1
|
Rubio R, Yavlinsky A, Escalera Zamudio M, Molinos-Albert LM, Martín Pérez C, Pradenas E, Canyelles M, Torres C, Tan C, Swadling L, Ramírez-Morros A, Trinité B, Vidal-Alaball J, Aguilar R, Ruiz-Comellas A, Blanco J, van Dorp L, Balloux F, Dobaño C, Moncunill G. Initial antigen encounter determines robust T-cell immunity against SARS-CoV-2 BA.2.86 variant three years later. J Infect 2025; 90:106402. [PMID: 39746406 DOI: 10.1016/j.jinf.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVES We aimed to evaluate the adaptive immune responses cross-recognition of the hypermutated SARS-CoV-2 BA.2.86 variant and identify the determinants influencing this recognition. METHODS We measured BA.2.86 neutralizing antibodies and T-cell responses cross-reactivity in previously exposed participants. We investigated clinical-demographic factors and used a novel in silico analysis to assess viral genetic determinants affecting T-cell responses. RESULTS Despite notable escape from neutralizing antibodies, T-cell responses remained generally preserved, albeit with a significant but small loss in T-cell cross-recognition (7.5%, 14.2%, and 10.8% average loss for IFN-γ, IL-2, and IFN-γ + IL-2, respectively, p<0.05). This is consistent with the prediction of 6 out of 10 immunodominant T-cell epitopes (TCEs) altered by BA.2.86 mutations to have reduced peptide presentation. This effect is expected to be mitigated by total TCEs across the genome. Remarkably, T-cell responses and cross-recognition were 3.5 (IFN-γ), 2 (IL-2) and 2.4 (IFN-γ + IL-2) times higher when first induced by infection rather than by vaccination three years earlier, by increasing number of infections, and by ancestral/Delta than Omicron infections. CONCLUSIONS Our findings underscore the critical role and factors influencing T-cell immunity against evolving SARS-CoV-2 variants, such as first antigen encounter (vaccination or infection), as it is essential for developing effective control strategies.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/immunology
- COVID-19/virology
- Male
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- T-Lymphocytes/immunology
- Middle Aged
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Cross Reactions/immunology
- Adult
- Aged
- Interleukin-2/immunology
- Antigens, Viral/immunology
- Interferon-gamma/immunology
- Immunity, Cellular
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
Collapse
Affiliation(s)
- Rocío Rubio
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alexei Yavlinsky
- Institute of Health Informatics, University College London, London, UK
| | | | - Luis M Molinos-Albert
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Carla Martín Pérez
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Mar Canyelles
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cèlia Torres
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cedric Tan
- UCL Genetics Institute, University College London, London, UK
| | - Leo Swadling
- Division of Infection & Immunity, University College London, London, UK
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | | | - Josep Vidal-Alaball
- Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain; Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain; Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain; Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | - Julià Blanco
- IrsiCaixa, Badalona, Spain; Institut Germans Trias I Pujol, IGTPO, Badalona, Spain; Universitat de Vic, Central de Catalunya, UVic-UCC, Vic, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | | | - Carlota Dobaño
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
2
|
Wagenhäuser I, Almanzar G, Förg FB, Stein A, Eiter I, Reusch J, Mees J, Herzog A, Vogel U, Frey A, Lâm TT, Schubert-Unkmeir A, Dölken L, Kurzai O, Frantz S, Gabel A, Petri N, Prelog M, Krone M. Heterologous and homologous COVID-19 mRNA vaccination schemes for induction of basic immunity show similar immunogenicity regarding long-term spike-specific cellular immunity in healthcare workers. Vaccine 2024; 42:126132. [PMID: 39034219 DOI: 10.1016/j.vaccine.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Healthcare workers (HCWs) are recommended to receive at least three spike-antigen exposures to generate basic immunity and to mediate herd protection of vulnerable patients. So far, less attention has been put on the cellular immune response induced by homologous (three BTN162b2mRNA doses) or heterologous (mRNA-1273 as third dose building on two BTN162bmRNA doses) and the immunological impact of breakthrough infections (BTIs). Therefore, in 356 vaccinated HCWs with or without BTIs the Anti-SARS-CoV-2-Spike-IgG concentrations and avidities and B- and T-cell-reactivity against SARS-CoV-2-Spike-S1- and Nucleocapsid-antigens were assessed with Interferon-gamma-ELISpot and by flow-cytometry. HCWs who had hybrid immunity due to BTIs exhibited strong T-cell-reactivity against the Spike-S1-antigen. A lasso regression model revealed a significant reduction in T-cell immune responses among smokers (p < 0.0001), with less significant impact observed for age, sex, heterologous vaccination, body-mass-index, Anti-Nucleocapsid T-cell reactivity, days since last COVID-19-immunization, and Anti-SARS-CoV-2-Spike-IgG. Although subgroup analysis revealed higher Anti-SARS-CoV-2-Spike-IgG after heterologous vaccination, similar cellular reactivity and percentages of Spike-reactive T- and B-cells were found between homologous and heterologous vaccination. Anti-SARS-CoV-2-Spike-IgG concentrations and avidity significantly correlated with activated T-cells. CD4 + and CD8 + responses correlated with each other. A strong long-term cellular immune response should be considered as baseline for recommendations of booster doses in HCWs with prioritization of smokers. HCWs presented significant T-cellular reactivity towards Spike-S1-antigen with particularly strong responses in hybrid immunized HCWs who had BTIs. HCWs without BTI presented similar percentages of Spike-specific B- and T-cells between homologous or heterologous vaccination indicating similar immunogenicity for both mRNA vaccines, BNT162b2mRNA and mRNA-1273.
Collapse
Affiliation(s)
- Isabell Wagenhäuser
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Giovanni Almanzar
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Franziska Bernhardine Förg
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Astrid Stein
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Isabella Eiter
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Julia Reusch
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Juliane Mees
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Anna Herzog
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Ulrich Vogel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany; Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, 07745, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Alexander Gabel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Martina Prelog
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany.
| | - Manuel Krone
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
3
|
Rothoeft T, Maier C, Talarico A, Hoffmann A, Schlegtendal A, Lange B, Petersmann A, Denz R, Timmesfeld N, Toepfner N, Vidal-Blanco E, Pfaender S, Lücke T, Brinkmann F. Natural and hybrid immunity after SARS-CoV-2 infection in children and adolescents. Infection 2024; 52:1449-1458. [PMID: 38499828 PMCID: PMC11288991 DOI: 10.1007/s15010-024-02225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/24/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE In contrast to adults, immune protection against SARS-CoV-2 in children and adolescents with natural or hybrid immunity is still poorly understood. The aim of this study was to analyze different immune compartments in different age groups and whether humoral immune reactions correlate with a cellular immune response. METHODS 72 children and adolescents with a preceding SARS-CoV-2 infection were recruited. 37 were vaccinated with an RNA vaccine (BNT162b2). Humoral immunity was analyzed 3-26 months (median 10 months) after infection by measuring Spike protein (S), nucleocapsid (NCP), and neutralizing antibodies (nAB). Cellular immunity was analyzed using a SARS-CoV-2-specific interferon-γ release assay (IGRA). RESULTS All children and adolescents had S antibodies; titers were higher in those with hybrid immunity (14,900 BAU/ml vs. 2118 BAU/ml). NCP antibodies were detectable in > 90%. Neutralizing antibodies (nAB) were more frequently detected (90%) with higher titers (1914 RLU) in adolescents with hybrid immunity than in children with natural immunity (62.5%, 476 RLU). Children with natural immunity were less likely to have reactive IGRAs (43.8%) than adolescents with hybrid immunity (85%). The amount of interferon-γ released by T cells was comparable in natural and hybrid immunity. CONCLUSION Spike antibodies are the most reliable markers to monitor an immune reaction against SARS-CoV-2. High antibody titers of spike antibodies and nAB correlated with cellular immunity, a phenomenon found only in adolescents with hybrid immunity. Hybrid immunity is associated with markedly higher antibody titers and a higher probability of a cellular immune response than a natural immunity.
Collapse
Affiliation(s)
- T Rothoeft
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany.
| | - C Maier
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Talarico
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Hoffmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - A Schlegtendal
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - B Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - A Petersmann
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
- University Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - R Denz
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Timmesfeld
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Bochum, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - E Vidal-Blanco
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - S Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - T Lücke
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - F Brinkmann
- University Hospital of Pediatrics and Adolescent Medicine, St. Josef-Hospital, Ruhr-University, Bochum, Germany
- University Children's Hospital, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
4
|
Culebras E, Martínez M, Novella C, León JM, Marcos E, Delgado-Iribarren A, Ríos E. Cell immunity to SARS-CoV-2 after natural infection and/or different vaccination regimens. Front Cell Infect Microbiol 2024; 14:1370859. [PMID: 38572317 PMCID: PMC10987831 DOI: 10.3389/fcimb.2024.1370859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Background The aim of the study was to evaluate the humoral and cellular immunity after SARS-CoV-2 infection and/or vaccination according to the type of vaccine, number of doses and combination of vaccines. Methods Volunteer subjects were sampled between September 2021 and July 2022 in Hospital Clínico San Carlos, Madrid (Spain). Participants had different immunological status against SARS-CoV-2: vaccinated and unvaccinated, with or without previous COVID-19 infection, including healthy and immunocompromised individuals. Determination of IgG against the spike protein S1 subunit receptor-binding domain (RBD) was performed by chemiluminescence microparticle immunoassay (CMIA) using the Architect i10000sr platform (Abbott). The SARS-CoV-2-specific T-cell responses were assessed by quantification of interferon gamma release using QuantiFERON SARS-CoV-2 assay (Qiagen). Results A total of 181 samples were collected, 170 were from vaccinated individuals and 11 from unvaccinated. Among the participants, 41 were aware of having previously been infected by SARS-CoV-2. Vaccinated people received one or two doses of the following vaccines against SARS-CoV-2: ChAdOx1-S (University of Oxford-AstraZeneca) (AZ) and/orBNT162b2 (Pfizer-BioNTech)(PZ). Subjects immunized with a third-booster dose received PZ or mRNA-1273 (Moderna-NIAID)(MD) vaccines. All vaccinees developed a positive humoral response (>7.1 BAU/ml), but the cellular response varied depending on the vaccination regimen. Only AZ/PZ combination and 3 doses of vaccination elicited a positive cellular response (median concentration of IFN- γ > 0.3 IU/ml). Regarding a two-dose vaccination regimen, AZ/PZ combination induced the highest humoral and cellular immunity. A booster with mRNA vaccine resulted in increases in median levels of IgG-Spike antibodies and IFN-γ as compared to those of two-dose of any vaccine. Humoral and cellular immunity levels were significantly higher in participants with previous infection compared to those without infection. Conclusion Heterologous vaccination (AZ/PZ) elicited the strongest immunity among the two-dose vaccination regimens. The immunity offered by the third-booster dose of SARS-CoV-2 vaccine depends not only on the type of vaccine administered but also on previous doses and prior infection. Previous exposure to SARS-CoV-2 antigens by infection strongly affect immunity of vaccinated individuals.
Collapse
Affiliation(s)
- Esther Culebras
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Martínez
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Consuelo Novella
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Jose Manuel León
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Esther Marcos
- Sala de extracciones, IML, Hospital Clínico San Carlos, Madrid, Spain
| | - Alberto Delgado-Iribarren
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther Ríos
- Servicio de Microbiología Clínica, Instituto Medicina Laboratorio (IML), Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
5
|
Li Y, Wang L, Gao Z, Zhou J, Xie S, Li G, Hou C, Wang Z, Lv Z, Wang R, Han G. Neuropeptide Calcitonin Gene-Related Peptide Promotes Immune Homeostasis of Bacterial Meningitis by Inducing Major Histocompatibility Complex Class II Ubiquitination. J Infect Dis 2024; 229:855-865. [PMID: 37603461 DOI: 10.1093/infdis/jiad358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP), an immunomodulatory neuropeptide, is important for regulating pain transmission, vasodilation, and the inflammatory response. However, the molecular mechanisms of the CGRP-mediated immune response remain unknown. METHODS The effects of CGRP on bacterial meningitis (BM) and its underlying mechanisms were investigated in BM mice in vivo and macrophages in vitro. RESULTS Peripheral injection of CGRP attenuated cytokine storms and protected mice from fatal pneumococcal meningitis, marked by increased bacterial clearance, improved neuroethology, and reduced mortality. When the underlying mechanisms were investigated, we found that CGRP induces proteasome-dependent degradation of major histocompatibility complex class II (MHC-II) in macrophages and then inhibits CD4+ T-cell activation. MARCH1 was identified as an E3 ligase that can be induced by CGRP engagement and promote K48-linked ubiquitination and degradation of MHC-II in macrophages. These results provide new insights into neuropeptide CGRP-mediated immune regulation mechanisms. CONCLUSIONS We conclude that targeting the nervous system and manipulating neuroimmune communication is a promising strategy for treating intracranial infections like BM.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Lanying Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng
| | - Zhenfang Gao
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Jie Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng
| | - Shun Xie
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Chunmei Hou
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Zhiding Wang
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| | - Zhonglin Lv
- Department of Hematology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing
| |
Collapse
|
6
|
D’Abramo A, Vita S, Beccacece A, Navarra A, Pisapia R, Fusco FM, Matusali G, Girardi E, Maggi F, Goletti D, Nicastri E. B-cell-depleted patients with persistent SARS-CoV-2 infection: combination therapy or monotherapy? A real-world experience. Front Med (Lausanne) 2024; 11:1344267. [PMID: 38487021 PMCID: PMC10937561 DOI: 10.3389/fmed.2024.1344267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The aim of the study was to describe a cohort of B-cell-depleted immunocompromised (IC) patients with prolonged or relapsing COVID-19 treated with monotherapy or combination therapy. Methods This is a multicenter observational retrospective study conducted on IC patients consecutively hospitalized with a prolonged or relapsing SARS-CoV-2 infection from November 2020 to January 2023. IC COVID-19 subjects were stratified according to the monotherapy or combination anti-SARS-CoV-2 therapy received. Results Eighty-eight patients were enrolled, 19 under monotherapy and 69 under combination therapy. The study population had a history of immunosuppression (median of 2 B-cells/mm3, IQR 1-24 cells), and residual hypogammaglobulinemia was observed in 55 patients. A reduced length of hospitalization and time to negative SARS-CoV-2 molecular nasopharyngeal swab (NPS) in the combination versus monotherapy group was observed. In the univariable and multivariable analyses, the percentage change in the rate of days to NPS negativity showed a significant reduction in patients receiving combination therapy compared to those receiving monotherapy. Conclusion In IC persistent COVID-19 patients, it is essential to explore new therapeutic strategies such as combination multi-target therapy (antiviral or double antiviral plus antibody-based therapies) to avoid persistent viral shedding and/or severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra D’Abramo
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Assunta Navarra
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Raffaella Pisapia
- Infectious Diseases Unit, "D. Cotugno" Hospital, AORN dei Colli, Naples, Italy
| | | | - Giulia Matusali
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
7
|
Vita S, D’Abramo A, Coppola A, Farroni C, Iori AP, Faraglia F, Sette A, Grifoni A, Lindestam Arlehamn C, Bibas M, Goletti D, Nicastri E. Combined antiviral therapy as effective and feasible option in allogenic hematopoietic stem cell transplantation during SARS-COV-2 infection: a case report. Front Oncol 2024; 14:1290614. [PMID: 38414746 PMCID: PMC10896944 DOI: 10.3389/fonc.2024.1290614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Here we describe the case of a 51 years old Italian woman with acute lymphoblastic leukemia who underwent to hematopoietic stem cell transplantation (HSCT) during SARS-COV-2 infection. She presented a prolonged COVID-19 successfully treated with dual anti SARS-COV-2 antiviral plus monoclonal antibody therapy.
Collapse
Affiliation(s)
- Serena Vita
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandra D’Abramo
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Coppola
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Farroni
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Paola Iori
- Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Francesca Faraglia
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Michele Bibas
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Delia Goletti
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Department, National Institute for Infectious Diseases ‘Lazzaro Spallanzani’ Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
8
|
Ben Khlil AA, Zamali I, Belloumi D, Gdoura M, Kharroubi G, Marzouki S, Dachraoui R, Ben Yaiche I, Bchiri S, Hamdi W, Gharbi M, Ben Hmid A, Samoud S, Galai Y, Torjmane L, Ladeb S, Bettaieb J, Triki H, Ben Abdeljelil N, Ben Othman T, Ben Ahmed M. Immunogenicity and Tolerance of BNT162b2 mRNA Vaccine in Allogeneic Hematopoietic Stem Cell Transplant Patients. Vaccines (Basel) 2024; 12:174. [PMID: 38400157 PMCID: PMC10892348 DOI: 10.3390/vaccines12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. METHODS A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). RESULTS Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. CONCLUSIONS Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients.
Collapse
Affiliation(s)
- Ahmed Amine Ben Khlil
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
| | - Imen Zamali
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Dorra Belloumi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Mariem Gdoura
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Ghassen Kharroubi
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Rym Dachraoui
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Insaf Ben Yaiche
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Soumaya Bchiri
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Walid Hamdi
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
| | - Manel Gharbi
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Ahlem Ben Hmid
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Samar Samoud
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| | - Yousr Galai
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Lamia Torjmane
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Saloua Ladeb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Jihene Bettaieb
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
- Department of Medical Epidemiology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Henda Triki
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Virology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.G.); (M.G.)
| | - Nour Ben Abdeljelil
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Tarek Ben Othman
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Department of Hematology and Transplant, Centre National de Greffe de Moelle Osseuse, Tunis 1006, Tunisia
| | - Melika Ben Ahmed
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (A.A.B.K.); (I.Z.); (W.H.); (A.B.H.); (S.S.); (Y.G.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (D.B.); (G.K.); (R.D.); (I.B.Y.); (L.T.); (S.L.); (J.B.); (H.T.); (N.B.A.); (T.B.O.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia; (S.M.); (S.B.)
| |
Collapse
|
9
|
Rabenstein M, Thomas OG, Carlin G, Khademi M, Högelin KA, Malmeström C, Axelsson M, Brandt AF, Gafvelin G, Grönlund H, Kockum I, Piehl F, Lycke J, Olsson T, Hessa T. The impact of hybrid immunity on immune responses after SARS-CoV-2 vaccination in persons with multiple sclerosis treated with disease-modifying therapies. Eur J Neurol 2023; 30:3789-3798. [PMID: 37522464 DOI: 10.1111/ene.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND PURPOSE Hybrid immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develops from a combination of natural infection and vaccine-generated immunity. Multiple sclerosis (MS) disease-modifying therapies (DMTs) have the potential to impact humoral and cellular immunity induced by SARS-CoV-2 vaccination and infection. The aims were to compare antibody and T-cell responses after SARS-CoV-2 mRNA vaccination in persons with MS (pwMS) treated with different DMTs and to assess differences between naïvely vaccinated pwMS and pwMS with hybrid immunity vaccinated following a previous SARS-CoV-2 infection. METHODS Antibody and T-cell responses were determined in pwMS at baseline and 4 and 12 weeks after the second dose of SARS-CoV-2 vaccination in 143 pwMS with or without previous SARS-CoV-2 infection and 40 healthy controls (HCs). The MS cohort comprised natalizumab (n = 22), dimethylfumarate (n = 23), fingolimod (n = 38), cladribine (n = 30), alemtuzumab (n = 17) and teriflunomide (n = 13) treated pwMS. Immunoglobulin G antibody responses to SARS-CoV-2 antigens were measured using a multiplex bead assay and FluoroSpot was used to assess T-cell responses (interferon γ and interleukin 13). RESULTS Humoral and T-cell responses to vaccination were comparable between naïvely vaccinated HCs and pwMS treated with natalizumab, dimethylfumarate, cladribine, alemtuzumab and teriflunomide, but were suppressed in fingolimod-treated pwMS. Both fingolimod-treated pwMS and HCs vaccinated following a previous SARS-CoV-2 infection had higher antibody levels 4 weeks after vaccination compared to naïvely vaccinated individuals. Antibody and interferon γ levels 12 weeks after vaccination were positively correlated with time from last treatment course of cladribine. CONCLUSION These findings are of relevance for infection risk mitigation and for vaccination strategies amongst pwMS undergoing DMT.
Collapse
Affiliation(s)
- Monika Rabenstein
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Olivia G Thomas
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Giorgia Carlin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Khademi
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Klara Asplund Högelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Frandsen Brandt
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guro Gafvelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Hans Grönlund
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Kockum
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Fredrik Piehl
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
| | - Tara Hessa
- Therapeutic Immune Design, Department of Clinical Neuroscience, Center for Molecular Medicine L8:02, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Da Silva L, Klopfenstein T, Gendrin V, Clouet J, Toko L, Richier Q, Leriche T, Nicolas R, Queijo A, Sreiri N, Lacombe K, Zayet S. Prolonged SARS-CoV-2 Infection in Patients Receiving Anti-CD20 Monoclonal Antibodies: A Diagnostic Challenged by Negative Nasopharyngeal RT-PCR and Successful Treatment with COVID-19 High-Titer Convalescent Plasma. Viruses 2023; 15:2220. [PMID: 38005897 PMCID: PMC10675708 DOI: 10.3390/v15112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
We highlighted in this current paper similar prolonged respiratory presentation with COVID-19 pneumonia in four severely immunocompromised patients currently being treated with anti-CD20 monoclonal antibodies (mAbs), such as ocrelizumab and rituximab, for multiple sclerosis or rheumatoid polyarthritis. Real-time reverse transcription-polymerase chain reaction on a nasopharyngeal swab specimen was negative in all patients. SARS-CoV-2 infection was confirmed from bronchoalveolar lavage fluid. A high titer of post-vaccine COVID-19 convalescent plasma was administered with complete recovery in all patients.
Collapse
Affiliation(s)
- Léa Da Silva
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Timothée Klopfenstein
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Vincent Gendrin
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Julien Clouet
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Lynda Toko
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Quentin Richier
- Infectious Diseases Department, Assistance Publique Hopitaux de Paris, Saint-Antoine Hospital, 75012 Paris, France; (Q.R.)
| | - Thomas Leriche
- Rheumatology Department, Nord Franche-Comte Hospital, 90400 Trevenans, France;
| | - Raoul Nicolas
- Pneumologie Department, Nord Franche-Comte Hospital, 90400 Trevenans, France;
| | - Alexis Queijo
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Nour Sreiri
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| | - Karine Lacombe
- Infectious Diseases Department, Assistance Publique Hopitaux de Paris, Saint-Antoine Hospital, 75012 Paris, France; (Q.R.)
- INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP), Sorbonne University, 75646 Paris, France
| | - Souheil Zayet
- Infectious Diseases Department, Nord Franche-Comté Hospital, 90400 Trevenans, France; (L.D.S.); (V.G.); (L.T.); (A.Q.); (N.S.)
| |
Collapse
|
11
|
Ssali I, Mugaba S, Watelo AK, Bemanzi J, Katende JS, Oluka GK, Ankunda V, Baine C, Kato L, Onyachi N, Muwanga M, Jjuuko M, Kayiwa J, Nsereko C, Auma BO, Weiskopf D, Sette A, Lutalo T, Musenero M, Kaleebu P, Serwanga J. Spike protein is a key target for stronger and more persistent T-cell responses-a study of mild and asymptomatic SARS-CoV-2 infection. Int J Infect Dis 2023; 136:49-56. [PMID: 37683720 DOI: 10.1016/j.ijid.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVES Understanding the immune response in very mild and asymptomatic COVID-19 is crucial for developing effective vaccines and immunotherapies, yet remains poorly characterized. This longitudinal study examined the evolution of interferon (IFN)-γ responses to SARS-CoV-2 peptides in 109 asymptomatic or mildly symptomatic Ugandan COVID-19 patients across 365 days and explored their association with antibody generation. METHODS T-cell responses to spike-containing clusters of differentiation (CD4)-S and CD8 nCoV-A (CD8-A) megapools, and the non-spike CD4-R and CD8 nCoV-B (CD8-B) megapools, were assessed and correlated with demographic and temporal variables. RESULTS SARS-CoV-2-specific IFN-γ responses were consistently detected in all peptide pools and time points, with the spike-targeted response exhibiting higher potency and durability than the non-spike responses. Throughout the entire 365-day infection timeline, a robust positive correlation was observed between CD4 T-cell responses to the spike-derived peptides and anti-spike immunoglobulin G antibody levels, underscoring their interdependent dynamics in the immune response against SARS-CoV-2; in contrast, CD8 T-cell responses exhibited no such correlation, highlighting their distinctive, autonomous role in defense. No meaningful variations in complete blood count parameters were observed between individuals with COVID-19 infection and those without, indicating clinical insignificance. CONCLUSIONS This study highlights the dominant role of spike-directed T-cell responses in mild and asymptomatic disease and provides crucial longitudinal data from Sub-Saharan African settings. The findings provide valuable insights into the dynamics of T-cell responses and their potential significance in developing effective strategies for combating COVID-19.
Collapse
Affiliation(s)
- Ivan Ssali
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | | | - Juliana Bemanzi
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joseph Ssebwana Katende
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda; Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Gerald Kevin Oluka
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda; Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Nathan Onyachi
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Moses Muwanga
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Mark Jjuuko
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - John Kayiwa
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Christopher Nsereko
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Betty Oliver Auma
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, USA
| | - Tom Lutalo
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Monica Musenero
- Science, Technology, and Innovation Secretariat, Office of the President, Government of Uganda, Kampala, Uganda
| | - Pontiano Kaleebu
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda; Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jennifer Serwanga
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda; Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda.
| |
Collapse
|
12
|
Dudley HM, O'Mara M, Auma A, Gong J, Ross Y, Gurevich N, Carbone S, Reihs A, Nguyen Y, McComsey GA, Cao Y, Balazs AB, Gordesky L, Payne M, Singer N, Kostadinova L, Wilson B, Zidar DA, King CL, Canaday DH, Shive CL, Mattar MM, Anthony DD. Rheumatoid arthritis and older age are associated with lower humoral and cellular immune response to primary series COVID-19 mRNA vaccine. Vaccine 2023; 41:6112-6119. [PMID: 37659895 PMCID: PMC11606055 DOI: 10.1016/j.vaccine.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVE People with autoimmune disease have worse COVID-19 infection-related outcomes, lower antibody responses to COVID-19 vaccine, and higher rates of breakthrough infection. Immunosuppressive medications used to treat rheumatoid arthritis (RA) are associated with lower COVID-19 vaccine responses, though independent contributions of comorbidities, T-cell immunity, and age are less clear. We sought to test the hypothesis that RA, immunosuppressive medications used to treat RA, and older age, contribute to reduced B and T cell response to COVID-19 vaccine. METHODS We evaluated serum samples, taken the day of 1st vaccine dose, the day of 2nd dose, 2-6 weeks after 2nd dose, 7-12 weeks after 2nd dose, 13-24 weeks after 2nd dose, and 2-6 weeks after the 3rd dose, for anti-spike IgG and neutralizing antibody levels to Wuhan and Omicron BA.1 and peripheral blood mononuclear cells (PBMC) for spike-specific IFN-γ and IL-2 production by ELISPOT assay in 46 RA and 101 non-autoimmune control participants before and after the primary series COVID-19 mRNA vaccination. RESULTS RA participants had lower spike-specific IgG and Wuhan-strain neutralizing antibody levels 2-6 weeks compared to controls after the second dose of primary vaccine series. Neutralizing antibody levels against Omicron BA.1 were low in both groups. IFN-γ production correlated with Wuhan neutralizing antibody levels, while older age negatively correlated with spike-specific IL-2, IFN-γ and IgG. Lower antibody levels were associated with older age, RA status, and medication usage, while lower T cell responses were associated primarily with older age. CONCLUSIONS These data indicate lower COVID-19 mRNA vaccine-induced antibody levels in persons with RA compared to individuals without RA, likely partially attributable to immune suppressive medications. At the same time, older age is associated with lower antibody and cellular immune response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Holly M Dudley
- Department of Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| | - Megan O'Mara
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ann Auma
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jenny Gong
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| | - Yael Ross
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| | - Natalie Gurevich
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sarah Carbone
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Alex Reihs
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ynez Nguyen
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Grace A McComsey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Yi Cao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | | | - Larraine Gordesky
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| | - Michael Payne
- Department of Global Health, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Nora Singer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| | - Lenche Kostadinova
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Brigid Wilson
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - David A Zidar
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Department of Global Health, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Christopher L King
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Global Health, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - David H Canaday
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Carey L Shive
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maya M Mattar
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Donald D Anthony
- Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States; The MetroHealth System, Cleveland, OH, United States
| |
Collapse
|
13
|
Koehm M, Klippstein M, Dauth S, Hallmann K, Kohmer N, Burkhardt H, Ciesek S, Geisslinger G, Rabenau HF, Behrens F. Impact of different classes of immune-modulating treatments on B cell-related and T cell-related immune response before and after COVID-19 booster vaccination in patients with immune-mediated diseases and primary immunodeficiency: a cohort study. RMD Open 2023; 9:e003094. [PMID: 37652553 PMCID: PMC10476126 DOI: 10.1136/rmdopen-2023-003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES To evaluate the potential of immunosuppressed patients to mount B-cell and T-cell responses to COVID-19 booster vaccination (third vaccination). METHODS Patients with primary immunodeficiency (PID), immune-mediated inflammatory diseases (IMIDs) on CD20-depleting treatment with rituximab (RTX), or IMIDs treated with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) or biological disease-modifying antirheumatic drug (bDMARDs) were included and assessed before (baseline visit (BL)) and 2, 4 and 8 weeks after COVID-19 booster vaccination. Serum B-cell responses were assessed by antibody levels against SARS-CoV-2 spike protein (anti-spike IgG antibody (S-AB)) and a surrogate virus neutralisation test (sVNT). T-cell responses were assessed by an interferon gamma release assay (IGRA). RESULTS Fifty patients with PID (n=6), treated with RTX therapy (n=13), or treated with csDMARDs/bDMARDs (n=31) were included. At BL, anti-S-AB titres in PID and csDMARD/bDMARD-treated patients were low (although significantly higher than RTX patients); measures of B-cell-mediated response increased significantly after booster vaccination. In the RTX cohort, low BL anti-S-AB and sVNT values did not improve after booster vaccination, but patients had significantly elevated IGRA responses post booster vaccination compared with the other groups. csDMARD/bDMARD-treated patients showed the highest BL values in all three assays with greater increases in all parameters after booster vaccination compared with patients with PID. CONCLUSION Patients with IMID on therapeutic B-cell depletion have low anti-S-AB and sVNT values before and after booster vaccination but show significantly higher levels of IGRA compared with other immunosuppressed patients, suggesting an underlying mechanism attempting to compensate compromised humoral immunity by upregulating T-cell responsiveness. PID appears to have a stronger impact on antiviral immune response than csDMARD/bDMARD treatment.
Collapse
Affiliation(s)
- Michaela Koehm
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Maximilian Klippstein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Stephanie Dauth
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Konstantin Hallmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Harald Burkhardt
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Virology, German Centre for Infection Research, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Behrens
- Department of Rheumatology, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Miyata Y, Suzuki K, Nagano T, Iida K, Hasegawa T, Uga H, Matsuoka H. Cellular immunity reflects the persistent symptoms among COVID-19 recovered patients in Japan. Sci Rep 2023; 13:11071. [PMID: 37422499 PMCID: PMC10329673 DOI: 10.1038/s41598-023-35505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 07/10/2023] Open
Abstract
Coronavirus disease (COVID-19) often causes persistent symptoms long after infection, referred to as "long COVID" or post-acute COVID-19 syndrome (PACS). This phenomenon has been studied primarily concerning B-cell immunity, while the involvement of T-cell immunity is still unclear. This retrospective study aimed to examine the relationship among the number of symptoms, cytokine levels, and the Enzyme-linked immunosorbent spot (ELISPOT) assay data in patients with COVID-19. To examine inflammatory conditions, plasma interleukin (IL)-6, IL-10, IL-18, chemokine ligand 9 (CXCL9), chemokine ligand 3 (CCL3), and vascular endothelial growth factor (VEGF) levels were analyzed using plasma obtained from COVID-19 recovery patients and healthy controls (HC). These levels were significantly higher in the COVID-19 group than those in the HC group. ELISPOT assays were performed to investigate the correlation between COVID-19 persistent symptoms and T-cell immunity. Cluster analysis of ELISPOT categorized COVID-19 recovery patients in the ELISPOT-high and -low groups, based on the values of S1, S2, and N. The number of persistent symptoms was significantly higher in the ELISPOT-low group than those in the ELISPOT-high group. Thus, T cell immunity is critical for the rapid elimination of COVID-19 persistent symptoms, and its measurement immediately after COVID-19 recovery might predict long-term COVID-19 or PACS.
Collapse
Affiliation(s)
- Yoshiharu Miyata
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Kohjin Suzuki
- System Technologies Laboratory, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Keiji Iida
- Division of Diabetes and Endocrinology, Hyogo Prefectural Kakogawa Medical Center, 203, Kanno, Kanno-cho, Kakogawa, Hyogo, 675-8555, Japan
| | - Takehiro Hasegawa
- Research and Development Division, Sysmex R&D Centre Europe GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Hitoshi Uga
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and Development, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, 1-5-1 Minatojimanakamachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
15
|
Blyakher MS, Fedorova IM, Tulskaya EA, Kapustin IV, Koteleva SI, Ramazanova ZK, Odintsov EE, Sandalova SV, Novikova LI, Aleshkin AV, Bochkareva SS. [Development and preservation of specific T-cell immunity after COVID-19 or vaccination against this infection]. Vopr Virusol 2023; 68:205-214. [PMID: 37436412 DOI: 10.36233/0507-4088-171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 07/13/2023]
Abstract
Aim evaluation of specific T-cell immunity against SARS-CoV-2 in primary and secondary response to virus antigens by screening method. MATERIALS AND METHODS Patients were tested 11.5 months after COVID-19 and 610 months before and after vaccination. Healthy volunteers were screened before, 26 times during the vaccination course, and 68 months after revaccination with the Sputnik V vaccine. IgG and IgM antibodies to SARS-CoV-2 were detected by ELISA using commercially available kits (Vector-Best, Russia). Antigenic (AG) activation of T cells in the fraction of bloods mononuclear cells was assessed by IFN- production after AG stimulation in the wells of plates from ELISA kits intended for detection of antibodies against SARS-CoV-2. Data were processed by MS Excel and Statistica 10.0 software. RESULTS AG-specific T cells were detected in 88.5% of vaccinated healthy volunteers, half of whom were found to have T cells appearing earlier than antibodies to AG. After 6-8 months, the level of AG activation decreases. Following the revaccination, the level of AG activation of memory T cells in vitro increases within six months in 76.9100.0% of vaccinated subjects. On the contrary, after COVID-19, 86.7% of individuals had in their blood the AG-specific T cells with high activity at the time of vaccination. The activity of T cells recognizing the RBD domain of the SARS-CoV-2 S protein and the proportion of individuals who had these cells in their blood increased after the vaccination of reconvalescents. CONCLUSION T-cell immunity against SARS-CoV-2 antigens has been shown to persist for 6 months after illness. In vaccinated individuals without history of COVID-19, such duration of the preservation of AG-specific T cells in blood was only achieved after the revaccination.
Collapse
Affiliation(s)
- M S Blyakher
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I M Fedorova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E A Tulskaya
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I V Kapustin
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S I Koteleva
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - Z K Ramazanova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E E Odintsov
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S V Sandalova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - L I Novikova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - A V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S S Bochkareva
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| |
Collapse
|
16
|
Petrone L, Sette A, de Vries RD, Goletti D. The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic. Pathogens 2023; 12:862. [PMID: 37513709 PMCID: PMC10385870 DOI: 10.3390/pathogens12070862] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to "classical" T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA;
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Rory D. de Vries
- Department Viroscience, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands;
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
17
|
Alicandro G, Orena BS, Rosazza C, Cariani L, Russo M, Zatelli M, Badolato R, Gramegna A, Blasi F, Daccò V. Humoral and cell-mediated immune responses to BNT162b2 vaccine against SARS-CoV-2 in people with cystic fibrosis. Vaccine 2023:S0264-410X(23)00590-X. [PMID: 37263872 DOI: 10.1016/j.vaccine.2023.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
People with cystic fibrosis (pwCF) were considered to be clinically vulnerable to COVID-19 and were therefore given priority in the vaccination campaign. Vaccines induced a humoral response in these patients that was comparable to the response observed among the general population. However, the role of the cell-mediated immune response in providing long-term protection against SARS-CoV-2 in pwCF has not yet been defined. In this study, humoral (antibody titre) and cell-mediated immune responses (interferon-γ release) to the BNT162b2 vaccine were measured at different time points, from around 6-8 months after the 2nd dose and up to 8 months after the 3rd dose, in 118 CF patients and 26 non-CF subjects. Subjects were sampled between November 2021 and September 2022 and followed-up for breakthrough infection through October 2022. pwCF mounted a cell-mediated response that was similar to that observed in non-CF subjects. Low antibody titres (<1st quartile) were associated with a higher risk of breakthrough infection (HR: 2.39, 95 % CI: 1.17-4.88), while there was no significant association with low INF-γ levels (<0.3 IU/mL) (HR: 1.38, 95 % CI: 0.64-2.99). Further studies are needed in subgroup of pwCF receiving immunosuppressive therapy, such as organ transplant recipients. This data is important for tailoring vaccination strategies for this clinically vulnerable population.
Collapse
Affiliation(s)
- G Alicandro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - B S Orena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - C Rosazza
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy
| | - L Cariani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - M Russo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy
| | - M Zatelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Microbiology Unit, Milan, Italy
| | - R Badolato
- Department of Pediatrics, ASST Spedali Civili, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - A Gramegna
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - F Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - V Daccò
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Center, Milan, Italy.
| |
Collapse
|
18
|
Ruggieri S, Aiello A, Tortorella C, Navarra A, Vanini V, Meschi S, Lapa D, Haggiag S, Prosperini L, Cuzzi G, Salmi A, Quartuccio ME, Altera AMG, Garbuglia AR, Ascoli Bartoli T, Galgani S, Notari S, Agrati C, Puro V, Nicastri E, Gasperini C, Goletti D. Dynamic Evolution of Humoral and T-Cell Specific Immune Response to COVID-19 mRNA Vaccine in Patients with Multiple Sclerosis Followed until the Booster Dose. Int J Mol Sci 2023; 24:ijms24108525. [PMID: 37239872 DOI: 10.3390/ijms24108525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.
Collapse
Affiliation(s)
- Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- UOS Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | | | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Simonetta Galgani
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Stefania Notari
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| |
Collapse
|
19
|
Infantino M, Tsalouchos A, Russo E, Laudicina S, Grossi V, Lari B, Benucci M, Stacchini L, Amedei A, Casprini P, Villalta D, Dattolo PC, Manfredi M. Assessing T-Cell Immunity in Kidney Transplant Recipients with Absent Antibody Production after a 3rd Dose of the mRNA-1273 Vaccine. Int J Mol Sci 2022; 23:12333. [PMID: 36293190 PMCID: PMC9604095 DOI: 10.3390/ijms232012333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The vulnerable population of kidney transplant recipients (KTRs) are low responders to COVID-19 vaccines, so specific immune surveillance is needed. The interferon-gamma (IFN-γ) release assay (IGRA) is effective in assessing T cell-mediated immunity. We assessed SARS-CoV-2-directed T cell responses in KTRs with absent antibody production after a third dose of the mRNA-1273 vaccine, using two different IGRAs. A cohort of 57 KTRs, who were actively followed up, received a third dose of the mRNA-1273 vaccine. After the evaluation of humoral immunity to SARS-CoV-2, 14 seronegative patients were tested with two commercial IGRAs (SD Biosensor and Euroimmun). Out of 14 patients, one and three samples were positive by IGRAs with Euroimmun and SD Biosensor, respectively. The overall agreement between the two assays was 85.7% (κ = 0.444). In addition, multivariate linear regression analysis showed no statistically significant association between the IFN-γ concentration, and the independent variables analyzed (age, gender, years since transplant, total lymphocytes cells/mcl, CD3+ cells/mcl, CD3+ CD4+ cells/mcl, CD3+ CD8+ cells/mcl, CD19+ cells/mcl, CD3-CD16+CD56+ cells/mcl) (p > 0.01). In a vulnerable setting, assessing cellular immune response to complement the humoral response may be advantageous. Since the two commercial IGRAs showed a good agreement on negative samples, the three discordant samples highlight the need for further investigations.
Collapse
Affiliation(s)
- Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit Firenze II, Santa Maria Annunziata Hospital, 50139 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Selene Laudicina
- Nephrology and Dialysis Unit Firenze II, Santa Maria Annunziata Hospital, 50139 Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Barbara Lari
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Maurizio Benucci
- Rheumatology Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Lorenzo Stacchini
- Department of Health Science, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Patrizia Casprini
- Clinical Pathology Laboratory, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Danilo Villalta
- Immunology and Allergology Laboratory Unit, S-Maria degli Angeli Hospital, 33170 Pordenone, Italy
| | - Pietro Claudio Dattolo
- Nephrology and Dialysis Unit Firenze II, Santa Maria Annunziata Hospital, 50139 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| |
Collapse
|
20
|
Nemeth D, Vago H, Tothfalusi L, Ulakcsai Z, Becker D, Szabo Z, Rojkovich B, Merkely B, Nagy G. Factors influencing the SARS-CoV-2 infection and vaccination induced immune response in rheumatoid arthritis. Front Immunol 2022; 13:960001. [PMID: 36311767 PMCID: PMC9596981 DOI: 10.3389/fimmu.2022.960001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the factors that have significant impact on the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection and vaccination induced immune response in rheumatoid arthritis (RA). Methods Serological response was measured by quantifying anti-SARS-CoV-2 specific antibodies, while the cell-mediated response was measured by a whole-blood test quantifying the interferon (IFN)-γ response to different SARS-CoV-2-specific domains. Results We prospectively enrolled 109 RA patients and 43 healthy controls. The median time (IQR) between the confirmed infection or the last vaccination dose and the day when samples were taken (“sampling interval”) was 3.67 (2.03, 5.50) months in the RA group. Anti-Spike (anti-S) specific antibodies were detected in 94% of RA patients. Among the investigated patient related variables, age (p<0.004), sampling interval (p<0.001), the brand of the vaccine (p<0.001) and targeted RA therapy (TNF-inhibitor, IL-6 inhibitor, anti-CD20 therapy) had significant effect on the anti-S levels. After covariate adjustment TNF-inhibitor therapy decreased the anti-S antibody concentrations by 80% (p<0.001). The same figures for IL-6 inhibitor and anti-CD20 therapy were 74% (p=0.049) and 97% (p=0.002), respectively. Compared to subjects who were infected but were not vaccinated, the RNA COVID-19 vaccines increased the anti-S antibody levels to 71.1 (mRNA-1273) and 36.0 (BNT162b2) fold (p<0.001). The corresponding figure for the ChAdOx1s vaccine is 18.1(p=0.037). Anti-CCP (anti-cyclic citrullinated peptides) positive patients had 6.28 times (p= 0.00165) higher anti-S levels, than the anti-CCP negative patients. Positive T-cell response was observed in 87% of the healthy volunteer group and in 52% of the RA patient group. Following vaccination or infection it declined significantly (p= 0.044) but more slowly than that of anti-S titer (6%/month versus 25%). Specific T-cell responses were decreased by 65% in patients treated with anti-CD20 therapy (p=0.055). Conclusion Our study showed that the SARS-CoV-2-specific antibody levels were substantially reduced in RA patients treated with TNF-α-inhibitors (N=51) and IL-6-inhibitor (N=15). In addition, anti-CD20 therapy (N=4) inhibited both SARS-CoV-2-induced humoral and cellular immune responses. Furthermore, the magnitude of humoral and cellular immune response was dependent on the age and decreased over time. The RNA vaccines and ChAdOx1s vaccine effectively increased the level of anti-S antibodies.
Collapse
Affiliation(s)
- Dora Nemeth
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- *Correspondence: Dora Nemeth,
| | - Hajnalka Vago
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Laszlo Tothfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | - David Becker
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsofia Szabo
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadett Rojkovich
- Buda Hospital of the Hospitaller Order of Saint John of God, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Gyorgy Nagy
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Ameratunga R, Woon ST, Steele R, Lehnert K, Leung E, Brooks AES. Critical role of diagnostic SARS-CoV-2 T cell assays for immunodeficient patients. J Clin Pathol 2022; 75:793-797. [PMID: 36216482 DOI: 10.1136/jcp-2022-208305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
Abstract
After almost 3 years of intense study, the immunological basis of COVID-19 is better understood. Patients who suffer severe disease have a chaotic, destructive immune response. Many patients with severe COVID-19 produce high titres of non-neutralising antibodies, which are unable to sterilise the infection. In contrast, there is increasing evidence that a rapid, balanced cellular immune response is required to eliminate the virus and mitigate disease severity. In the longer term, memory T cell responses, following infection or vaccination, play a critical role in protection against SARS-CoV-2.Given the pivotal role of cellular immunity in the response to COVID-19, diagnostic T cell assays for SARS-CoV-2 may be of particular value for immunodeficient patients. A diagnostic SARS-CoV-2 T cell assay would be of utility for immunocompromised patients who are unable to produce antibodies or have passively acquired antibodies from subcutaneous or intravenous immunoglobulin (SCIG/IVIG) replacement. In many antibody-deficient patients, cellular responses are preserved. SARS-CoV-2 T cell assays may identify breakthrough infections if reverse transcriptase quantitative PCR (RT-qPCR) or rapid antigen tests (RATs) are not undertaken during the window of viral shedding. In addition to utility in patients with immunodeficiency, memory T cell responses could also identify chronically symptomatic patients with long COVID-19 who were infected early in the pandemic. These individuals may have been infected before the availability of reliable RT-qPCR and RAT tests and their antibodies may have waned. T cell responses to SARS-CoV-2 have greater durability than antibodies and can also distinguish patients with infection from vaccinated individuals.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand .,Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Centre for brain Research, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Cancer Research, Faculty of Medical and health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Fernández-Ciriza L, González Á, Del Pozo JL, Fernández-Montero A, Carmona-Torre F, Carlos S, Sarasa MDM, Reina G. Humoral and cellular immune response over 9 months of mRNA-1273, BNT162b2 and ChAdOx1 vaccination in a University Hospital in Spain. Sci Rep 2022; 12:15606. [PMID: 36207324 PMCID: PMC9546941 DOI: 10.1038/s41598-022-19537-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Scarce data have been reported about cellular immunity and longevity for different COVID-19 vaccination schedules. We carried out a prospective study enrolling 709 healthcare workers receiving two doses of mRNA-1273, BNT162b2, ChAdOx1, ChAdOx1/BNT162b2 or ChAdOx1 single dose to compare humoral and cellular immunogenicity across 9 months. Higher SARS-CoV-2 spike antibody levels were observed among individuals with hybrid immunity with one dose of any vaccine in comparison to uninfected individuals receiving two doses (mRNA-1273: 20,145 vs 4295 U/mL; BNT162b2: 15,659 vs 1959 U/mL; ChAdOx1: 5344 vs 2230 U/mL), except for ChAdOx1/BNT162b2 heterologous schedule (12,380 U/mL). Naturally infected individuals did not increase substantially the titers after the second dose and showed higher levels throughout the 9 months follow-up. The mean elimination half-life of antibodies among COVID-19 naïve participants was 98, 111, 60 and 36 days, for mRNA-1273, BNT162b2, ChAdOx1/ChAdOx1 and ChAdOx1/BNT162b2, respectively. Cellular immunity was preserved in 96%, 98%, 88% and 92% of uninfected individuals who received mRNA-1273, BNT162b2, ChAdOx1/ChAdOx1 and ChAdOx1/BNT162b2 after 6/9 months. Individuals with specific T cells showed robust long lasting protection, especially when m-RNA based vaccines are inoculated. These data may influence the validity of the vaccination passport and the need for booster vaccinations.
Collapse
Affiliation(s)
| | - Álvaro González
- Department of Biochemistry, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - José Luis Del Pozo
- Department of Microbiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.,Infectious Diseases Division, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alejandro Fernández-Montero
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.,Department of Occupational Medicine, Universidad de Navarra, 31008, Pamplona, Spain
| | - Francisco Carmona-Torre
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain. .,Infectious Diseases Division, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| | - Silvia Carlos
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.,Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008, Pamplona, Spain
| | - María Del Mar Sarasa
- Department of Microbiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| |
Collapse
|
23
|
Najafi-Fard S, Petruccioli E, Farroni C, Petrone L, Vanini V, Cuzzi G, Salmi A, Altera AMG, Navarra A, Alonzi T, Nicastri E, Palmieri F, Gualano G, Carlini V, Noonan DM, Albini A, Goletti D. Evaluation of the immunomodulatory effects of interleukin-10 on peripheral blood immune cells of COVID-19 patients: Implication for COVID-19 therapy. Front Immunol 2022; 13:984098. [PMID: 36148228 PMCID: PMC9486547 DOI: 10.3389/fimmu.2022.984098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Several therapies with immune-modulatory functions have been proposed to reduce the overwhelmed inflammation associated with COVID-19. Here we investigated the impact of IL-10 in COVID-19, through the ex-vivo assessment of the effects of exogenous IL-10 on SARS-CoV-2-specific-response using a whole-blood platform. Methods Two cohorts were evaluated: in “study population A”, plasma levels of 27 immune factors were measured by a multiplex (Luminex) assay in 39 hospitalized “COVID-19 patients” and 29 “NO COVID-19 controls” all unvaccinated. In “study population B”, 29 COVID-19 patients and 30 NO COVID-19-Vaccinated Controls (NO COVID-19-VCs) were prospectively enrolled for the IL-10 study. Whole-blood was stimulated overnight with SARS-COV-2 antigens and then treated with IL-10. Plasma was collected and used for ELISA and multiplex assay. In parallel, whole-blood was stimulated and used for flow cytometry analysis. Results Baseline levels of several immune factors, including IL-10, were significantly elevated in COVID-19 patients compared with NO COVID-19 subjects in “study population A”. Among them, IL-2, FGF, IFN-γ, and MCP-1 reached their highest levels within the second week of infection and then decreased. To note that, MCP-1 levels remained significantly elevated compared with controls. IL-10, GM-CSF, and IL-6 increased later and showed an increasing trend over time. Moreover, exogenous addition of IL-10 significantly downregulated IFN-γ response and several other immune factors in both COVID-19 patients and NO COVID-19-VCs evaluated by ELISA and a multiplex analysis (Luminex) in “study population B”. Importantly, IL-10 did not affect cell survival, but decreased the frequencies of T-cells producing IFN-γ, TNF-α, and IL-2 (p<0.05) and down-modulated HLA-DR expression on CD8+ and NK cells. Conclusion This study provides important insights into immune modulating effects of IL-10 in COVID-19 and may provide valuable information regarding the further in vivo investigations.
Collapse
Affiliation(s)
- Saeid Najafi-Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Epidemiology and Preclinical Research, UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Carlini
- Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas McClain Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- European Institute of Oncology IEO-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Adriana Albini, ; Delia Goletti,
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Adriana Albini, ; Delia Goletti,
| |
Collapse
|
24
|
Aiello A, Coppola A, Vanini V, Petrone L, Cuzzi G, Salmi A, Altera AMG, Tortorella C, Gualano G, Gasperini C, Scolieri P, Beccacece A, Vita S, Bruzzese V, Lorenzetti R, Palmieri F, Nicastri E, Goletti D. Accuracy of QuantiFERON SARS-CoV-2 research use only assay and characterization of the CD4 + and CD8 + T cell-SARS-CoV-2 response: comparison with a homemade interferon-γ release assay. Int J Infect Dis 2022; 122:841-849. [PMID: 35878802 PMCID: PMC9307287 DOI: 10.1016/j.ijid.2022.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES In this study, we aimed to characterize the SARS-CoV-2-specific T cell response detected by the QuantiFERON SARS-CoV-2 research use only assay in terms of accuracy and T cell subsets involved compared with a homemade interferon (IFN)-γ release assay (IGRA). METHODS We evaluated T cell response by the standardized QuantiFERON SARS-CoV-2 tubes (antigen [Ag]1 and Ag2) and a homemade IGRA quantifying IFN-γ response to SARS-CoV-2 spike peptides (homemade-IGRA-SPIKE test). We evaluated the T cell subsets mediating the specific response using flow cytometry. RESULTS We prospectively enrolled 66 individuals: COVID-19 or post-COVID-19 subjects and NO-COVID-19-vaccinated subjects, including healthy donors and immunocompromised subjects. The standardized kit detected 62.1% (41/66) of T cell responders. Ag2 tube showed a higher IFN-γ quantitative and qualitative response. Ag1 tube response was mainly mediated by CD4+ T cells; Ag2 tube response was mediated by CD4+ and CD8+ T cells. The homemade-IGRA-SPIKE test detected a higher number of responders (52/66, 78.8%) than the QuantiFERON SARS-CoV-2 assay (P = 0.056). The response was found in both T cell subsets, although a higher magnitude and response rate was observed in the CD4+ T cell subset. CONCLUSION The QuantiFERON SARS-CoV-2 response is mediated by CD4+ and CD8+ T cells. A lower number of responders is found compared with the homemade-IGRA-SPIKE test, likely because of the different peptide composition.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Palma Scolieri
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Alessia Beccacece
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vincenzo Bruzzese
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Roberto Lorenzetti
- UOC di Gastroenterologia ASL Roma1, Nuovo Regina Margherita, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Corresponding author: Translational Research Unit of the Research Department, National Institute for Infectious Diseases, Padiglione del Vecchio, Room 39, Via Portuense 292, Rome 00149, Italy. Tel.: +39 06 55170 906; fax: +39 06 5582 825
| |
Collapse
|
25
|
Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev 2022; 310:6-26. [PMID: 35661178 PMCID: PMC9348242 DOI: 10.1111/imr.13091] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.
Collapse
Affiliation(s)
- David Goldblatt
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Galit Alter
- Massachusetts General HospitalRagon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCaliforniaUSA
- Department of Medicine, Division of Infectious Diseases and Global Public HealthUniversity of California San Diego (UCSD)La JollaCaliforniaUSA
| | | |
Collapse
|
26
|
SARS-CoV-2 antibody persistence after five and twelve months: A cohort study from South-Eastern Norway. PLoS One 2022; 17:e0264667. [PMID: 35947589 PMCID: PMC9365168 DOI: 10.1371/journal.pone.0264667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives To assess total antibody levels against Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2) spike protein up to 12 months after Coronavirus Disease (COVID-19) infection in non-vaccinated individuals and the possible predictors of antibody persistence. Methods This is the first part of a prospective multi-centre cohort study. Participants The study included SARS-CoV-2 real-time polymerase chain reaction (RT-PCR) positive and negative participants in South-Eastern Norway from February to December 2020. Possible predictors of SARS-CoV-2 total antibody persistence was assessed. The SARS-CoV-2 total antibody levels against spike protein were measured three to five months after PCR in 391 PCR-positive and 703 PCR-negative participants; 212 PCR-positive participants were included in follow-up measurements at 10 to 12 months. The participants completed a questionnaire including information about symptoms, comorbidities, allergies, body mass index (BMI), and hospitalisation. Primary outcome The SARS-CoV-2 total antibody levels against spike protein three to five and 10 to 12 months after PCR positive tests. Results SARS-CoV-2 total antibodies against spike protein were present in 366 (94%) non-vaccinated PCR-positive participants after three to five months, compared with nine (1%) PCR-negative participants. After 10 to 12 months, antibodies were present in 204 (96%) non-vaccinated PCR-positive participants. Of the PCR-positive participants, 369 (94%) were not hospitalised. The mean age of the PCR-positive participants was 48 years (SD 15, range 20–85) and 50% of them were male. BMI ≥ 25 kg/m2 was positively associated with decreased antibody levels (OR 2.34, 95% CI 1.06 to 5.42). Participants with higher age and self-reported initial fever with chills or sweating were less likely to have decreased antibody levels (age: OR 0.97, 95% CI 0.94 to 0.99; fever: OR 0.33, 95% CI 0.13 to 0.75). Conclusion Our results indicate that the level of SARS-CoV-2 total antibodies against spike protein persists for the vast majority of non-vaccinated PCR-positive persons at least 10 to 12 months after mild COVID-19.
Collapse
|
27
|
Petrone L, Picchianti-Diamanti A, Sebastiani GD, Aiello A, Laganà B, Cuzzi G, Vanini V, Gualano G, Grifoni A, Ferraioli M, Castilletti C, Meschi S, Vaia F, Nicastri E, Sette A, Goletti D. Humoral and cellular responses to spike of δ SARS-CoV-2 variant in vaccinated patients with immune-mediated inflammatory diseases. Int J Infect Dis 2022; 121:24-30. [PMID: 35462039 PMCID: PMC9023365 DOI: 10.1016/j.ijid.2022.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES We assessed vaccination-induced antibody and cellular responses against spike from the ancestral strain and from the delta (δ) SARS-CoV-2 variant in patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive therapy in comparison with immunocompetent subjects. METHODS We enrolled patients with IMID and immunocompetent subjects who completed the vaccination schedule within 4-6 months from the first dose. The interferon (IFN)-γ-response to spike peptides that were derived from the ancestral and the δ SARS-CoV-2 were measured by ELISA. Anti-Receptor Binding Domain IgG antibodies were also evaluated. RESULTS We enrolled 43 patients with IMID and nine immunocompetent subjects. No significant differences were found after comparing the specific immune response (IFN-γ) between patients with IMID and immunocompetent subjects to the ancestral (p = 0.36) or δ peptide pool (p = 0.51). Nevertheless, IFN-γ-specific responses to the ancestral or to the δ pools were reduced in subjects taking CTLA4-IgG or TNF-α inhibitors compared with subjects treated with IL-6 inhibitors or Disease Modifying Anti-Rheumatic Drugs. Regarding the antibody response, no significant differences were observed between patients with IMID and immunocompetent individuals. CONCLUSIONS Cellular responses to δ SARS-CoV-2 variant remain largely intact in patients with IMID. However, the magnitude of these responses is dependent on the specific IMID immunosuppressive regimen. Serological response was also similar between the IMID and control groups.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, "Sapienza" University, S. Andrea University Hospital, 00189 Rome, Italy
| | | | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, "Sapienza" University, S. Andrea University Hospital, 00189 Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy; Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Mario Ferraioli
- Rheumatology, Allergology and Clinical Immunology, Dipartimento di medicina dei sistemi, University of Rome Tor Vergata, Rome, Italy
| | - Concetta Castilletti
- Virology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Silvia Meschi
- Virology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Francesco Vaia
- UOC Direzione Sanitaria, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Emanuele Nicastri
- UOC Malattie Infettive ad Alta Intensità di Cura, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy.
| |
Collapse
|
28
|
Aiello A, Grossi A, Meschi S, Meledandri M, Vanini V, Petrone L, Casetti R, Cuzzi G, Salmi A, Altera AM, Pierelli L, Gualano G, Ascoli Bartoli T, Castilletti C, Agrati C, Girardi E, Palmieri F, Nicastri E, Di Rosa E, Goletti D. Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Front Immunol 2022; 13:920227. [PMID: 35967321 PMCID: PMC9364317 DOI: 10.3389/fimmu.2022.920227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods Household contacts of COVID-19 cases screened for SARS−CoV−2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS−CoV−2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1β, IL-9, MIP-1β and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Adriano Grossi
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marcello Meledandri
- Unità Operativa Complessa (UOC) Microbiology and Virology, Azienda Sanitaria Locale (ASL) Roma 1-San Filippo Neri Hospital, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Pierelli
- Unità Operativa Complessa (UOC) Transfusion Medicine and Stem Cell, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Girardi
- Clinical Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Di Rosa
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- *Correspondence: Delia Goletti,
| |
Collapse
|
29
|
Humoral and Cellular Immunogenicity of Six Different Vaccines against SARS-CoV-2 in Adults: A Comparative Study in Tunisia (North Africa). Vaccines (Basel) 2022; 10:vaccines10081189. [PMID: 35893838 PMCID: PMC9332781 DOI: 10.3390/vaccines10081189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The mass vaccination campaign against SARS-CoV-2 was started in Tunisia on 13 March 2021 by using progressively seven different vaccines approved for emergency use. Herein, we aimed to evaluate the humoral and cellular immunity in subjects aged 40 years and over who received one of the following two-dose regimen vaccines against SARS-CoV-2, namely mRNA-1273 or Spikevax (Moderna), BNT162B2 or Comirnaty (Pfizer-BioNTech), Gam-COVID-Vac or Sputnik V (Gamaleya Research Institute), ChAdOx1-S or Vaxzevria (AstraZeneca), BIBP (Sinopharm), and Coronavac (Sinovac). MATERIAL AND METHODS For each type of vaccine, a sample of subjects aged 40 and over was randomly selected from the national platform for monitoring COVID-19 vaccination and contacted to participate to this study. All consenting participants were sampled for peripheral blood at 3-7 weeks after the second vaccine dose to perform anti-S and anti-N serology by the Elecsys® (Lenexa, KS, USA) anti-SARS-CoV-2 assays (Roche® Basel, Switzerland). The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland) for a randomly selected sub-group. RESULTS A total of 501 people consented to the study and, of them, 133 were included for the cellular response investigations. Both humoral and cellular immune responses against SARS-CoV-2 antigens differed significantly between all tested groups. RNA vaccines induced the highest levels of humoral and cellular anti-S responses followed by adenovirus vaccines and then by inactivated vaccines. Vaccines from the same platform induced similar levels of specific anti-S immune responses except in the case of the Sputnik V and the AstraZeneca vaccine, which exhibited contrasting effects on humoral and cellular responses. When analyses were performed in subjects with negative anti-N antibodies, results were similar to those obtained within the total cohort, except for the Moderna vaccine, which gave a better cellular immune response than the Pfizer vaccine and RNA vaccines, which induced similar cellular immune responses to those of adenovirus vaccines. CONCLUSION Collectively, our data confirmed the superiority of the RNA-based COVID-19 vaccines, in particular that of Moderna, for both humoral and cellular immunogenicity. Our results comparing between different vaccine platforms in a similar population are of great importance since they may help decision makers to adopt the best strategy for further national vaccination programs.
Collapse
|
30
|
Shen AR, Jin XX, Tang TT, Ding Y, Liu XT, Zhong X, Wu YD, Han XL, Zhao GY, Shen CL, Lv LL, Liu BC. Exosomal Vaccine Loading T Cell Epitope Peptides of SARS-CoV-2 Induces Robust CD8+ T Cell Response in HLA-A Transgenic Mice. Int J Nanomedicine 2022; 17:3325-3341. [PMID: 35937077 PMCID: PMC9346304 DOI: 10.2147/ijn.s367494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Current vaccines for the SARS-CoV-2 virus mainly induce neutralizing antibodies but overlook the T cell responses. This study aims to generate an exosomal vaccine carrying T cell epitope peptides of SARS-CoV-2 for the induction of CD8+ T cell response. Methods Thirty-one peptides presented by HLA-A0201 molecule were conjugated to the DMPE-PEG-NHS molecules, and mixed with DSPE-PEG to form the peptide-PEG-lipid micelles, then fused with exosomes to generate the exosomal vaccine, followed by purification using size-exclusion chromatography and validation by Western blotting, liquid nuclear magnetic resonance (NMR) test and transmission electron microscopy. Furthermore, the exosomal vaccine was mixed with Poly (I:C) adjuvant and subcutaneously administered for three times into the hybrid mice of HLA-A0201/DR1 transgenic mice with wild-type mice. Then, the epitope-specific T cell responses were detected by ex vivo ELISPOT assay and intracellular cytokine staining. Results The exosomal vaccine was purified from the Peak 2 fraction of FPLC and injected into the hybrid mice for three times. The IFN-γ spot forming units and the frequencies of IFN-γ+/CD8+ T cells were 10–82-fold and 13–65-fold, respectively, higher in the exosomal vaccine group compared to the Poly (I:C) control group, without visible organ toxicity. In comparison with the peptides cocktail vaccine generated in our recent work, the exosomal vaccine induced significantly stronger T cell response. Conclusion Exosomal vaccine loading T cell epitope peptides of SARS-CoV-2 virus was initially generated without pre-modification for both peptides and exosomes, and elicited robust CD8+ T cell response in HLA-A transgenic mice.
Collapse
Affiliation(s)
- An-Ran Shen
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xiao-Xiao Jin
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xiao-Tao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xin Zhong
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yan-Dan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xue-Lian Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Guang-Yu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Chuan-Lai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
- Correspondence: Lin-Li Lv; Bi-Cheng Liu, Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China, Tel +862583272512, Email ;
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
31
|
Petrone L, Tortorella C, Aiello A, Farroni C, Ruggieri S, Castilletti C, Meschi S, Cuzzi G, Vanini V, Palmieri F, Prosperini L, Haggiag S, Galgani S, Grifoni A, Sette A, Gasperini C, Nicastri E, Goletti D. Humoral and Cellular Response to Spike of Delta SARS-CoV-2 Variant in Vaccinated Patients With Multiple Sclerosis. Front Neurol 2022; 13:881988. [PMID: 35711277 PMCID: PMC9194677 DOI: 10.3389/fneur.2022.881988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We assessed vaccination-induced antibody and cellular response against spike from the ancestral strain and from the Delta Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) variant in patients with Multiple Sclerosis (MS) treated with disease modifying treatments. Methods We enrolled 47 patients with MS and nine controls ("no MS") having completed the vaccination schedule within 4-6 months from the first dose. The Interferon (IFN)-γ-response to spike peptides derived from the ancestral and the Delta SARS-CoV-2 was measured by enzyme-linked immunoassay (ELISA). Anti-Receptor Binding Domain (RBD) IgG were also evaluated. Results No significant differences were found comparing the IFN-γ-specific immune response between MS and "no MS" subjects to the ancestral (P = 0.62) or Delta peptide pools (P = 0.68). Nevertheless, a reduced IFN-γ-specific response to the ancestral or to the Delta pools was observed in subjects taking fingolimod or cladribine compared to subjects treated with ocrelizumab or IFN-β. The antibody response was significantly reduced in patients with MS compared to "no MS" subjects (P = 0.0452) mainly in patients taking ocrelizumab or fingolimod. Conclusions Cellular responses to Delta SARS-CoV-2 variant remain largely intact in patients with MS. However, the magnitude of these responses depends on the specific therapy.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simona Galgani
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Emanuele Nicastri
- UOC Malattie Infettive ad Alta Intensità di Cura, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
32
|
Lv J, Wu H, Xu J, Liu J. Immunogenicity and safety of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine: a systematic review. Infect Dis Poverty 2022; 11:53. [PMID: 35562753 PMCID: PMC9100319 DOI: 10.1186/s40249-022-00977-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Heterologous prime-boost with ChAdOx1 nCoV-19 vector vaccine (ChAd) and a messenger RNA vaccine (BNT or mRNA-1273) has been widely facilitating mass coronavirus disease 2019 (COVID-19) immunisation. This review aimed to synthesize immunogenicity and reactogenicity of heterologous immunisations with ChAd and BNT (mRNA-1273) vaccine compared with homologous ChAd or BNT (mRNA-1273) immunisation. METHODS PubMed, Web of Science, and Embase databases were searched from inception to March 7, 2022. Immunogenicity involving serum antibodies against different SAS-CoV-2 fragments, neutralizing antibody, or spike-specific T cells response were compared. Any, local and systemic reactions were pooled by meta-analysis for comparison. RESULTS Of 14,571 records identified, 13 studies (3024 participants) were included for analysis. Compared with homologous BNT/BNT vaccination, heterologous ChAd/BNT schedule probably induced noninferior anti-spike protein while higher neutralizing antibody and better T cells response. Heterologous ChAd/BNT (mRNA-1273) immunisation induced superior anti-spike protein and higher neutralizing antibody and better T cells response compared with homologous ChAd/ChAd vaccination. Heterologous ChAd/BNT (mRNA-1273) had similar risk of any reaction (RR = 1.30, 95% CI: 0.86-1.96) while higher risk of local reactions (RR = 1.65, 95% CI: 1.27-2.15) and systemic reactions (RR = 1.49, 95% CI: 1.17-1.90) compared with homologous ChAd/ChAd vaccination. There was a higher risk of local reactions (RR = 1.16, 95% CI: 1.03-1.31) in heterologous ChAd/BNT (mRNA-1273) vaccination compare with homologous BNT/BNT but a similar risk of any reaction (RR = 1.03, 95% CI: 0.79-1.34) and systemic reactions (RR = 0.89, 95% CI: 0.60-1.30). CONCLUSIONS Heterologous ChAd/BNT schedule induced at least comparable immunogenicity compared with homologous BNT/BNT and better immunogenicity compared with homologous ChAd/ChAd vaccination. The synthetical evidence supported the general application of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines.
Collapse
Affiliation(s)
- Jingjing Lv
- Expanded Program Immunization Division of Shandong Provincial Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Jinan, 250014, China
| | - Hui Wu
- Nosocomial Infection Control Department, Shenzhen University General Hospital, Shenzhen, 518071, China
| | - Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Shenzhen, 518060, China.
| |
Collapse
|
33
|
Arruda LCM, Gaballa A, Da Silva Rodrigues R, Makower B, Uhlin M. SARS-CoV-2 (COVID-19)-specific T cell and B cell responses in convalescent rheumatoid arthritis: Monozygotic twins pair case observation. Scand J Immunol 2022; 95:e13151. [PMID: 35212005 PMCID: PMC9115348 DOI: 10.1111/sji.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/01/2022]
Abstract
Rheumatoid arthritis (RA) patients present higher risk of SARS-CoV-2 infection (COVID-19), and proper management of the disease in this population requires a better understanding of how the immune system controls the virus. We analyzed the T cell and B cell phenotypes, and their repertoire in a pair of monozygotic twins with RA mismatched for COVID-19 infection. Twin- was not infected, while Twin+ was infected and effectively controlled the infection. We found no significant changes on the αβ T cell composition, while γδ T cells and B cells presented considerable expansion of memory population in Twin+ and robust T/B cell responses to several SARS-CoV-2 peptides. T cell receptor β/γ-chain and immunoglobulin heavy chain next-generation sequencing depicted a remarkable higher diversity in Twin+ compared with Twin-, despite no significant changes being found in variable/joining family usage. Repertoire overlap analyses showed that, although being identical twins, very few clones were shared between them, indicating that COVID-19 may lead to deep changes on the immune cell repertoire in RA patients. Altogether, our results indicate that RA patients may develop robust and persistent COVID-19-specific T/B cell responses; γδ T cells and B cells may play a key role in the management of COVID-19 in RA, and the infection may lead to a profound reshaping of immune cell receptor specificities.
Collapse
Affiliation(s)
- Lucas C. M. Arruda
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Ahmed Gaballa
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - Rui Da Silva Rodrigues
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
| | | | - Michael Uhlin
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Applied PhysicsScience for Life LaboratoryRoyal Institute of TechnologyStockholmSweden
| |
Collapse
|
34
|
Mei X, Gu P, Shen C, Lin X, Li J. Computer-Based Immunoinformatic Analysis to Predict Candidate T-Cell Epitopes for SARS-CoV-2 Vaccine Design. Front Immunol 2022; 13:847617. [PMID: 35432316 PMCID: PMC9006954 DOI: 10.3389/fimmu.2022.847617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Since the first outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, its high infectivity led to its prevalence around the world in an exceptionally short time. Efforts have been made to control the ongoing outbreak, and among them, vaccine developments are going on high priority. New clinical trials add to growing evidence that vaccines from many countries were highly effective at preventing SARS-CoV-2 virus infection. One of them is B cell-based vaccines, which were common during a pandemic. However, neutralizing antibody therapy becomes less effective when viruses mutate. In order to tackle the problem, we focused on T-cell immune mechanism. In this study, the mutated strains of the virus were selected globally from India (B.1.617.1 and B.1.617.2), United Kingdom (B.1.1.7), South Africa (B.1.351), and Brazil (P.1), and the overlapping peptides were collected based on mutation sites of S-protein. After that, residue scanning was used to predict the affinity between overlapping peptide and HLA-A*11:01, the most frequent human leukocyte antigen (HLA) allele among the Chinese population. Then, the binding free energy was evaluated with molecular docking to further verify the affinity changes after the mutations happen in the virus genomes. The affinity test results of three epitopes on spike protein from experimental validation were consistent with our predicted results, thereby supporting the inclusion of the epitope 374FSTFKCYGL382 in future vaccine design and providing a useful reference route to improve vaccine development.
Collapse
Affiliation(s)
- Xueyin Mei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Pan Gu
- Department of Math and Computer Sciences, College of Letters and Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Lin H, Zhang J, Dong S, Liu Y, Liu P, Gao GF, Liu WJ, Wu G. An adjusted ELISpot-based immunoassay for evaluation of SARS-CoV-2-specific T-cell responses. BIOSAFETY AND HEALTH 2022; 4:179-185. [PMID: 35505811 PMCID: PMC9047432 DOI: 10.1016/j.bsheal.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Like antibody evaluation, using an effective antigen-specific T-cell immunity assessment method in coronavirus disease 2019 (COVID-19) patients, survivors and vaccinees is crucial for understanding the immune persistence, prognosis assessment, and vaccine development for COVID-19. This study evaluated an empirically adjusted enzyme-linked immunospot assay for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity in 175 peripheral blood samples from COVID-19 convalescents and healthy individuals. Results of viral nucleic acid were used as the gold standard of infection confirmation. The SARS-CoV-2M peptide pool had higher sensitivity of 85% and specificity of 71% for the single peptide pool. For combined peptide pools, the parallel evaluation (at least one of the peptide pools is positive) of total peptide pools (S1&S2&M&N) had higher sensitivity (up to 93%), and the serial evaluation (all peptide pools are positive) of total peptide pools had higher specificity (up to 100%). The result of the serial evaluation was better than that of the parallel evaluation as a whole. The detection efficiency of M and N peptide pool serial evaluation appeared the highest, with a sensitivity of 80% and specificity of 93%. This T-cell immunity detection assay introduced in this report can achieve high operability and applicability. Therefore, it can be an effective SARS-CoV-2-specific cellular immune function evaluation method.
Collapse
|
36
|
Shafqat A, Shafqat S, Salameh SA, Kashir J, Alkattan K, Yaqinuddin A. Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Front Immunol 2022; 13:835104. [PMID: 35401519 PMCID: PMC8989408 DOI: 10.3389/fimmu.2022.835104] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
37
|
Barreiro P, Sanz JC, San Román J, Pérez-Abeledo M, Carretero M, Megías G, Viñuela-Prieto JM, Ramos B, Canora J, Martínez-Peromingo FJ, Barba R, Zapatero A, Candel FJ. A Pilot Study for the Evaluation of an Interferon Gamma Release Assay (IGRA) To Measure T-Cell Immune Responses after SARS-CoV-2 Infection or Vaccination in a Unique Cloistered Cohort. J Clin Microbiol 2022; 60:e0219921. [PMID: 35020419 PMCID: PMC8925901 DOI: 10.1128/jcm.02199-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
Assessment of T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens may be of value to determine long-lasting protection to breakthrough infections or reinfections. Interferon gamma release assay is a validated method to test cellular immunity in mycobacterial infections and has been proposed for patients with SARS-CoV-2 infection or vaccination. Quantitative IgG to spike and qualitative IgG to nucleocapsid antigens were determined by chemiluminescence microparticle immunoassay using the Architect platform (Abbott), and interferon gamma release assays against two Qiagen proprietary mixes of SARS-CoV-2 spike protein (antigen 1 and antigen 2) were performed for a selected group of subjects. A total of 121 subjects in a cloistered institution after a COVID-19 outbreak was studied. IgG spike levels and interferon gamma concentrations were highest among subjects after two doses of vaccine, followed by patients with a longer history of past COVID-19 and no vaccination. The best cutoff for the interferon gamma assay was 25 IU/L for all subgroups of individuals and the two sets of SARS-CoV-2 antigens studied. Testing T-cell response may be of clinical utility to determine immunity after exposure to SARS-CoV-2 antigens, with the interferon gamma concentration of 25 IU/L as the best cutoff either after infection or vaccination.
Collapse
Affiliation(s)
- Pablo Barreiro
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Juan Carlos Sanz
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Jesús San Román
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Marta Pérez-Abeledo
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Mar Carretero
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Gregoria Megías
- Unit of Microbiology, Hospital Universitario de Burgos, Burgos, Spain
| | | | - Belén Ramos
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Jesús Canora
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | | | - Raquel Barba
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | - Antonio Zapatero
- Regional Laboratory of Public Health, Hospital Enfermera Isabel Zendal, Madrid, Spain
| | | |
Collapse
|
38
|
Farroni C, Picchianti-Diamanti A, Aiello A, Nicastri E, Laganà B, Agrati C, Castilletti C, Meschi S, Colavita F, Cuzzi G, Casetti R, Grassi G, Petrone L, Vanini V, Salmi A, Repele F, Altera AMG, Maffongelli G, Corpolongo A, Salemi S, Di Rosa R, Nalli G, Sesti G, Vaia F, Puro V, Goletti D. Kinetics of the B- and T-Cell Immune Responses After 6 Months From SARS-CoV-2 mRNA Vaccination in Patients With Rheumatoid Arthritis. Front Immunol 2022; 13:846753. [PMID: 35309297 PMCID: PMC8924958 DOI: 10.3389/fimmu.2022.846753] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
ObjectiveTo assess the kinetics of the humoral and cell-mediated responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in rheumatoid arthritis (RA) patients treated with different immunosuppressive therapies.MethodsFollowing vaccine completed schedule, health care workers (HCWs, n = 49) and RA patients (n = 35) were enrolled at 5 weeks (T1) and 6 months (T6) after the first dose of BNT162b2-mRNA vaccination. Serological response was assessed by quantifying anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG) and SARS-CoV-2 neutralizing antibodies, while cell-mediated response was assessed by a whole-blood test quantifying the interferon (IFN)-γ response to spike peptides. B-cell phenotype and IFN-γ-specific T-cell responses were evaluated by flow cytometry.ResultsAfter 6 months, anti-RBD antibodies were still detectable in 91.4% of RA patients, although we observed a significant reduction of the titer in patients under Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)-Ig [median: 16.4 binding antibody units (BAU)/ml, interquartile range (IQR): 11.3–44.3, p < 0.0001] or tumor necrosis factor (TNF)-α inhibitors (median: 26.5 BAU/ml, IQR: 14.9–108.8, p = 0.0034) compared to controls (median: 152.7 BAU/ml, IQR: 89.3–260.3). All peripheral memory B-cell (MBC) subpopulations, in particular, the switched IgG+ MBCs (CD19+CD27+IgD-IgM-IgG+), were significantly reduced in RA subjects under CTLA-4-Ig compared to those in HCWs (p = 0.0012). In RA patients, a significantly reduced anti-RBD IgG titer was observed at T6 vs. T1, mainly in those treated with CTLA-4-Ig (p = 0.002), interleukin (IL)-6 inhibitors (p = 0.015), and disease-modifying antirheumatic drugs (DMARDs) ± corticosteroids (CCSs) (p = 0.015). In contrast, a weak nonsignificant reduction of the T-cell response was reported at T6 vs. T1. T-cell response was found in 65.7% of the RA patients at T6, with lower significant magnitude in patients under CTLA-4-Ig compared to HCWs (p < 0.0001). The SARS-CoV-2 IFN-γ-S-specific T-cell response was mainly detected in the CD4+ T-cell compartment.ConclusionsIn this study, in RA patients after 6 months from COVID-19 vaccination, we show the kinetics, waning, and impairment of the humoral and, to a less extent, of the T-cell response. Similarly, a reduction of the specific response was also observed in the controls. Therefore, based on these results, a booster dose of the vaccine is crucial to increase the specific immune response regardless of the immunosuppressive therapy.
Collapse
Affiliation(s)
- Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Germana Grassi
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Federica Repele
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gaetano Maffongelli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Corpolongo
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simonetta Salemi
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Roberta Di Rosa
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Gabriele Nalli
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Francesco Vaia
- Unità Operativa Complessa (UOC) Direzione Sanitaria, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Puro
- Unità Operativa Complessa (UOC) Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Delia Goletti,
| |
Collapse
|
39
|
Stieber F, Allen N, Carpenter K, Howard J, Alagna R, Manissero D, Nikolayevskyy V. Accuracy of Interferon Gamma Release Assays for the COVID-19 immunity assessment. J Virol Methods 2022; 302:114472. [PMID: 35065949 PMCID: PMC8772062 DOI: 10.1016/j.jviromet.2022.114472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that T-cells play a significant role in COVID-19 immunity both in the context of natural infection and vaccination. Easy to use IGRA assays including QFN SARS are considered attractive alternatives to more “traditional” but laborious methods for detection of SARS-CoV-2-specific T-cell responses. In our Letter we are proposing explanations to an apparently lower than expected T-cell responses (44 % reactive individuals) reported by Krüttgen et al in a small cohort of healthy double vaccinated individuals. These results could have been affected by reporting raw optical density values instead of calculated Interferon-ɣ concentrations which is supported by unexpectedly low mitogen responses in healthy individuals. This study highlights an importance of adhering to good laboratory practice principles as well as overall importance of accurate T-cell immunity assessment using IGRA assays.
Collapse
Affiliation(s)
- Francis Stieber
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Nadia Allen
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Kara Carpenter
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Jenny Howard
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | | | - Davide Manissero
- QIAGEN Manchester, Citylabs 2.0 Hathersage Road, Manchester, M130BH, United Kingdom
| | | |
Collapse
|
40
|
Cysteamine with In Vitro Antiviral Activity and Immunomodulatory Effects Has the Potential to Be a Repurposing Drug Candidate for COVID-19 Therapy. Cells 2021; 11:cells11010052. [PMID: 35011614 PMCID: PMC8750154 DOI: 10.3390/cells11010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing pandemic of coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), needs better treatment options both at antiviral and anti-inflammatory levels. It has been demonstrated that the aminothiol cysteamine, an already human applied drug, and its disulfide product of oxidation, cystamine, have anti-infective properties targeting viruses, bacteria, and parasites. To determine whether these compounds exert antiviral effects against SARS-CoV-2, we used different in vitro viral infected cell-based assays. Moreover, since cysteamine has also immune-modulatory activity, we investigated its ability to modulate SARS-CoV-2-specific immune response in vitro in blood samples from COVID-19 patients. We found that cysteamine and cystamine decreased SARS-CoV-2-induced cytopathic effects (CPE) in Vero E6 cells. Interestingly, the antiviral action was independent of the treatment time respect to SARS-CoV-2 infection. Moreover, cysteamine and cystamine significantly decreased viral production in Vero E6 and Calu-3 cells. Finally, cysteamine and cystamine have an anti-inflammatory effect, as they significantly decrease the SARS-CoV-2 specific IFN-γ production in vitro in blood samples from COVID-19 patients. Overall, our findings suggest that cysteamine and cystamine exert direct antiviral actions against SARS-CoV-2 and have in vitro immunomodulatory effects, thus providing a rational to test these compounds as a novel therapy for COVID-19.
Collapse
|
41
|
Kruse M, Dark C, Aspden M, Cochrane D, Competiello R, Peltz M, Torres L, Wrighton-Smith P, Dudek M. Performance of the T-SPOT Ⓡ.COVID test for detecting SARS-CoV-2-responsive T cells. Int J Infect Dis 2021; 113:155-161. [PMID: 34601143 PMCID: PMC8482551 DOI: 10.1016/j.ijid.2021.09.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To evaluate the performance of the T-SPOT.COVID test for identifying SARS-CoV-2-responsive T-cells in participants with SARS-CoV-2 infection. METHODS The T-SPOT.COVID test uses ELISpot interferon-gamma release assay (IGRA) methodology to measure T cell responses to SARS-CoV-2 spike S1 and nucleocapsid peptides. T-SPOT.COVID and anti-N immunoglobulin (Ig) G serology tests were performed on blood from 186 patients with nucleic acid amplification test (NAAT)-confirmed-SARS-CoV-2 infection and 100 control group participants. RESULTS In the 2-8 weeks after NAAT-diagnosed SARS-CoV-2 infection, the T-SPOT.COVID test detected 98.4% (63 of 64) of infected participants, while anti-N IgG serology detected 82.8%. In the first 2 weeks after diagnosis, during adaptive immune response activation, there were less reactive T-SPOT.COVID responses (75.7%, 28 of 37 infected participants) and many less seropositive responses (32.4%). Response numbers tapered after 8 weeks; however, T-SPOT.COVID test continued to detect most participants with confirmed infection (83.6%, 56 of 67) and continued to out-perform serology (52.2%). T-SPOT.COVID response due to cross-reactive T cells was ruled out by demonstrating that, of 44 control group participants with T cells responsive to 4 human common cold coronavirus peptides, only 1 was T-SPOT.COVID reactive. CONCLUSION The T-SPOT.COVID test performed well in detecting SARS-CoV-2-sensitized T-cells over many months.
Collapse
Affiliation(s)
- Margaret Kruse
- Oxford Immunotec, 293 Boston Post Rd W, Marlborough, MA 01752, USA
| | - Chris Dark
- Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, UK
| | - Megan Aspden
- Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, UK
| | - Daniel Cochrane
- Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, UK
| | - Rick Competiello
- Oxford Immunotec, 293 Boston Post Rd W, Marlborough, MA 01752, USA
| | - Maya Peltz
- Oxford Immunotec, 293 Boston Post Rd W, Marlborough, MA 01752, USA
| | - Luis Torres
- Primacare Medical Center, 277 Pleasant St, Fall River, MA 02721, USA
| | - Peter Wrighton-Smith
- Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, UK
| | - Magdalena Dudek
- Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, UK,Corresponding author: Magdalena Dudek, PhD, Oxford Immunotec, 143 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4SE, Phone: +44 1235 442601, Fax: +44 (0) 1235 442 781
| |
Collapse
|
42
|
Jin X, Ding Y, Sun S, Wang X, Zhou Z, Liu X, Li M, Chen X, Shen A, Wu Y, Liu B, Zhang J, Li J, Yang Y, Qiu H, Shen C, He Y, Zhao G. Screening HLA-A-restricted T cell epitopes of SARS-CoV-2 and the induction of CD8 + T cell responses in HLA-A transgenic mice. Cell Mol Immunol 2021; 18:2588-2608. [PMID: 34728796 PMCID: PMC8561351 DOI: 10.1038/s41423-021-00784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
Since severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific T cells have been found to play essential roles in host immune protection and pathology in patients with coronavirus disease 2019 (COVID-19), this study focused on the functional validation of T cell epitopes and the development of vaccines that induce specific T cell responses. A total of 120 CD8+ T cell epitopes from the E, M, N, S, and RdRp proteins were functionally validated. Among these, 110, 15, 6, 14, and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; in addition, four epitopes from the S protein displayed one amino acid that was distinct from the current SARS-CoV-2 variants. Then, 31 epitopes restricted by the HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or poly (lactic-co-glycolic acid) nanoparticles, and these vaccines elicited robust and specific CD8+ T cell responses in HLA-A2/DR1 transgenic mice as well as wild-type mice. In contrast to previous research, this study established a modified DC-peptide-PBL cell coculture system using healthy donor PBMCs to validate the in silico predicted epitopes, provided an epitope library restricted by nine of the most prevalent HLA-A allotypes covering broad Asian populations, and identified the HLA-A restrictions of these validated epitopes using competitive peptide binding experiments with HMy2.CIR cell lines expressing the indicated HLA-A allotype, which initially confirmed the in vivo feasibility of 9- or 10-mer peptide cocktail vaccines against SARS-CoV-2. These data will facilitate the design and development of vaccines that induce antiviral CD8+ T cell responses in COVID-19 patients.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xinyi Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Miaomiao Li
- Blood Component Preparation Section, Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, China
| | - Xian Chen
- Blood Component Preparation Section, Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, China
| | - Anran Shen
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bicheng Liu
- Institute of Nephrology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jian Li
- Life Science & Technology School of Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yi Yang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Haibo Qiu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Jiangsu Province Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Yuxian He
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
43
|
Tychala A, Meletis G, Katsimpourlia E, Gkeka I, Dimitriadou R, Sidiropoulou E, Skoura L. Evaluation of the QuantiFERON SARS-CoV-2 assay to assess cellular immunogenicity of the BNT162b2 mRNA COVID-19 vaccine in individuals with low and high humoral response. Hum Vaccin Immunother 2021; 17:5148-5149. [PMID: 34714711 PMCID: PMC8567290 DOI: 10.1080/21645515.2021.1991710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines against SARS-CoV-2 are known to be less immunogenic for some individuals, whereas others present notably high levels of antibody production. We assessed the cellular response to BNT162b2 among individuals with low post-vaccination antibody levels as well as in a small group of individuals with high titers. Antibody levels were assessed by the Abbott SARS-CoV-2 IgG II Quant assay. The interferon-γ production of T-cells in response to SARS-CoV-2 antigens was determined using Qiagen's QuantiFERON SARS-CoV-2 ELISA test. Our results showed that participants with high antibody levels presented adequate cellular response in all studied cases, whereas those with low antibody levels generally showed limited to almost absent cellular response five months post vaccination.
Collapse
Affiliation(s)
- Areti Tychala
- Department of Microbiology, Ahepa University Hospital, Thessaloniki, Greece
| | - Georgios Meletis
- Department of Microbiology, Ahepa University Hospital, Thessaloniki, Greece
| | - Eugenia Katsimpourlia
- Department of Immunology, General Hospital G. Papanikolaou, Exohi Thessaloniki, Greece
| | - Ioanna Gkeka
- Department of Microbiology, Ahepa University Hospital, Thessaloniki, Greece
| | | | - Eleni Sidiropoulou
- Department of Microbiology, Ahepa University Hospital, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, Ahepa University Hospital, Thessaloniki, Greece
| |
Collapse
|
44
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
45
|
Picchianti-Diamanti A, Aiello A, Laganà B, Agrati C, Castilletti C, Meschi S, Farroni C, Lapa D, Najafi Fard S, Cuzzi G, Cimini E, Grassi G, Vanini V, Di Rosa R, Salemi S, Nalli G, Salmi A, Repele F, Altera AMG, Maffongelli G, Palazzolo C, Vita S, Leone S, Puro V, Capobianchi MR, Ippolito G, Nicastri E, Goletti D. ImmunosuppressiveTherapies Differently Modulate Humoral- and T-Cell-Specific Responses to COVID-19 mRNA Vaccine in Rheumatoid Arthritis Patients. Front Immunol 2021; 12:740249. [PMID: 34594343 PMCID: PMC8477040 DOI: 10.3389/fimmu.2021.740249] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Objective To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Saeid Najafi Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Germana Grassi
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Roberta Di Rosa
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Simonetta Salemi
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Gabriele Nalli
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Federica Repele
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gaetano Maffongelli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Claudia Palazzolo
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Sara Leone
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vincenzo Puro
- UOC Emerging Infections and Centro di Riferimento AIDS (CRAIDS), National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|