1
|
Saito E, Ogita K, Harada T, Wakabayashi Y, Yagi T, Yamaguchi T, Oshibe T, Oooka T, Kawai T. A foodborne outbreak caused by atypical enteropathogenic Escherichia coli O45:H15 in the Kinki region of Japan. Appl Environ Microbiol 2025:e0012325. [PMID: 40422291 DOI: 10.1128/aem.00123-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) mainly causes sporadic diarrhea and occasional outbreaks. However, the genetic determinant of aEPEC causing large outbreaks is still unknown. In June 2022, 171 of 934 people presented with diarrhea and abdominal pain after eating a lunch box in the Kinki region of Japan. We investigated 44 fecal samples from persons who ate the cuisine and isolated enteropathogenic Escherichia coli (EPEC) serotype O45:H15 from 38 of them. The same pathogen was also isolated from the feces of two employees and a leftover sample (mashed tofu salad with spinach). Pulsed-field gel electrophoresis and whole genome sequencing supported the clonality of the isolates. The isolates were negative for bfpA, encoding the bundle-forming pilus, and were accordingly identified as aEPEC. Whole genome sequencing revealed the presence of a plasmid-encoded type 3 secretion system effector gene, espT, involving the invasive phenotype of EPEC. Finally, we concluded that this was a foodborne outbreak caused by aEPEC O45:H15. Since the food poisoning case caused by aEPEC O45:H15 harboring espT has not been reported previously, the current study broadens our understanding of aEPEC food poisoning and its genetic background.IMPORTANCEaEPEC causes diarrhea in humans, despite the reported asymptomatic carriers of aEPEC worldwide. Several outbreaks caused by aEPEC also support that this pathogen is a diarrheagenic agent; however, the genetic determinant of aEPEC causing large outbreaks is still unclear. In 2022, a large foodborne outbreak by aEPEC O45:H15 affected more than 170 people in the Kinki region of Japan. We sequenced the whole genomes of the etiological agents and identified a potential virulent plasmid carrying espT, which is a virulence factor of aEPEC O111 that caused diarrhea in more than 600 people in Finland. Our data strengthen the importance of espT as a virulence factor of aEPEC outbreaks.
Collapse
Affiliation(s)
- Etsuko Saito
- Division of Infectious Disease, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Kenichi Ogita
- Division of Infectious Disease, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Tetsuya Harada
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Osaka, Japan
| | - Yuki Wakabayashi
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Osaka, Japan
| | - Takako Yagi
- Food Sanitation and Pharmaceutical Affairs Division, Hyogo Prefectural Government Kitaharima District Administration Office Kato Health & Welfare Office, Kato, Hyogo, Japan
| | - Takahiro Yamaguchi
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Osaka, Japan
| | - Tomohiro Oshibe
- Division of Infectious Disease, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Tetsuhiko Oooka
- Division of Infectious Disease, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Takao Kawai
- Bacteriology Section, Division of Microbiology, Osaka Institute of Public Health, Osaka, Osaka, Japan
| |
Collapse
|
2
|
Bizot E, Bonacorsi S, Labé P, Pinhas Y, Cointe A, Ferroni A, Cohen JF, Lécuyer H, Toubiana J. Use of gastrointestinal syndromic multiplex molecular assays and detection of Escherichia coli pathotypes in pediatric wards. J Clin Microbiol 2025; 63:e0107324. [PMID: 40008873 PMCID: PMC11980392 DOI: 10.1128/jcm.01073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Escherichia coli pathotypes are enteric pathogens detected in gastrointestinal multiplex polymerase chain reaction (mPCR), with controversial clinical relevance. Our study aimed to describe clinical features and therapeutic decisions associated with E. coli detections in gastrointestinal mPCR. Children with positive mPCR for enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), Shiga toxin-producing E. coli (STEC), and enteroinvasive E. coli (EIEC)/Shigella identified in two pediatric hospitals over 18 months (2020-2021) were included. We described the frequency of E. coli detection and subsequent modifications in antibiotic strategies. Among the 2,471 mPCRs performed, 338 (14%) tested positive for at least one E. coli pathotype. The patient's mean age was 4.2 years, with 95% experiencing gastrointestinal symptoms. Clinical presentation was generally comparable between E. coli pathotypes. A recent travel abroad was reported in 68/338 (20%) cases and was mainly observed in EIEC/Shigella infections. An E. coli was detected alone in 177/338 (52%) cases and with another virus, bacteria, or parasite in 161 (48%) cases. Multiple enteric pathogens were mainly detected with ETEC (n = 24/26, 92%) and EAEC (n = 82/121, 68%) detections. Antibiotic therapy was prescribed in 136/338 (40%) cases, with initiation based on mPCR results in 69/338 (20%). No antibiotic therapy was discontinued following positive mPCR results. Among the 69 initiations, 31 were deemed inappropriate after retrospective chart review. E. coli detection with mPCR tests may lead to inappropriate antibiotic initiation. Caution is advised when interpreting results from gastrointestinal mPCRs in children, as clinicians may be unaware of their often unclear or irrelevant clinical significance.IMPORTANCEEscherichia coli pathotypes are increasingly detected through the widely used syndromic gastrointestinal multiplex PCR panels. However, their clinical significance and impact on antibiotic therapy in children remain uncertain. This study describes the clinical and microbiological characteristics associated with E. coli detections, as well as the subsequent modifications in antibiotic strategies. It highlights the frequent detection of E. coli pathotypes, often in association with other enteric pathogens, and reveals that nearly half of the antibiotics prescribed following these results were deemed inappropriate. These results underscore the need to enhance clinicians' interpretation of E. coli-positive results and reassess treatment strategies to optimize patient care.
Collapse
Affiliation(s)
- Etienne Bizot
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades, University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Stéphane Bonacorsi
- Microbiology Unit, Robert Debré Hospital, Assistance Publique - Hôpitaux de Paris, Paris, Île-de-France, France
- IAME, UMR1137, INSERM, Université Paris Cité, Paris, France
| | - Pauline Labé
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades, University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Yael Pinhas
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades, University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Aurélie Cointe
- Microbiology Unit, Robert Debré Hospital, Assistance Publique - Hôpitaux de Paris, Paris, Île-de-France, France
- IAME, UMR1137, INSERM, Université Paris Cité, Paris, France
| | - Agnès Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Jérémie F. Cohen
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades, University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Hervé Lécuyer
- Department of Clinical Microbiology, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- INSERM U1151, CNRS UMR8253, Université Paris Cité, Institut Necker Enfants Malades, Paris, France
| | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades, University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Ajekiigbe VO, Ogieuhi IJ, Anthony CS, Bakare IS, Anyacho S, Ogunleke PO, Fatokun DI, Akinmeji O, Ruth OT, Olaore AK, Amusa O, Agbo CE. Consumer behavior and its role in E. coli outbreaks: the impact of fast-food preparation practices and hygiene awareness. Trop Med Health 2025; 53:27. [PMID: 39994697 PMCID: PMC11849153 DOI: 10.1186/s41182-025-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The fast-food industry, a rapidly expanding business due to the influence of urbanization and busy lifestyles, has significantly shaped consumer food habits and quality food-seeking behavior. However, this fast-growing sector is frequently challenged by bacteria of clinical, microbiological, and economic importance, including Escherichia coli (E. coli). While many strains of E. coli are harmless and support digestion, pathogenic variants such as E. coli O157:H7 are responsible for severe foodborne illnesses, public health crises, and economic losses. MAIN BODY Our study explores consumer behavior within the fast-food industry, highlighting its role in shaping responses to E. coli outbreaks. Also, it examines how increased awareness of food safety risks has influenced consumer decisions, such as adopting hygienic practices and preferring establishments that prioritize food safety. Furthermore, the study investigates the contribution of poor fast-food preparation practices-such as undercooking and cross-contamination-to the spread of E. coli and emphasizes the critical need for improved hygiene awareness among fast-food workers. We analysed notable case studies involving E. coli outbreaks linked to fast-food chains, and subsequently identified gaps in industry practices and consumer behavior that exacerbate the risk of foodborne illnesses. This emphasizes the importance of preventive measures, including industry-driven reforms such as enhanced food handling protocols and consumer education programs, to mitigate future outbreaks. CONCLUSIONS This study aims to provide evidence-based insights into the shared responsibility of fast-food establishments and consumers in reducing the prevalence of E. coli infections. By addressing gaps in hygiene awareness and preparation practices, the findings emphasize the potential for collaborative efforts to strengthen public health outcomes and prevent further outbreaks.
Collapse
|
4
|
Halimi S, Rezaei A, Mohebi S, Hashemi FB. Antimicrobial susceptibility, biofilm formation, and virulence genes among atypical enteropathogenic Escherichia coli stool isolates in Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2025; 17:32-40. [PMID: 40330055 PMCID: PMC12049752 DOI: 10.18502/ijm.v17i1.17799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background and Objectives Enteropathogenic Escherichia coli (EPEC) strains are emerging pathogens around the world, particularly among pediatric patients in developing countries, such as Iran. This study aims to examine and compare the characteristics of EPEC isolates from patients, who suffer from diarrhea versus isolates from patients without diarrhea. Materials and Methods A total of 734 stool specimens [440 diarrheal (D), and 294 non-diarrheal (ND)] were examined. Thirty-six EPEC isolates (26 D, and 10 ND) were recovered by culture on MacConkey agar, followed by biochemical tests. Using PCR assay, eae +; stx1 - and stx2 -gene profiles of EPEC isolates were confirmed. The antimicrobial resistance was assessed by disk diffusion assay. Biofilm formation was assessed using a standard semi-quantitative microtiter plate assay. Virulence-associated genes, ehac, espA, fimA, flu, and sslE were detected. Results E. coli comprised 14% of all isolates were EPEC isolates that showed the highest sensitivity to imipenem (IPM) (100%) and gentamicin (GEN) (89%). However, susceptibility to ciprofloxacin and cotrimoxazole or trimethoprim\sulfamethoxazole (SXT) was only 28% and 39%, respectively. About 61% of isolates produced Moderate Biofilm (MB), and the frequency of Weak Biofilm (WB) formers (27%) was higher among D and ND isolates, which carried virulence genes more frequently than D isolates. Conclusion Preventive measures by public health authorities can thwart the imminent crisis of widespread zoonotic contamination of the food chain in Iran. Our results may help clinicians make optimal therapeutic choices during the treatment of patients with severe EPEC infections, and assist epidemiologists devise policies for effective control of outbreaks.
Collapse
Affiliation(s)
- Shahnaz Halimi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Rezaei
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Mohebi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Bonakdar Hashemi
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Trovão LDO, Vieira MAM, Santos ACDM, Puño-Sarmiento JJ, Nunes PHS, Santos FF, Rocha VGP, Knöbl T, Navarro-Garcia F, Gomes TAT. Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic Escherichia coli (aEPEC). Front Cell Infect Microbiol 2024; 14:1393369. [PMID: 39703371 PMCID: PMC11656320 DOI: 10.3389/fcimb.2024.1393369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model in vivo. This phenomenon was not observed with a tEPEC prototype strain. Few studies on aEPEC strains evaluating their capacity to induce intestinal mucus hypersecretion were done. This study aimed to investigate aEPEC strains regarding their genotypic and phenotypic characteristics, their ability to alter mucus production in an in vivo intestinal infection model, and their potential mucinolytic activity. To investigate the relationship between strains 0421-1 and 3991-1 and 11 other aEPEC strains, their serotypes, sequence types (ST), and virulence factors (VF), several sequencing and genomic analyses were carried out. The study also involved researching the reproduction of mucus hypersecretion in rabbits in vivo. We found that the two mucus-inducing strains and two other strains (1582-4 and 2531-13) shared the same phylogroup (A), ST (378), serotype (O101/O162:H33), and intimin subtype (ι2), were phylogenetically related, and induced mucus hypersecretion in vivo. A wide diversity of VFs was found among the strains, confirming their genomic heterogeneity. However, among the genes studied, no unique virulence factor or gene set was identified exclusively in the mucus-inducing strains, suggesting the multifactorial nature of this phenomenon. The two strains (1582-4 and 2531-13) closely related to the two aEPEC strains that induced mucus production in vivo also induced the phenomenon. The investigation of the mucinolytic activity revealed that all aEPEC strains used mucins as their carbon sources. Ten of the 13 aEPEC strains could cross a mucin layer, and only four adhered better to agar containing mucin than to agar without mucin. The present study paves the way for subsequent investigations into the molecular mechanisms regarding cellular interactions and responses, as well as the correlation between virulence factors and the induction of mucus production/expression during aEPEC infections.
Collapse
Affiliation(s)
- Liana de Oliveira Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Aparecida Midolli Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan Josue Puño-Sarmiento
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Terezinha Knöbl
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Navarro-Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Liu Y, Xu D, Guo S, Wang S, Ding H, Siu C, Wan F. The gut microbiota-independent virulence of noninvasive bacterial pathogen Citrobacter rodentium. PLoS Pathog 2024; 20:e1012758. [PMID: 39630719 DOI: 10.1371/journal.ppat.1012758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Attaching and effacing (A/E) bacterial pathogens consist of human pathogens enteropathogenic Escherichia coli, enterohemorrhagic E. coli and their murine equivalent Citrobacter rodentium (CR). Emerging evidence suggests that the complex pathogen-microbiota-host interactions are critical in conferring A/E pathogen infection-induced severe symptoms and lethality in immunocompromised hosts; however, the precise underlying mechanisms remain enigmatic. Here we report that CR infection causes severe colitis and mortality in interleukin 22 knockout (Il22-/-) and Rag1 knockout (Rag1-/-) mice under germ-free (GF) conditions. In a gut microbiota-independent manner, CR colonizes in GF Il22-/- and Rag1-/- animals, triggers colonic epithelial tissue damage and systemic dissemination of CR, and results in lethal infections. Pretreatment with cefoxitin, a broad-spectrum antibiotic, exacerbates CR-induced colitis and lethality in specific-pathogen-free (SPF) Il22-/- and Rag1-/- mice. Together our results reveal that CR possesses a gut microbiota-independent virulence, which is better illustrated during infections in immunocompromised hosts associated with severe outcomes.
Collapse
Affiliation(s)
- Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Songwei Guo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shuyu Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hua Ding
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Catherine Siu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Weme ET, Brandal LT, Jenum PA, Wester AL, Müller F. Prevalence and characteristics of 11 potentially diarrhoeagenic microbes in asymptomatic individuals in Norway, 2015-2020. APMIS 2024; 132:797-806. [PMID: 39370710 DOI: 10.1111/apm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
We aimed to estimate the prevalence of potentially diarrhoeagenic microbes (PDMs) in faecal samples from asymptomatic individuals in a high-income country, identify risk factors for carriage and to identify microbial factors that differ between PDMs in asymptomatic versus symptomatic individuals. Samples from 1000 asymptomatic participants were collected, together with a questionnaire, between 2015 and 2020 and examined by PCR for 11 PDMs. Isolates were characterised and potential risk factors were registered. Atypical enteropathogenic Escherichia coli (aEPEC), Yersinia enterocolitica, Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC) and Campylobacter spp. were found in 163 (16%), 20 (2.0%), 17 (1.7%), 12 (1.2%) and 11 (1.1%) asymptomatic individuals, respectively. Other PDMs were rare. Only low virulent STEC, with stx1c, stx2b or stx2f, was detected. Travels outside Europe was a significant risk factor for detecting Campylobacter spp. (odds ratio (OR) 6.99; 95% CI 1.12-43.6) and ETEC (OR 11.4; 95% CI 1.26-102). Individuals ≥65 years of age had lower odds of carrying STEC (OR 0.11; 95% CI 0.02-0.57) or EPEC (OR 0.09; 95% CI 0.05-0.16) than individuals ≤5 years of age. The common finding of PDMs in asymptomatic individuals could have implications for the interpretation of positive findings in clinical samples and infection control measures.
Collapse
Affiliation(s)
| | - Lin Thorstensen Brandal
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Arne Jenum
- Department of Laboratory Medicine, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Fredrik Müller
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Contreras CA, Hazen TH, Guadarrama C, Cervantes-Rivera R, Ochoa TJ, Vinuesa P, Rasko DA, Puente JL. Phenotypic diversity of type III secretion system activity in enteropathogenic Escherichia coli clinical isolates. J Med Microbiol 2024; 73:001907. [PMID: 39432330 PMCID: PMC11493143 DOI: 10.1099/jmm.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction. Enteropathogenic Escherichia coli (EPEC) strains pose a significant threat as a leading cause of severe childhood diarrhoea in developing nations. EPEC pathogenicity relies on the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE), facilitating the secretion and translocation of bacterial effector proteins.Gap Statement. While the regulatory roles of PerC (plasmid-encoded regulator) and GrlA (global regulator of LEE-activator) in ler expression and LEE gene activation are well-documented in the EPEC prototype strain E2348/69, understanding the variability in LEE gene expression control mechanisms among clinical EPEC isolates remains an area requiring further investigation.Aim. This study aims to explore the diversity in LEE gene expression control mechanisms among clinical EPEC isolates through a comparative analysis of secretion profiles under defined growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression.Methodology. We compared T3SS-dependent secretion patterns and promoter expression in both typical EPEC (tEPEC) and atypical EPEC (aEPEC) clinical isolates under growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression. Additionally, we conducted promoter reporter activity assays, quantitative real-time PCR and Western blot experiments to assess gene expression activity.Results. Significant differences in T3SS-dependent secretion were observed among tEPEC and aEPEC strains, independent of LEE sequence variations or T3SS gene functionality. Notably, a clinical tEPEC isolate exhibited increased secretion levels under repressive growth conditions and in the absence of both PerC and GrlA, implicating an alternative mechanism in the activation of Ler (LEE-encoded regulator) expression.Conclusion. Our findings indicate that uncharacterized LEE regulatory mechanisms contribute to phenotypic diversity among clinical EPEC isolates, though their impact on clinical outcomes remains unknown. This challenges the conventional understanding based on reference strains and highlights the need to investigate beyond established models to comprehensively elucidate EPEC pathogenesis.
Collapse
Affiliation(s)
- Carmen A. Contreras
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
- Programa de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Tracy H. Hazen
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Ramón Cervantes-Rivera
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- University of Texas School of Public Health, Houston, USA
| | - Pablo Vinuesa
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David A. Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jose L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| |
Collapse
|
9
|
Olawole AS, Malahlela MN, Fonkui TY, Marufu MC, Cenci-Goga BT, Grispoldi L, Etter EMC, Tagwireyi WM, Karama M. Occurrence, serotypes and virulence characteristics of Shiga toxin-producing and Enteropathogenic Escherichia coli isolates from dairy cattle in South Africa. World J Microbiol Biotechnol 2024; 40:299. [PMID: 39134916 PMCID: PMC11319423 DOI: 10.1007/s11274-024-04104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Shiga toxin-producing and Enteropathogenic Escherichia coli are foodborne pathogens commonly associated with diarrheal disease in humans. This study investigated the presence of STEC and EPEC in 771 dairy cattle fecal samples which were collected from 5 abattoirs and 9 dairy farms in South Africa. STEC and EPEC were detected, isolated and identified using culture and PCR. Furthermore, 339 STEC and 136 EPEC isolates were characterized by serotype and major virulence genes including stx1, stx2, eaeA and hlyA and the presence of eaeA and bfpA in EPEC. PCR screening of bacterial sweeps which were grown from fecal samples revealed that 42.2% and 23.3% were STEC and EPEC positive, respectively. PCR serotyping of 339 STEC and 136 EPEC isolates revealed 53 different STEC and 19 EPEC serotypes, respectively. The three most frequent STEC serotypes were O82:H8, OgX18:H2, and O157:H7. Only 10% of the isolates were classified as "Top 7" STEC serotypes: O26:H2, 0.3%; O26:H11, 3.2%; O103:H8, 0.6%; and O157:H7, 5.9%. The three most frequent EPEC serotypes were O10:H2, OgN9:H28, and O26:H11. The distribution of major virulence genes among the 339 STEC isolates was as follows: stx1, 72.9%; stx2, 85.7%; eaeA, 13.6% and hlyA, 69.9%. All the 136 EPEC isolates were eaeA-positive but bfpA-negative, while 46.5% carried hlyA. This study revealed that dairy cattle are a major reservoir of STEC and EPEC in South Africa. Further comparative studies of cattle and human STEC and EPEC isolates will be needed to determine the role played by dairy cattle STEC and EPEC in the occurrence of foodborne disease in humans.Please kindly check and confirm the country and city name in affiliation [6].This affiliation is correct.Please kindly check and confirm the affiliationsConfirmed. All Affiliations are accurate.
Collapse
Affiliation(s)
- Alaba S Olawole
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Mogaugedi N Malahlela
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Thierry Y Fonkui
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Beniamino T Cenci-Goga
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
- Departiment of Veterinary Medicine, Laboratorio Di Ispezione Degli Alimenti Di Origine Animale, University of Perugia, 06126, Perugia, Italy
| | - Luca Grispoldi
- Departiment of Veterinary Medicine, Laboratorio Di Ispezione Degli Alimenti Di Origine Animale, University of Perugia, 06126, Perugia, Italy
| | - Eric M C Etter
- CIRAD, UMR ASTRE, 97170, Petit-Bourg, Guadeloupe, France
- ASTRE, University de Montpellier, CIRAD, INRAE, 34398, Montpellier, France
| | - Whatmore M Tagwireyi
- Clinical Sciences, School of Veterinary Medicine, Ross University, P.O. Box 334, Basseterre, West Indies, St Kitts and Nevis
| | - Musafiri Karama
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
10
|
Park MN, Yeo SG, Park J, Jung Y, Hwang SM. Usefulness and Limitations of PFGE Diagnosis and Nucleotide Sequencing Method in the Analysis of Food Poisoning Pathogens Found in Cooking Employees. Int J Mol Sci 2024; 25:4123. [PMID: 38612932 PMCID: PMC11012705 DOI: 10.3390/ijms25074123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
In the case of a food poisoning outbreak, it is essential to understand the relationship between cooking workers and food poisoning. Many biological diagnostic methods have recently been developed to detect food poisoning pathogens. Among these diagnostic tools, this study presents PCR-based pulsed-field gel electrophoresis and nucleotide sequencing diagnostic analysis results for diagnosing food poisoning outbreaks associated with cooking employees in Chungcheongnam-do, Republic of Korea. Pulsed-field gel electrophoresis was useful in identifying the food poisoning outbreaks caused by Staphylococcus aureus and Enteropathogenic Escherichia coli. In the case of Norovirus, nucleotide sequencing was used to identify the relationship between cooking workers and the food poisoning outbreak. However, it is difficult to determine whether cooking employees directly caused the food poisoning outbreaks based on these molecular biological diagnostic results alone. A system is needed to integrate epidemiological and diagnostic information to identify a direct correlation between the food poisoning outbreak and cooking employees.
Collapse
Affiliation(s)
- Mi-Na Park
- Graduate School of Public Health & Welfare, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea;
- Chungcheongnam-do Institute of Health and Environment Research, 8 Hongyegongwon-ro, Hongseong 32254, Republic of Korea;
| | - Sang-Gu Yeo
- Korea Disease Control and Prevention Agency, Osong Health Technology Administration Complex, 2 Osongsaengmyeong-ro, Cheongju 28159, Republic of Korea;
| | - Junhyuk Park
- Chungcheongnam-do Institute of Health and Environment Research, 8 Hongyegongwon-ro, Hongseong 32254, Republic of Korea;
| | - Yoomi Jung
- Korea Armed Forces Nursing Academy, 90 Jaun-ro, Daejeon 34059, Republic of Korea;
| | - Se-Min Hwang
- Graduate School of Public Health & Welfare, Konyang University, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea;
- Department of Preventive Medicine, Myunggok Medical Faculty, Medical Campus, Konyang University College of Medicine, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea
- Myunggok Medical Research Center, Konyang University College of Medicine, 158 Gwanjeodong-ro, Daejeon 35365, Republic of Korea
| |
Collapse
|
11
|
Rinanda T, Riani C, Artarini A, Sasongko L. Correlation between gut microbiota composition, enteric infections and linear growth impairment: a case-control study in childhood stunting in Pidie, Aceh, Indonesia. Gut Pathog 2023; 15:54. [PMID: 37946290 PMCID: PMC10636988 DOI: 10.1186/s13099-023-00581-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Gut microbiota is pivotal in maintaining children's health and well-being. The ingestion of enteric pathogens and dysbiosis lead to Environmental Enteric Dysfunction (EED), which is essential in stunting pathogenesis. The roles of gut microbiome and enteric infections have not been explored comprehensively in relation to childhood stunting in Indonesia. This study aimed to determine the correlation between gut microbiota composition, enteric infections, and growth biomarker, Insulin-like Growth Factor 1 (IGF-1), in stunted children from Pidie, Aceh, Indonesia. METHODS This study was a case-control study involving 42 subjects aged 24 to 59 months, comprising 21 stunted children for the case and 21 normal children for the control group. The IGF-1 serum level was quantified using ELISA. The gut microbiome profiling was conducted using 16S rDNA amplicon sequencing. The expression of enteric pathogens virulence genes was determined using quantitative PCR (qPCR) assay. The correlations of observed variables were analysed using suitable statistical analyses. RESULTS The result showed that the IGF-1 sera levels in stunted were lower than those in normal children (p ≤ 0.001). The abundance of Firmicutes (50%) was higher than Bacteroidetes (34%) in stunted children. The gut microbiome profile of stunted children showed enriched genera such as Blautia, Dorea, Collinsella, Streptococcus, Clostridium sensu stricto 13, Asteroleplasma and Anaerostipes. Meanwhile the depleted genera comprised Prevotella, Lactococcus, Butyrivibrio, Muribaculaceae, Alloprevotella, Akkermansia, Enterococcus, Terrisporobacter and Turicibacter. The abundance of water biological contaminants such as Aeromonas, Stappiaceae, and Synechococcus was also higher in stunted children compared to normal children. The virulence genes expression of Enteroaggregative Escherichia coli (aaiC), Enterotoxigenic E. coli (estA), Enteropathogenic E. coli (eaeA), Shigella/Enteroinvasive E. coli (ipaH3) and Salmonella enterica (ompC) in stunted was higher than in normal children (p ≤ 0.001), which negatively correlated to height and level of IGF-1. CONCLUSION The present study showed the distinctive gut microbiome profile of stunted and normal children from Pidie, Aceh, Indonesia. The gut microbiota of stunted children revealed dysbiosis, comprised several pro-inflammatory, metabolic abnormalities and high-fat/low-fiber diet-related taxa, and expressed virulence genes of enteric pathogens. These findings provide evidence that it is imperative to restore dysbiosis and preserve the balance of gut microbiota to support linear growth in children.
Collapse
Affiliation(s)
- Tristia Rinanda
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Syiah Kuala, Darussalam, Banda Aceh, 23111, Aceh, Indonesia
| | - Catur Riani
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Anita Artarini
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Lucy Sasongko
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Ganesha 10, Bandung, 40132, West Java, Indonesia.
| |
Collapse
|
12
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
Affiliation(s)
- Zhuoce Dang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Lina Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiahao Wu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yufei Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhixin Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China.
| |
Collapse
|
13
|
Xie J, Kim K, Berenger BM, Chui L, Vanderkooi OG, Grisaru S, Freedman SB. Comparison of a Rapid Multiplex Gastrointestinal Panel with Standard Laboratory Testing in the Management of Children with Hematochezia in a Pediatric Emergency Department: Randomized Controlled Trial. Microbiol Spectr 2023; 11:e0026823. [PMID: 37039648 PMCID: PMC10269456 DOI: 10.1128/spectrum.00268-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in diagnostic microbiology allow for the rapid identification of a broad range of enteropathogens; such knowledge can inform care and reduce testing. We conducted a randomized, unblinded trial in a tertiary-care pediatric emergency department. Participants had stool (and rectal swabs if stool was not immediately available) tested using routine microbiologic approaches or by use of a device (BioFire FilmArray gastrointestinal panel), which identifies 22 pathogens with a 1-h instrument turnaround time. Participants were 6 months to <18.0 years and had acute bloody diarrhea. Primary outcome was performance of blood tests within 72 h. From 15 June 2018 through 7 May 2022, 60 children were randomized. Patients in the BioFire FilmArray arm had a reduced time to test result (median 3.0 h with interquartile range [IQR] of 3.0 to 4.0 h, versus 42.0 h (IQR 23.5 to 47.3 h); difference of -38.0 h, 95% confidence interval [CI] of -41.0 to -22.0 h). Sixty-five percent (20/31) of participants in the BioFire FilmArray group had a pathogen detected-most frequently enteropathogenic Escherichia coli (19%), Campylobacter (16%), and Salmonella (13%). Blood tests were performed in 52% of children in the BioFire FilmArray group and 62% in the standard-of-care group (difference of -10.5%, 95% CI of -35.4% to 14.5%). There were no between-group differences in the proportions of children administered intravenous fluids, antibiotics, hospitalized, or who had diagnostic imaging performed. Testing with the BioFire FilmArray reduced the time to result availability by 38 h. Although statistical significance was limited by study power, BioFire FilmArray use was not associated with clinically meaningful reductions in health care utilization or improved outcomes. IMPORTANCE Advances in diagnostic microbiology now allow for the faster and more accurate detection of an increasing number of pathogens. We determined, however, that in children with acute bloody diarrhea, these advances did not necessarily translate into improved clinical outcomes. While a greater number of pathogens was identified using a rapid turnaround multiplex stool diagnostic panel, with a reduction in the time to stool test result of over 1.5 days, this did not alter the practice of pediatric emergency medicine physicians, who continued to perform blood tests on a large proportion of children. While our conclusions may be limited by the relatively small sample size, targeted approaches that educate clinicians on the implementation of such technology into clinical care will be needed to optimize usage and maximize benefits.
Collapse
Affiliation(s)
- Jianling Xie
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelly Kim
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Byron M. Berenger
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Alberta Health Services, Calgary, Alberta, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Alberta Health Services, Edmonton, Alberta, Canada
| | - Otto G. Vanderkooi
- Section of Infectious Diseases, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Silviu Grisaru
- Section of Pediatric Nephrology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen B. Freedman
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Section of Pediatric Gastroenterology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Muche S, El-Fenej J, Mihaita A, Mrozek Z, Cleary S, Critelli B, Marino M, Yu W, Amos B, Hunter T, Riga M, Buerkert T, Bhatt S. The two sRNAs OmrA and OmrB indirectly repress transcription from the LEE1 promoter of enteropathogenic Escherichia coli. Folia Microbiol (Praha) 2023; 68:415-430. [PMID: 36547806 DOI: 10.1007/s12223-022-01025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic bacterium that predominantly infects infants in developing countries. EPEC forms attaching and effacing (A/E) lesions on the apical surface of the small intestine, leading to diarrhea. The locus of enterocyte effacement (LEE) is both necessary and sufficient for A/E lesion morphogenesis by EPEC. Gene expression from this virulence determinant is controlled by an elaborate regulatory web that extends beyond protein-based transcriptional regulators and includes small regulatory RNA (sRNA) that exert their effects posttranscriptionally. To date, only 4 Hfq-dependent sRNAs-MgrR, RyhB, McaS, and Spot42-have been identified that affect the LEE of EPEC by diverse mechanisms and elicit varying regulatory outcomes. In this study, we demonstrate that the paralogous Hfq-dependent sRNAs OmrA and OmrB globally silence the LEE to diminish the ability of EPEC to form A/E lesions. Interestingly, OmrA and OmrB do not appear to directly target a LEE-encoded gene; rather, they repress transcription from the LEE1 promoter indirectly, by means of an as-yet-unidentified transcriptional factor that binds within 200 base pairs upstream of the transcription start site to reduce the expression of the LEE master regulator Ler, which, in turn, leads to reduced morphogenesis of A/E lesions. Additionally, OmrA and OmrB also repress motility in EPEC by targeting the 5' UTR of the flagellar master regulator, flhD.
Collapse
Affiliation(s)
- Sarah Muche
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Jihad El-Fenej
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
- Center for Immunity and Inflammation and Department of Pathology, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Alexa Mihaita
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Zoe Mrozek
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Sean Cleary
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
- Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Brian Critelli
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Mary Marino
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Wenlan Yu
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Brianna Amos
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Tressa Hunter
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Michael Riga
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA
| | - Shantanu Bhatt
- Department of Biology, Saint Joseph's University, 5600 City Avenue, SC124, Philadelphia, PA, 19131, USA.
| |
Collapse
|
15
|
Söderlund R, Flink C, Aspán A, Eriksson E. Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic E. coli (aEPEC) in Swedish retail wheat flour. Access Microbiol 2023; 5:acmi000577.v3. [PMID: 37323947 PMCID: PMC10267659 DOI: 10.1099/acmi.0.000577.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/17/2023] Open
Abstract
Wheat flour has been identified as the source of multiple outbreaks of gastrointestinal disease caused by shiga toxin-producing Escherichia coli (STEC). We have investigated the presence and genomic characteristics of STEC and related atypical enteropathogenic E. coli (aEPEC) in 200 bags of Swedish-produced retail wheat flour, representing 87 products and 25 brands. Samples were enriched in modified tryptone soya broth (mTSB) and screened with real-time PCR targeting stx1, stx2 and eae, and the serogroups O157, O121 and O26. Isolation was performed by immunomagnetic separation (IMS) for suspected STEC/aEPEC O157, O121 and O26, and by screening pools of colonies for other STEC. Real-time PCR after enrichment revealed 12 % of samples to be positive for shiga toxin genes (stx1 and/or stx2) and 11 % to be positive for intimin (eae). Organic production, small-scale production or whole grain did not significantly influence shiga toxin gene presence or absence in a generalized linear mixed model analysis. Eight isolates of STEC were recovered, all of which were intimin-negative. Multiple serotype/sequence type/shiga toxin subtype combinations that have also been found in flour samples in other European countries were recovered. Most STEC types recovered were associated with sporadic cases of STEC among humans in Sweden, but no types known to have caused outbreaks or severe cases of disease (i.e. haemolytic uraemic syndrome) were found. The most common finding was O187:H28 ST200 with stx2g, with possible links to cervid hosts. Wildlife associated with crop damage is a plausible explanation for at least some of the surprisingly high frequency of STEC in wheat flour.
Collapse
Affiliation(s)
- Robert Söderlund
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Catarina Flink
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
16
|
Burke LP, Chique C, Fitzhenry K, Chueiri A, O'Connor L, Hooban B, Cahill N, Brosnan E, Olaore L, Sullivan E, Reilly L, Morris D, Hynds P, O'Dwyer J. Characterization of Shiga toxin-producing Escherichia coli presence, serogroups and risk factors from private groundwater sources in western Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161302. [PMID: 36592918 DOI: 10.1016/j.scitotenv.2022.161302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Over recent years, Ireland has reported the highest crude incidence rates of Shiga toxin-producing Escherichia coli (STEC) enteritis in Europe. Unregulated private groundwater sources have emerged as an important potential transmission route for STEC, with up to 750,000 Irish residents reliant on these sources for domestic waters. This study aimed to investigate the prevalence and serogroup profile of STEC contamination from domestic private wells in western Ireland. Fifty-two groundwater sources were analysed during two sampling campaigns in the autumn (September/October) of 2019 (n = 21) and 2021 (n = 31). Untreated groundwater samples (30 L) were collected and analysed using the "CapE" (capture, amplify, extract) method. Extracted DNA was tested using multiplex real-time PCR for Shiga toxin stx1 and/or stx2 and eae genes. STEC positive DNA samples were tested for clinically relevant serogroups by real-time PCR. Data relating to 27 potential groundwater contamination risk factors were geospatially linked to each well and assessed for association with E. coli, stx1 and/or stx2 and eae presence/absence. Overall, 20/52 wells (38.4 %) were positive for E. coli (median concentration 8.5 MPN/100 mL as assessed by Colilert-18 method). Stx1 and/or stx2 was detected in 10/52 (19.2 %) wells overall and 8/20 E. coli positive wells, equating to a STEC to "generic" E. coli detection ratio of 40 %. Six of these wells (30 %) were also positive for eae. One or more serogroup-specific gene targets were identified in all but one stx1 and/or stx2 positive sample, with O145 (n = 6), O157 (n = 5) and O103 (n = 4) most prevalent. STEC presence was significantly associated with decreasing well depth (U = -2.243; p = 0.024) and increasing 30-day mean antecedent rainfall (U = 2.126; p = 0.034). Serogroup O104 was associated with increased sheep density (U = 2.089; p = 0.044) and detection of stx1 and/or stx2 + eae with increased septic tank density (U = 2.246 p = 0.023). Findings indicate high detection rates of clinically relevant STEC in E. coli contaminated groundwater sources in Ireland.
Collapse
Affiliation(s)
- Liam Patrick Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland.
| | - Carlos Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Ellen Brosnan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Lateefat Olaore
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Emma Sullivan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise Reilly
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Paul Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Ireland
| | - Jean O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Carmon D, Rohana H, Azrad M, Peretz A. The Impact of a Positive Biofire® FilmArray® Gastrointestinal Panel Result on Clinical Management and Outcomes. Diagnostics (Basel) 2023; 13:diagnostics13061094. [PMID: 36980402 PMCID: PMC10046972 DOI: 10.3390/diagnostics13061094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The gold standard diagnostic method for gastrointestinal infections is stool culture, which has limited sensitivity and long turnaround time. Infection diagnosis recently shifted to syndrome-based panel assays. This study employed the FilmArray® Gastrointestinal Panel, which detects 22 pathogens simultaneously, to investigate gastrointestinal infection and pathogen distribution in 91 stool samples of patients hospitalized at the Tzafon Medical Center, Israel, during 2020, and to compare the clinical and demographic data of negative vs. positive samples. Among the 61 positive samples (67%), the most common pathogen was Campylobacter (34.4%). Positive test results were associated with a slightly younger patient age (p = 0.012), significantly higher post-diagnosis use of antibiotics (63.9% vs. 36.7%; p = 0.014), and shorter length of stay and time to discharge (p = 0.035, p = 0.003, respectively) than negative test results. To conclude, the FilmArray® Gastrointestinal Panel enabled the early identification of causative infectious agents and enhanced clinical management and outcomes.
Collapse
Affiliation(s)
- David Carmon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hanan Rohana
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
| | - Maya Azrad
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- The Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias 1528001, Israel
- Correspondence: ; Tel.: +972-4-665-2322
| |
Collapse
|
18
|
Beraldo LG, Borges CA, Maluta RP, Cardozo MV, de Ávila FA. Molecular analysis of enteropathogenic Escherichia coli (EPEC) isolates from healthy food-producing animals and humans with diarrhoea. Zoonoses Public Health 2023; 70:117-124. [PMID: 36377683 DOI: 10.1111/zph.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a pathogen associated with acute diarrhoea in humans. To determine whether EPEC isolated from healthy food-producing animals possesses the same virulence gene repertoire as EPEC isolated from human with diarrhoea, we compared six typical EPEC (tEPEC) and 20 atypical EPEC (aEPEC) from humans with diarrhoea and 42 aEPEC from healthy animals (swine, sheep and buffaloes), using pulsed-field gel electrophoresis (PFGE), virulence markers, serotyping and subtyping of eae and tir genes. We found that human and animal isolates shared virulence genes, including nleB, nleE and nleF, which were associated with human diarrhoea. Serogroups and serotypes identified in isolates of food-producing animals such as O26:H11, O128:H2, O76:H7, O103, O108, O111 and O145, have previously been implicated in human disease. The subtypes eae and tir were also shared between human and animal isolates, being eae-γ1 and eae-β1 the most prevalent in both groups, while the most common tir subtypes were α and β. Despite PFGE analysis demonstrating that EPEC strains are heterogeneous and there was no prevalent clone identified, EPEC isolated from humans and food-producing animals shared some characteristics, such as virulence genes associated with human diarrhoea, indicating that food-producing animals could play a role as reservoirs for those genes.
Collapse
Affiliation(s)
- Livia Gerbasi Beraldo
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Clarissa Araújo Borges
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Renato Pariz Maluta
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marita Vedovelli Cardozo
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Fernando Antônio de Ávila
- Department of Veterinary Pathology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
19
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
20
|
Munhoz DD, Richards AC, Santos FF, Mulvey MA, Piazza RMF. E. coli Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments. Gut Microbes 2023; 15:2190308. [PMID: 36949030 PMCID: PMC10038029 DOI: 10.1080/19490976.2023.2190308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.
Collapse
Affiliation(s)
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | - Fernanda F. Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | | |
Collapse
|
21
|
Kaur P, Dudeja PK. Pathophysiology of Enteropathogenic Escherichia coli-induced Diarrhea. NEWBORN (CLARKSVILLE, MD.) 2023; 2:102-113. [PMID: 37388762 PMCID: PMC10308259 DOI: 10.5005/jp-journals-11002-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are important diarrheal pathogens of infants and young children. Since the availability of molecular diagnosis methods, we now have new insights into the incidence and prevalence of these infections. Recent epidemiological studies indicate that atypical EPEC (aEPEC) are seen more frequently than typical EPEC (tEPEC) worldwide, including in both endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize the pathogenicity of these emerging strains. The virulence mechanisms and pathophysiology of the attaching and effacing lesion (A/E) and the type-three-secretion-system (T3SS) are complex but well-studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely understood. From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic methods to define optimal treatment and prevention for children in endemic areas. In this article, we present a review of the classification of EPEC, epidemiology, pathogenesis of the disease caused by these bacteria, determinants of virulence, alterations in signaling, determinants of colonization vs. those of disease, and the limited information we have on the pathophysiology of EPEC-induced diarrhea. This article combines peer-reviewed evidence from our own studies and the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, United States of America
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
22
|
Abolarinwa TO, Ajose DJ, Oluwarinde BO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Plant-derived nanoparticles as alternative therapy against Diarrheal pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2022; 13:1007115. [PMID: 36590407 PMCID: PMC9797601 DOI: 10.3389/fmicb.2022.1007115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is a condition in which feces is discharged from the bowels frequently and in a liquid form. It is one of the frequent causes of morbidity and mortality in developing countries. The impact of Diarrhea is worsened by the increasing incidence of antimicrobial resistance among the causative agents, and this is now categorized as a global healthcare challenge. Antimicrobial resistance among Diarrheal pathogens also contributes to extended infection durations, and huge economic loss even in countries with advanced public health policies. The ever-increasing incidence of antimicrobial resistance including the contraindications arising from the administration of antibiotics in some Diarrheal cases highlights a crucial need for the development of novel non-antibiotic alternative agents for therapeutic and biocontrol applications. One such intervention includes the application of plant-derived nanoparticles (PDNPs) with novel antimicrobial properties. Given their small size and large surface area to volume ratio, PDNPs can attack target bacterial cell walls to generate reactive oxygen species that may simultaneously disrupt bacteria cell components such as DNA and proteins leading to cell damage or death. This potential can make it very difficult for pathogenic organisms to develop resistance against these antibacterial agents. In this review, we provide a critical overview on the antimicrobial resistance crisis among Diarrheagenic bacteria. We also discuss the evidence from the existing literature to support the potential associated with the use of PDNPs as alternative therapeutic agents for multidrug resistant and antibiotics administer contraindicated bacteria that are associated with Diarrhea.
Collapse
Affiliation(s)
- Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Center, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa,*Correspondence: Collins Njie Ateba,
| |
Collapse
|
23
|
Baumgartner M, Zirnbauer R, Schlager S, Mertens D, Gasche N, Sladek B, Herbold C, Bochkareva O, Emelianenko V, Vogelsang H, Lang M, Klotz A, Moik B, Makristathis A, Berry D, Dabsch S, Khare V, Gasche C. Atypical enteropathogenic E. coli are associated with disease activity in ulcerative colitis. Gut Microbes 2022; 14:2143218. [PMID: 36415023 PMCID: PMC9704410 DOI: 10.1080/19490976.2022.2143218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With increasing urbanization and industrialization, the prevalence of inflammatory bowel diseases (IBDs) has steadily been rising over the past two decades. IBD involves flares of gastrointestinal (GI) inflammation accompanied by microbiota perturbations. However, microbial mechanisms that trigger such flares remain elusive. Here, we analyzed the association of the emerging pathogen atypical enteropathogenic E. coli (aEPEC) with IBD disease activity. The presence of diarrheagenic E. coli was assessed in stool samples from 630 IBD patients and 234 age- and sex-matched controls without GI symptoms. Microbiota was analyzed with 16S ribosomal RNA gene amplicon sequencing, and 57 clinical aEPEC isolates were subjected to whole-genome sequencing and in vitro pathogenicity experiments including biofilm formation, epithelial barrier function and the ability to induce pro-inflammatory signaling. The presence of aEPEC correlated with laboratory, clinical and endoscopic disease activity in ulcerative colitis (UC), as well as microbiota dysbiosis. In vitro, aEPEC strains induce epithelial p21-activated kinases, disrupt the epithelial barrier and display potent biofilm formation. The effector proteins espV and espG2 distinguish aEPEC cultured from UC and Crohn's disease patients, respectively. EspV-positive aEPEC harbor more virulence factors and have a higher pro-inflammatory potential, which is counteracted by 5-ASA. aEPEC may tip a fragile immune-microbiota homeostasis and thereby contribute to flares in UC. aEPEC isolates from UC patients display properties to disrupt the epithelial barrier and to induce pro-inflammatory signaling in vitro.
Collapse
Affiliation(s)
- Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Rebecca Zirnbauer
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sabine Schlager
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Daniel Mertens
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | | | | | - Craig Herbold
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Olga Bochkareva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vera Emelianenko
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Harald Vogelsang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Anton Klotz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Birgit Moik
- National Reference Laboratory for Escherichia coli, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Athanasios Makristathis
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stefanie Dabsch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,CONTACT Christoph Gasche Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, A-1090Austria
| |
Collapse
|
24
|
Yamani LZ, Elhadi N. Virulence Characteristics, Antibiotic Resistance Patterns and Molecular Typing of Enteropathogenic Producing Escherichia coli (EPEC) Isolates in Eastern Province of Saudi Arabia: 2013–2014. Infect Drug Resist 2022; 15:6763-6772. [DOI: 10.2147/idr.s388956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
25
|
Kralicek SE, Sitaraman LM, Kuprys PV, Harrington AT, Ramakrishna B, Osman M, Hecht GA. Clinical Manifestations and Stool Load of Atypical Enteropathogenic Escherichia coli Infections in United States Children and Adults. Gastroenterology 2022; 163:1321-1333. [PMID: 35948108 PMCID: PMC9613550 DOI: 10.1053/j.gastro.2022.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS There is debate whether atypical enteropathogenic Escherichia coli (aEPEC) causes disease in adults. aEPEC is commonly detected in symptomatic and asymptomatic individuals. aEPEC, in contrast to typical EPEC, lacks bundle-forming pili, altering its pathogenicity. Here, we define for the first time the clinical manifestations of sporadic aEPEC infection in United States children and adults and determine whether EPEC load correlates with disease. METHODS This is a retrospective case-control study of 380 inpatients/outpatients of all ages. EPEC load in stools was determined by quantitative polymerase chain reaction. RESULTS Diarrhea, vomiting, abdominal pain, and fever were more prevalent in EPEC-positive cases than in EPEC-negative controls. aEPEC infection caused mostly acute, mild diarrhea lasting for 6 to 13 days. However, some had severe diarrhea with 10 to 40 bowel movements per day or had persistent/chronic diarrhea. Fever, vomiting, and abnormal serum sodium levels were more common in children. Adults more often reported abdominal pain and longer duration of diarrhea. Symptomatic aEPEC infection was associated with leukocytosis in 24% of patients. EPEC load >0.1% was associated with symptomatic infection; however, loads varied greatly. Co-infecting pathogens did not alter diarrhea severity or EPEC load. Longitudinal data reveal that some are colonized for months to years or are repeatedly infected. CONCLUSIONS aEPEC is associated with a wide array of symptoms in adults, ranging from asymptomatic carriage to severe diarrhea. Higher EPEC loads are associated with presence of symptoms, but bacterial load does not predict disease or severity. Future studies are needed to understand bacterial and host factors that contribute to aEPEC pathogenicity to improve diagnostic tools and clinical care.
Collapse
Affiliation(s)
- Sarah E Kralicek
- Department of Biochemistry and Molecular Biology, Loyola University Chicago, Maywood, Illinois
| | - Lalitha M Sitaraman
- Division of Gastroenterology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Paulius V Kuprys
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Amanda T Harrington
- Clinical Microbiology Laboratory, Loyola University Medical Center, Maywood, Illinois; Pathology and Laboratory Medicine, Loyola University Chicago, Maywood, Illinois
| | | | | | - Gail A Hecht
- Division of Gastroenterology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
26
|
Oyaba Yinda LED, Onanga R, Mbehang Nguema PP, Akomo-Okoue EF, Nsi Akoue G, Longo Pendy NM, Otsaghe Ekore D, Lendamba RW, Mabika-Mabika A, Mbeang JCO, Poungou N, Ibrahim, Mavoungou JF, Godreuil S. Phylogenetic Groups, Pathotypes and Antimicrobial Resistance of Escherichia coli Isolated from Western Lowland Gorilla Faeces ( Gorilla gorilla gorilla) of Moukalaba-Doudou National Park (MDNP). Pathogens 2022; 11:1082. [PMID: 36297139 PMCID: PMC9607589 DOI: 10.3390/pathogens11101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: Terrestrial mammals in protected areas have been identified as a potential source of antimicrobial-resistant bacteria. Studies on antimicrobial resistance in gorillas have already been conducted. Thus, this study aimed to describe the phylogroups, pathotypes and prevalence of antimicrobial resistance of Escherichia coli isolated from western lowland gorilla's faeces living in MDNP. (2) Materials and Methods: Ninety-six faecal samples were collected from western lowland gorillas (Gorilla gorilla gorilla) during daily monitoring in the MDNP. Sixty-four E. coli isolates were obtained and screened for phylogenetic and pathotype group genes by polymerase chain reaction (PCR) after DNA extraction. In addition, antimicrobial susceptibility was determined by the disk diffusion method on Mueller Hinton agar. (3) Results: Sixty-four (64%) isolates of E. coli were obtained from samples. A high level of resistance to the beta-lactam family, a moderate rate for fluoroquinolone and a low rate for aminoglycoside was obtained. All E. coli isolates were positive in phylogroup PCR with a predominance of A (69% ± 11.36%), followed by B2 (20% ± 19.89%) and B1 (10% ± 8.90%) and low prevalence for D (1% ± 3.04%). In addition, twenty E. coli isolates (31%) were positive for pathotype PCR, such as EPEC (85% ± 10.82%) and EPEC/EHEC (15% ± 5.18%) that were obtained in this study. The majority of these MDR E. coli (DECs) belonged to phylogenetic group A, followed by MDR E. coli (DECs) belonging to group B2. (4) Conclusion: This study is the first description of MDR E. coli (DECs) assigned to phylogroup A in western lowland gorillas from the MDNP in Gabon. Thus, wild gorillas in MDNP could be considered as asymptomatic carriers of potential pathogenic MDR E. coli (DECs) that may present a potential risk to human health.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | | | | | - Neil Michel Longo Pendy
- Laboratory of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Desire Otsaghe Ekore
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Roméo Wenceslas Lendamba
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | - Arsène Mabika-Mabika
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville P.O. Box 769, Gabon
| | | | - Natacha Poungou
- Microbiology Laboratory, Research Institute for Tropical Ecology, Libreville P.O. Box 13354, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville P.O. Box 913, Gabon
| | | | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpellier), 34295 Montpellier, France
| |
Collapse
|
27
|
JOLAIYA TF, BRAUN SD, AJAYI A, COKER AO, EHRICHT R, MONECKE S, PELLICANO R, SMITH SI. Prevalence of Non-O157 Escherichia coli serotypes isolated from the stool of under five years old children presenting with diarrhea in Lagos, Nigeria. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022; 34. [DOI: 10.23736/s2724-542x.22.02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
28
|
Negi S, Hashimoto-Hill S, Alenghat T. Neonatal microbiota-epithelial interactions that impact infection. Front Microbiol 2022; 13:955051. [PMID: 36090061 PMCID: PMC9453604 DOI: 10.3389/fmicb.2022.955051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Despite modern therapeutic developments and prophylactic use of antibiotics during birth or in the first few months of life, enteric infections continue to be a major cause of neonatal mortality and morbidity globally. The neonatal period is characterized by initial intestinal colonization with microbiota and concurrent immune system development. It is also a sensitive window during which perturbations to the environment or host can significantly impact colonization by commensal microbes. Extensive research has demonstrated that these early life alterations to the microbiota can lead to enhanced susceptibility to enteric infections and increased systemic dissemination in newborns. Various contributing factors continue to pose challenges in prevention and control of neonatal enteric infections. These include alterations in the gut microbiota composition, impaired immune response, and effects of maternal factors. In addition, there remains limited understanding for how commensal microbes impact host-pathogen interactions in newborns. In this review, we discuss the recent recognition of initial microbiota-epithelial interactions that occur in neonates and can regulate susceptibility to intestinal infection. These studies suggest the development of neonatal prophylactic or therapeutic regimens that include boosting epithelial defense through microbiota-directed interventions.
Collapse
|
29
|
Ledwaba SE, Bolick DT, de Medeiros PHQS, Kolling GL, Traore AN, Potgieter N, Nataro JP, Guerrant RL. Enteropathogenic Escherichia coli (EPEC) expressing a non-functional bundle-forming pili (BFP) also leads to increased growth failure and intestinal inflammation in C57BL/6 mice. Braz J Microbiol 2022; 53:1781-1787. [PMID: 35882715 PMCID: PMC9679052 DOI: 10.1007/s42770-022-00802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/17/2022] [Indexed: 01/13/2023] Open
Abstract
Bundle-forming pili (BFP) are implicated in the virulence of typical enteropathogenic E. coli (EPEC), resulting in enhanced colonization and mild to severe disease outcomes; hence, non-functional BFP may have a major influence on disease outcomes in vivo. Weaned antibiotic pre-treated C57BL/6 mice were orally infected with EPEC strain UMD901 (E2348/69 bfpA C129S); mice were monitored daily for body weight; stool specimens were collected daily; and intestinal tissues were collected at the termination of the experiment on day 3 post-infection. Real-time PCR was used to quantify fecal shedding and tissue burden. Intestinal inflammatory biomarkers lipocalin-2 (LCN-2) and myeloperoxidase (MPO) were also assessed. Infection caused substantial body weight loss, bloody diarrhea, and intestinal colonization with fecal and intestinal tissue inflammatory biomarkers that were comparable to those previously published with the wild-type typical EPEC strain. Here we further report on the evaluation of an EPEC infection model, showing how disruption of bfp function does not impair, and may even worsen diarrhea, colonization, and intestinal disruption and inflammation. More research is needed to understand the role of bfp in pathogenicity of EPEC infections in vivo.
Collapse
Affiliation(s)
- Solanka Ellen Ledwaba
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - David Thomas Bolick
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA
| | | | - Glynis Luanne Kolling
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA ,Department of Biomedical Engineering, University of Virgina, Charlottesville, VA USA
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, Limpopo Province South Africa
| | - James Paul Nataro
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA USA
| | - Richard Littleton Guerrant
- Division of Infectious Disease and International Health, School of Medicine, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
30
|
Hartman RM, Cohen AL, Antoni S, Mwenda J, Weldegebriel G, Biey J, Shaba K, de Oliveira L, Rey G, Ortiz C, Tereza M, Fahmy K, Ghoniem A, Ashmony H, Videbaek D, Singh S, Tondo E, Sharifuzzaman M, Liyanage J, Batmunkh N, Grabovac V, Logronio J, Serhan F, Nakamura T. Risk Factors for Mortality Among Children Younger Than Age 5 Years With Severe Diarrhea in Low- and Middle-income Countries: Findings From the World Health Organization-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks. Clin Infect Dis 2022; 76:e1047-e1053. [PMID: 35797157 PMCID: PMC9907489 DOI: 10.1093/cid/ciac561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diarrhea is the second leading cause of death in children younger than 5 years of age globally. The burden of diarrheal mortality is concentrated in low-resource settings. Little is known about the risk factors for childhood death from diarrheal disease in low- and middle-income countries. METHODS Data from the World Health Organization (WHO)-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks, which are composed of active, sentinel, hospital-based surveillance sites, were analyzed to assess mortality in children <5 years of age who were hospitalized with diarrhea between 2008 and 2018. Case fatality risks were calculated, and multivariable logistic regression was performed to identify risk factors for mortality. RESULTS This analysis comprises 234 781 cases, including 1219 deaths, across 57 countries. The overall case fatality risk was found to be 0.5%. Risk factors for death in the multivariable analysis included younger age (for <6 months compared with older ages, odds ratio [OR] = 3.54; 95% confidence interval [CI], 2.81-4.50), female sex (OR = 1.18; 95% CI, 1.06-1.81), presenting with persistent diarrhea (OR = 1.91; 95% CI, 1.01-3.25), no vomiting (OR = 1.13; 95% CI, .98-1.30), severe dehydration (OR = 3.79; 95% CI, 3.01-4.83), and being negative for rotavirus on an enzyme-linked immunosorbent assay test (OR = 2.29; 95% CI, 1.92-2.74). Cases from the African Region had the highest odds of death compared with other WHO regions (OR = 130.62 comparing the African Region with the European Region; 95% CI, 55.72-422.73), whereas cases from the European Region had the lowest odds of death. CONCLUSIONS Our findings support known risk factors for childhood diarrheal mortality and highlight the need for interventions to address dehydration and rotavirus-negative diarrheal infections.
Collapse
Affiliation(s)
- Rachel M Hartman
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Adam L Cohen
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Sebastien Antoni
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Jason Mwenda
- Department of Vaccine Preventable Diseases Program, World Health Organization Regional Office for Africa, Brazzaville, Congo Republic
| | - Goitom Weldegebriel
- Department of Immunization, Vaccines and Biologicals, World Health Organization Regional Office for Africa, Inter-Support Team for East and South Africa, Harare, Zimbabwe
| | - Joseph Biey
- Department of Vaccine Preventable Diseases, World Health Organization Regional Office for Africa, Inter-Support Team for West Africa, Ouagadougou, Burkina Faso
| | - Keith Shaba
- Department of Vaccine Preventable Diseases Program, World Health Organization Regional Office for Africa, Brazzaville, Congo Republic
| | - Lucia de Oliveira
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Gloria Rey
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Claudia Ortiz
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Maria Tereza
- Pan American Health Organization/Department of Family, Health Promotion, and Life Course, World Health Organization Regional Office for the Americas, Comprehensive Family Immunization Unit, Washington, DC, USA
| | - Kamal Fahmy
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Amany Ghoniem
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Hossam Ashmony
- Department of Communicable Diseases, Immunization, Vaccines and Biologicals Unit, World Health Organization Eastern Mediterranean Office, Cairo, Egypt
| | - Dovile Videbaek
- Division of Country Health Programmes, Vaccine-Preventable Diseases and Immunization Unit, World Health Organization European Regional Office, Copenhagen, Denmark
| | - Simarjit Singh
- Division of Country Health Programmes, Vaccine-Preventable Diseases and Immunization Unit, World Health Organization European Regional Office, Copenhagen, Denmark
| | - Emmanuel Tondo
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Mohammed Sharifuzzaman
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Jayantha Liyanage
- Department of Immunization and Vaccine Development, World Health Organization South-East Asia Regional Office, New Delhi, India
| | - Nyambat Batmunkh
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Varja Grabovac
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Josephine Logronio
- Division of Programmes for Diseases Control, Vaccine Preventable Diseases and Immunization, World Health Organization Western Pacific Regional Office, Manila, Philippines
| | - Fatima Serhan
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tomoka Nakamura
- Correspondence: T. Nakamura, Department of Immunization, Vaccines and Biologicals, World Health Organization, WHO Headquarters, Avenue Appia 20, 1211, Geneva, Switzerland ()
| |
Collapse
|
31
|
Reconstruction of epizootic outbreak provoked the largescale death of Rhinoceros auklet on the coast of the Japan Sea in the Southern part of Primorsky Krai (July, 2021). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction. In July 2021, a mass mortality of seabirds of unclear etiology occurred on the coast of the Sea of Japan in the Khasansky district of Primorsky Krai. According to the Department for Protection of Wildlife and Specially Protected Natural Territories of Primorsky Krai, over a thousand dead birds were found on the coast. The main case occurred in the population of birds Rhinoceros auklets (Cerorhinca monocerata, Alcidae), also among the dead birds were found several dozens of gulls (Larus spp.) and terns (Sterna spp.), single individuals of other species. The peak of mortality in bird populations occurred on July 13–17, 2021. This territory is a recreational area, in the summer months a large number of people rest there. The current situation has caused increased attention of the entire scientific community, as well as organizations that protect the citizens health and the environment. The aim. To establish possible etiology of the epizootic outbreak and describe the cause of birds’ death.Materials and methods. Comprehensive examination using classical methods of virology, microbiology and toxicology, as well as the most modern research methods such as MALDI TOF-mass spectrometry and NGS.Conclusion. As a result of the studies, it was determined that the cause of birds’ death was infectious peritonitis with endogenous intoxication syndrome induced by a complex of pathogenic microorganisms, such as enteropathogenic Escherichia coli, Proteus vulgaris, Proteus mirabilis, Proteus pennery, Enterococcus faecalis and Wickerhamomyces anomalus, related to Candida pelliculosa.
Collapse
|
32
|
Cannon JL, Seabolt MH, Xu R, Montmayeur A, Suh SH, Diez-Valcarce M, Bucardo F, Becker-Dreps S, Vinjé J. Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua. Viruses 2022; 14:v14071395. [PMID: 35891376 PMCID: PMC9323674 DOI: 10.3390/v14071395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Noroviruses are associated with one fifth of diarrheal illnesses globally and are not yet preventable with vaccines. Little is known about the effects of norovirus infection on infant gut microbiome health, which has a demonstrated role in protecting hosts from pathogens and a possible role in oral vaccine performance. In this study, we characterized infant gut microbiome changes occurring with norovirus-associated acute gastroenteritis (AGE) and the extent of recovery. Metagenomic sequencing was performed on the stools of five infants participating in a longitudinal birth cohort study conducted in León, Nicaragua. Taxonomic and functional diversities of gut microbiomes were profiled at time points before, during, and after norovirus infection. Initially, the gut microbiomes resembled those of breastfeeding infants, rich in probiotic species. When disturbed by AGE, Gammaproteobacteria dominated, particularly Pseudomonas species. Alpha diversity increased but the genes involved in carbohydrate metabolism and glycan biosynthesis decreased. After the symptoms subsided, the gut microbiomes rebounded with their taxonomic and functional communities resembling those of the pre-infection microbiomes. In this study, during disruptive norovirus-associated AGE, the gut microbiome was temporarily altered, returning to a pre-infection composition a median of 58 days later. Our study provides new insights for developing probiotic treatments and furthering our understanding of the role that episodes of AGE have in shaping the infant gut microbiome, their long-term outcomes, and implications for oral vaccine effectiveness.
Collapse
Affiliation(s)
- Jennifer L. Cannon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- CDC Foundation, Atlanta, GA 30329, USA
- Correspondence: ; Tel.: +1-404-639-2396
| | - Matthew H. Seabolt
- Office of Advanced Molecular Detection, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
- Leidos Inc., Reston, VA 20190, USA
| | - Ruijie Xu
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Anna Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Soo Hwan Suh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- Ministry of Food and Drug Safety, Cheonju-Si 28159, Korea
| | - Marta Diez-Valcarce
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Filemón Bucardo
- Center for Infectious Diseases Research, National Autonomous University of Nicaragua—León (UNAN-León), León 21000, Nicaragua;
| | - Sylvia Becker-Dreps
- Department of Family Medicine and Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| |
Collapse
|
33
|
Truong J, Cointe A, Le Roux E, Bidet P, Michel M, Boize J, Mariani-Kurkdjian P, Caseris M, Hobson CA, Desmarest M, Titomanlio L, Faye A, Bonacorsi S. Clinical impact of a gastrointestinal PCR panel in children with infectious diarrhoea. Arch Dis Child 2022; 107:601-605. [PMID: 34921002 DOI: 10.1136/archdischild-2021-322465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Multiplex gastrointestinal PCR (GI-PCR) allows fast and simultaneous detection of 22 enteric pathogens (including Campylobacter, Salmonella, Shigella/enteroinvasive Escherichia coli (EIEC), among other bacteria, parasites and viruses). However, its impact on the management of children with infectious diarrhoea remains unknown. PATIENTS/DESIGN All children eligible for stool culture from May to October 2018 were prospectively included in a monocentric study at Robert-Debré University-Hospital. INTERVENTION A GI-PCR (BioFire FilmArray) was performed on each stool sample. MAIN MEASURES Data on the children's healthcare management before and after GI-PCR results were collected. Stool culture results were also reported. RESULTS 172 children were included. The main criteria for performing stool analysis were mucous/bloody diarrhoea and/or traveller's diarrhoea (n=130). GI-PCR's were positive for 120 patients (70%). The main pathogens were enteroaggregative E. coli (n=39; 23%), enteropathogenic E. coli (n=34; 20%), Shigella/EIEC (n=27; 16%) and Campylobacter (n=21; 12%). Compared with stool cultures, GI-PCR enabled the detection of 21 vs 19 Campylobacter, 12 vs 10 Salmonella, 27 Shigella/EIEC vs 13 Shigella, 2 vs 2 Yersinia enterocolitica, 1 vs 1 Plesiomonas shigelloides, respectively. Considering the GI-PCR results and before stool culture results, the medical management was revised for 40 patients (23%): 28 initiations, 2 changes and 1 discontinuation of antibiotics, 1 hospitalisation, 2 specific room isolations related to Clostridioides difficile infections, 4 additional test prescriptions and 2 test cancellations. CONCLUSION The GI-PCR's results impacted the medical management of gastroenteritis for almostone-fourth of the children, and especially the prescription of appropriate antibiotic treatment before stool culture results.
Collapse
Affiliation(s)
- Jeanne Truong
- General Paediatrics, Robert Debré University Hospital, AP-HP, Paris, France .,Université de Paris, UFR de médecine Paris-Nord, Paris, Île-de-France, France
| | - Aurélie Cointe
- Microbiology Laboratory, Robert-Debré University Hospital, AP-HP, Paris, Île-de-France, France.,IAME UMR 1137, INSERM, Paris, Île-de-France, France
| | - Enora Le Roux
- Unité d'Epidémiologie Clinique, Robert Debré University Hospital, AP-HP, Paris, France.,ECEVE UMR-1123, INSERM, Paris, Île-de-France, France
| | - Philippe Bidet
- Microbiology Laboratory, Robert-Debré University Hospital, AP-HP, Paris, Île-de-France, France.,IAME UMR 1137, INSERM, Paris, Île-de-France, France
| | - Morgane Michel
- ECEVE UMR-1123, INSERM, Paris, Île-de-France, France.,URC Eco, Hôtel-Dieu, AP-HP, Paris, France
| | - Julien Boize
- Department of Paediatric Emergency Care, Robert Debré University Hospital, AP-HP, Paris, Île-de-France, France
| | | | - Marion Caseris
- General Paediatrics, Robert Debré University Hospital, AP-HP, Paris, France
| | - Claire Amaris Hobson
- Université de Paris, UFR de médecine Paris-Nord, Paris, Île-de-France, France.,IAME UMR 1137, INSERM, Paris, Île-de-France, France
| | - Marie Desmarest
- Department of Paediatric Emergency Care, Robert Debré University Hospital, AP-HP, Paris, Île-de-France, France
| | - Luigi Titomanlio
- Université de Paris, UFR de médecine Paris-Nord, Paris, Île-de-France, France.,Department of Paediatric Emergency Care, Robert Debré University Hospital, AP-HP, Paris, Île-de-France, France.,U1141, INSERM, Paris, France
| | - Albert Faye
- General Paediatrics, Robert Debré University Hospital, AP-HP, Paris, France.,Université de Paris, UFR de médecine Paris-Nord, Paris, Île-de-France, France.,ECEVE UMR-1123, INSERM, Paris, Île-de-France, France
| | - Stéphane Bonacorsi
- Microbiology Laboratory, Robert-Debré University Hospital, AP-HP, Paris, Île-de-France, France.,IAME UMR 1137, INSERM, Paris, Île-de-France, France
| |
Collapse
|
34
|
Enteropathogen spectrum and effect on antimycobacterial pharmacokinetics among children with tuberculosis in rural Tanzania: a prospective cohort study. THE LANCET MICROBE 2022; 3:e408-e416. [PMID: 35659902 PMCID: PMC9174596 DOI: 10.1016/s2666-5247(21)00308-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
|
35
|
Han Y, Liu M, Han Y, Shi N, Wang Q, Cui T, Yang L, Zhang X, Zhu L, Qian H, Jin H, Dong C. Genetic and phylogenetic characterization of Shiga toxin-producing Escherichia coli and enteropathogenic E. coli from livestock in Jiangsu by using whole-genome sequencing. J Appl Microbiol 2022; 132:3925-3936. [PMID: 35174586 DOI: 10.1111/jam.15494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
AIMS There are knowledge gaps regarding STEC and EPEC strains in livestock in Jiangsu, China. This study aimed to evaluate the potential public health significance of STEC and EPEC strains isolated from livestock by determining the serotypes, virulence profiles, and genetic relationship with international STEC strains. METHODS AND RESULTS A total of 68 STEC and 37 EPEC strains were obtained from 231 fecal sheep samples and 70 fecal cattle samples. By using whole-genome sequencing (WGS) analysis, all STEC belonged to 15 O:H serotypes and the most prevalent serotypes were O6:H10 (19.1%), O155:H21 (14.7%), and O21:H25 (10.3%). The main Shiga toxin gene subtypes detected were stx1c (41.2%), stx1a (26.5%), stx2b (14.7%) and stx2k (14.7%). Only the STEC from cattle carried eae gene. Other adherence-associated or toxin-related genes, including lpfA (70.6%), iha (48.5%), subA (54.4%), and ehxA (33.8%), were found in STEC. All EPEC strains were bfpA-negative, and the predominant eae variants were eae-β1 (62.2%), eae-ζ (21.6%), and eae-θ (8.1%). The core-genome multi-locus sequence typing (cgMLST) analysis revealed nine scattered clusters in STEC and one dominant cluster in EPEC. The strains with the same serotypes, including O22:H8 and O43:H2 in the two towns, possessed a closely genomic distance. The core genome single nucleotide polymorphism (cgSNP) showed that part of STEC strains in this study were clustered with isolates possessing the same serotypes from the Netherlands, Sweden, and Xinjiang of China. Five serotypes of STEC isolates were associated with the clinical STEC strains from databases. CONCLUSION This study provided the diverse serotypes and the virulence genes profiles in STEC and EPEC strains. Local strains possessed widely diverse and scattered clusters by cgMLST. Closely genomic correlation with clinical isolates displayed that part of the STEC strains may threaten to public health. SIGNIFICANCE AND IMPACT OF THE STUDY Non-O157 STEC strains act as important pathogens for human infections. This study supports the increased surveillance work of non-O157 STEC rather than just O157 STEC in this region.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Minqi Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Ying Han
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Naiyang Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Qiang Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Tingting Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Liuqing Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Xuefeng Zhang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Liguo Zhu
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Huimin Qian
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| | - Hui Jin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics School of Public Health Southeast University, Nanjing, China
| | - Chen Dong
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu, Nanjing, China
| |
Collapse
|
36
|
Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites. Pathogens 2022; 11:pathogens11020214. [PMID: 35215157 PMCID: PMC8875320 DOI: 10.3390/pathogens11020214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Enteric pathogens, which are frequently food- and waterborne transmitted, are highly abundant in Indigenous people living in remote rural areas of Colombia. As the frequency of gastroenteritis in the tropics shows seasonal differences, we analyzed variations of pathogen patterns in the stool samples of a Colombian Indigenous tribe called Wiwa during the dry (n = 105) and the rainy (n = 227) season, applying real-time PCR from stool samples and statistical analysis based on a multi-variable model. Focusing on bacterial pathogens, increased detection rates could be confirmed for enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli with a tendency for an increase in Campylobacter jejuni detections during the rainy season, while there was no seasonal effect on the carriage of Tropheryma whipplei. Salmonellae were recorded during the rainy season only. A differentiated pattern was seen for the assessed parasites. Entamoeba histolytica, Necator americanus and Trichuris trichiura were increasingly detected during the rainy season, but not Ascaris lumbricoides, Giardia duodenalis, Hymenolepis nana, Strongyloides stercoralis, and Taenia solium, respectively. Increased detection rates during the dry season were not recorded. Negative associations were found for Campylobacter jejuni and Giardia duodenalis with age and for Tropheryma whipplei with the body mass index, respectively. Positive associations of enteropathogenic Escherichia coli and Taenia solium detections were observed with age. In conclusion, facilitating effects of the tropical rainy season were more pronounced on bacterial enteric pathogens compared to enteropathogenic parasites.
Collapse
|
37
|
Detection of potential enteric pathogens in children with severe acute gastroenteritis using the filmarray: Results from a three - years hospital-based survey in Northern Italy. Diagn Microbiol Infect Dis 2021; 102:115611. [PMID: 34953368 DOI: 10.1016/j.diagmicrobio.2021.115611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Acute gastroenteritis (AGE) are leading causes of morbidity and mortality in children. Therefore, rapid pathogens identification is needed. The AGE aetiology was investigated from 2018 to 2020 in 2,066 children in Parma (Italy) by FilmArray Gastrointestinal Panel and Enterovirus-targeting RT-PCR. Pathogens were detected in 1,162 (56.2%) stool samples from as many children; 798 (68.7%) were single and 364 (31.3%) mixed infections (68.7% vs 31.3%, P < 0.0001). Children aged 0-5 years showed the highest infection incidence (66.1%). The most frequent pathogens were Enteropathogenic Escherichia coli (EPEC; 19.14%), Clostridioides difficile (10.42%), Norovirus (10.36%), Enterovirus (9.44%), and Campylobacter (9.21%). EPEC, Campylobacter, enteroaggregative E. coli, Norovirus, and Rotavirus showed seasonality. The incidence of pathogens detected decreased between 2018 and 2020 (42.7% vs 20.8%, P < 0.0001), seemingly for the preventive measures imposed by the severe acute respiratory syndrome coronavirus-2 pandemic. A putative aetiology in half the children examined and an estimate of enteric pathogens epidemiology were assessed.
Collapse
|
38
|
Exopolysaccharides from Bifidobacterium animalis Ameliorate Escherichia coli-Induced IPEC-J2 Cell Damage via Inhibiting Apoptosis and Restoring Autophagy. Microorganisms 2021; 9:microorganisms9112363. [PMID: 34835488 PMCID: PMC8625581 DOI: 10.3390/microorganisms9112363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/26/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common zoonotic pathogen that causes acute infectious diarrhea. Probiotics like Bifidobacterium are known to help prevent pathogen infections. The protective effects of Bifidobacterium are closely associated with its secretory products exopolysaccharides (EPS). We explored the effects of the EPS from Bifidobacterium animalis subsp. lactis (B. lactis) on ameliorating the damage of an intestinal porcine epithelial cell line (IPEC-J2) during EPEC infection. Pretreatment with EPS alleviated EPEC-induced apoptosis through the restoration of cell morphology and the downregulation of protein expressions of cleaved-caspase 8, cleaved-caspase 3, and cleaved-PARP. EPS-mediated remission of apoptosis significantly improved cell viability during EPEC infection. EPEC infection also resulted in impaired autophagy, as demonstrated by decreased expressions of autophagy-related proteins Beclin 1, ATG5, and microtubule-binding protein light chain-3B (LC3B) and the increased expression of p62 through western blot analysis. However, EPS reversed these effects which indicated that EPS promoted autophagosome formation. Furthermore, EPS prevented the lysosome damage induced by EPEC as it enhanced lysosomal acidification and raised lysosome-associated protein levels, thus promoted autophagosome degradation. Our findings suggest that the amelioration of EPEC-induced cell damages by EPS is associated with the limitation of detrimental apoptosis and the promotion of autophagy flux.
Collapse
|
39
|
Nabwera HM, Espinoza JL, Worwui A, Betts M, Okoi C, Sesay AK, Bancroft R, Agbla SC, Jarju S, Bradbury RS, Colley M, Jallow AT, Liu J, Houpt ER, Prentice AM, Antonio M, Bernstein RM, Dupont CL, Kwambana-Adams BA. Interactions between fecal gut microbiome, enteric pathogens, and energy regulating hormones among acutely malnourished rural Gambian children. EBioMedicine 2021; 73:103644. [PMID: 34695658 PMCID: PMC8550991 DOI: 10.1016/j.ebiom.2021.103644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The specific roles that gut microbiota, known pathogens, and host energy-regulating hormones play in the pathogenesis of non-edematous severe acute malnutrition (marasmus SAM) and moderate acute malnutrition (MAM) during outpatient nutritional rehabilitation are yet to be explored. METHODS We applied an ensemble of sample-specific (intra- and inter-modality) association networks to gain deeper insights into the pathogenesis of acute malnutrition and its severity among children under 5 years of age in rural Gambia, where marasmus SAM is most prevalent. FINDINGS Children with marasmus SAM have distinct microbiome characteristics and biologically-relevant multimodal biomarkers not observed among children with moderate acute malnutrition. Marasmus SAM was characterized by lower microbial richness and biomass, significant enrichments in Enterobacteriaceae, altered interactions between specific Enterobacteriaceae and key energy regulating hormones and their receptors. INTERPRETATION Our findings suggest that marasmus SAM is characterized by the collapse of a complex system with nested interactions and key associations between the gut microbiome, enteric pathogens, and energy regulating hormones. Further exploration of these systems will help inform innovative preventive and therapeutic interventions. FUNDING The work was supported by the UK Medical Research Council (MRC; MC-A760-5QX00) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement; Bill and Melinda Gates Foundation (OPP 1066932) and the National Institute of Medical Research (NIMR), UK. This network analysis was supported by NIH U54GH009824 [CLD] and NSF OCE-1558453 [CLD].
Collapse
Affiliation(s)
- Helen M Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Josh L Espinoza
- J. Craig Venture Institute, 4120 Capricorn Ln, La Jolla, CA 92037, USA; Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Modupeh Betts
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Catherine Okoi
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Abdul K Sesay
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Rowan Bancroft
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Schadrac C Agbla
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Sheikh Jarju
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | | | - Mariama Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Amadou T Jallow
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, The Gambia; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Robin M Bernstein
- Growth and Development Lab, Department of Anthropology, University of Colorado, Boulder, CO, United States of America
| | | | - Brenda A Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom.
| |
Collapse
|
40
|
Wang J, Jiao H, Zhang X, Zhang Y, Sun N, Yang Y, Wei Y, Hu B, Guo X. Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion. J Microbiol Biotechnol 2021; 31:1191-1199. [PMID: 34261855 PMCID: PMC9705854 DOI: 10.4014/jmb.2105.05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are nontypeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAgknockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - HongBo Jiao
- LanLing Center for Disease Control and Prevention, 1 City Huibao Road, Lanling 276000, Lanling Shandong, P.R. China
| | - XinFeng Zhang
- Taian Center for Disease Control and Prevention, 33 Changcheng Road, Taian 271000, Shandong, P.R. China
| | - YuanQing Zhang
- Jinan KeJia Medical Laboratory, Inc., 800 Minghu West Road, Jinan 250001, Shandong, P.R. China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China,Corresponding authors B. Hu Phone: +86-0531-82679738 Fax: +86-531-82679750 E-mail:
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,
X. Guo Phone: +86-22-66229574 Fax: +86-22-66229584 E-mail:
| |
Collapse
|
41
|
Adorján A, Thuma Á, Könyves L, Tóth I. First isolation of atypical enteropathogenic Escherichia coli from geese (Anser anser domestica) and first description of atypical EPEC from turkeys and pigeons in Hungary. BMC Vet Res 2021; 17:263. [PMID: 34353312 PMCID: PMC8340449 DOI: 10.1186/s12917-021-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Escherichia coli is a bacterial species widely distributed among mammals and avian species, and also a member of the normal intestinal microbiota. However, some E. coli strains of different pathotypes can cause disease in both humans and animals. Atypical enteropathogenic E. coli (aEPEC) can infect both animals and humans or influence the severity of other ongoing infections. Results In the present study, a total of 332 samples were collected from ducks, geese, turkeys, chickens, and pigeons from the Hungarian Veterinary Diagnostic Directorate, two slaughterhouses, two pigeon keepers and one backyard chicken farm. E. coli was isolated and verified from 319 samples. The isolates were screened by PCR for diarrheagenic E. coli pathotypes. Altogether seven atypical enteropathogenic E. coli (aEPEC) strains were identified: two from four-week-old dead turkeys, two from force-fed geese, and three from pigeons. No further pathotypes were identified in the collection. The atypical EPEC strains were classified phylogenetically to B1, B2, and F, and four out of the seven aEPEC isolates proved to be multidrug resistant. Serotypes of aEPEC strains were uniform collected from same farms and showed diversity between their origins with O76, O145, O109 serogroups. Conclusions This is the first report in the literature about aEPEC in goose (Anser anser domestica). Furthermore, this is the first isolation of aEPEC from turkeys and pigeons in Hungary. The uneven distribution of aEPEC in different age groups of poultry suggests that aEPEC disappears with growing up, but stress (e.g.: force-feeding) and concurrent diseases might promote its reappearance in the intestine.
Collapse
Affiliation(s)
- András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary.
| | - Ákos Thuma
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - László Könyves
- Department of Animal Hygiene and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
42
|
Angulo-Zamudio UA, Gutiérrez-Jiménez J, Monroy-Higuera L, Flores-Villaseñor H, Leon-Sicairos N, Velazquez-Roman J, Vidal JE, Tapia-Pastrana G, Canizalez-Roman A. Non-diarrheagenic and diarrheagenic E. coli carrying supplementary virulence genes (SVG) are associated with diarrhea in children from Mexico. Microb Pathog 2021; 157:104994. [PMID: 34044054 DOI: 10.1016/j.micpath.2021.104994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Escherichia coli strains, including diarrheagenic E. coli (DEC), are among the most important causes of childhood diarrhea in developing countries. Since these strains also colonize healthy children, additional factors leading to diarrhea remains to be discovered. We therefore conducted a comprehensive study to investigate if supplementary virulence genes (SVG) carried by DEC strains and non-DEC strains, contribute to diarrhea in Mexican children. E. coli strains were isolated from n = 317 children between 6 and 12 years, n = 114 with diarrhea and n = 203 asymptomatic children from Northwestern Mexico, PCR was used to identify SVG, then virulence score and cytotoxic assay in HT-29 cells were performed to evaluate virulence of E. coli strains. DEC prevalence was 18.6% and its presence was significantly associated with diarrhea cases. aEPEC, tEAEC, ETEC, DAEC, aEAEC, tEPEC, and EIEC pathotypes were identified. aEPEC strains were significantly associated with asymptomatic children, whereas ETEC was only identified in children with diarrhea. E. coli strains carrying colonization-related SVG and/or proteolysis-related SVG were significantly associated with diarrhea. DEC strains were associated to diarrhea if strains carried SVG ehaC, kps, nleB, and/or espC. Virulence score was significantly higher in E. coli from diarrhea cases than asymptomatic. In addition, DEC strains carrying SVG+ were more virulent, followed by non-DEC SVG+ strains, and correlated with the cytotoxicity assay. Nearly 50% of DEC strains were MDR, and ~10% were XDR. In conclusion the findings of this work provide evidence that the presence of E. coli strains (regardless if strains are DEC or non-DEC) with SVG were associated with diarrhea in Mexican children.
Collapse
Affiliation(s)
- Uriel A Angulo-Zamudio
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Javier Gutiérrez-Jiménez
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla, Gutiérrez, Mexico
| | - Luis Monroy-Higuera
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Programa de Maestría en Ciencias en Biomedicina Molecular, UAS, 80246, Culiacan, Sinaloa, Mexico
| | - Hector Flores-Villaseñor
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80020, Culiacan, Sinaloa, Mexico
| | - Nidia Leon-Sicairos
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | - Jorge Velazquez-Roman
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, 71256, Mexico
| | - Adrian Canizalez-Roman
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80127, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
43
|
Olvera A, Carter H, Rajan A, Carlin LG, Yu X, Zeng XL, Shelburne S, Bhatti M, Blutt SE, Shroyer NF, Jenq R, Estes MK, Maresso A, Okhuysen PC. Enteropathogenic Escherichia coli Infection in Cancer and Immunosuppressed Patients. Clin Infect Dis 2021; 72:e620-e629. [PMID: 32930708 DOI: 10.1093/cid/ciaa1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The role of enteropathogenic Escherichia coli (EPEC) as a cause of diarrhea in cancer and immunocompromised patients is controversial. Quantitation of fecal bacterial loads has been proposed as a method to differentiate colonized from truly infected patients. METHODS We studied 77 adult cancer and immunosuppressed patients with diarrhea and EPEC identified in stools by FilmArray, 25 patients with pathogen-negative diarrhea, and 21 healthy adults without diarrhea. Stools were studied by quantitative polymerase chain reaction (qRT-PCR) for EPEC genes eaeA and lifA/efa-1 and strains characterized for virulence factors and adherence to human intestinal enteroids (HIEs). RESULTS Patients with EPEC were more likely to have community-acquired diarrhea (odds ratio, 3.82 [95% confidence interval, 1.5-10.0]; P = .008) compared with pathogen-negative cases. Although EPEC was identified in 3 of 21 (14%) healthy subjects by qPCR, the bacterial burden was low compared to patients with diarrhea (≤55 vs median, 6 × 104 bacteria/mg stool; P < .001). Among EPEC patients, the bacterial burden was higher in those who were immunosuppressed (median, 6.7 × 103 vs 55 bacteria/mg; P < .001) and those with fecal lifA/ifa-1 (median, 5 × 104 vs 120 bacteria/mg; P = .015). Response to antimicrobial therapy was seen in 44 of 48 (92%) patients with EPEC as the sole pathogen. Antimicrobial resistance was common and strains exhibited distinct patterns of adherence with variable cytotoxicity when studied in HIEs. Cancer care was delayed in 13% of patients. CONCLUSIONS Immunosuppressed cancer patients with EPEC-associated diarrhea carry high burden of EPEC with strains that are resistant to antibiotics, exhibit novel patterns of adherence when studied in HIEs, and interfere with cancer care.
Collapse
Affiliation(s)
- Adilene Olvera
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hannah Carter
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Lily G Carlin
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Samuel Shelburne
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Micah Bhatti
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah E Blutt
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Noah F Shroyer
- Department of Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Enteropathogenic Escherichia coli Infection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Dig Dis Sci 2021; 66:2250-2260. [PMID: 32556816 PMCID: PMC7744340 DOI: 10.1007/s10620-020-06389-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/03/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Enteropathogenic Escherichia coli (EPEC) infection causes prolonged, watery diarrhea leading to morbidity and mortality. Although EPEC infection impacts nutrient transporter function and expression in intestinal epithelial cells, the effects of EPEC infection on intestinal absorption of ascorbic acid (AA) have not yet been investigated. AIMS To investigate the effect of EPEC infection on intestinal AA uptake process and expression of both AA transporters. METHODS We used two experimental models: human-derived intestinal epithelial Caco-2 cells and mice. 14C-AA uptake assay, Western blot, RT-qPCR, and promoter assay were performed. RESULTS EPEC (WT) as well as ΔespF and ΔespG/G2 mutant-infected Caco-2 cells showed markedly inhibited AA uptake, while other mutants (ΔescN, ΔespA, ΔespB, and ΔespD) did not affect AA uptake. Infection also reduced protein and mRNA expression levels for both hSVCT1 and hSVCT2. EPEC-infected mice showed marked inhibitory effect on AA uptake and decreased protein and mRNA expression levels for both mSVCT1 and mSVCT2 in jejunum and colon. MicroRNA regulators of SVCT1 and SVCT2 (miR103a, miR141, and miR200a) were upregulated significantly upon EPEC infection in both Caco-2 and mouse jejunum and colon. In addition, expression of the accessory protein glyoxalate reductase/hydroxypyruvate reductase (GRHPR), which regulates SVCT1 function, was markedly decreased by EPEC infection in both models. CONCLUSIONS These findings suggest that EPEC infection causes inhibition in AA uptake through a multifactorial dysregulation of SVCT1 and SVCT2 expression in intestinal epithelial cells.
Collapse
|
45
|
He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front Immunol 2021; 12:683879. [PMID: 34135911 PMCID: PMC8201398 DOI: 10.3389/fimmu.2021.683879] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin, an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the notion that melatonin's actions in bacterial infection deserve particular attention. Here, we summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on classic gram-negative and -positive bacteria, but also on members of other bacterial groups, such as Mycobacterium tuberculosis. Protective actions against bacterial infections can occur at different levels. Direct actions of melatonin may occur only at very high concentrations, which is at the borderline of practical applicability. However, various indirect functions comprise activation of hosts' defense mechanisms or, in sepsis, attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin against bacterially induced damage is associated with inhibition or activation of various signaling pathways, including key regulators such as NF-κB, STAT-1, Nrf2, NLRP3 inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect mitochondrial damage. Altogether, we propose that melatonin could be an effective approach against various pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuyi Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuai Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Rogers WS, Westblade LF, Soave R, Jenkins SG, van Besien K, Singh HK, Walsh TJ, Small CB, Shore T, Crawford CV, Satlin MJ. Impact of a Multiplexed Polymerase Chain Reaction Panel on Identifying Diarrheal Pathogens in Hematopoietic Cell Transplant Recipients. Clin Infect Dis 2021; 71:1693-1700. [PMID: 31687767 DOI: 10.1093/cid/ciz1068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/01/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diarrhea is common and associated with substantial morbidity among hematopoietic cell transplant (HCT) recipients, but the etiology is often not identified. Multiplexed polymerase chain reaction (PCR) assays increase the detection of diarrheal pathogens, but the impact of this technology in this population has not been evaluated. METHODS Our center replaced stool cultures and other conventional microbiologic methods with the FilmArray Gastrointestinal Panel (GI PCR) in June 2016. We reviewed all adult patients who received an HCT from June 2014-May 2015 (pre-GI PCR, n = 163) and from June 2016-May 2017 (post-GI PCR, n = 182) and followed them for 1 year after transplantation. Clostridioides difficile infection was diagnosed by an independent PCR test in both cohorts. RESULTS The proportion of patients with ≥1 identified infectious diarrheal pathogen increased from 25% to 37% after implementation of GI PCR (P = .01). Eight patients (5%) in the pre-GI PCR cohort tested positive for a pathogen other than C. difficile versus 49 patients (27%) in the post-GI PCR cohort (P < .001). The most common non-C. difficile diarrheal pathogens in the post-GI PCR cohort were enteropathogenic Escherichia coli (n = 14, 8%), norovirus (n = 14, 8%), and Yersinia enterocolitica (n = 7, 4%). The percentage of diarrheal episodes with an identified infectious etiology increased from 14% to 23% (P = .001). Median total costs of stool testing per patient did not increase (pre: $473; post: $425; P = .25). CONCLUSIONS Infectious etiologies of diarrhea were identified in a higher proportion of HCT recipients after replacing conventional stool testing with a multiplexed PCR assay, without an increase in testing costs.
Collapse
Affiliation(s)
- Wesley S Rogers
- NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA.,Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Rosemary Soave
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.,Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
| | - Stephen G Jenkins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA.,Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Koen van Besien
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Harjot K Singh
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.,Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
| | - Thomas J Walsh
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.,Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
| | - Catherine B Small
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.,Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
| | - Tsiporah Shore
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Carl V Crawford
- Division of Gastroenterology, Weill Cornell Medicine, New York, New York, USA
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA.,Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
47
|
Lara-Ochoa C, González-Lara F, Romero-González LE, Jaramillo-Rodríguez JB, Vázquez-Arellano SI, Medrano-López A, Cedillo-Ramírez L, Martínez-Laguna Y, Girón JA, Pérez-Rueda E, Puente JL, Ibarra JA. The transcriptional activator of the bfp operon in EPEC (PerA) interacts with the RNA polymerase alpha subunit. Sci Rep 2021; 11:8541. [PMID: 33879812 PMCID: PMC8058060 DOI: 10.1038/s41598-021-87586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Enteropathogenic E. coli virulence genes are under the control of various regulators, one of which is PerA, an AraC/XylS-like regulator. PerA directly promotes its own expression and that of the bfp operon encoding the genes involved in the biogenesis of the bundle-forming pilus (BFP); it also activates PerC expression, which in turn stimulates locus of enterocyte effacement (LEE) activation through the LEE-encoded regulator Ler. Monomeric PerA directly binds to the per and bfp regulatory regions; however, it is not known whether interactions between PerA and the RNA polymerase (RNAP) are needed to activate gene transcription as has been observed for other AraC-like regulators. Results showed that PerA interacts with the alpha subunit of the RNAP polymerase and that it is necessary for the genetic and phenotypic expression of bfpA. Furthermore, an in silico analysis shows that PerA might be interacting with specific alpha subunit amino acids residues highlighting the direction of future experiments.
Collapse
Affiliation(s)
- Cristina Lara-Ochoa
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Fabiola González-Lara
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis E Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan B Jaramillo-Rodríguez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Abraham Medrano-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lilia Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Mexico
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
48
|
Mehta SR, Yen EF. Microbiota-based Therapies Clostridioides difficile infection that is refractory to antibiotic therapy. Transl Res 2021; 230:197-207. [PMID: 33278650 DOI: 10.1016/j.trsl.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
Clostridioides difficile infection (CDI) has had a devastating impact worldwide with significant rates of mortality, especially among the elderly. Despite effective antibiotics, the incidence of recurrent CDI (rCDI) is increasing and more difficult to treat with antibiotics alone. Fecal Microbiota Transplantation (FMT) has emerged as a consistently effective treatment for rCDI. Mechanisms for FMT are not entirely understood, but remain an area of active investigation. There have been recent safety reports with the use of FMT regarding transmission of pathogens in a few patients that have led to serious illness. With appropriate screening, FMT can be safely administered and continue to have a significant impact on eradication of rCDI and improve the lives of patients suffering from this disease. In this review, we summarize current treatments for CDI with a focus on microbiota-based therapies used for antibiotic refractory disease.
Collapse
Affiliation(s)
- Shama R Mehta
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201
| | - Eugene F Yen
- NorthShore University HealthSystem, Division of Gastroenterology, 2650 Ridge Avenue, Suite G221, Evanston, IL 60201.
| |
Collapse
|
49
|
Abstract
Fecal microbiota transplantation (FMT) has been recommended in clinical guidelines for the treatment of recurrent Clostridioides difficile infection (CDI). However, it is considered investigational by most regulatory agencies. As the adoption of FMT has increased from a small group of CDI experts alone to more widespread use, there has been a corresponding increase in concern regarding potential risk. FMT is largely considered a safe procedure although risks described range from mild gastrointestinal symptoms to serious infection. Currently, there is variability in how "FMT" is characterized specifically regarding testing approach, which, in turn, impacts the risk profile. This has been highlighted by the rare cases of multidrug-resistant organisms, Shiga toxin-producing Escherichia and enteropathogenic E. coli, recently reported, where these organisms were not screened. These cases have prompted additional screening mandates from the US Food and Drug Administration (FDA), which has maintained its policy of enforcement discretion for the use of FMT for CDI not responding to standard therapy. Here, we examine the evolving risk landscape of FMT.
Collapse
|
50
|
Atypical Enteropathogenic Escherichia coli: from Kittens to Humans and Beyond! Infect Immun 2021; 89:IAI.00752-20. [PMID: 33361199 DOI: 10.1128/iai.00752-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are associated with diarrhea worldwide, yet genome-wide investigations to probe their virulome are lacking. In this issue of Infection and Immunity, V. E. Watson, T. H. Hazen, D. A. Rasko, M. E. Jacob, et al. (IAI 89:e00619-20, 2020, https://doi.org/10.1128/IAI.00619-20) sequenced aEPEC isolates from diarrheic and asymptomatic kittens. Using phylogenomics, they demonstrated that these isolates were genetically indistinguishable from human isolates, suggesting that kittens may serve as a reservoir and, perhaps, a much-needed model to interrogate aEPEC virulence. The diarrheic isolates were hypermotile, suggesting that this phenotype may distinguish virulent strains from their innocuous counterparts.
Collapse
|