigay
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Céline Franckhauser
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Romain Gautier
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Dávid Kovács
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Frédéric Brau
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| | - Nicolas Fuggetta
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier-CRBM, Université de Montpellier, CNRS, UMR 5237, Montpellier, France
| | - Bruno Antonny
- Université Côte d’Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Sophia Antipolis, France
| |
Collapse
|
26
|
Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C, Li J, Zuo Y, Sun Y, Xu G, Liu B, Ai J, Liu F, Zhao L, Zhang J, Zhang H, Sun S, Huang H, Zhang Y, Ye Y, Fan Y, Zheng F, Hu J, Zhang B, Li J, Feng X, Zhang F, Zhuang Y, Li T, Yu Y, Bao Z, Pan S, Rodriguez Esteban C, Liu Z, Deng H, Wen F, Song M, Wang S, Zhu G, Yang J, Jiang T, Song W, Izpisua Belmonte JC, Qu J, Zhang W, Gu Y, Liu GH. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 2024; 187:7025-7044.e34. [PMID: 39500323 DOI: 10.1016/j.cell.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
To systematically characterize the loss of tissue integrity and organ dysfunction resulting from aging, we produced an in-depth spatial transcriptomic profile of nine tissues in male mice during aging. We showed that senescence-sensitive spots (SSSs) colocalized with elevated entropy in organizational structure and that the aggregation of immunoglobulin-expressing cells is a characteristic feature of the microenvironment surrounding SSSs. Immunoglobulin G (IgG) accumulated across the aged tissues in both male and female mice, and a similar phenomenon was observed in human tissues, suggesting the potential of the abnormal elevation of immunoglobulins as an evolutionarily conserved feature in aging. Furthermore, we observed that IgG could induce a pro-senescent state in macrophages and microglia, thereby exacerbating tissue aging, and that targeted reduction of IgG mitigated aging across various tissues in male mice. This study provides a high-resolution spatial depiction of aging and indicates the pivotal role of immunoglobulin-associated senescence during the aging process.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Zhejun Ji
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Geng
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Jiaming Li
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Beibei Liu
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Ai
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Feifei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Liyun Zhao
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jiachen Zhang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Haoyan Huang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanxia Ye
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fangshuo Zheng
- The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Jinghao Hu
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sipei Pan
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Zhili Liu
- BGI Research, Shenzhen 518083, China
| | | | - Feng Wen
- BGI Research, Beijing 102601, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | - Jing Qu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Ying Gu
- BGI Research, Shenzhen 518083, China; BGI Research, Beijing 102601, China; BGI Research, Hangzhou 310030, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
27
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
28
|
Whytock KL, Divoux A, Sun Y, Pino MF, Yu G, Jin CA, Robino JJ, Plekhanov A, Varlamov O, Smith SR, Walsh MJ, Sparks LM. Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell 2024; 23:e14287. [PMID: 39141531 PMCID: PMC11561672 DOI: 10.1111/acel.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq and histology to characterize the cellular landscape of human abdominal subcutaneous WAT in a prospective cohort of 10 younger (≤30 years) and 10 older individuals (≥65 years) balanced for sex and body mass index (BMI). The older group had greater cholesterol, very-low-density lipoprotein, triglycerides, thyroid stimulating hormone, and aspartate transaminase compared to the younger group (p < 0.05). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of lipid-associated macrophages and mast cells, an upregulation of immune responses linked to fibrosis in pre-adipocyte, adipocyte, and vascular populations, and highlight CXCL14 as a biomarker of these processes. We show that older WAT has elevated levels of senescence marker p16 in adipocytes and identify the adipocyte subpopulation driving this senescence profile. We confirm that these transcriptional and phenotypical changes occur without overt fibrosis and in older individuals that have comparable WAT insulin sensitivity to the younger individuals.
Collapse
Affiliation(s)
- K. L. Whytock
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - A. Divoux
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - Y. Sun
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - M. F. Pino
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - G. Yu
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - C. A. Jin
- Department of Genetics, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - J. J. Robino
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - A. Plekhanov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - O. Varlamov
- Divisions of Metabolic Health and DiseaseOregon National Primate Research CenterBeavertonOregonUSA
| | - S. R. Smith
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| | - M. J. Walsh
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - L. M. Sparks
- Translational Research Institute, AdventHealthOrlandoFloridaUSA
| |
Collapse
|
29
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
30
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
31
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
32
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
33
|
Beeghly GF, Deng J, Fischbach C. Protocol to fabricate elastomer microwells for three-dimensional culture of primary adipocytes. STAR Protoc 2024; 5:103264. [PMID: 39146192 PMCID: PMC11367524 DOI: 10.1016/j.xpro.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Our understanding of how adipocytes influence metabolic signaling, immune function, and cancer progression remains limited as the culture of primary adipocytes is challenging. Here, we present a protocol to fabricate elastomer microwells for three-dimensional culture of collagen-embedded adipocytes. We describe steps to cure and functionalize elastomer microwells and to isolate and embed primary adipocytes. We then detail how to culture and analyze adipocyte-collagen gels. This protocol provides broad applications to improve our understanding of adipocyte biology in health and disease.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Jenny Deng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
35
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
36
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
37
|
Qian S, Zhang C, Tang Y, Dai M, He Z, Ma H, Wang L, Yang Q, Liu Y, Xu W, Zhang Z, Tang QQ. A single-cell sequence analysis of mouse subcutaneous white adipose tissue reveals dynamic changes during weaning. Commun Biol 2024; 7:787. [PMID: 38951550 PMCID: PMC11217364 DOI: 10.1038/s42003-024-06448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Adipose tissue development begins in the fetal period, and continues to expand after birth. Dysregulation of adipose tissue during weaning may predispose individuals to lifelong metabolic disorders. However, the developmental remodeling of adipose tissue during weaning remains largely unexplored. Here we comprehensively compare the changes in mouse subcutaneous white adipose tissue from 7 days after birth to 7 days after weaning using single-cell RNA sequencing along with other molecular and histologic assays. We characterize the developmental trajectory of preadipocytes and indicate the commitment of preadipocytes with beige potential during weaning. Meanwhile, we find immune cells unique to weaning period, whose expression of extracellular matrix proteins implies potential regulation on preadipocyte. Finally, the strongest cell-cell interaction during weaning determined by the TGFβ ligand-receptor pairs is between preadipocytes and endotheliocytes. Our results provide a detailed and unbiased cellular landscape and offer insights into the potential regulation of adipose tissue remodeling during weaning.
Collapse
Affiliation(s)
- Shuwen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengyuan Dai
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihui He
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linyuan Wang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiqi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Wang G, Muñoz-Rojas AR, Spallanzani RG, Franklin RA, Benoist C, Mathis D. Adipose-tissue Treg cells restrain differentiation of stromal adipocyte precursors to promote insulin sensitivity and metabolic homeostasis. Immunity 2024; 57:1345-1359.e5. [PMID: 38692280 PMCID: PMC11188921 DOI: 10.1016/j.immuni.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.
Collapse
Affiliation(s)
- Gang Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Yi X, Feng M, Zhu J, Yu H, He Z, Zhang Z, Zhao T, Zhang Q, Pang W. Adipocyte Progenitor Pools Composition and Cellular Niches Affect Adipogenesis Divergence in Porcine Subcutaneous and Intramuscular Fat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848240 DOI: 10.1021/acs.jafc.4c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Intramuscular fat (IMF) contributed positively to pork quality, whereas subcutaneous fat (SCF) was often considered to be a detrimental factor impacting growth and carcass traits. Reducing SCF while maintaining optimal IMF levels requires a thorough understanding of the adipogenic differences between these two adipose depots. Our study explored the differences in adipogenesis between porcine IMF and SCF, and the results showed that subcutaneous adipocytes (SCAs) demonstrate a greater potential for adipogenic differentiation, both in vivo and in vitro. Lipidomic and transcriptomic analyses suggested that intramuscular adipocytes (IMAs) are more inclined to biosynthesize unsaturated fatty acids. Furthermore, single-cell RNA sequencing (scRNA-seq) was employed to dissect the intrinsic and microenvironmental discrepancies in adipogenesis between porcine IMF and SCF. Comparative analysis indicated that SCF was enriched with preadipocytes, exhibiting an enhanced adipogenic potential, while IMF was characterized by a higher abundance of stem cells. Furthermore, coculture analyses of porcine intramuscular adipogenic cells and myogenetic cells indicated that the niche of IMAs inhibited its adipogenic differentiation. Cell communication analysis identified 160 ligand-receptor pairs and channels between adipogenic and myogenetic cells in IMF. Collectively, our study elucidated two intrinsic and microenvironmental novel mechanisms underpinning the divergence in adipogenesis between porcine SCF and IMF.
Collapse
Affiliation(s)
- Xudong Yi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Feng
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiahua Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyi Zhang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Que Zhang
- Department of Animal Science and Technology, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong 261061, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Dupuis H, Lemaitre M, Jannin A, Douillard C, Espiard S, Vantyghem MC. Lipomatoses. ANNALES D'ENDOCRINOLOGIE 2024; 85:231-247. [PMID: 38871514 DOI: 10.1016/j.ando.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipomatoses are benign proliferation of adipose tissue. Lipomas (benign fat tumors) are the most common component of lipomatosis. They may be unique or multiple, encapsulated or not, subcutaneous or sometimes visceral. In some cases, they form large areas of non-encapsulated fat hypertrophy, with a variable degree of fibrosis. They can develop despite the absence of obesity. They may be familial or acquired. At difference with lipodystrophy syndromes, they are not associated with lipoatrophy areas, except in some rare cases such as type 2 familial partial lipodystrophy syndromes (FPLD2). Their metabolic impact is variable in part depending on associated obesity. They may have functional or aesthetic consequences. Lipomatosis may be isolated, be part of a syndrome, or may be visceral. Isolated lipomatoses include multiple symmetrical lipomatosis (Madelung disease or Launois-Bensaude syndrome), familial multiple lipomatosis, the painful Dercum's disease also called Adiposis Dolorosa or Ander syndrome, mesosomatic lipomatosis also called Roch-Leri lipomatosis, familial angiolipomatosis, lipedema and hibernomas. Syndromic lipomatoses include PIK3CA-related disorders, Cowden/PTEN hamartomas-tumor syndrome, some lipodystrophy syndromes, and mitochondrial diseases, especially MERRF, multiple endocrine neoplasia type 1, neurofibromatosis type 1, Wilson disease, Pai or Haberland syndromes. Finally, visceral lipomatoses have been reported in numerous organs and sites: pancreatic, adrenal, abdominal, epidural, mediastinal, epicardial… The aim of this review is to present the main types of lipomatosis and their physiopathological component, when it is known.
Collapse
Affiliation(s)
- Hippolyte Dupuis
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France
| | - Madleen Lemaitre
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France; University Lille, 59000 Lille, France
| | - Arnaud Jannin
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France; University Lille, 59000 Lille, France
| | - Claire Douillard
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France
| | - Stéphanie Espiard
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France; University Lille, 59000 Lille, France; Inserm U1190, 59000 Lille, France
| | - Marie-Christine Vantyghem
- CHU Lille, Endocrinology, Diabetology and Metabolism, 59000 Lille, France; University Lille, 59000 Lille, France; Inserm U1190, 59000 Lille, France; Competence center PRISIS, Endocrinology and Metabolism Department, CHU, Lille, France.
| |
Collapse
|
41
|
Kühnen P, Argente J, Clément K, Dollfus H, Dubern B, Farooqi S, de Groot C, Grüters A, Holm JC, Hopkins M, Kleinendorst L, Körner A, Meeker D, Rydén M, von Schnurbein J, Tschöp M, Yeo GSH, Zorn S, Wabitsch M. IMPROVE 2022 International Meeting on Pathway-Related Obesity: Vision of Excellence. Clin Obes 2024; 14:e12659. [PMID: 38602039 DOI: 10.1111/cob.12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.
Collapse
Affiliation(s)
- Peter Kühnen
- Department of Pediatric Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Karine Clément
- Assistance Publique-Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
- INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, Paris, France
| | - Hélène Dollfus
- CARGO and Department of Medical Genetics, University of Strasbourg, Strasbourg, France
| | - Béatrice Dubern
- INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, Paris, France
- Sorbonne Université, Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Corjan de Groot
- Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annette Grüters
- Department of Pediatric Endocrinology and Diabetes, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens-Christian Holm
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Copenhagen, Denmark
| | - Mark Hopkins
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Antje Körner
- Center for Pediatric Research, Department of Pediatrics, LIFE Research Center for Civilization Diseases, University Hospital Leipzig, Leipzig, Germany
| | - David Meeker
- Rhythm Pharmaceuticals, Boston, Massachusetts, USA
| | - Mikael Rydén
- Department of Medicine H7, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Julia von Schnurbein
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum, Munich, Germany
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stefanie Zorn
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
42
|
Ospina OE, Soupir AC, Manjarres-Betancur R, Gonzalez-Calderon G, Yu X, Fridley BL. Differential gene expression analysis of spatial transcriptomic experiments using spatial mixed models. Sci Rep 2024; 14:10967. [PMID: 38744956 PMCID: PMC11094014 DOI: 10.1038/s41598-024-61758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Spatial transcriptomics (ST) assays represent a revolution in how the architecture of tissues is studied by allowing for the exploration of cells in their spatial context. A common element in the analysis is delineating tissue domains or "niches" followed by detecting differentially expressed genes to infer the biological identity of the tissue domains or cell types. However, many studies approach differential expression analysis by using statistical approaches often applied in the analysis of non-spatial scRNA data (e.g., two-sample t-tests, Wilcoxon's rank sum test), hence neglecting the spatial dependency observed in ST data. In this study, we show that applying linear mixed models with spatial correlation structures using spatial random effects effectively accounts for the spatial autocorrelation and reduces inflation of type-I error rate observed in non-spatial based differential expression testing. We also show that spatial linear models with an exponential correlation structure provide a better fit to the ST data as compared to non-spatial models, particularly for spatially resolved technologies that quantify expression at finer scales (i.e., single-cell resolution).
Collapse
Affiliation(s)
- Oscar E Ospina
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Xiaoqing Yu
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Biostatistics and Epidemiology Core, Division of Health Services & Outcomes Research, Children's Mercy, Kansas City, MO, USA.
| |
Collapse
|
43
|
Klingelhuber F, Frendo-Cumbo S, Omar-Hmeadi M, Massier L, Kakimoto P, Taylor AJ, Couchet M, Ribicic S, Wabitsch M, Messias AC, Iuso A, Müller TD, Rydén M, Mejhert N, Krahmer N. A spatiotemporal proteomic map of human adipogenesis. Nat Metab 2024; 6:861-879. [PMID: 38565923 PMCID: PMC11132986 DOI: 10.1038/s42255-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.
Collapse
Affiliation(s)
- Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pamela Kakimoto
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Austin J Taylor
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morgane Couchet
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Sara Ribicic
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
- Endocrinology unit, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
44
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
45
|
Divoux A, Whytock KL, Halasz L, Hopf ME, Sparks LM, Osborne TF, Smith SR. Distinct subpopulations of human subcutaneous adipose tissue precursor cells revealed by single-cell RNA sequencing. Am J Physiol Cell Physiol 2024; 326:C1248-C1261. [PMID: 38581663 PMCID: PMC11193533 DOI: 10.1152/ajpcell.00726.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Meghan E Hopf
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
- Department of Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, United States
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida, United States
| |
Collapse
|
46
|
Moreno-Pérez O, Reyes-García R, Modrego-Pardo I, López-Martínez M, Soler MJ. Are we ready for an adipocentric approach in people living with type 2 diabetes and chronic kidney disease? Clin Kidney J 2024; 17:sfae039. [PMID: 38572499 PMCID: PMC10986245 DOI: 10.1093/ckj/sfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 04/05/2024] Open
Abstract
We are entering a new era in the management of adiposity-based chronic disease (ABCD) with type 2 diabetes (T2D) and related chronic kidney disease (CKD). ABCD, T2D and CKD can affect almost every major organ system and have a particularly strong impact on the incidence of cardiovascular disease (CVD) and heart failure. ABCD and the associated insulin resistance are at the root of many cardiovascular, renal and metabolic (CKM) disorders, thus an integrated therapeutic framework using weight loss (WL) as a disease-modifying intervention could simplify the therapeutic approach at different stages across the lifespan. The breakthrough of highly effective WL drugs makes achieving a WL of >10% possible, which is required for a potential T2D disease remission as well as for prevention of microvascular disease, CKD, CVD events and overall mortality. The aim of this review is to discuss the link between adiposity and CKM conditions as well as placing weight management at the centre of the holistic CKM syndrome approach with a focus on CKD. We propose the clinical translation of the available evidence into a transformative Dysfunctional Adipose Tissue Approach (DATA) for people living with ABCD, T2D and CKD. This model is based on the interplay of four essential elements (i.e. adipocentric approach and target organ protection, dysfunctional adiposity, glucose homeostasis, and lifestyle intervention and de-prescription) together with a multidisciplinary person-centred care. DATA could facilitate decision-making for all clinicians involved in the management of these individuals, and if we do this in a multidisciplinary way, we are prepared to meet the adipocentric challenge.
Collapse
Affiliation(s)
- Oscar Moreno-Pérez
- Department of Endocrinology and Nutrition, General University Hospital Dr Balmis of Alicante, Institute of Health and Biomedical Research of Alicante (ISABIAL), Alicante, Alicante, Spain
- Department of Clinical Medicine, Miguel Hernández University, San Juan, Alicante, Spain
| | - Rebeca Reyes-García
- Endocrinology Unit, University Hospital of Torrecárdenas, Almería, Almería, Spain; CIBER de Fragilidad y Envejecimiento Saludable “CIBERFES”, Instituto de Salud Carlos III
| | - Inés Modrego-Pardo
- Department of Endocrinology and Nutrition, University Hospital Marina Baixa, Villajoyosa, Alicante, Spain
| | - Marina López-Martínez
- Department of Nephrology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, Barcelona, Spain; Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain. GEENDIAB, RICORS2024
| | - María José Soler
- Department of Nephrology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, Barcelona, Spain; Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), Barcelona, Spain. GEENDIAB, RICORS2024
| |
Collapse
|
47
|
Chaurasiya V, Nidhina Haridas PA, Olkkonen VM. Adipocyte-endothelial cell interplay in adipose tissue physiology. Biochem Pharmacol 2024; 222:116081. [PMID: 38408682 DOI: 10.1016/j.bcp.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Adipose tissue (AT) expansion through hyperplasia or hypertrophy requires vascular remodeling that involves angiogenesis. There is quite some evidence that obese white AT (WAT) displays altered vasculature. Some studies suggest that this is associated with hypoxia, which is thought to play a role in inducing inflammatory activation of the excessively expanding WAT. Increasing evidence, based on genetic manipulations or treatments with inhibitory or activator pharmaceuticals, demonstrates that AT angiogenesis is crucial for AT metabolic function, and thereby for whole body metabolism and metabolic health. Despite some contradiction between studies, disturbance of WAT angiogenesis in obesity could be an important factor driving WAT dysfunction and the comorbidities of obesity. Endothelial cells (ECs) contribute to healthy WAT metabolism via transport of fatty acids and other plasma components, secretory signaling molecules, and extracellular vesicles (EVs). This communication is crucial for adipocyte metabolism and underscores the key role that the AT endothelium plays in systemic energy homeostasis and healthy metabolism. Adipocytes communicate towards the neighboring endothelium through several mechanisms. The pro-inflammatory status of hypertrophic adipocytes in obesity is reflected in ECs activation, which promotes chronic inflammation. On the other hand, adiponectin secreted by the adipocytes is important for healthy endothelial function, and adipocytes also secrete other pro- or anti-angiogenic effector molecules and a wealth of EVs - however, their detailed roles in signaling towards the endothelium are yet poorly understood. To conclude, targeting AT angiogenesis and promoting the healthy communication between adipocytes and ECs represent potentially promising strategies to treat obesity and its comorbidities.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Helsinki, Finland, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Helsinki, Finland, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
48
|
Guo X, Ning J, Chen Y, Liu G, Zhao L, Fan Y, Sun S. Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Brief Funct Genomics 2024; 23:95-109. [PMID: 37022699 DOI: 10.1093/bfgp/elad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Differential expression (DE) analysis is a necessary step in the analysis of single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) data. Unlike traditional bulk RNA-seq, DE analysis for scRNA-seq or SRT data has unique characteristics that may contribute to the difficulty of detecting DE genes. However, the plethora of DE tools that work with various assumptions makes it difficult to choose an appropriate one. Furthermore, a comprehensive review on detecting DE genes for scRNA-seq data or SRT data from multi-condition, multi-sample experimental designs is lacking. To bridge such a gap, here, we first focus on the challenges of DE detection, then highlight potential opportunities that facilitate further progress in scRNA-seq or SRT analysis, and finally provide insights and guidance in selecting appropriate DE tools or developing new computational DE methods.
Collapse
Affiliation(s)
- Xiya Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Ning
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanze Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guoliang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liyan Zhao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Fan
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiquan Sun
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Trace Elements and Endemic Diseases, Center for Single Cell Omics and Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
Rial SA, You Z, Vivoli A, Sean D, Al-Khoury A, Lavoie G, Civelek M, Martinez-Sanchez A, Roux PP, Durcan TM, Lim GE. 14-3-3ζ regulates adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585495. [PMID: 38562727 PMCID: PMC10983991 DOI: 10.1101/2024.03.18.585495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but the temporal specificity of its action during adipocyte differentiation remains unclear. To decipher if 14-3-3ζ exerts its regulatory functions on mature adipocytes or on adipose precursor cells (APCs), we generated Adipoq14-3-3ζKO and Pdgfra14-3-3ζKO mouse models. Our findings revealed a pivotal role for 14-3-3ζ in APC differentiation in a sex-dependent manner, whereby male and female Pdgfra14-3-3ζKO mice display impaired or potentiated weight gain, respectively, as well as fat mass. To better understand how 14-3-3ζ regulates the adipogenic transcriptional program in APCs, CRISPR-Cas9 was used to generate TAP-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes. Using these cells, we examined if the 14-3-3ζ nuclear interactome is enriched with adipogenic regulators during differentiation. Regulators of chromatin remodeling, such as DNMT1 and HDAC1, were enriched in the nuclear interactome of 14-3-3ζ, and their activities were impacted upon 14-3-3ζ depletion. The interactions between 14-3-3ζ and chromatin-modifying enzymes suggested that 14-3-3ζ may control chromatin remodeling during adipogenesis, and this was confirmed by ATAC-seq, which revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Moreover, 14-3-3ζ-dependent chromatin accessibility was found to directly correlate with the expression of key adipogenic genes. Altogether, our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
Collapse
Affiliation(s)
- SA Rial
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Z You
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - A Vivoli
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - D Sean
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Amal Al-Khoury
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - M Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - A Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Roux PP
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - TM Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - GE Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
50
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|