1
|
Zhou J, Liu Y, Gu T, Zhou J, Chen F, Li S. Investigating the gut bacteria structure and function of hibernating bats through 16S rRNA high-throughput sequencing and culturomics. mSystems 2025:e0146324. [PMID: 40202348 DOI: 10.1128/msystems.01463-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The gut microbiota of bats is vital for their roles in health and the ecosystem, yet studies on hibernating bats in southwest China, particularly in the unique karst landscape of Guizhou, are limited. We captured three hibernating bat species-Pipistrellus (PB), Rhinolophus (RB), and Myotis (MB)-in Liping County, collecting rectal samples for 16S rRNA amplicon sequencing. Data processing involved Trimmomatic, Flash, and Qiime2 for operational taxonomic unit (OTU) standardization and species annotation via the Greengenes database. Differential abundance was analyzed using LEfSe, and diversity metrics were assessed through alpha and beta diversity analyses. The RB group was predominantly composed of Proteobacteria (80.99%), while MB and PB exhibited diverse compositions with significant OTU richness (729 in MB). Notable genera included Hafnia and Yersinia in RB and Cosenzaea myxofaciens in MB. High proportions of unclassified taxa were observed, particularly in RB (83.81%). Functional predictions indicated metabolic pathways, with a significant representation of human diseases in PB. Culturomics revealed the successful cultivation of Huaxiibacter chinensis and Enterobacter chengduensis from bats for the first time and appears to have identified a new bacterium that is likely closely related to Clostridium paraputrificum.IMPORTANCEOur research reveals significant differences in the composition and diversity of the gut microbiota among three bat groups (PB, MB, and RB) from Guizhou. While Proteobacteria predominates in all groups, its abundance varies. Notably, the high richness of operational taxonomic units (OTUs) in the MB group suggests a more diverse microbial ecosystem, underscoring the complex interactions between species diversity, diet, gut microbiota, and overall ecological dynamics in bats. Furthermore, the substantial presence of unknown bacterial species in their intestines highlights the critical importance of cultivation-based approaches. The presence of specific taxa may have potential health implications for both bats and humans. These findings emphasize the need for further investigations into the functional roles of these microbiota and their contributions to host health. Future research should focus on longitudinal studies to elucidate these intricate interactions.
Collapse
Affiliation(s)
- Jian Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Ying Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Tao Gu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jingzhu Zhou
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Fengming Chen
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| | - Shijun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Key Laboratory of Microbio and Infectious Disease Prevention and Control in Guizhou Province, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Saif LJ. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology. Annu Rev Anim Biosci 2025; 13:1-24. [PMID: 39546413 DOI: 10.1146/annurev-animal-111523-101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A love of science and animals, perseverance, and happenstance propelled my career in veterinary virology and immunology. I have focused on deadly enteric and respiratory viral infections in neonatal livestock and humans with an aim to understand their prevalence, pathogenesis, interspecies transmission, and immunity and develop vaccines. Research on animal coronaviruses (CoVs), including their broad interspecies transmission, provided a foundation to understand emerging zoonotic fatal human respiratory CoVs [severe acute respiratory syndrome, Middle East respiratory syndrome, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)] and reverse zoonosis of SARS-CoV-2 to animals. A highlight of my early research was the discovery of the gut-mammary gland-sIgA axis, documenting a common mucosal immune system. The latter remains pivotal to designing maternal vaccines for passive immunity in neonates. Our discovery and innovative cell propagation of fastidious human and animal rotaviruses and caliciviruses and their infectivity in germ-free animals has provided cell-adapted and animal disease models for ongoing virologic and immunologic investigations and vaccines. Nevertheless, besides the research discoveries, my lasting legacy remains the outstanding mentees who have enriched my science and my life.
Collapse
Affiliation(s)
- Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, and Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
3
|
Howard LM, Jensen TL, Goll JB, Gelber CE, Bradley MD, Sherrod SD, Hoek KL, Yoder S, Jimenez-Truque N, Edwards K, Creech CB. Metabolomic Signatures Differentiate Immune Responses in Avian Influenza Vaccine Recipients. J Infect Dis 2024; 230:716-725. [PMID: 38181048 PMCID: PMC11420767 DOI: 10.1093/infdis/jiad611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Avian influenza viruses pose significant risk to human health. Vaccines targeting the hemagglutinin of these viruses are poorly immunogenic without the use of adjuvants. METHODS Twenty healthy men and women (18-49 years of age) were randomized to receive 2 doses of inactivated influenza A/H5N1 vaccine alone (IIV) or with AS03 adjuvant (IIV-AS03) 1 month apart. Urine and serum samples were collected on day 0 and on days 1, 3, and 7 following first vaccination and subjected to metabolomics analyses to identify metabolites, metabolic pathways, and metabolite clusters associated with immunization. RESULTS Seventy-three differentially abundant (DA) serum and 88 urine metabolites were identified for any postvaccination day comparison. Pathway analysis revealed enrichment of tryptophan, tyrosine, and nicotinate metabolism in urine and serum among IIV-AS03 recipients. Increased urine abundance of 4-vinylphenol sulfate on day 1 was associated with serologic response based on hemagglutination inhibition responses. In addition, 9 DA urine metabolites were identified in participants with malaise compared to those without. CONCLUSIONS Our findings suggest that tryptophan, tyrosine, and nicotinate metabolism are upregulated among IIV-AS03 recipients compared with IIV alone. Metabolites within these pathways may serve as measures of immunogenicity and may provide mechanistic insights for adjuvanted vaccines. CLINICAL TRIALS REGISTRATION NCT01573312.
Collapse
Affiliation(s)
- Leigh M Howard
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| | - Travis L Jensen
- Biomedical Data Science and Bioinformatics Department, The Emmes Company, LLC, Rockville, Maryland, USA
| | - Johannes B Goll
- Biomedical Data Science and Bioinformatics Department, The Emmes Company, LLC, Rockville, Maryland, USA
| | - Casey E Gelber
- Biomedical Data Science and Bioinformatics Department, The Emmes Company, LLC, Rockville, Maryland, USA
| | - Matthew D Bradley
- Biomedical Data Science and Bioinformatics Department, The Emmes Company, LLC, Rockville, Maryland, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kristen L Hoek
- Vanderbilt Institute for Infection, Inflammation and Immunity, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| | - Natalia Jimenez-Truque
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| | - Kathryn Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| | - C Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine and Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
5
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
6
|
Singh A, Mazumder A, Das S, Tyagi PK, Chaitanya MVNL. Probiotics in Action: Enhancing Immunity and Combatting Diseases for Optimal Health. JOURNAL OF NATURAL REMEDIES 2024:1153-1167. [DOI: 10.18311/jnr/2024/35894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 01/03/2025]
Abstract
This review offers an in-depth examination of the mechanisms underlying the microbiome's defense against viral infections, with a specific focus on probiotic interventions. Mycotoxins, secondary compounds produced by microfungi, pose significant health risks. Yet, certain strains of Lactic Acid Bacteria (LAB) have exhibited remarkable efficacy in eliminating aflatoxin B1 (AFB1), the most toxic member of the aflatoxin family. Experimental setups demonstrated AFB1 binding to specific LAB strains, persisting even after gastric digestion. Laboratory studies revealed a potential protective mechanism wherein pre-incubation of probiotics with mycotoxins reduced their adhesion to mucus. Animal trials further underscored the benefits of oral probiotic administration, showcasing increased fecal excretion of mycotoxins and mitigation of associated health risks. Cyanobacteria-generated microcystins in drinking water pose a significant threat to human health. Probiotic bacteria, particularly strains like Bifidobacterium longum and Lactobacillus rhamnosus, have demonstrated exceptional efficacy in removing the cyanobacterial peptide toxin microcystin-LR. Optimized conditions resulted in rapid toxin elimination, highlighting the potential of probiotics in water purification. Engineered probiotics represent a cutting-edge approach to tailor microorganisms for specific therapeutic applications, exhibiting promise in treating metabolic disorders, Alzheimer's disease, and type 1 diabetes. Additionally, they serve as innovative diagnostic tools, capable of detecting pathogens and inflammation markers within the body. In the realm of antimicrobial peptide production, probiotics offer a promising platform, with genetically modified strains engineered to produce human β-defensin 2 (HBD2) for treating Crohn's disease, showcasing their potential in targeted theurapetic delivery. Biocontainment strategies have been implemented to prevent unintended environmental impacts.
Collapse
|
7
|
Yang L, Li D, Sun S, Liu D, Wang Y, Liu X, Zhou B, Nie W, Li L, Wang Y, Sha S, Li Y, Shen C, Tao J. Dupilumab therapy improves gut microbiome dysbiosis and tryptophan metabolism in Chinese patients with atopic dermatitis. Int Immunopharmacol 2024; 131:111867. [PMID: 38493690 DOI: 10.1016/j.intimp.2024.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Dupilumab has demonstrate its potential to orchestrate inflammatory skin microenvironment, enhance skin barrier and shift skin microbiome dysbiosis, collectively contributing to clinical improvement in patients with atopic dermatitis (AD). As the second genome of human body, growing evidence suggests that the gut microbiome might relate to the host response to treatments. Little is known about the association between dupilumab treatment and gut microbiome in AD patients. OBJECTIVE We aimed to characterize the gut microbiome among Chinese subjects with or without AD and determine the potential effect of dupilumab on the gut microbiome. RESULTS The 16 s rRNA gene sequencing was conducted on 48 healthy controls (HC), 44 AD patients and 27 AD patients who received dupilumab for 16 weeks. Prior to treatment, we identified the changed beta-diversity, increased Firmicutes/Bacteroidetes ratio, decreased Bifidobacterium and expanded Faecalibacterium among the AD patients compared to HC. After 16 weeks of dupilumab treatment, gut microbiome dysbiosis of the AD patients improved with reversed beta-diversity, closer bacterial connections, increased colonization of Bifidobacterium, Ruminococcus gnavus, and Coprococcus, which were negatively correlated with disease severity indicators. This shift was largely independent of the degree of clinical improvement. Bacterial function analysis revealed further metabolic alterations following dupilumab treatment, including up-regulated expression of genes involved in the indole pathway of tryptophan metabolism, corroborated by quantitative UHPLC-MS/MS analysis. CONCLUSION Dupilumab treatment tends to help shift the gut microbial dysbiosis in AD patients to a healthier state, along with improved intestinal tryptophan metabolism, suggesting the gut flora and its metabolites may mediate part of the synergistic therapeutic effects on the host.
Collapse
Affiliation(s)
- Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danqi Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Danping Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohuan Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha 410007, Hunan, China
| | - Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Wenjia Nie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yifei Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China.
| |
Collapse
|
8
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
9
|
Tibbs-Cortes BW, Rahic-Seggerman FM, Schmitz-Esser S, Boggiatto PM, Olsen S, Putz EJ. Fecal and vaginal microbiota of vaccinated and non-vaccinated pregnant elk challenged with Brucella abortus. Front Vet Sci 2024; 11:1334858. [PMID: 38352039 PMCID: PMC10861794 DOI: 10.3389/fvets.2024.1334858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Faith M. Rahic-Seggerman
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
10
|
Li CC, Hsu WF, Chiang PC, Kuo MC, Wo AM, Tseng YJ. Characterization of markers, functional properties, and microbiome composition in human gut-derived bacterial extracellular vesicles. Gut Microbes 2023; 15:2288200. [PMID: 38038385 PMCID: PMC10730231 DOI: 10.1080/19490976.2023.2288200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Past studies have confirmed the etiologies of bacterial extracellular vesicles (BEVs) in various diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). This study aimed to investigate the characteristics of stool-derived bacterial extracellular vesicles (stBEVs) and discuss their association with stool bacteria. First, three culture models - gram-positive (G+)BcBEVs (from B.coagulans), gram-negative (G-)EcBEVs (from E.coli), and eukaryotic cell-derived EVs (EEV, from Colo205 cell line) - were used to benchmark various fractions of stEVs separated from optimized density gradient approach (DG). As such, WB, TEM, NTA, and functional assays, were utilized to analyze properties and distribution of EVs in cultured and stool samples. Stool samples from healthy individuals were interrogated using the approaches developed. Results demonstrated successful separation of most stBEVs (within DG fractions 8&9) from stEEVs (within DG fractions 5&6). Data also suggest the presence of stBEV DNA within vesicles after extraction of BEV DNA and DNase treatment. Metagenomic analysis from full-length (FL) region sequencing results confirmed significant differences between stool bacteria and stBEVs. Significantly, F8&9 and the pooled sample (F5-F9) exhibited a similar microbial composition, indicating that F8&9 were enriched in most stBEV species, primarily dominated by Firmicutes (89.6%). However, F5&6 and F7 still held low-density BEVs with a significantly higher proportion of Proteobacteria (20.5% and 40.7%, respectively) and Bacteroidetes (24% and 13.7%, respectively), considerably exceeding the proportions in stool and F8&9. Importantly, among five healthy individuals, significant variations were observed in the gut microbiota composition of their respective stBEVs, indicating the potential of stBEVs as a target for personalized medicine and research.
Collapse
Affiliation(s)
- Chih-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Po-Chieh Chiang
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Ming-Che Kuo
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Andrew M. Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- Department of R&D, Reliance Biosciences Inc, New Taipei City, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Master’s Program in Smart Medicine and Health Informatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Sarnelli G, Del Re A, Pesce M, Lu J, Esposito G, Sanseverino W, Corpetti C, Basili Franzin S, Seguella L, Palenca I, Rurgo S, De Palma FDE, Zilli A, Esposito G. Oral Immunization with Escherichia coli Nissle 1917 Expressing SARS-CoV-2 Spike Protein Induces Mucosal and Systemic Antibody Responses in Mice. Biomolecules 2023; 13:biom13030569. [PMID: 36979504 PMCID: PMC10046078 DOI: 10.3390/biom13030569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As of October 2022, the COVID-19 pandemic continues to pose a major public health conundrum, with increased rates of symptomatic infections in vaccinated individuals. An ideal vaccine candidate for the prevention of outbreaks should be rapidly scalable, easy to administer, and able to elicit a potent mucosal immunity. Towards this aim, we proposed an engineered Escherichia coli (E. coli) Nissle 1917 (EcN) strain with SARS-CoV-2 spike protein (SP)-coding plasmid, which was able to expose SP on its cellular surface by a hybridization with the adhesin involved in diffuse adherence 1 (AIDA1). In this study, we presented the effectiveness of a 16-week intragastrically administered, engineered EcN in producing specific systemic and mucosal immunoglobulins against SARS-CoV-2 SP in mice. We observed a time-dependent increase in anti-SARS-CoV-2 SP IgG antibodies in the sera at week 4, with a titre that more than doubled by week 12 and a stable circulating titre by week 16 (+309% and +325% vs. control; both p < 0.001). A parallel rise in mucosal IgA antibody titre in stools, measured via intestinal and bronchoalveolar lavage fluids of the treated mice, reached a plateau by week 12 and until the end of the immunization protocol (+300, +47, and +150%, at week 16; all p < 0.001 vs. controls). If confirmed in animal models of infection, our data indicated that the engineered EcN may be a potential candidate as an oral vaccine against COVID-19. It is safe, inexpensive, and, most importantly, able to stimulate the production of both systemic and mucosal anti-SARS-CoV-2 spike-protein antibodies.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Jie Lu
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China
| | - Giovanni Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Walter Sanseverino
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, Section of Gastroenterology, University Federico II, 80138 Naples, Italy
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Esposito
- Nextbiomics S.R.L. (Società a Responsabilità Limitata), 80100 Naples, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Akram N, Saeed F, Afzaal M, Shah YA, Qamar A, Faisal Z, Ghani S, Ateeq H, Akhtar MN, Tufail T, Hussain M, Asghar A, Rasheed A, Jbawi EA. Gut microbiota and synbiotic foods: Unveiling the relationship in COVID-19 perspective. Food Sci Nutr 2023; 11:1166-1177. [PMID: 36911846 PMCID: PMC10002946 DOI: 10.1002/fsn3.3162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) has spread across the globe and is causing widespread disaster. The impact of gut microbiota on lung disease has been widely documented. Diet, environment, and genetics all play a role in shaping the gut microbiota, which can influence the immune system. Improving the gut microbiota profile through customized diet, nutrition, and supplementation has been shown to boost immunity, which could be one of the preventative methods for reducing the impact of various diseases. Poor nutritional status is frequently linked to inflammation and oxidative stress, both of which can affect the immune system. This review emphasizes the necessity of maintaining an adequate level of important nutrients to effectively minimize inflammation and oxidative stress, moreover to strengthen the immune system during the COVID-19 severity. Furthermore, the purpose of this review is to present information and viewpoints on the use of probiotics, prebiotics, and synbiotics as adjuvants for microbiota modification and its effects on COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aiza Qamar
- Department of Nutrition and Health PromotionUniversity of Home Economics LahoreLahorePakistan
| | - Zargham Faisal
- Institute of Food Science and NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabassum Tufail
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aasma Asghar
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ammara Rasheed
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
13
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Soni S, Paari KA. A review on the immunomodulatory properties of functional nutraceuticals as dietary interventions for children to combat COVID-19 related infections. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023; 5:17. [PMCID: PMC10076816 DOI: 10.1186/s43014-023-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
COVID-19 is a significant threat to humanity in the present day due to the rapid increase in the number of infections worldwide. While most children may be spared of the direct mortality effects of the disease, those with weak immune systems are prone to adverse effects. Child mortality increases due to the stress caused to the health care system that disrupts essential health care needs such as immunisation and antenatal care. The use of functional foods (FF) aids in disease-prevention as they are known to have protective effects against COVID-19 by boosting children’s cellular and humoral immunity. Plant components such as glycyrrhizin, epigallocatechin gallate, allicin, and fucoidan exhibit antiviral properties against various viruses, including SARS-CoV 2. Microbial foods that are made of probiotics, can enhance immunity against various respiratory viruses. Food enriched with additives such as lactoferrin, piperine, and zinc can boost immunity against COVID-19. With proper definitive drug therapy not available for treating COVID-19 and most of the disease management tools rely on symptoms and non-specific supportive care, developing a functional paediatric formulation will prevent further deterioration in infant health. It is wise to investigate the toxicological aspects of Functional Foods components especially when formulating for children. The safe limits of ingredients should be strictly followed during FFs formulation. Stronger regulations with advanced analytical techniques can help to formulate functional foods into the mainstream in child nutraceuticals. The purpose of this review is to compile collective information on the functional nutraceuticals specifically for infants and children up to the age of 10 years that could confer immunity against COVID-19 and other related viruses.
Collapse
Affiliation(s)
- Swati Soni
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| | - Kuppusamy Alagesan Paari
- Department of Life Sciences, CHRIST (Deemed to be) University, Central Campus, Hosur Road, Bangalore, Karnataka 560029 India
| |
Collapse
|
15
|
Effects of the Antimicrobial Peptide Mastoparan X on the Performance, Permeability and Microbiota Populations of Broiler Chickens. Animals (Basel) 2022; 12:ani12243462. [PMID: 36552382 PMCID: PMC9774892 DOI: 10.3390/ani12243462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Restrictions on antibiotics are driving the search for alternative feed additives to promote gastrointestinal health and development in broiler chicken production. Proteins including antimicrobial peptides can potentially be applied as alternatives to antibiotics and are one of the most promising alternatives. We investigated whether the addition of MPX to the diet affects the production performance, immune function and the intestinal flora of the caecal contents of broiler chickens. One hundred one-day-old chickens were randomly divided into two groups: control (basal diet) and MPX (20 mg/kg) added to the basal diet. The results indicated that dietary supplementation with MPX improved the performance and immune organ index, decreased the feed conversion ratio, increased the villus length, maintained the normal intestinal morphology and reduced the IL-6 and LITNF mRNA expression levels of inflammation-related genes. In addition, MPX increased the mRNA expression of the digestive enzymes FABP2 and SLC2A5/GLUT5 and the tight junction proteins ZO-1, Claudin-1, Occludin, JAM-2 and MUC2, maintained the intestinal permeability and regulated the intestinal morphology. Moreover, MPX increased the CAT, HMOX1 and SOD1 mRNA expression levels of the antioxidant genes. Furthermore, a 16S rRNA microflora analysis indicated that the abundance of Lactobacillus and Lactococcus in the cecum was increased after addition of MPX at 14 d and 28 d. This study explored the feasibility of using antimicrobial peptides as novel feed additives for broiler chickens and provides a theoretical basis for their application in livestock.
Collapse
|
16
|
Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. THE LANCET. MICROBE 2022; 3:e787-e794. [PMID: 36088916 DOI: 10.1016/s2666-5247(22)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022]
Abstract
Vaccines are one of the greatest successes of public health, preventing millions of cases of disease and death in children each year. However, the efficacy of many vaccines can vary greatly between infants from geographically and socioeconomically distinct locations. Differences in the composition of the intestinal microbiome have emerged as one of the main factors that can account for variations in immunisation outcomes. In this Review, we assess the influence of the gut microbiota upon early life immunity, focusing on two important members of the microbiota with health-promoting and immunomodulatory properties: Bifidobacterium and Bacteroides. Additionally, we discuss their immune stimulatory microbial properties, interactions with the host, and their effect on vaccine responses and efficacy in infants. We also provide an overview of current microbiota-based approaches to enhance vaccine outcomes, and describe novel microbe-derived components that could lead to safer, more effective vaccines and vaccine adjuvants.
Collapse
Affiliation(s)
- Anne Jordan
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich, UK; Intestinal Microbiome, School of Life Sciences, ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
17
|
Hodges RE, Lamotte AV. Impact of Diet and Lifestyle on Vaccine Efficacy in Adults Aged 55 and Older: A Review. Integr Med (Encinitas) 2022; 21:32-52. [PMID: 36644599 PMCID: PMC9542930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Context Age-related declines in immune system function, including vaccine responsiveness, are well established. Dietary and lifestyle factors have been investigated in human clinical trials and observational studies for their effects on vaccine response. Objective The review intended to assess dietary and lifestyle factors that can modulate vaccine response in a population aged 55 years or older or in a population with an average age of 55 years or older. Design The research team performed a narrative review of studies occurring up until May 2021 by searching electronic PubMed databases. Results The review findings suggest that two factors may have clinically relevant effects on vaccine response: regular aerobic exercise and psychological environmental stressors, in particular caregiving stress, which studies have consistently found can have a positive and negative effect or association, respectively. In addition, micronutrients used in combination as well as microbiome-targeted interventions show mostly promising results. Other factors may yet be relevant but very few studies have been done. Conclusions Heterogeneity of study design, small sample sizes, and other challenges mean that strong conclusions remain elusive. Further study is needed as well as improvements in study design. However, there are indications that certain dietary and lifestyle factors influence vaccine effectiveness.
Collapse
Affiliation(s)
| | - Amy V. Lamotte
- Managing Director, Vallotte Nutrigenomics Limited, Hong Kong
| |
Collapse
|
18
|
Impact of maternal and pre-existing antibodies on immunogenicity of inactivated rotavirus vaccines. Vaccine 2022; 40:3843-3850. [DOI: 10.1016/j.vaccine.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
|
19
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
20
|
St Jean DT, Rogawski McQuade ET, Edwards JK, Thompson P, Thomas J, Becker-Dreps S. Effect of early life antibiotic use on serologic responses to oral rotavirus vaccine in the MAL-ED birth cohort study. Vaccine 2022; 40:2580-2587. [PMID: 35341645 PMCID: PMC9045361 DOI: 10.1016/j.vaccine.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Oral rotavirus vaccine efficacy is lower in low- and middle-income countries (LMICs) than in high-income countries. The degree to which antibiotic use impacts rotavirus vaccine immunogenicity in LMICs is unknown. Using data from a multisite prospective birth cohort study of malnutrition and enteric disease, MAL-ED, we examined the effect of early life antibiotic use on the immune response to rotavirus vaccine. METHODS We assessed whether antibiotic use from birth up to 7 days following rotavirus vaccine series completion was associated with rotavirus seropositivity at 7 months of age in Brazil, Peru, and South Africa using a modified Poisson regression. We then used parametric g-computation to estimate the impact of hypothetical interventions that treated all children and alternatively prevented inappropriate antibiotic treatments on seropositivity. RESULTS Of 537 children, 178 (33%) received at least one antibiotic course during the exposure window. Probability of seropositivity was 40% higher among children who had at least one course of antibiotics compared with those with no antibiotic exposure (PR: 1.40, 95% CI: 1.04, 1.89). There was no significant difference by the number of antibiotic courses received or total duration of antibiotics. Treating all children with antibiotics would be associated with a 19% (95% CI: 18%, 21%) absolute increase in seropositivity at 7 months. In contrast, removing inappropriate antibiotics would result in a 4% absolute reduction (95% CI: -5%, -2%) in seropositivity. CONCLUSIONS Early life antibiotic use was associated with increased seropositivity. However, a hypothetical intervention to remove inappropriate antibiotics would have little effect on overall seropositivity. Further investigation into the underlying mechanisms of antibiotic use on the infant gut microbiome and immune response are needed.
Collapse
Affiliation(s)
- Denise T St Jean
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peyton Thompson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Thomas
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Farzana M, Shahriar S, Jeba FR, Tabassum T, Araf Y, Ullah MA, Tasnim J, Chakraborty A, Naima TA, Marma KKS, Rahaman TI, Hosen MJ. Functional food: complementary to fight against COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:33. [PMID: 35284580 PMCID: PMC8899455 DOI: 10.1186/s43088-022-00217-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Background The novel coronavirus has embarked on a global pandemic and severe mortality with limited access for its treatments and medications. For the lack of time, research, and enough efficacy, most vaccines are underdeveloped or unreachable to society. However, many recent studies suggest various alternative, complementary remedies for COVID-19, which are functional foods. This review provides an overview of how functional foods can play a great role through modulating the host immune system, generating antiviral activities, and synthesizing biologically active agents effective against the coronavirus. Main body This review article summarizes the natural defense mechanisms in tackling SARS-CoV-2 alongside conventional therapeutic options and their corresponding harmful side effects. By analyzing bioactive components of functional foods, we have outlined its different contributions to human health and its potential immunomodulatory and antiviral properties that can enhance resistivity to viral infection. Moreover, we have provided a myriad of accessible and cost-effective functional foods that could be further investigated to target specific key symptoms of COVID-19 infections. Finally, we have found various functional foods with potent bioactive compounds that can inhibit or prevent COVID-19 infections and disease progression. Short conclusion Numerous functional foods can help the body fight COVID-19 through several mechanisms such as the reduced release of pro-inflammatory cytokines, reduced expression of ACE2 receptors in cells, and inhibiting essential enzymes in SARS-CoV-2.
Collapse
Affiliation(s)
- Maisha Farzana
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Sagarika Shahriar
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Faria Rahman Jeba
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Tahani Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Jarin Tasnim
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
22
|
Shenoy S. Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection. Inflamm Res 2022; 71:13-26. [PMID: 34738147 PMCID: PMC8568567 DOI: 10.1007/s00011-021-01510-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic continues to spread sporadically in the Unites States and worldwide. The severity and mortality excessively affected the frail elderly with co-existing medical diseases. There is growing evidence that cross-talk between the gut microbiome, Vitamin D and RAS/ACE2 system is essential for a balanced functioning of the elderly immune system and in regulating inflammation. In this review, we hypothesize that the state of gut microbiome, prior to infection determines the outcome associated with COVID-19 sepsis and may also be a critical factor in success to vaccination. METHODS Articles from PubMed/Medline searches were reviewed using a combination of terms "SARS-CoV-2, COVID-19, Inflammaging, Immune-senescence, Gut microbiome, Vitamin D, RAS/ACE2, Vaccination". CONCLUSION Evidence indicates a complex association between gut microbiota, ACE-2 expression and Vitamin D in COVID-19 severity. Status of gut microbiome is highly predictive of the blood molecular signatures and inflammatory markers and host responses to infection. Vitamin D has immunomodulatory function in innate and adaptive immune responses to viral infection. Anti-inflammatory functions of Vit D include regulation of gut microbiome and maintaining microbial diversity. It promotes growth of gut-friendly commensal strains of Bifida and Fermicutus species. In addition, Vitamin D is a negative regulator for expression of renin and interacts with the RAS/ ACE/ACE-2 signaling axis. Collectively, this triad may be the critical, link in determination of outcomes in SARS-CoV-2 infection. The presented data are empirical and informative. Further research using advanced systems biology techniques and artificial intelligence-assisted integration could assist with correlation of the gut microbiome with sepsis and vaccine responses. Modulating these factors may impact in guiding the success of vaccines and clinical outcomes in COVID-19 infections.
Collapse
Affiliation(s)
- Santosh Shenoy
- Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, 4801 E Linwood Blvd., Kansas City , MO, 64128, USA.
| |
Collapse
|
23
|
Abstract
The microorganisms associated with an organism, the microbiome, have a strong and wide impact in their host biology. In particular, the microbiome modulates both the host defense responses and immunity, thus influencing the fate of infections by pathogens. Indeed, this immune modulation and/or interaction with pathogenic viruses can be essential to define the outcome of viral infections. Understanding the interplay between the microbiome and pathogenic viruses opens future venues to fight viral infections and enhance the efficacy of antiviral therapies. An increasing number of researchers are focusing on microbiome-virus interactions, studying diverse combinations of microbial communities, hosts, and pathogenic viruses. Here, we aim to review these studies, providing an integrative overview of the microbiome impact on viral infection across different pathosystems.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
24
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
25
|
Relationship between Papillomavirus vaccine, vaginal microbiome, and local cytokine response: an exploratory research. Braz J Microbiol 2021; 52:2363-2371. [PMID: 34628621 DOI: 10.1007/s42770-021-00616-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/19/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION The influence of vaccination on composition of the human microbiome at distinct sites has been recognized as an essential component in the development of new vaccine strategies. The HPV vaccine is widely used to prevent cervical cancer; however, the influence of HPV vaccine on the vaginal microbiota has not been previously investigated. In his study, we performed an initial characterization of the microbiome and cytokine composition in the vagina following administration of the bivalent vaccine against HPV 16/18. MATERIAL AND METHODS In this exploratory study, fifteen women between 18 and 40 years received three doses of the HPV-16/18 AS04-adjuvanted vaccine (Cervarix®). Cervicovaginal samples were collected before the first dose and 30 days after the third dose. HPV genotyping was performed by the XGEN Flow Chip technique. The cytokines IFN-γ, IL-2, IL-12p70, TNF-α, GM-CSF, IL-4, IL-5, IL-10, and IL-13 were quantitated by multiplex immunoassay. The vaginal microbiome was identified by analysis of the V3/V4 region of the bacterial 16S rRNA gene. RESULTS The most abundant bacterial species in the vaginal microbiome was Lactobacillus crispatus, followed by L. iners. Bacterial diversity and dominant organisms were unchanged following vaccination. Small decreases in levels of pro and anti-inflammatory cytokines were observed following HPV vaccination, but there was no association between vaginal cytokine levels and microbiome composition. CONCLUSION Vaginal microbiome is not altered following administration of the standard three-dose HPV-16/18 AS04-adjuvanted (Cervarix®) vaccine.
Collapse
|
26
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
27
|
Tharpe NL, McDaniel L. Using a Harm Reduction Model to Reduce Barriers to Vaccine Administration. J Midwifery Womens Health 2021; 66:308-321. [PMID: 34166579 DOI: 10.1111/jmwh.13259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Vaccination is a strategic public health measure designed to reduce the adverse effects of many infectious diseases. Although national recommendations exist for vaccine administration across the life span, immunization rates are affected by barriers to vaccine access and hesitancy in vaccine acceptance. Midwives and women's health clinicians are optimally poised to assess their client's vaccination status and provide vaccinations during clinical encounters. In order to address client concerns about vaccine safety and administration, each clinician is expected to be knowledgeable about vaccine benefits, recommendations, side effects, and potential adverse reactions. Socioeconomic factors, social policies, and historic and continued experiences related to racism have been identified as barriers to ready access to vaccinations and vaccine acceptance. Midwives can act as leaders within their practice sites and communities through participation in projects that reduce barriers to vaccine access and uptake. Community vaccine outreach programs and relationship-based care can increase vaccine uptake through improved health literacy and associated behavioral changes including greater vaccine acceptance. This article focuses on identifying barriers to vaccine uptake and describing harm reduction measures designed to improve uptake of vaccines. A variety of leadership activities are discussed that can improve clinicians' understanding of their role in optimizing vaccination.
Collapse
Affiliation(s)
- Nell L Tharpe
- Perinatal Quality Collaborative for Maine, Augusta, Maine.,Midwife Workshops, East Boothbay, Maine
| | | |
Collapse
|
28
|
Significance of the Gut Microbiome for Viral Diarrheal and Extra-Intestinal Diseases. Viruses 2021; 13:v13081601. [PMID: 34452466 PMCID: PMC8402659 DOI: 10.3390/v13081601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.
Collapse
|
29
|
Saha D, Ota MOC, Pereira P, Buchy P, Badur S. Rotavirus vaccines performance: dynamic interdependence of host, pathogen and environment. Expert Rev Vaccines 2021; 20:945-957. [PMID: 34224290 DOI: 10.1080/14760584.2021.1951247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As of January 2021, rotavirus vaccination programs have been implemented in 109 countries and their use has resulted in a positive impact on rotavirus-related diarrheal hospitalizations and mortality in children below 5 years of age. Despite these successes, several countries in Africa and Asia where disease burden is high have not yet implemented rotavirus vaccination at all or at a scale sufficient enough to demonstrate impact. This could be, among other reasons, due to poor vaccine coverage and the modest levels of efficacy and effectiveness of the vaccines in these resource-limited settings. AREAS COVERED We review various factors related to the human host (malnutrition, maternally derived antibodies and breastfeeding, genetic factors, blood group, and co-administration with oral polio vaccine), rotavirus pathogen (force of infection, strain diversity and coinfections), and the environment (related to the human microbiome) which reflect complex and interconnected processes leading to diminished vaccine performance in resource-limited settings. EXPERT OPINION Addressing the limiting factors for vaccine efficacy is needed but likely to take a long time to be resolved. An immediate solution is to increase the immunization coverage to higher values generating an overall effect of adequate proportion of protected population to reduce the prevalence of rotavirus disease.
Collapse
|
30
|
Moreira-Rosário A, Marques C, Pinheiro H, Araújo JR, Ribeiro P, Rocha R, Mota I, Pestana D, Ribeiro R, Pereira A, de Sousa MJ, Pereira-Leal J, de Sousa J, Morais J, Teixeira D, Rocha JC, Silvestre M, Príncipe N, Gatta N, Amado J, Santos L, Maltez F, Boquinhas A, de Sousa G, Germano N, Sarmento G, Granja C, Póvoa P, Faria A, Calhau C. Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 Patients. Front Microbiol 2021; 12:705020. [PMID: 34349747 PMCID: PMC8326578 DOI: 10.3389/fmicb.2021.705020] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
The risk factors for coronavirus disease 2019 (COVID-19) severity are still poorly understood. Considering the pivotal role of the gut microbiota on host immune and inflammatory functions, we investigated the association between changes in the gut microbiota composition and the clinical severity of COVID-19. We conducted a multicenter cross-sectional study prospectively enrolling 115 COVID-19 patients categorized according to: (1) the WHO Clinical Progression Scale-mild, 19 (16.5%); moderate, 37 (32.2%); or severe, 59 (51.3%), and (2) the location of recovery from COVID-19-ambulatory, 14 (household isolation, 12.2%); hospitalized in ward, 40 (34.8%); or hospitalized in the intensive care unit, 61 (53.0%). Gut microbiota analysis was performed through 16S rRNA gene sequencing, and the data obtained were further related to the clinical parameters of COVID-19 patients. The risk factors for COVID-19 severity were identified by univariate and multivariable logistic regression models. In comparison to mild COVID-19 patients, the gut microbiota of moderate and severe patients have: (a) lower Firmicutes/Bacteroidetes ratio; (b) higher abundance of Proteobacteria; and (c) lower abundance of beneficial butyrate-producing bacteria such as the genera Roseburia and Lachnospira. Multivariable regression analysis showed that the Shannon diversity index [odds ratio (OR) = 2.85, 95% CI = 1.09-7.41, p = 0.032) and C-reactive protein (OR = 3.45, 95% CI = 1.33-8.91, p = 0.011) are risk factors for severe COVID-19 (a score of 6 or higher in the WHO Clinical Progression Scale). In conclusion, our results demonstrated that hospitalized patients with moderate and severe COVID-19 have microbial signatures of gut dysbiosis; for the first time, the gut microbiota diversity is pointed out as a prognostic biomarker of COVID-19 severity.
Collapse
Affiliation(s)
- André Moreira-Rosário
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cláudia Marques
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hélder Pinheiro
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Infectious Diseases, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Ricardo Araújo
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Pedro Ribeiro
- Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | - Rita Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Inês Mota
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diogo Pestana
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Rita Ribeiro
- Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | - Ana Pereira
- Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | - Maria José de Sousa
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | | | - José de Sousa
- Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | - Juliana Morais
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,Faculdade de Ciências Médicas, Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diana Teixeira
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Júlio César Rocha
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marta Silvestre
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Nuno Príncipe
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Nuno Gatta
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - José Amado
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Lurdes Santos
- Infectious Diseases Service, ID Intensive Care Unit, Faculdade de Medicina, Centro Hospitalar Universitário de São João, Universidade do Porto, Porto, Portugal
| | - Fernando Maltez
- Department of Infectious Diseases, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Ana Boquinhas
- Department of Emergency, CUF Infante Santo Hospital, Lisboa, Portugal
| | - Germano de Sousa
- Centro de Medicina Laboratorial Germano de Sousa, Lisboa, Portugal
| | - Nuno Germano
- Polyvalent Intensive Care Unit, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Gonçalo Sarmento
- Department of Internal Medicine, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Cristina Granja
- Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,Department of Anesthesiology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Surgery and Physiology, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro Póvoa
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Polyvalent Intensive Care Unit, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal.,Center for Clinical Epidemiology, Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Ana Faria
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Conceição Calhau
- Faculdade de Ciências M dicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Faculdade de Ciências Médicas, CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Pastor-Ibáñez R, Díez-Fuertes F, Sánchez-Palomino S, Alcamí J, Plana M, Torrents D, Leal L, García F. Impact of Transcriptome and Gut Microbiome on the Response of HIV-1 Infected Individuals to a Dendritic Cell-Based HIV Therapeutic Vaccine. Vaccines (Basel) 2021; 9:vaccines9070694. [PMID: 34202658 PMCID: PMC8310021 DOI: 10.3390/vaccines9070694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Therapeutic vaccines based on dendritic cells offer a good approach to HIV-specific T-cell responses and partial control of the viral load after antiretroviral therapy interruption. The aim of the present study was to identify mRNA expression profiles and to assess the impact of the gut microbiome composition for predicting the viral load control after antiretroviral therapy interruption. We enrolled 29 patients to receive either placebo or a monocyte-derived dendritic cell vaccine. Patients with a decrease in their viral load of >0.5 log10 copies/mL by 12 weeks after antiretroviral therapy interruption were considered responders. In total, 66 genes were considered differentially expressed between responders and non-responders. Enrichment analysis revealed several upregulated pathways involved in the host defense response to a virus via the type I interferon signaling pathway. Regarding the gut microbiota, responders showed enriched levels of Bacteroidetes (p < 0.005) and Verrucomicrobia (p = 0.017), while non-responders were enriched with Tenericutes (p = 0.049) and Actinobacteria (p < 0.005). We also found important differences at the genus level. However, we did not discover any effect of the dendritic cell vaccine on the transcriptome or the gut microbiota. An alternative analysis did characterize that the microbiota from responders were associated with the metabolic production of short-chain fatty acids, which are key metabolites in the regulation of intestinal homeostasis. The evidence now consistently shows that short-chain fatty acid depletion occurs in HIV-infected individuals receiving antiretroviral treatment.
Collapse
Affiliation(s)
- Roque Pastor-Ibáñez
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
| | | | - Sonsoles Sánchez-Palomino
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
| | - Jose Alcamí
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
- Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, Majadahonda, 28222 Madrid, Spain;
| | - Montserrat Plana
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
| | - David Torrents
- Computational Genomics Groups, Barcelona Supercomputing Center (BSC), Plaça d’Eusebi Güell, 1-3, 08034 Barcelona, Spain;
| | - Lorna Leal
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
- Infectious Diseases—Department, Hospital Clínic, IDIBAPS, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-275-586; Fax: +34-934-514-438
| | - Felipe García
- AIDS Research Group, IDIBAPS, Hospital Clinic, University of Barcelona, 170, 08036 Barcelona, Spain; (R.P.-I.); (S.S.-P.); (J.A.); (M.P.); (F.G.)
- Infectious Diseases—Department, Hospital Clínic, IDIBAPS, University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain
| |
Collapse
|
32
|
Sumibcay TJ, Lee-Jayaram JJ, Yamamoto LG. Reducing Broad-Spectrum Antibiotic Treatment of Simple Group A Streptococcal Infections to Reduce Harm to the Microbiome. Cureus 2021; 13:e15629. [PMID: 34306841 PMCID: PMC8279917 DOI: 10.7759/cureus.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 11/05/2022] Open
Abstract
Background Broad-spectrum antibiotics disrupt the human microbiome resulting in a greater risk of harmful, long-term conditions that impact human health. Group A streptococcal (GAS) infections can be treated with penicillin. Objective We examined the treatment of simple GAS infections to assess the use of broad-spectrum antibiotics. Methods Smart relational database extraction queries from January 1, 2016 to July 10, 2019 (3.6 years) of patients less than 22 years old in a 4-hospital system electronic medical record (EMR). Results We found 1778 non-ED outpatients and 873 ED patients with simple GAS infections who were not allergic to penicillin. A total of 75% and 44% of non-ED and ED patients were treated with broad-spectrum antibiotics, respectively (p < 0.001). Older patients were treated with penicillin alone more frequently than younger age groups (p < 0.001). Conclusion These findings highlight opportunities for clinicians to reduce the utilization of broad-spectrum antibiotics for the treatment of simple GAS infections to reduce harm to the microbiome.
Collapse
Affiliation(s)
- Tyrone J Sumibcay
- Pediatrics, Kapi`olani Medical Center for Women & Children, Honolulu, USA
| | - Jannet J Lee-Jayaram
- Pediatrics, Kapi`olani Medical Center for Women & Children, Honolulu, USA.,Pediatric Emergency Medicine, University of Hawai'i, John A. Burns School of Medicine, Honolulu, USA
| | - Loren G Yamamoto
- Pediatrics, Kapi`olani Medical Center for Women & Children, Honolulu, USA.,Pediatric Emergency Medicine, University of Hawai'i, John A. Burns School of Medicine, Honolulu, USA
| |
Collapse
|
33
|
Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path? Vaccines (Basel) 2021; 9:584. [PMID: 34206053 PMCID: PMC8230289 DOI: 10.3390/vaccines9060584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant's microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother-fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant's microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant's health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.
Collapse
Affiliation(s)
- Natalia Nunez
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Louis Réot
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Elisabeth Menu
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
- MISTIC Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
34
|
Zhang H, Ma W, Sun Z, Zhu C, Werid GM, Ibrahim YM, Zhang W, Pan Y, Shi D, Chen H, Wang Y. Abundance of Lactobacillus in porcine gut microbiota is closely related to immune response following PRRSV immunization. Vet Microbiol 2021; 259:109134. [PMID: 34087673 DOI: 10.1016/j.vetmic.2021.109134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence shows that gut microbiota plays a critical role in host immune system development and immune regulation, thus the composition of gut microbiota may affect how individuals respond to immunizations. Currently, little evidence is available on the correlation between porcine gut microbiota and vaccine immune response. Here, we investigated the influence of gut microbiota on immune response in pigs to porcine reproductive and respiratory syndrome virus (PRRSV) vaccine. Based on the antibody levels for PRRSV, the immunized pigs were divided into three groups (high, low, and others), and followed by virulent PRRSV challenge. The comprehensive analysis of microbial composition revealed that gut microbiota was similar in the richness and diversity among different groups before immunization. After immunization, the richness and diversity of gut microbial community in the high group were still similar to the low group, although there was a decrease in community diversity overtime. Interestingly, the antibody titer was positively correlated with the abundance of Lactobacillus in gut microbiota in immunized pigs. Further analysis indicated that gut microbial composition might be correlated to the clinical parameters such as body weight and rectal temperature after virus challenge. Taken together, our findings suggest that certain specific members of gut microbiota, such as Lactobacillus may serve as a mechanism for regulating the immune response following immunization in pigs.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Wenjie Ma
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Changkang Zhu
- Asian Veterinary Research and Development Center, Boehringer Ingelheim Vetmedica (China) Co., Ltd., Pudong District, Shanghai, 201203, China.
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yassein M Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
35
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Benahmed AG, Bjørklund G. The microbiota-mediated dietary and nutritional interventions for COVID-19. Clin Immunol 2021; 226:108725. [PMID: 33845194 PMCID: PMC8032598 DOI: 10.1016/j.clim.2021.108725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Worldwide, scientists are looking for specific treatment for COVID-19. Apart from the antiviral approach, the interventions to support healthy immune responses to the virus are feasible through diet, nutrition, and lifestyle approaches. This narrative review explores the recent studies on dietary, nutritional, and lifestyle interventions that influence the microbiota-mediated immunomodulatory effects against viral infections. Cumulative studies reported that the airway microbiota and SARS-CoV-2 leverage each other and determine the pathogen-microbiota-host responses. Cigarette smoking can disrupt microbiota abundance. The composition and diversification of intestinal microbiota influence the airway microbiota and the innate and adaptive immunity, which require supports from the balance of macro- and micronutrients from the diet. Colorful vegetables supplied fermentable prebiotics and anti-inflammatory, antioxidant phytonutrients. Fermented foods and beverages support intestinal microbiota. In sensitive individuals, the avoidance of the high immunoreactive food antigens contributes to antiviral immunity. This review suggests associations between airway and intestinal microbiota, antiviral host immunity, and the influences of dietary, nutritional, and lifestyle interventions to prevent the clinical course toward severe COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Thailand Institute for Functional Medicine, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| |
Collapse
|
36
|
Deleers M, Breiman A, Daubie V, Maggetto C, Barreau I, Besse T, Clémenceau B, Ruvoën-Clouet N, Fils JF, Maillart E, Doyen V, Mahadeb B, Jani JC, Van der Linden P, Cannie MM, Hayef N, Corazza F, Le Pendu J, El Kenz H. Covid-19 and blood groups: ABO antibody levels may also matter. Int J Infect Dis 2021; 104:242-249. [PMID: 33326874 PMCID: PMC7832075 DOI: 10.1016/j.ijid.2020.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Susceptibility to Covid-19 has been found to be associated with the ABO blood group, with O type individuals being at a lower risk. However, the underlying mechanism has not been elucidated. Here, we aimed to test the hypothesis that Covid-19 patients might have lower levels of ABO antibodies than non-infected individuals as they could offer some degree of protection. METHODS After showing that the viral spike protein harbors the ABO glycan epitopes when produced by cells expressing the relevant glycosyltransferases, like upper respiratory tract epithelial cells, we enrolled 290 patients with Covid-19 and 276 asymptomatic controls to compare their levels of natural ABO blood group antibodies. RESULTS We found significantly lower IgM anti-A + anti-B agglutination scores in blood group O patients (76.93 vs 88.29, P-value = 0.034) and lower levels of anti-B (24.93 vs 30.40, P-value = 0.028) and anti-A antibodies (28.56 vs 36.50, P-value = 0.048) in blood group A and blood group B patients, respectively, compared to controls. CONCLUSION In this study, we showed that ABO antibody levels are significantly lower in Covid-19 patients compared to controls. These findings could indicate that patients with low levels of ABO antibodies are at higher risk of being infected.
Collapse
Affiliation(s)
- Marie Deleers
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Immunology, LHUB-ULB, Brussels, Belgium.
| | - Adrien Breiman
- Université de Nantes, INSERM, CRCINA, Nantes, France; CHU de Nantes, Nantes, France
| | - Valéry Daubie
- Laboratory of Immunology, LHUB-ULB, Brussels, Belgium
| | - Carine Maggetto
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Barreau
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Immunology, LHUB-ULB, Brussels, Belgium
| | - Tatiana Besse
- Department of Clinical Research, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Béatrice Clémenceau
- Université de Nantes, INSERM, CRCINA, Nantes, France; CHU de Nantes, Nantes, France
| | - Nathalie Ruvoën-Clouet
- Université de Nantes, INSERM, CRCINA, Nantes, France; Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes, France
| | | | - Evelyne Maillart
- Department of Infectious Diseases, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Doyen
- Immuno-Allergology Clinic, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Translational Research, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Jacques C Jani
- Department of Obstetrics and Gynaecology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Mieke M Cannie
- Department of Radiology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nabil Hayef
- Department of Pharmacy (Clinical Trials), CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Immunology, LHUB-ULB, Brussels, Belgium; Laboratory of Translational Research, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Hanane El Kenz
- Department of Transfusion, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Immunology, LHUB-ULB, Brussels, Belgium
| |
Collapse
|
37
|
Harper A, Vijayakumar V, Ouwehand AC, ter Haar J, Obis D, Espadaler J, Binda S, Desiraju S, Day R. Viral Infections, the Microbiome, and Probiotics. Front Cell Infect Microbiol 2021; 10:596166. [PMID: 33643929 PMCID: PMC7907522 DOI: 10.3389/fcimb.2020.596166] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viral infections continue to cause considerable morbidity and mortality around the world. Recent rises in these infections are likely due to complex and multifactorial external drivers, including climate change, the increased mobility of people and goods and rapid demographic change to name but a few. In parallel with these external factors, we are gaining a better understanding of the internal factors associated with viral immunity. Increasingly the gastrointestinal (GI) microbiome has been shown to be a significant player in the host immune system, acting as a key regulator of immunity and host defense mechanisms. An increasing body of evidence indicates that disruption of the homeostasis between the GI microbiome and the host immune system can adversely impact viral immunity. This review aims to shed light on our understanding of how host-microbiota interactions shape the immune system, including early life factors, antibiotic exposure, immunosenescence, diet and inflammatory diseases. We also discuss the evidence base for how host commensal organisms and microbiome therapeutics can impact the prevention and/or treatment of viral infections, such as viral gastroenteritis, viral hepatitis, human immunodeficiency virus (HIV), human papilloma virus (HPV), viral upper respiratory tract infections (URTI), influenza and SARS CoV-2. The interplay between the gastrointestinal microbiome, invasive viruses and host physiology is complex and yet to be fully characterized, but increasingly the evidence shows that the microbiome can have an impact on viral disease outcomes. While the current evidence base is informative, further well designed human clinical trials will be needed to fully understand the array of immunological mechanisms underlying this intricate relationship.
Collapse
Affiliation(s)
- Ashton Harper
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| | | | - Arthur C. Ouwehand
- Global Health and Nutrition Sciences, DuPont Nutrition and Biosciences, Kantvik, Finland
| | | | - David Obis
- Innovation Science & Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | | | - Sylvie Binda
- Lallemand Health Solutions, Montreal, QC, Canada
| | | | - Richard Day
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| |
Collapse
|
38
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Krishnan A, Hamilton JP, Alqahtani SA, Woreta TA. COVID-19: An overview and a clinical update. World J Clin Cases 2021; 9:8-23. [PMID: 33511168 PMCID: PMC7809683 DOI: 10.12998/wjcc.v9.i1.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease-2019 (COVID-19, previously known as 2019 nCoV) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Wuhan City, China, has spread rapidly around the world. Most patients from the first cluster had an epidemiological connection to the Wuhan's Huanan Seafood Wholesale Market. Available evidence has shown that SARS-CoV-2 can be easily transmitted from person to person through close contact and respiratory droplets, posing a substantial challenge to public health. At present, the research on SARS-CoV-2 is still in the primary stages. However, dexa-methasone and remdesivir are appeared to be promising medical therapies. Still, there is no definite specific treatment, and the mainstay of treatment is still focused on supportive therapies. Currently, over 150 vaccines are under investigation. It is necessary to understand the nature of the virus and its clinical characteristics in order to find effectively manage the disease. The knowledge about this virus is rapidly evolving, and clinicians must update themselves regularly. The present review comprehensively summarizes the epidemiology, pathogenesis, clinical characteristics, and management of COVID-19 based on the current evidence.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| | - Saleh A Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
- Liver Transplant Center, King Faisal Specialist Hospital & Research Center, Riyadh 12713, Saudi Arabia
| | - Tinsay A Woreta
- Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
40
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
41
|
Cianci R, Franza L, Massaro MG, Borriello R, De Vito F, Gambassi G. The Interplay between Immunosenescence and Microbiota in the Efficacy of Vaccines. Vaccines (Basel) 2020; 8:vaccines8040636. [PMID: 33147686 PMCID: PMC7712068 DOI: 10.3390/vaccines8040636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Vaccinations are among the most effective medical procedures and have had an incredible impact on almost everyone’s life. One of the populations that can benefit the most from them are elderly people. Unfortunately, in this group, vaccines are less effective than in other groups, due to immunosenescence. The immune system ages like the whole body and becomes less effective in responding to infections and vaccinations. At the same time, immunosenescence also favors an inflammatory microenvironment, which is linked to many conditions typical of the geriatrics population. The microbiota is one of the key actors in modulating the immune response and, in this review, we discuss the current evidence on the role of microbiota in regulating the immune response to vaccines, particularly in elderly people.
Collapse
Affiliation(s)
- Rossella Cianci
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| | - Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
| | - Maria Grazia Massaro
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Raffaele Borriello
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Francesco De Vito
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| | - Giovanni Gambassi
- General Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.M.); (R.B.); (F.D.V.); (G.G.)
| |
Collapse
|
42
|
Kostoff RN, Kanduc D, Porter AL, Shoenfeld Y, Calina D, Briggs MB, Spandidos DA, Tsatsakis A. Vaccine- and natural infection-induced mechanisms that could modulate vaccine safety. Toxicol Rep 2020; 7:1448-1458. [PMID: 33110761 PMCID: PMC7581376 DOI: 10.1016/j.toxrep.2020.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022] Open
Abstract
A degraded/dysfunctional immune system appears to be the main determinant of serious/fatal reaction to viral infection (for COVID-19, SARS, and influenza alike). There are four major approaches being employed or considered presently to augment or strengthen the immune system, in order to reduce adverse effects of viral exposure. The three approaches that are focused mainly on augmenting the immune system are based on the concept that pandemics/outbreaks can be controlled/prevented while maintaining the immune-degrading lifestyles followed by much of the global population. The fourth approach is based on identifying and introducing measures aimed at strengthening the immune system intrinsically in order to minimize future pandemics/outbreaks. Specifically, the four measures are: 1) restricting exposure to virus; 2) providing reactive/tactical treatments to reduce viral load; 3) developing vaccines to prevent, or at least attenuate, the infection; 4) strengthening the immune system intrinsically, by a) identifying those factors that contribute to degrading the immune system, then eliminating/reducing them as comprehensively, thoroughly, and rapidly as possible, and b) replacing the eliminated factors with immune-strengthening factors. This paper focuses on vaccine safety. A future COVID-19 vaccine appears to be the treatment of choice at the national/international level. Vaccine development has been accelerated to achieve this goal in the relatively near-term, and questions have arisen whether vaccine safety has been/is being/will be compromised in pursuit of a shortened vaccine development time. There are myriad mechanisms related to vaccine-induced, and natural infection-induced, infections that could adversely impact vaccine effectiveness and safety. This paper summarizes many of those mechanisms.
Collapse
Affiliation(s)
- Ronald N. Kostoff
- Research Affiliate, School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Search Technology, Inc., Peachtree Corners, GA, 30092, USA
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409, Heraklion, Greece
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
43
|
Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020; 8:microorganisms8101584. [PMID: 33066697 PMCID: PMC7602465 DOI: 10.3390/microorganisms8101584] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
A diverse and dynamic microbial community (known as microbiota) resides within the pig gastrointestinal tract (GIT). The microbiota contributes to host health and performance by mediating nutrient metabolism, stimulating the immune system, and providing colonization resistance against pathogens. Manipulation of gut microbiota to enhance growth performance and disease resilience in pigs has recently become an active area of research in an era defined by increasing scrutiny of antimicrobial use in swine production. In order to develop microbiota-targeted strategies, or to identify potential next-generation probiotic strains originating from the endogenous members of GIT microbiota in pigs, it is necessary to understand the role of key commensal members in host health. Many, though not all, correlative studies have associated members of the genus Prevotella with positive outcomes in pig production, including growth performance and immune response; therefore, a comprehensive review of the genus in the context of pig production is needed. In the present review, we summarize the current state of knowledge about the genus Prevotella in the intestinal microbial community of pigs, including relevant information from other animal species that provide mechanistic insights, and identify gaps in knowledge that must be addressed before development of Prevotella species as next-generation probiotics can be supported.
Collapse
|
44
|
Durack J, Christophersen CT. Human Respiratory and Gut Microbiomes-Do They Really Contribute to Respiratory Health? Front Pediatr 2020; 8:528. [PMID: 33014929 PMCID: PMC7509439 DOI: 10.3389/fped.2020.00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Human gastrointestinal and respiratory tracts are colonized by diverse polymicrobial communities shortly after birth, which are continuously molded by environmental exposure. The development of the resident microbiota in early life is a critical factor in the maturation of a healthy immune system. Disturbances to the intricate relationship between environmental exposure and maturation of the infant microbiome have been increasingly identified as a potential contributor to a range of childhood diseases. This review details recent evidence that implicates the contribution of gut and airway microbiome to pediatric respiratory health.
Collapse
Affiliation(s)
- Juliana Durack
- Symbiome Inc., San Francisco, CA, United States
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
45
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
46
|
Terada T, Nii T, Isobe N, Yoshimura Y. Effect of antibiotic treatment on microbial composition and expression of antimicrobial peptides and cytokines in the chick cecum. Poult Sci 2020; 99:3385-3392. [PMID: 32616232 PMCID: PMC7597731 DOI: 10.1016/j.psj.2020.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to confirm whether the expression of innate immune molecules in the chick cecum is altered in association with changes in the composition of the intestinal microbiome that are regulated by treatment with antibiotics. Broiler chicks were administered with antibiotics (penicillin and streptomycin) daily, and the composition of the microbiota, expression of innate immune molecules, and localization of antimicrobial peptides in the chick cecum were examined at day 7 and day 14 using real-time PCR and immunohistochemistry. The oral administration of antibiotics caused an increase in the relative frequency of the Enterobacteriaceae family and a decrease in some gram-negative (Barnesiellaceae) and gram-positive bacterial (Clostridiaceae and Erysipelotrichaceae) families. The gene expression levels of immune molecules, including 4 Toll-like receptors (TLR) (TLR 2, 4, 5, and 21), inflammation-related cytokines (IL-1β, TGFβ3, TGFβ4, and IL-8), and antimicrobial peptides (avian β-defensins and cathelicidins) showed a tendency to decrease with antibiotic treatment at day 7. However, expression levels of TLR21 and some cytokines (IL-1β, TGFβ3, and IL-8) were higher in the cecum or cecal tonsils of the antibiotic-treated group than in those of the control at day 14. The immunoreactive avian β-defensin 2 and cathelicidin 1 proteins were localized in the leukocyte-like cells in the lamina propria, and they were aggregated in the form of small islands. We conclude that the expression of innate immune molecules, including TLR, inflammation-related cytokines, and antimicrobial peptides, in the cecum are altered in association with changes in the density or composition of the luminal microbiota during the early phase of life in chicks.
Collapse
Affiliation(s)
- T Terada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - T Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - N Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Y Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
47
|
Gasmi A, Noor S, Tippairote T, Dadar M, Menzel A, Bjørklund G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin Immunol 2020; 215:108409. [PMID: 32276137 PMCID: PMC7139252 DOI: 10.1016/j.clim.2020.108409] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
It is an ugly fact that a significant amount of the world's population will contract SARS-CoV-II infection with the current spreading. While a specific treatment is not yet coming soon, individual risk assessment and management strategies are crucial. The individual preventive and protective measures drive the personal risk of getting the disease. Among the virus-contracted hosts, their different metabolic status, as determined by their diet, nutrition, age, sex, medical conditions, lifestyle, and environmental factors, govern the personal fate toward different clinical severity of COVID-19, from asymptomatic, mild, moderate, to death. The careful individual assessment for the possible dietary, nutritional, medical, lifestyle, and environmental risks, together with the proper relevant risk management strategies, is the sensible way to deal with the pandemic of SARS-CoV-II.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - Torsak Tippairote
- Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand; Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
48
|
Mojgani N, Shahali Y, Dadar M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef Microbes 2020; 11:213-226. [PMID: 32216470 DOI: 10.3920/bm2019.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination is one of the most important prevention tools providing protection against infectious diseases especially in children below the age of five. According to estimates, more than 5 million lives are saved annually by the implementation of six standard vaccines, including diphtheria, hepatitis B, Haemophilus influenza type b, polio, tetanus and yellow fever. Despite these efforts, we are faced with challenges in developing countries where increasing population and increasing disease burden and difficulties in vaccine coverage and delivery cause significant morbidity and mortality. Additionally, the high cost of these vaccines is also one of the causes for inappropriate and inadequate vaccinations in these regions. Thus, developing cost-effective vaccine strategies that could provide a stronger immune response with reduced vaccination schedules and maximum coverage is of critical importance. In last decade, different approaches have been investigated; among which live bacterial vaccines have been the focus of attention. In this regard, probiotic lactic acid bacteria have been extensively studied as safe and effective vaccine candidates. These microorganisms represent the largest group of probiotic bacteria in the intestine and are generally recognised as safe (GRAS) bacteria. They have also attracted attention due to their immunomodulatory actions and their effective role as novel vaccine adjuvants. A significant property of these bacteria is their ability to mimic natural infections, while intrinsically possessing mucosal adjuvant properties. Additionally, as live bacterial vaccines are administered orally or nasally, they have higher acceptance and better safety, but also avoid the risk of contamination due to needles and syringes. In this review, we emphasise the role of probiotic Lactobacillus strains as putative oral vaccine carriers and novel vaccine adjuvants.
Collapse
Affiliation(s)
- N Mojgani
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - Y Shahali
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - M Dadar
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
49
|
Abstract
Studies of the intestinal microbial environment largely focus on microbial taxonomy, without clarifying their health benefits. Two recent studies (Raman et al. and Gehrig et al.) classify microbial environments into "ecogroups" that provide insight into their metabolic and/or nutritional pathways and how this can be used for interventions in malnourished children.
Collapse
Affiliation(s)
- Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|