1
|
Turpin R, Peltonen K, Rannikko JH, Liu R, Kumari AN, Nicorici D, Lee MH, Mutka M, Kovanen PE, Niinikoski L, Meretoja T, Mattson J, Järvinen P, Lahdensuo K, Järvinen R, Tornberg S, Mirtti T, Boström P, Koskivuo I, Thotakura A, Pouwels J, Hollmén M, Mustjoki S, Klefström J. Patient-derived tumor explant models of tumor immune microenvironment reveal distinct and reproducible immunotherapy responses. Oncoimmunology 2025; 14:2466305. [PMID: 39960413 PMCID: PMC11834457 DOI: 10.1080/2162402x.2025.2466305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Tumor-resident immune cells play a crucial role in eliciting anti-tumor immunity and immunomodulatory drug responses, yet these functions have been difficult to study without tractable models of the tumor immune microenvironment (TIME). Patient-derived ex vivo models contain authentic resident immune cells and therefore, could provide new mechanistic insights into how the TIME responds to tumor or immune cell-directed therapies. Here, we assessed the reproducibility and robustness of immunomodulatory drug responses across two different ex vivo models of breast cancer TIME and one of renal cell carcinoma. These independently developed TIME models were treated with a panel of clinically relevant immunomodulators, revealing remarkably similar changes in gene expression and cytokine profiles among the three models in response to T cell activation and STING-agonism, while still preserving individual patient-specific response patterns. Moreover, we found two common core signatures of adaptive or innate immune responses present across all three models and both types of cancer, potentially serving as benchmarks for drug-induced immune activation in ex vivo models of the TIME. The robust reproducibility of immunomodulatory drug responses observed across diverse ex vivo models of the TIME underscores the significance of human patient-derived models in elucidating the complexities of anti-tumor immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Rita Turpin
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Karita Peltonen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Jenna H. Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Ruixian Liu
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Anita N. Kumari
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Daniel Nicorici
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Moon Hee Lee
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Minna Mutka
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Panu E. Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Niinikoski
- Division of Breast Surgery, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomo Meretoja
- Division of Breast Surgery, Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Petrus Järvinen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Kanerva Lahdensuo
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Riikka Järvinen
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Sara Tornberg
- Abdominal Center, Urology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, Helsinki University Hospital and Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Digestive Surgery and Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Anil Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Jeroen Pouwels
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
- FICAN South, Helsinki University Hospital, Helsinki, Finland
- Department of Cell & Tissue Biology, University of California, San Francisco, USA
| |
Collapse
|
2
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
3
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
4
|
Mohammadi Barzelighi H, Bakhshi B, Daraei B, Mirzaei A. Investigating the effect of rAzurin loaded mesoporous silica nanoparticles enwrapped with chitosan-folic acid on breast tumor regression in BALB/ C mice. Int J Biol Macromol 2025; 300:139245. [PMID: 39732269 DOI: 10.1016/j.ijbiomac.2024.139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups. This formulation inhibited MCF7 cells at higher concentrations, induced apoptosis in cells, and caused DNA degradation. It also increased the uptake efficiency of rAzurin and stimulated the secretion of TNF-α, INF-γ, and IL-4 while inhibiting the secretion of IL-6. Furthermore, it regulated the expression of specific genes (upregulating tlr3 and downregulating tlr2, 4, and 9). In animal studies with BALB/c mice, the rAzu-MSNs-CS-FA formulation led to tumor regression and decreased tumor volume over 21 days. Overall, this formulation showed promising results in inducing cytotoxic effects against cancer cells, promoting apoptosis, and eliciting appropriate immune responses, suggesting its potential as a valuable therapy for breast cancer.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Yokota H, Sato K, Sakamoto S, Okuda Y, Takeda M, Akamine Y, Nakayama K, Miura M. Influence of interleukin-6 on the pharmacokinetics and pharmacodynamics of osimertinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 2025; 95:49. [PMID: 40156608 PMCID: PMC11954710 DOI: 10.1007/s00280-025-04772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE The inflammatory cytokine interleukin (IL)-6 reduces the activity of drug metabolic enzymes and promotes tumor progression. We investigated the effect of IL-6 on the pharmacokinetics of osimertinib and the association between an IL-6 polymorphism and clinical outcomes in 30 patients with non-small cell lung cancer (NSCLC). METHODS Osimertinib and IL-6 plasma concentrations were measured on day 15 after therapy initiation. The genotype of IL-6 1800796G > C was identified using polymerase chain reaction-restriction fragment length polymorphism. Risk factors affecting overall survival (OS) were assessed by Cox proportional hazard regression analysis. RESULTS The IL-6 concentration was significantly correlated with the osimertinib trough plasma concentration (r = 0.423, P = 0.020) and area under the plasma concentration-time curve (r = 0.420, P = 0.021). The IL-6 concentration was significantly higher in patients with the IL-6 rs1800796G allele versus C/C genotype (P = 0.024). OS was significantly shorter in patients with the IL-6 rs1800796G allele versus C/C genotype (median: 15.1 vs. 48.9 months, P = 0.005). Univariate and multivariate analyses indicated that the IL-6 rs1800796G allele is an independent risk factor for OS (crude hazard ratio = 7.07; P = 0.014; adjusted hazard ratio = 6.38; P = 0.021). CONCLUSION A higher IL-6 concentration was associated with reduced metabolic activity of osimertinib, leading to increased osimertinib exposure. As the IL-6 concentration was higher in NSCLC patients with the IL-6 rs1800796G allele, it might be an independent prognostic factor for patients treated with osimertinib.
Collapse
Affiliation(s)
- Hayato Yokota
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuhiro Sato
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Sho Sakamoto
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Yuji Okuda
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Masahide Takeda
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Yumiko Akamine
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Katsutoshi Nakayama
- Department of Internal Medicine Division of Respiratory Medicine, Akita University School of Medicine, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan.
- Department of Pharmacokinetics, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
6
|
Young JS, Cho NW, Lucas CHG, Najem H, Mirchia K, Chen WC, Seo K, Zakimi N, Daggubati V, Casey-Clyde T, Nguyen MP, Chen A, Phillips JJ, Ozawa T, Aghi MK, Taylor JW, DeRisi JL, Bhaduri A, Berger MS, Heimberger AB, Butowski N, Spitzer MH, Raleigh DR. IL-6 underlies microenvironment immunosuppression and resistance to therapy in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642800. [PMID: 40161763 PMCID: PMC11952432 DOI: 10.1101/2025.03.12.642800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The glioblastoma tumor immune microenvironment (TIME) is an immunosuppressive barrier to therapy that encumbers glioblastoma responses to immune checkpoint inhibition (ICI). Immunosuppressive cytokines, pro-tumor myeloid cells, and exhausted T-cells are hallmarks of the glioblastoma TIME. Here we integrate spatial and single-cell analyses of patient-matched human glioblastoma samples before and after ICI with genetic, immunologic, single-cell, and pharmacologic studies in preclinical models to reveal that interleukin-6 (IL-6) inhibition reprograms the glioblastoma TIME to sensitize mouse glioblastoma to ICI and radiotherapy. Rare human glioblastoma patients who achieve clinical responses to ICI have lower pre-treatment IL-6 levels compared to glioblastomas who do not respond to ICI. Immune stimulatory gene therapy suppresses IL-6 tumor levels in preclinical murine models of glioblastoma. Furthermore, survival was longer in Il-6 knockout mice with orthotopic SB28 glioblastoma relative to wild-type mice. IL-6 blockade with a neutralizing antibody transiently sensitizes mouse glioblastoma to anti-PD-1 by increasing MHCII+ monocytes, CD103+ migratory dendritic cells (DCs), CD11b+ conventional DCs, and effector CD8+ T cells, and decreasing immunosuppressive Tregs. To translate these findings to a combination treatment strategy for recurrent glioblastoma patients, we show that IL-6 blockade plus ICI durably sensitizes mouse glioblastoma to high-dose radiotherapy.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nam Woo Cho
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Calixto-Hope G. Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kanish Mirchia
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - William C. Chen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyounghee Seo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vikas Daggubati
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Minh P. Nguyen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Arya Chen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W. Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew H. Spitzer
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Raleigh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Zhong P, Li X, Li J. Mechanisms, assessment, and exercise interventions for skeletal muscle dysfunction post-chemotherapy in breast cancer: from inflammation factors to clinical practice. Front Oncol 2025; 15:1551561. [PMID: 40104495 PMCID: PMC11913840 DOI: 10.3389/fonc.2025.1551561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy remains a central component of breast cancer treatment, significantly improving patient survival rates. However, its toxic side effects, along with cancer-related paraneoplastic syndromes, can lead to the loss of skeletal muscle mass and function, impairing physical abilities and increasing the risk of complications during treatment. Chemotherapeutic agents directly impact skeletal muscle cells by promoting protein degradation, inhibiting protein synthesis, and triggering systemic inflammation, all of which contribute to muscle atrophy. Additionally, these drugs can interfere with the proliferation and differentiation of stem cells, such as satellite cells, disrupting muscle regeneration and repair while inducing abnormal differentiation of intermuscular tissue, thereby worsening muscle wasting. These effects not only reduce the effectiveness of chemotherapy but also negatively affect patients' quality of life and disease prognosis. Recent studies have emphasized the role of exercise as an effective non-pharmacological strategy for preventing muscle loss and preserving muscle mass in cancer patients. This review examines the clinical manifestations of muscle dysfunction following breast cancer chemotherapy, the potential mechanisms underlying these changes, and the evidence supporting exercise as a therapeutic approach for improving muscle function.
Collapse
Affiliation(s)
- Pei Zhong
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xizhuang Li
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Sun L, Ma B, Yang F, Zou H, Guo Y, Wang X, Han M. Anti-hepatoma effect of homologous delivery of doxorubicin by HepG2 cells. Int J Pharm 2025; 670:125113. [PMID: 39710309 DOI: 10.1016/j.ijpharm.2024.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Compared to conventional polymer-based and biomaterial carriers, cells as vehicles for delivering bioactive molecules in the treatment of tumor diseases offer characteristics such as non-toxicity, biocompatibility, low immunogenicity, and prolonged in vivo circulation. However, the focus of current cell drug delivery systems predominantly lies on live cells, such as red blood cells, white blood cells and others. Here, a drug delivery strategy targeting liver cancer utilizing cryo-shocked liver cancer cells (HepG2) as carriers was presented, and non-proliferative HepG2 cells particles loaded with DOX (HepG2-DOX) was effectively prepared, which has good homologous targeting. Subsequent in vitro and in vivo experiments demonstrated the non-proliferative and non-pathogenic nature of this drug delivery system. The outcomes of in vitro experiments revealed that the inhibitory effect of HepG2-DOX on HepG2 was approximately five times higher than that of free DOX, with the IC50 value of HepG2-DOX being 0.0739 µg/mL and free DOX being 0.3606 µg/mL. Furthermore, in comparison to the positive DOX group, the HepG2-DOX group has a very significant advantage in tumor inhibition rate (91.34 % vs. 64.20 %). Cell uptake experiments indicated significant HepG2-DOX uptake by HepG2 cells compared to 4T1, LO2, and Raw cell groups, highlighting the excellent cell specificity of HepG2-DOX. Fluorescence imaging conducted in mice following the administration of HepG2-DOX demonstrated prompt drug localization within the tumor region, highlighting exceptional in vivo targeting precision. To sum up, this study introduced a novel strategy utilizing cryo-shocked liver cancer cells as a drug delivery system, effectively treating liver tumor by enhancing tumor targeting specificity.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fangzhou Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hang Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
9
|
Chan SHY, Fitzpatrick RW, Layton D, Webley S, Salek S. Cancer Therapy-Induced Cardiotoxicity: Results of the Analysis of the UK DEFINE Database. Cancers (Basel) 2025; 17:311. [PMID: 39858093 PMCID: PMC11763784 DOI: 10.3390/cancers17020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The accelerated development of novel cancer therapies necessitates a thorough understanding of the associated cardiotoxicity profiles, due to their significant implications for the long-term health and quality of life of cancer survivors. OBJECTIVES The aim of this study was to determine the association between cardiotoxicity and non-small cell lung cancer (NSCLC) treatments using a hospital medicines usage database in England. METHODS An observational study based on a retrospective design using real-world data from the UK DEFINE database was performed. Monthly secondary data of 40 shortlisted drugs from April 2017 to July 2022 were extracted. RESULTS The cardiology drug that was associated with most oncology drugs was apixaban. Atezolizumab, bevacizumab, nintedanib, osimertinib, paclitaxel, pembrolizumab, gemcitabine and vincristine were all mostly associated with apixaban, which indicated association with atrial fibrillation. Afatinib, erlotinib and methotrexate were mostly associated with atenolol, hence suggesting the association with ischaemia or hypertension. Docetaxel and epirubicin were associated with verapamil, which indicated association with arrhythmia or hypertension. CONCLUSIONS From the correlation and regression analyses, it can be concluded that hypertension was the most associated cardiovascular disease with the 20 shortlisted oncology drugs. The findings of this study have provided a better understanding of the association between each NSCLC-Cardio drug pair.
Collapse
Affiliation(s)
- Stefanie Ho Yi Chan
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- Department of Pharmaceutics, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Raymond W. Fitzpatrick
- Centre for Medicines Optimisation, School of Allied Health Professionals and Pharmacy, Keele University, Newcastle ST5 5BG, UK;
| | - Deborah Layton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- PEPI Consultancy Limited, Southampton SO53 1GR, UK
| | - Sherael Webley
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Sam Salek
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
10
|
Zhang J, Huang C, Wang X, He J, Wang H, Liang C. Interleukin expression patterns and immune cell infiltration in prostate adenocarcinoma: Implications for recurrence risk. Int J Immunopathol Pharmacol 2025; 39:3946320251328476. [PMID: 40119682 PMCID: PMC11938863 DOI: 10.1177/03946320251328476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 03/24/2025] Open
Abstract
OBJECTIVE This study aims to comprehensively investigate the expression profiles of interleukins in prostate adenocarcinoma (PRAD) and their relationship with immune cell infiltration, tumor progression, and patient prognosis. By establishing an interleukin-related risk score, we seek to enhance the understanding of the tumor immune microenvironment and facilitate the development of tailored immunotherapeutic strategies for PRAD patients. INTRODUCTION Interleukins can nurture a tumor promoting environment and simultaneously regulate immune cell infiltration. However, the potential roles of interleukins in the prostate adenocarcinoma immune landscape remain abstruse. METHODS We comprehensively investigated the interleukin expression patterns and tumor immune landscape of prostate adenocarcinoma patients. And explored the interleukin expression patterns with immune infiltration landscape. The interleukin score was established using LASSO cox regression analysis. Multivariate Cox regression analysis was employed to assess the prognostic value of the interleukin score. RESULTS We identified two distinct interleukin clusters, characterized by different immune cell infiltration, tumor promoting signaling pathways activation and prognosis. The interleukin score was established to estimate the prognosis of individual prostate adenocarcinoma (PRAD) patient. Further analysis demonstrated that the interleukin score was an independent prognostic factor of PRAD. Finally, we investigated the predictive value of interleukin score in the programmed cell death protein (PD-1) blockade therapy of patients with prostate adenocarcinoma. At the same time, the differences in related genes among different prostate cell lines were also identified. CONCLUSIONS This study demonstrated the correlation between interleukin and tumor immune landscape in prostate adenocarcinoma. The comprehensive evaluation of interleukin expression patterns in individual prostate patients contribute to our understanding of the immune landscape and helps clinicians selecting proper immunotherapy strategies for prostate patients.
Collapse
Affiliation(s)
| | | | | | - Jun He
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| | - Hongzhi Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| | - Chaozhao Liang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, China
| |
Collapse
|
11
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
12
|
Li W, Lan J, Zhou C, Yang R, Wang J, He J, Xiao B, Ou Q, Fang Y, Fan W, Lin J, Pan Z, Peng J, Wu X. Chromosomal instability is associated with prognosis and efficacy of bevacizumab after resection of colorectal cancer liver metastasis. Ann Med 2024; 56:2396559. [PMID: 39247989 PMCID: PMC11385633 DOI: 10.1080/07853890.2024.2396559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Individualized treatment of colorectal cancer liver metastases (CRLM) remains challenging due to differences in the severity of metastatic disease and tumour biology. Exploring specific prognostic risk subgroups is urgently needed. The current study aimed to investigate the prognostic value of chromosomal instability (CIN) in patients with initially resectable CRLM and the predictive value of CIN for the efficacy of bevacizumab. METHODS Ninety-one consecutive patients with initially resectable CRLM who underwent curative liver resection from 2006 to 2018 at Sun Yat-sen University Cancer Center were selected for analysis. CIN was evaluated by automated digital imaging systems. Immunohistochemistry (IHC) was performed to detect interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA) and CD31 expression in paraffin-embedded specimens. Recurrence-free survival (RFS) and overall survival (OS) were analysed using the Kaplan-Meier method and Cox regression models. RESULTS Patients with high chromosomal instability (CIN-H) had a worse 3-year RFS rate (HR, 1.953; 95% CI, 1.001-3.810; p = 0.049) and a worse 3-year OS rate (HR, 2.449; 95% CI, 1.150-5.213; p = 0.016) than those with low chromosomal instability (CIN-L). CIN-H was identified as an independent prognostic factor for RFS (HR, 2.569; 95% CI, 1.078-6.121; p = 0.033) and OS (HR, 3.852; 95% CI, 1.173-12.645; p = 0.026) in the multivariate analysis. The protein levels of IL-6, VEGFA and CD31 were upregulated in patients in the CIN-H group compared to those in the CIN-L group in both primary tumour and liver metastases tissues. Among them, 22 patients with recurrent tumours were treated with first-line bevacizumab treatment and based on the clinical response assessment, disease control rates were adversely associated with chromosomal instability (p = 0.043). CONCLUSIONS Our study showed that high chromosomal instability is a negative prognostic factor for patients with initially resectable CRLM after liver resection. CIN may have positive correlations with angiogenesis through expression of IL-6-VEGFA axis and be used as a potential predictor of efficacy of bevacizumab.
Collapse
Affiliation(s)
- Weihao Li
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jin Lan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chi Zhou
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Yang
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiayu Wang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Jiahua He
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Binyi Xiao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qingjian Ou
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yujing Fang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaojun Wu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
14
|
Zia K, Nur-E-Alam M, Ahmad A, Ul-Haq Z. Taming the cytokine storm: small molecule inhibitors targeting IL-6/IL-6α receptor. Mol Divers 2024; 28:4151-4165. [PMID: 38366102 DOI: 10.1007/s11030-023-10805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Given the increasing effectiveness of immune-based therapies, management of their associated toxicities is of utmost importance. Cytokine release syndrome (CRS), characterized by elevated levels of cytokine, poses a significant challenge following the administration of antibodies and CAR-T cell therapies. CRS also contributes to multiple organ dysfunction in severe viral infections, notably in COVID-19. Given the pivotal role of IL-6 cytokine in initiating CRS, it has been considered a most potential therapeutic target to mitigate hyperactivated immune responses. While monoclonal antibodies of IL-6 show promise in mitigating cytokine storm, concerns about immunotoxicity persist, and small molecule IL-6 antagonists remain unavailable. The present study employed sophisticated computational techniques to identify potential hit compounds as IL-6 inhibitors, with the aim of inhibiting IL-6/IL-6R protein-protein interactions. Through ligand-based pharmacophore mapping and shape similarity in combination with docking-based screening, we identified nine hit compounds with diverse chemical scaffolds as potential binders of IL-6. Further, the MD simulation of 300 ns of five virtual hits in a complex with IL-6 was employed to study the dynamic behavior. To provide a more precise prediction, binding free energy was also estimated. The identified compounds persistently interacted with the residues lining the binding site of the IL-6 protein. These compounds displayed low binding energy during MMPBSA calculations, substantiating their strong association with IL-6. This study suggests promising scaffolds as potential inhibitors of IL-6/IL-6R protein-protein interactions and provides direction for lead optimization.
Collapse
Affiliation(s)
- Komal Zia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Aftab Ahmad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
15
|
Huang C, Luo MY, Wen NQ, Chen YM, Zhang LZ, Cao Y. The prognostic implications and oncogenic role of NSUN5 in clear cell renal cell carcinoma. Clin Exp Med 2024; 25:8. [PMID: 39549185 PMCID: PMC11568983 DOI: 10.1007/s10238-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), a predominant form of urinary malignancy, requires the identification of reliable biomarkers to enhance both prognostic outcomes and therapeutic developments specific to ccRCC. NSUN5, a member of the NOL1/NOP2/SUN domain (NSUN) family, plays a critical role in RNA stabilization and exhibits widespread expression across various tumor types. However, the exact function of NSUN5 in ccRCC remains insufficiently understood. Data were collated from cohorts of ccRCC patients who underwent nephrectomy, including those from the Cancer Genome Atlas (TCGA) and the Sun Yat-sen University Cancer Center (SYSUCC), to evaluate the clinical relevance of NSUN5. Integrative models based on NSUN5 expression were subsequently developed to predict the prognosis of ccRCC within the TCGA and SYSUCC cohorts. Furthermore, the impact of NSUN5 on RCC cells and its association with cellular senescence were corroborated through in vitro experimental analyses. NSUN5 exhibited elevated expression in both ccRCC patients and renal cancer cell lines, whose upregulation significantly correlated with age, tumor size, TNM stage, WHO/International Society of Urological Pathology (ISUP) grade, presence of necrosis, and a poor prognosis. An accessible nomogram, incorporating NSUN5 along with various clinicopathological parameters, was adept at predicting outcomes for ccRCC patients. Additionally, in vitro findings indicated that reduced expression of NSUN5 enhanced tumor cell senescence and simultaneously inhibiting cell proliferation and migration. These observations suggest that elevated NSUN5 expression is linked to poorer overall survival (OS) and progression-free survival (PFS), positioning NSUN5 as a viable diagnostic and prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Chan Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mu-Yang Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Neng-Qiao Wen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yu-Man Chen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People's Republic of China.
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Shakeri A, Najm L, Khan S, Tian L, Ladouceur L, Sidhu H, Al-Jabouri N, Hosseinidoust Z, Didar TF. Noncontact 3D Bioprinting of Proteinaceous Microarrays for Highly Sensitive Immunofluorescence Detection within Clinical Samples. ACS NANO 2024; 18:31506-31523. [PMID: 39468857 DOI: 10.1021/acsnano.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunofluorescence assays are extensively used for the detection of disease-associated biomarkers within patient samples for direct diagnosis. Unfortunately, these 2D microarrays suffer from low repeatability and fail to attain the low limits of detection (LODs) required to accurately discern disease progression for clinical monitoring. While three-dimensional microarrays with increased biorecognition molecule density stand to circumvent these limitations, their viscous component materials are not compatible with current microarray fabrication protocols. Herein, we introduce a platform for 3D microarray bioprinting, wherein a two-step printing approach enables the high-throughput fabrication of immunosorbent hydrogels. The hydrogels are composed entirely of cross-linked proteins decorated with clinically relevant capture antibodies. Compared to two-dimensional microarrays, these proteinaceous microarrays offer 3-fold increases in signal intensity. When tested with clinically relevant biomarkers, ultrasensitive single-plex and multiplex detection of interleukin-6 (LOD 0.3 pg/mL) and tumor necrosis factor receptor 1 (LOD 1 pg/mL) is observed. When challenged with clinical samples, these hydrogel microarrays consistently discern elevated levels of interleukin-6 in blood plasma derived from patients with systemic blood infections. Given their easy-to-implement, high-throughput fabrication, and ultrasensitive detection, these three-dimensional microarrays will enable better clinical monitoring of disease progression, yielding improved patient outcomes.
Collapse
Affiliation(s)
- Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
| | - Hareet Sidhu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, Ontario, Canada L8S 4L8
- Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
17
|
Solsona-Vilarrasa E, Vousden KH. Obesity, white adipose tissue and cancer. FEBS J 2024. [PMID: 39496581 DOI: 10.1111/febs.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
White adipose tissue (WAT) is crucial for whole-body energy homeostasis and plays an important role in metabolic and hormonal regulation. While healthy WAT undergoes controlled expansion and contraction to meet the body's requirements, dysfunctional WAT in conditions like obesity is characterized by excessive tissue expansion, alterations in lipid homeostasis, inflammation, hypoxia, and fibrosis. Obesity is strongly associated with an increased risk of numerous cancers, with obesity-induced WAT dysfunction influencing cancer development through various mechanisms involving both systemic and local interactions between adipose tissue and tumors. Unhealthy obese WAT affects circulating levels of free fatty acids and factors like leptin, adiponectin, and insulin, altering systemic lipid metabolism and inducing inflammation that supports tumor growth. Similar mechanisms are observed locally in an adipose-rich tumor microenvironment (TME), where WAT cells can also trigger extracellular matrix remodeling, thereby enhancing the TME's ability to promote tumor growth. Moreover, tumors reciprocally interact with WAT, creating a bidirectional communication that further enhances tumorigenesis. This review focuses on the complex interplay between obesity, WAT dysfunction, and primary tumor growth, highlighting potential targets for therapeutic intervention.
Collapse
|
18
|
Castro-Espin C, Cairat M, Navionis AS, Dahm CC, Antoniussen CS, Tjønneland A, Mellemkjær L, Mancini FR, Hajji-Louati M, Severi G, Le Cornet C, Kaaks R, Schulze MB, Masala G, Agnoli C, Sacerdote C, Crous-Bou M, Sánchez MJ, Amiano P, Chirlaque MD, Guevara M, Smith-Byrne K, Heath AK, Christakoudi S, Gunter MJ, Rinaldi S, Agudo A, Dossus L. Prognostic role of pre-diagnostic circulating inflammatory biomarkers in breast cancer survival: evidence from the EPIC cohort study. Br J Cancer 2024; 131:1496-1505. [PMID: 39342063 PMCID: PMC11519559 DOI: 10.1038/s41416-024-02858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Inflammation influences tumour progression and cancer prognosis, but its role preceding breast cancer (BC) and its prognostic implications remain inconclusive. METHODS We studied pre-diagnostic plasma inflammatory biomarkers in 1538 women with BC from the EPIC study. Cox proportional hazards models assessed their relationship with all-cause and BC-specific mortality, adjusting for tumour characteristics and lifestyle factors. RESULTS Over a 7-year follow-up after diagnosis, 229 women died, 163 from BC. Elevated IL-6 levels were associated with increased all-cause mortality risk (HR1-SD 1.25, 95% CI 1.07-1.47). Among postmenopausal, IL-6 was associated with higher all-cause (HR1-SD 1.41, 95% CI 1.18-1.69) and BC-specific mortality (HR1-SD 1.31, 95% CI 1.03-1.66), (PHeterogeneity (pre/postmenopausal) < 0.05 for both), while IL-10 and TNFα were associated with all-cause mortality only (HR1-SD 1.19, 95% CI 1.02-1.40 and HR1-SD 1.28, 95% CI 1.06-1.56). Among ER+PR+, IL-10 was associated with all-cause and BC-specific mortality (HR1-SD 1.35, 95% CI 1.10-1.65 and HR1-SD 1.42 95% CI 1.08-1.86), while TNF-α was associated with all-cause mortality in HER2- (HR1-SD 1.31, 95% CI 1.07-1.61). An inflammatory score predicted higher all-cause mortality, especially in postmenopausal women (HR1-SD 1.30, 95% CI 1.07-1.58). CONCLUSIONS Higher pre-diagnosis IL-6 levels suggest poorer long-term survival among BC survivors. In postmenopausal survivors, elevated IL-6, IL-10, and TNFα and inflammatory scores seem to predict all-cause mortality.
Collapse
Affiliation(s)
- Carlota Castro-Espin
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain.
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Manon Cairat
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Anne-Sophie Navionis
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Bartholins Alle 2, DK-8000, Aarhus C, Denmark
| | - Christian S Antoniussen
- Department of Public Health, Aarhus University, Bartholins Alle 2, DK-8000, Aarhus C, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mariem Hajji-Louati
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Charlotte Le Cornet
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Villa delle Rose Via Cosimo il Vecchio, 2- 50139, Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1 - 20133, Milan, Italy
| | - Carlotta Sacerdote
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100, Novara, Italy
- Unit of Epidemiology, Local Health Unit of Novara, viale Roma, 7, 128100, Novara, Italy
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Pilar Amiano
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- BioGipuzkoa (BioDonostia) Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - María-Dolores Chirlaque
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Marcela Guevara
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Instituto de Salud Pública y Laboral de Navarra, 31003, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | | | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, Spain
- Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
19
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Suzuki T, Matsuura K, Suzuki Y, Okumura F, Nagura Y, Sobue S, Matoya S, Miyaki T, Kimura Y, Kusakabe A, Narahara S, Tokunaga T, Nagaoka K, Murakami S, Inoue T, Kuroyanagi K, Kawamura H, Fujiwara K, Nojiri S, Kataoka H, Tanaka Y. Serum interleukin-6 levels at the start of the second course of atezolizumab plus bevacizumab therapy predict therapeutic efficacy in patients with advanced hepatocellular carcinoma: a multicenter analysis. J Gastroenterol Hepatol 2024; 39:2158-2168. [PMID: 38943340 DOI: 10.1111/jgh.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND AIM Serum interleukin-6 (IL-6) before the administration of atezolizumab plus bevacizumab (Atez + Bev) is a prognostic biomarker in patients with hepatocellular carcinoma (HCC) treated with Atez + Bev. We previously revealed that the neutrophil-to-lymphocyte ratio and serum chemokine levels during treatment with Atez + Bev were more useful as prognostic biomarkers. Therefore, we examined the predictive ability of serum IL-6 for the efficacy of Atez + Bev in patients with HCC. METHODS We enrolled 94 patients with HCC who received treatment with Atez + Bev. Initial responses were assessed through dynamic computed tomography or magnetic resonance imaging. The levels of IL-6 in serum were measured before and at the initiation of the second course of Atez + Bev. Subsequently, the relationship of IL-6 levels with treatment efficacy was evaluated. RESULTS IL-6 levels at the initiation of the second course tended to be higher in patients with progressive disease versus those with non-progressive disease in the initial evaluation (P = 0.054). Moreover, the cutoff value (7.4 pg/mL) was useful in stratifying patients by overall survival (i.e. low vs high: not reached vs 21.4 months, respectively, P = 0.001) and progression-free survival (low vs high: 11.9 vs 5.2 months, respectively, P = 0.004). This result was reproduced in patients with HCC who received Atez + Bev as first-line therapy. In the multivariate analyses, IL-6 levels at the initiation of the second course were independent predictive factors for progression-free and overall survival. CONCLUSIONS Serum levels of IL-6 at the initiation of the second course of treatment may predict Atez + Bev efficacy and prognosis in HCC.
Collapse
Affiliation(s)
- Takanori Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Suzuki
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Fumihiro Okumura
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Yoshihito Nagura
- Department of Gastroenterology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Satoshi Sobue
- Department of Gastroenterology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Sho Matoya
- Department of Gastroenterology, Toyokawa City Hospital, Toyokawa, Japan
| | - Tomokatsu Miyaki
- Department of Gastroenterology, Toyokawa City Hospital, Toyokawa, Japan
| | - Yoshihide Kimura
- Department of Gastroenterology, Nagoya City University West Medical Center, Nagoya, Japan
| | - Atsunori Kusakabe
- Department of Gastroenterology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Satoshi Narahara
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Tokunaga
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuko Murakami
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya, Japan
| | - Keita Kuroyanagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hayato Kawamura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
21
|
Chang SH, Chuang KC, Li ZY, Chang MC, Liu KT, Hsu CS, Huang SW, Chung MC, Wang SC, Chen YJ, Shieh JJ. The Protective Effects of Mcl-1 on Mitochondrial Damage and Oxidative Stress in Imiquimod-Induced Cancer Cell Death. Cancers (Basel) 2024; 16:3060. [PMID: 39272918 PMCID: PMC11394135 DOI: 10.3390/cancers16173060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria, vital organelles that generate ATP, determine cell fate. Dysfunctional and damaged mitochondria are fragmented and removed through mitophagy, a mitochondrial quality control mechanism. The FDA-approved drug IMQ, a synthetic agonist of Toll-like receptor 7, exhibits antitumor activity against various skin malignancies. We previously reported that IMQ promptly reduced the level of the antiapoptotic Mcl-1 protein and that Mcl-1 overexpression attenuated IMQ-triggered apoptosis in skin cancer cells. Furthermore, IMQ profoundly disrupted mitochondrial function, promoted mitochondrial fragmentation, induced mitophagy, and caused cell death by generating high levels of ROS. However, whether Mcl-1 protects mitochondria from IMQ treatment is still unknown. In this study, we demonstrated that Mcl-1 overexpression induced resistance to IMQ-induced apoptosis and reduced both IMQ-induced ROS generation and oxidative stress in cancer cells. Mcl-1 overexpression maintained mitochondrial function and integrity and prevented mitophagy in IMQ-treated cancer cells. Furthermore, IL-6 protected against IMQ-induced apoptosis by increasing Mcl-1 expression and attenuating IMQ-induced mitochondrial fragmentation. Mcl-1 overexpression ameliorates IMQ-induced ROS generation and mitochondrial fragmentation, thereby increasing mitochondrial stability and ultimately attenuating IMQ-induced cell death. Investigating the roles of Mcl-1 in mitochondria is a potential strategy for cancer therapy development.
Collapse
Affiliation(s)
- Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Zheng-Yi Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Mao-Chia Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Kuang-Ting Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan
| | - Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua 500209, Taiwan
| | - Shi-Wei Huang
- Center for Cell Therapy and Translation Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology/Oncology, Changhua Christian Children Hospital, Changhua 500209, Taiwan
| | - Yi-Ju Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
22
|
Wei Y, Wu R, Yang S, Cao Y, Li J, Ma H, Wu J, Duan J, Yang S. MiR-137 mediated high expression of TIGD1 promotes migration, invasion, and suppresses apoptosis of lung adenocarcinoma. Lung Cancer 2024; 195:107918. [PMID: 39173230 DOI: 10.1016/j.lungcan.2024.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Tigger transposable element-derived 1 (TIGD1) expression and its underlying functions and regulatory mechanisms in lung adenocarcinoma (LUAD) remain unknown. Therefore, we intended to explore the expression, potential functions, and regulatory mechanisms of TIGD1 in LUAD. MATERIALS AND METHODS TIGD1 expression in LUAD tissues was determined by immunohistochemistry analysis of a tissue microarray. Functional experiments were conducted to determine how TIGD1 affects LUAD tumorigenesis and metastasis. The molecular mechanisms by which TIGD1 induces LUAD progression were determined. RESULTS TIGD1 was upregulated in LUAD tissues and was related to lymph node metastases. TIGD1 knockdown suppressed LUAD cell proliferation, migration, and invasion, while promoted cell apoptosis. Furthermore, decreased metastatic nodules were observed in the TIGD1 knockdown mouse metastasis model. Moreover, microarray analysis was performed to determine the potential downstream genes of TIGD1 in LUAD. Hallmark pathway analysis revealed that the downstream genes of TIGD1 were involved in epithelial-mesenchymal transition (EMT). Western blotting confirmed that vimentin and TWIST was downregulated in TIGD1 knockdown cells, while E-cadherin was upregulated. Ingenuity pathway and hallmark pathway analyses revealed that TIGD1 regulated the interleukin-6 signaling pathway and related gene members. Western blotting, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay indicated that downregulation of TIGD1 decreased interleukin-6 and CXCL1 expression. TIGD1 expression was negatively correlated with immune infiltration in LUAD. The upstream microRNA of TIGD1 was predicted, and subsequent luciferase reporter gene experiments confirmed the interactions between miR-137 and TIGD1. The expression of miR-137 was significantly downregulated in LUAD tissues and miR-137 suppressed the proliferation, migration, and invasion of LUAD cells, partially through negatively regulating the expression of TIGD1. CONCLUSION Our findings suggest that TIGD1, which was regulated by miR-137, contributed to LUAD progression by promoting cell proliferation, migration, invasion, and EMT and suppressing cell apoptosis.
Collapse
Affiliation(s)
- Yiqun Wei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Yanfei Cao
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jing Li
- Department of Traditional Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Huihui Ma
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Junfang Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jinjin Duan
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| |
Collapse
|
23
|
van der Laan P, van der Graaf WTA, van den Broek D, van Boven H, Heeres BC, Schrage Y, Haas RL, Steeghs N, van Houdt WJ. Interleukin-6 in relation to early recurrence in primary, localized soft tissue sarcoma: An addition for existing risk classification systems? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108530. [PMID: 39083882 DOI: 10.1016/j.ejso.2024.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Several inflammatory markers have gained interest as prognostic factors for cancer. The aim of this study is to evaluate the inflammatory markers interleukin-6 (IL-6), C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as predictive markers for aggressive behavior and early recurrences in primary, localized soft tissue sarcoma (STS). METHODS 115 STS patients were retrospectively reviewed. IL-6 and CRP blood levels, NLR and PLR were obtained prior to treatment. Early recurrence was defined as disease relapse (local or distant) within the first year after surgery. Cox regression analysis was used to identify prognostic factors for early recurrence. RESULTS IL-6 elevation was associated with a higher tumor grade, increased size, tumor necrosis and a higher mitotic count. NLR elevation was associated with a higher tumor grade, PLR elevation with a larger tumor size. Early recurrences were found in 24 patients (21 %). Univariable analysis revealed that tumor grade (p = 0.029), tumor size (p = 0.030, >10 cm vs < 5 cm), tumor depth (p = 0.036), necrosis on imaging (p = 0.008), mitotic count (p = 0.045, ≥20 mitoses vs 0-9 mitoses), and IL-6 level (p = 0.044) were associated with early recurrence. The factors age at diagnosis, tumor location, necrosis at pathology, (neo)adjuvant radio- or chemotherapy, resection margin, CRP level, NLR and PLR were not related to early disease recurrence. CONCLUSIONS Increased inflammatory markers in STS are associated with an aggressive phenotype. STS patients with elevation of IL-6 may be at risk for early disease recurrence.
Collapse
Affiliation(s)
- P van der Laan
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - W T A van der Graaf
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - D van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H van Boven
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B C Heeres
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Y Schrage
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R L Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiotherapy, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Aliazis K, Yenyuwadee S, Phikulsod P, Boussiotis VA. Emergency myelopoiesis in solid cancers. Br J Haematol 2024; 205:798-811. [PMID: 39044285 DOI: 10.1111/bjh.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Cells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties. Here, we summarize the current literature regarding the effects of solid cancers on HSPCs function and discuss how these effects might shape antitumour responses via a mechanism initiated at a site distal from the tumour microenvironment.
Collapse
Affiliation(s)
- Konstantinos Aliazis
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sasitorn Yenyuwadee
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ployploen Phikulsod
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vassiliki A Boussiotis
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
26
|
Xiong Y, Xu X, Zhou X, Tong Y, Yu C. Anlotinib inhibits cervical cancer cell proliferation and invasion by suppressing cytokine secretion in activated cancer-associated fibroblasts. Front Oncol 2024; 14:1412660. [PMID: 39193386 PMCID: PMC11347301 DOI: 10.3389/fonc.2024.1412660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The aim of this study was to investigate whether anlotinib could exert an inhibitory effect on the proliferation and invasion of cervical cancer cells by inhibiting cytokines secreted by activated cancer-associated fibroblasts (CAFs). Methods CAFs were isolated from cervical cancer tissues and experimentally studied in vivo and in vitro. Molecular biology experimental methods were used to verify whether anlotinib could inhibit the pro-carcinogenic effects of CAFs derived from cervical cancer tissues. Results CAFs promote the proliferation and invasion of cervical cancer cells. Anlotinib inhibited the activation of CAFs and suppressed the promotion of cervical cancer cells by CAFs. Anlotinib inhibited the expression of multiple cytokines within CAFs and suppressed the release of interleukin (IL)-6 (IL-6) and IL-8. In vivo studies have shown that anlotinib diminished the growth of xenografted cervical cancer cells, and treatment in combination with docetaxel had an even more significant tumor growth inhibitory effect. Conclusion Anlotinib inhibits the pro-cancer effects of CAFs by suppressing the activation of CAFs and the secretion of pro-cancer cytokines. Our findings suggest that the combination of anlotinib and docetaxel may be a potential strategy for the treatment of refractory cervical cancer.
Collapse
Affiliation(s)
- Yaozu Xiong
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xilei Zhou
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Yusuo Tong
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Changhua Yu
- Department of Radiation Oncology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| |
Collapse
|
27
|
Ma Y, Gao F, Liu Y. CLK3 positively promoted colorectal cancer proliferation by activating IL-6/STAT3 signaling. Exp Cell Res 2024; 440:114132. [PMID: 38885806 DOI: 10.1016/j.yexcr.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) poses a significant challenge in oncology due to its increasing global incidence and treatment complexities. This study delved into the role of the dual-specificity protein kinase CLK3 in CRC progression and its potential as a therapeutic target. By analyzing clinical data and experimental models comprehensively, we found that CLK3 expression was markedly elevated in CRC tissues compared to normal colon tissue. High CLK3 levels were associated with advanced clinical stages and poor prognosis in CRC patients, suggesting its utility as a prognostic biomarker. Functional assays demonstrated that CLK3 overexpression boosted CRC cell proliferation and ATP production, whereas genetic CLK3 knockdown hindered cell proliferation in vitro and curbed tumor growth in vivo. Mechanistically, we uncovered that CLK3 positively influenced the IL-6/STAT3 signaling pathway by stabilizing JAK2 protein levels. These findings propose targeting CLK3 signaling as a promising therapeutic approach for CRC. Further investigation into CLK3's molecular mechanisms and clinical implications is necessary to fully harness its potential in managing CRC.
Collapse
Affiliation(s)
- Yulin Ma
- Department of Emergency, The First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fei Gao
- Department of Oncology, The First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yang Liu
- Department of ICU, The First Affiliated Hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
28
|
Yuce M, Albayrak E. Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model. Appl Biochem Biotechnol 2024; 196:4105-4124. [PMID: 37897623 DOI: 10.1007/s12010-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 °C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.
Collapse
Affiliation(s)
- Melek Yuce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey.
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
29
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
30
|
Gallant JP, Hintz HM, Gunaratne GS, Breneman MT, Recchia EE, West JL, Ott KL, Heninger E, Jackson AE, Luo NY, Rosenkrans ZT, Hernandez R, Zhao SG, Lang JM, Meimetis L, Kosoff D, LeBeau AM. Mechanistic Characterization of Cancer-associated Fibroblast Depletion via an Antibody-Drug Conjugate Targeting Fibroblast Activation Protein. CANCER RESEARCH COMMUNICATIONS 2024; 4:1481-1494. [PMID: 38747612 PMCID: PMC11168342 DOI: 10.1158/2767-9764.crc-24-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Cancer-associated fibroblasts (CAF) are a prominent cell type within the tumor microenvironment (TME) where they are known to promote cancer cell growth and survival, angiogenesis, drug resistance, and immunosuppression. The transmembrane prolyl protease fibroblast activation protein (FAP) is expressed on the surface of highly protumorigenic CAFs found in the stroma of nearly every cancer of epithelial origin. The widespread expression of FAP has made it an attractive therapeutic target based on the underlying hypothesis that eliminating protumorigenic CAFs will disrupt the cross-talk between components of TME resulting in cancer cell death and immune infiltration. This hypothesis, however, has never been directly proven. To eliminate FAP-expressing CAFs, we developed an antibody-drug conjugate using our anti-FAP antibody, huB12, coupled to a monomethyl auristatin E (huB12-MMAE) payload. After determining that huB12 was an effective targeting vector, we found that huB12-MMAE potently eliminated FAP-expressing cells as monocultures in vitro and significantly prolonged survival in vivo using a xenograft engineered to overexpress FAP. We investigated the effects of selectively eliminating CAFs using a layered, open microfluidic cell coculture platform, known as the Stacks. Analysis of mRNA and protein expression found that treatment with huB12-MMAE resulted in the increased secretion of the proinflammatory cytokines IL6 and IL8 by CAFs and an associated increase in expression of proinflammatory genes in cancer cells. We also detected increased secretion of CSF1, a cytokine involved in myeloid recruitment and differentiation. Our findings suggest that the mechanism of FAP-targeted therapies is through effects on the immune microenvironment and antitumor immune response. SIGNIFICANCE The direct elimination of FAP-expressing CAFs disrupts the cross-talk with cancer cells leading to a proinflammatory response and alterations in the immune microenvironment and antitumor immune response.
Collapse
Affiliation(s)
- Joseph P. Gallant
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hallie M. Hintz
- Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, Minnesota
| | - Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew T. Breneman
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emma E. Recchia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jayden L. West
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kendahl L. Ott
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Erika Heninger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abigail E. Jackson
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Natalie Y. Luo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary T. Rosenkrans
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
31
|
Ray CMP, Yang H, Spangler JB, Mac Gabhann F. Mechanistic computational modeling of monospecific and bispecific antibodies targeting interleukin-6/8 receptors. PLoS Comput Biol 2024; 20:e1012157. [PMID: 38848446 PMCID: PMC11189202 DOI: 10.1371/journal.pcbi.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.
Collapse
Affiliation(s)
- Christina M. P. Ray
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Medical-Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Nano Biotechnology (INBT), Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G. Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
33
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
35
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
36
|
Swaroop AK, Negi P, Kar A, Mariappan E, Natarajan J, Namboori P K K, Selvaraj J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs. Cytokine Growth Factor Rev 2024; 76:48-76. [PMID: 38220583 DOI: 10.1016/j.cytogfr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
This concise review navigates the intricate realm of Interleukin-6 (IL-6), an important member of the cytokine family. Beginning with an introduction to cytokines, this narrative review unfolds with the historical journey of IL-6, illuminating its evolving significance. A crucial section unravels the three distinct signaling modes employed by IL-6, providing a foundational understanding of its versatile interactions within cellular landscapes. Moving deeper, the review meticulously dissects IL-6's signaling mechanisms, unraveling the complexities of its pleiotropic effects in both physiological responses and pathological conditions. A significant focus is dedicated to the essential role IL-6 plays in inflammatory diseases, offering insights into its associations and implications for various health conditions. The review also takes a therapeutic turn by exploring the emergence of anti-IL-6 monoclonal inhibitors, marking a profound stride in treatment modalities. Diving into the molecular realm, the review explores small molecules as agents for IL-6 inhibition, providing a nuanced perspective on diverse intervention strategies. As the review embarks on the final chapters, it contemplates future aspects, offering glimpses into potential research trajectories and the evolving landscape of IL-6-related studies.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Preeya Negi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Ayushi Kar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India.
| |
Collapse
|
37
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Mosili P, Mkhize BC, Sibiya NH, Ngubane PS, Khathi A. Review of the direct and indirect effects of hyperglycemia on the HPA axis in T2DM and the co-occurrence of depression. BMJ Open Diabetes Res Care 2024; 12:e003218. [PMID: 38413177 PMCID: PMC10900365 DOI: 10.1136/bmjdrc-2022-003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 02/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which is further associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Several studies have shown that HPA axis hyperactivity is heightened in the chronic hyperglycemic state with severe hyperglycemic events more likely to result in a depressive disorder. The HPA axis is also regulated by the immune system. Upon stress, under homeostatic conditions, the immune system is activated via the sympatho-adrenal-medullary axis resulting in an immune response which secretes proinflammatory cytokines. These cytokines aid in the activation of the HPA axis during stress. However, in T2DM, where there is persistent hyperglycemia, the immune system is dysregulated resulting in the elevated concentrations of these cytokines. The HPA axis, already activated by the hyperglycemia, is further activated by the cytokines which all contribute to a diagnosis of depression in patients with T2DM. However, the onset of T2DM is often preceded by pre-diabetes, a reversible state of moderate hyperglycemia and insulin resistance. Complications often seen in T2DM have been reported to begin in the pre-diabetic state. While the current management strategies have been shown to ameliorate the moderate hyperglycemic state and decrease the risk of developing T2DM, research is necessary for clinical studies to profile these direct effects of moderate hyperglycemia in pre-diabetes on the HPA axis and the indirect effects moderate hyperglycemia may have on the HPA axis by investigating the components of the immune system that play a role in regulating this pathway.
Collapse
Affiliation(s)
- Palesa Mosili
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Bongeka Cassandra Mkhize
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | | | - Phikelelani Sethu Ngubane
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Andile Khathi
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
39
|
Adachi T, Goda H, Shinriki S, Tokuzen N, Kuribayashi N, Hino S, Nakashiro KI, Uchida D. Prognostic Significance of Serum Interleukin-6 Levels in Oral Squamous Cell Carcinoma. Cureus 2024; 16:e54439. [PMID: 38510850 PMCID: PMC10951754 DOI: 10.7759/cureus.54439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction The prognosis of oral squamous cell carcinoma (OSCC) is often poor despite standard treatments. Additionally, no useful prognostic markers are available. Therefore, we aimed to investigate the relationship between serum Interleukin-6 (IL-6) levels and prognosis and explore its local and systemic effects in patients with OSCC. Methods Ninety-five new cases of OSCC were included, and the prognosis was compared between high and low serum IL-6 groups. The localization of IL-6 in OSCC tissues was examined. Furthermore, a comprehensive gene expression analysis was performed in OSCC tissues and compared between the two groups. Results A significant difference in overall survival and disease-free survival was observed. Furthermore, a substantial expression of IL-6 was localized in the stroma. Comprehensive gene expression analysis of tumor localization showed increased expression of genes related to oxidoreductase and lipid metabolism in the primary tissues of the group with high serum IL-6 levels. Regarding the correlation between blood tests and serum IL-6 levels, a strong positive correlation was observed between inflammatory responses and nutritional factors. Conclusion These results suggest that serum IL-6 may be a prognostic factor for metabolic abnormalities in patients with OSCC and that aggressive nutritional interventions may contribute to prognosis.
Collapse
Affiliation(s)
- Tomoko Adachi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Hiroyuki Goda
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, JPN
| | - Norihiko Tokuzen
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Satoshi Hino
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, JPN
| |
Collapse
|
40
|
Han Y, Li B, Cheng J, Zhou D, Yuan X, Zhao W, Zhang D, Zhang J. Construction of methylation driver gene-related prognostic signature and development of a new prognostic stratification strategy in neuroblastoma. Genes Genomics 2024; 46:171-185. [PMID: 38180715 DOI: 10.1007/s13258-023-01483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Aberrant DNA methylation is one of the major epigenetic alterations in neuroblastoma. OBJECTIVE Exploring the prognostic significance of methylation driver genes in neuroblastoma could help to comprehensively assess patient prognosis. METHODS After identifying methylation driver genes (MDGs), we used the LASSO algorithm and stepwise Cox regression to construct methylation driver gene-related risk score (MDGRS), and evaluated its predictive performance by multiple methods. By combining risk grouping and MDGRS grouping, we developed a new prognostic stratification strategy and explored the intrinsic differences between the different groupings. RESULTS We identified 44 stably expressed MDGs in neuroblastoma. MDGRS showed superior predictive performance in both internal and external cohorts and was strongly correlated with immune-related scores. MDGRS can be an independent prognostic factor for neuroblastoma, and we constructed the nomogram to facilitate clinical application. Based on the new prognostic stratification strategy, we divided the patients into three groups and found significant differences in overall prognosis, clinical characteristics, and immune infiltration between the different subgroups. CONCLUSION MDGRS was an accurate and promising tool to facilitate comprehensive pre-treatment assessment. And the new prognostic stratification strategy could be helpful for clinical decision making.
Collapse
Affiliation(s)
- Yahui Han
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Biyun Li
- Department of Pediatric Hematology Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Cheng
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Diming Zhou
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiafei Yuan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhao
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
41
|
Takemoto Y, Tanabe K, Chikuie E, Saeki Y, Ota H, Karakuchi N, Kohata A, Ohdan H. Preoperative High C-Reactive Protein to Albumin Ratio Predicts Short- and Long-Term Postoperative Outcomes in Elderly Gastric Cancer Patients. Cancers (Basel) 2024; 16:616. [PMID: 38339365 PMCID: PMC10854578 DOI: 10.3390/cancers16030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Individualized preoperative assessment of the general condition of elderly patients with gastric cancer is necessary for appropriate surgical treatment planning. This study investigated the efficacy of preoperative markers that could be easily calculated from preoperative peripheral blood to predict the short- and long-term postoperative outcomes of gastrectomy. In total, 571 patients who underwent R0 surgical resection for gastric cancer were enrolled. In the elderly patient group (≥65 years old), univariate analyses revealed that the incidence of postoperative complications was associated with poor performance status (p = 0.012), more comorbidities (p = 0.020), high C-reactive protein to albumin ratio (CAR, p = 0.003), total gastrectomy (p = 0.003), open approach (p = 0.034), blood transfusion (p = 0.002), and advanced cancer (p = 0.003). Multivariate analysis showed that a high CAR was associated with a high incidence of postoperative complications (p = 0.046). High CAR was also associated with poor OS (p = 0.015) and RFS (p = 0.035). However, these trends were not observed among younger patients (<65 years old). Preoperative CAR may play a significant role in predicting short- and long-term surgical outcomes, particularly in elderly patients with gastric cancer.
Collapse
Affiliation(s)
- Yuki Takemoto
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Kazuaki Tanabe
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Emi Chikuie
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Yoshihiro Saeki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Hiroshi Ota
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Nozomi Karakuchi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Akihiro Kohata
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.T.)
| |
Collapse
|
42
|
Stanilov N, Velikova T, Stanilova S. Navigating the Cytokine Seas: Targeting Cytokine Signaling Pathways in Cancer Therapy. Int J Mol Sci 2024; 25:1009. [PMID: 38256080 PMCID: PMC10815616 DOI: 10.3390/ijms25021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, necessitating continuous efforts to develop effective therapeutic strategies. Over the years, advancements in our understanding of the complex interplay between the immune system and cancer cells have led to the development of immunotherapies that revolutionize cancer treatment. Cytokines, as key regulators of the immune response, are involved in both the initiation and progression of cancer by affecting inflammation and manipulating multiple intracellular signaling pathways that regulate cell growth, proliferation, and migration. Cytokines, as key regulators of inflammation, have emerged as promising candidates for cancer therapy. This review article aims to provide an overview of the significance of cytokines in cancer development and therapy by highlighting the importance of targeting cytokine signaling pathways as a potential therapeutic approach.
Collapse
Affiliation(s)
- Noyko Stanilov
- Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Spaska Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
43
|
Wu G, Qi G, Liu Y, Gan J, Xie C, Wu Q, Cui W, Wang C, Wang Z. ER-α36 is involved in calycosin inhibition of IL-6 production in macrophages. J Cell Mol Med 2024; 28:e18037. [PMID: 37974543 PMCID: PMC10805506 DOI: 10.1111/jcmm.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The tumour microenvironment (TME) is crucial for tumour development and progression. Tumour-associated macrophages (TAMs) in the TME can promote tumour progression and metastasis by releasing cytokines, such as IL-6. Calycosin, a phytoestrogen that is one of the active compounds in Radix Astragali, has been shown to inhibit tumour growth and metastasis. However, the underlying mechanism by which calycosin inhibits tumour growth remains unclear. Thus, this study aimed to investigate the effect of calycosin on IL-6 production in peripheral blood mononuclear cell (PBMC)- and THP-1-derived macrophages and explore its potential mechanisms using co-immunoprecipitation, western blotting, immunofluorescence, chromatin immunoprecipitation and luciferase assays. We found that calycosin treatment substantially upregulated the expression of ER-α36, a variant of the ER, and reduced IL-6 production in macrophages. Mechanistically, ER-α36 physically interacted with NF-κBp65 and retained p65 in the cytoplasm to attenuate NF-κB function as an IL-6 transcriptional inducer. In conclusion, our result indicated that calycosin inhibited IL-6 production by enhancing ER-α36 expression and its interaction with p65, which attenuated NF-κB function as an IL-6 inducer. Therefore, calycosin can be developed as an effective agent for cancer therapy by targeting TAMs.
Collapse
Affiliation(s)
- Guoli Wu
- Xiangya HospitalCentral South UniversityChangshaChina
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chichu Xie
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Qi Wu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Wei Cui
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chunhua Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Zhaoyi Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| |
Collapse
|
44
|
Ray CMP, Yang H, Spangler JB, Mac Gabhann F. Mechanistic computational modeling of monospecific and bispecific antibodies targeting interleukin-6/8 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.570445. [PMID: 38187701 PMCID: PMC10769311 DOI: 10.1101/2023.12.18.570445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.
Collapse
Affiliation(s)
- Christina MP Ray
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Medical-Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Nano Biotechnology (INBT), Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
46
|
Tosado-Rodríguez E, Mendez LB, Espino AM, Dorta-Estremera S, Aquino EE, Romaguera J, Godoy-Vitorino F. Inflammatory cytokines and a diverse cervicovaginal microbiota associate with cervical dysplasia in a cohort of Hispanics living in Puerto Rico. PLoS One 2023; 18:e0284673. [PMID: 38064478 PMCID: PMC10707696 DOI: 10.1371/journal.pone.0284673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cervical cancer (CC) is women's fourth most common cancer worldwide. A worrying increase in CC rates in Hispanics suggests that besides Human papillomavirus infections, there may be other cofactors included in the epithelial microenvironment that could play a role in promoting the disease. We hypothesized that the cervical microbiome and the epithelial microenvironment favoring inflammation is conducive to disease progression in a group of Hispanics attending gynecology clinics in Puerto Rico. Few studies have focused on the joint microbiota and cytokine profile response in Hispanics outside the US, especially regarding the development of precancerous lesions. We aimed to investigate the relationship between the cervicovaginal microbiome and inflammation in Hispanic women living in PR while considering cervical dysplasia and HPV genotype risk. Cervical samples collected from 91 participants coming to gynecology clinics in San Juan, underwent 16S rRNA genes (V4 region) profiling, and cytokines were measured using Luminex MAGPIX technology. Cytokines were grouped as inflammatory (IL-1β, TNFα, IFNγ, IL-6), anti-inflammatory (IL- 4, IL-10, TGFβ1), and traffic-associated (IL-8, MIP1a, MCP1, IP10). They were related to microbes via an inflammation scoring index based on the quartile and tercile distribution of the cytokine's concentration. We found significant differences in the diversity and composition of the microbiota according to HPV type according to carcinogenic risk, cervical disease, and cytokine abundance. Community State Types (CSTs) represents a profile of microbial communities observed within the vaginal microbiome ecological niche, and Lactobacillus-depleted CST IV had ~ 90% dominance in participants with high-grade squamous intraepithelial lesions and high-risk HPV. The increasing concentration of pro-inflammatory cytokines was associated with a decrease in L. crispatus. In contrast, dysbiosis-associated bacteria such as Gardnerella, Prevotella, Atopobium concomitantly increased with pro-inflammatory cytokines. Our study highlights that the cervical microbiota of Hispanics living in Puerto Rico is composed mostly of diverse CST profiles with decreased Lactobacillus and is associated with a higher pro-inflammatory environment. The joint host-microbe interaction analyses via cytokine and microbiota profiling have very good translational potential.
Collapse
Affiliation(s)
- Eduardo Tosado-Rodríguez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
| | - Loyda B. Mendez
- University Ana G. Méndez, Carolina Campus, Carolina, Puerto Rico, United States of America
| | - Ana M. Espino
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
| | - Stephanie Dorta-Estremera
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
- Cancer Biology, Comprehensive Cancer Center University of Puerto Rico, Carolina, Puerto Rico, United States of America
| | - Edna E. Aquino
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
| | - Josefina Romaguera
- Department of OBGYN, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, Carolina, Puerto Rico, United States of America
| |
Collapse
|
47
|
Karalis JD, Ju MR, Yoon LY, Castro-Dubon EC, Reznik SI, Hammer ST, Porembka MR, Wang SC. Serum Interleukin 6 Level is Associated With Overall Survival and Treatment Response in Gastric and Gastroesophageal Junction Cancer. Ann Surg 2023; 278:918-924. [PMID: 37450705 PMCID: PMC11838613 DOI: 10.1097/sla.0000000000005997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To identify novel prognostic and predictive biomarkers for gastric and gastroesophageal junction (G+GEJ) adenocarcinoma. BACKGROUND There are few biomarkers to guide treatment for G+GEJ. The systemic inflammatory response of G+GEJ patients is associated with survival. In this study, we evaluated the relationship of circulating serum cytokine levels with overall survival (OS) and pathologic tumor regression grade (TRG) in G+GEJ patients. PATIENTS AND METHODS We queried the UT Southwestern gastric cancer biobank to identify consecutive patients diagnosed with G+GEJ from 2016 to 2022; these patients had pretreatment serum collected at diagnosis. For patients who received neoadjuvant therapy, an additional serum sample was collected immediately before surgical resection. An unbiased screen of 17 cytokines was measured in a discovery cohort. A multivariable Cox proportional hazards model was used to assess the association of cytokine concentration with OS. Findings were validated in additional patients. In patients who received neoadjuvant therapy, we assessed whether the change in interleukin 6 (IL-6) after therapy was associated with TRG. RESULTS Sixty-seven patients were included in the discovery cohort, and IL-6 was the only pretreatment cytokine associated with OS; this was validated in 134 other patients (hazard ratio: 1.012 per 1 pg/mL increase, 95% CI: 1.006-1.019, P = 0.0002). Patients in the top tercile of IL-6 level had worse median OS (10.6 months) compared with patients in the intermediate (17.4 months) and bottom tercile (35.8 months, P < 0.0001). Among patients who underwent neoadjuvant therapy (n = 50), an unchanged or decrease in IL-6 level from pretreatment to posttreatment, had a sensitivity and specificity of 80% for predicting complete or near-complete pathologic tumor regression (TRG 0-1). CONCLUSIONS Pretreatment serum level of IL-6 is a promising prognostic biomarker for G+GEJ patients. Comparing pre and post-neoadjuvant IL-6 levels may predict pathologic response to neoadjuvant therapy.
Collapse
Affiliation(s)
- John D. Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michelle R. Ju
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lynn Y. Yoon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Scott I. Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Suntrea T.G. Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Matthew R. Porembka
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sam C. Wang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
48
|
Tian T, Xie X, Yi W, Zhou Y, Xu Y, Wang Z, Zhang J, Lin M, Zhang R, Lv Z, Li X, Lv L, Xu Y. FBXO38 mediates FGL1 ubiquitination and degradation to enhance cancer immunity and suppress inflammation. Cell Rep 2023; 42:113362. [PMID: 37938970 DOI: 10.1016/j.celrep.2023.113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Upregulation of FGL1 helps tumors escape from immune surveillance, and therapeutic antibodies targeting FGL1 have potential as another immune checkpoint inhibitor. However, the underlying mechanism of high FGL1 protein level in cancers is not well defined. Here, we report that FBXO38 interacts with and ubiquitylates FGL1 to negatively regulate its stability and to mediate cancer immune response. Depletion of FBXO38 markedly augments FGL1 abundance, not only suppressing CD8+ T cell infiltration and enhancing immune evasion of tumor but also increasing inflammation in mice. Importantly, we observe a negative correlation of FBXO38 with FGL1 and IL-6 in non-small cell lung cancer specimens. FGL1 and IL-6 levels positively correlate with TNM (tumor, lymph node, metastasis) stages, while FBXO38 and the infiltrating CD8+ T cells negatively correlate with TNM stages. Our study identifies a mechanism regulating FGL1 stability and a target to enhance the immunotherapy and suggests that the combination of anti-FGL1 and anti-IL-6 is a potential therapeutic strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Tongguan Tian
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wanwan Yi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuefan Zhou
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Yixin Xu
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Zhenxiang Wang
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Junjing Zhang
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Mingen Lin
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruonan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xinxing Li
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yanping Xu
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200065, China.
| |
Collapse
|
49
|
Liang P, Zhang Y, Jiang T, Jin T, Chen Z, Li Z, Chen Z, He F, Hu J, Yang K. Association between IL-6 and prognosis of gastric cancer: a retrospective study. Therap Adv Gastroenterol 2023; 16:17562848231211543. [PMID: 38026103 PMCID: PMC10657517 DOI: 10.1177/17562848231211543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gastric cancer (GC) is one of the common and fatal cancers. Even though the Tumor, Node, Metastasis (TNM) staging system is the most classical staging system recognized worldwide, it has been controversial because there are various factors affecting the prognosis of GC patients. Objectives The study aims to evaluate the relationship between interleukin-6 (IL-6) and several clinical indicators and construct a prognostic model to better predict the prognosis of GC. Design A retrospective study. Methods Data of 249 patients with GC diagnosed in GC center of West China Hospital were collected. Clinicopathological characteristics were analyzed to determine whether there were differences between IL-6 HIGH group and IL-6 LOW group. Besides, the association between the two groups and tumor marker levels was clarified. The K-M curves of 3- and 5-year were plotted with log-rank test. Afterward, we conducted univariate and multivariate analysis and a predicting nomogram. Significantly, C-index, and calibration were used to evaluate the value of nomogram in predicting prognosis. Results The overall survival of GC in the IL-6 HIGH and IL-6 LOW groups were 47.8 months (95% CI: 42.1-53.4) and 57.9 months (95% CI: 54.1-61.7), respectively, with significant differences (p = 0.0046). Average tumor size of GC (p = 0.000) and nerve invasion (p = 0.018) were statistically significant between two groups. Multivariate analysis revealed that the factors affecting prognosis were IL-6 (<5.51 and ⩾5.51 pg/ml) (Hazard Ratio(HR): 1.665, 95% CI: 1.026-2.703, p = 0.039), N stage (HR: 1.336, 95% CI: 1.106-1.615, p = 0.003), and T stage (HR: 1.268, 95% CI: 0.998-1.611, p = 0.052), which were included in the nomogram with a C-index of 0.71. The current data calculated TNM staging C-index was 0.68, and the p-value for the difference between the two models was 0.08. Internal validation revealed that the predicted overall survival did not differ significantly from the actual observed patient survival. Conclusion The differential expression of IL-6 has a tendency to differentiate the prognosis of GC patients. IL-6, N stage, and T stage are independent prognostic factors, and the new survival prognostic model consisting of the above three indicators is better than the classical TNM staging system. Trial registration This study is a retrospective study, which does not require clinical registration.
Collapse
Affiliation(s)
- Panping Liang
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuexin Zhang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianyuchen Jiang
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Jin
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengwen Chen
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zedong Li
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Chen
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengjun He
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiankun Hu
- Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Yang
- Gastric Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, Sichuan 610041, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Bershawy R, Hafez HS, El-Sakka SS, Hammad A, Soliman MH. The anticancer and anti-inflammatory activity screening of pyridazinone-based analogs against human epidermoid skin cancer with detailed mechanistic analyses. J Biomol Struct Dyn 2023; 42:12885-12899. [PMID: 37916672 DOI: 10.1080/07391102.2023.2273985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023]
Abstract
3(2H)-Pyridazinone derivatives based on 4-biphenyl, naphtha-2-yl, pyridine, or piperidine moiety were synthesized and characterized using I-R and 1HNMR spectra. The activity and cytotoxicity of some synthesized compounds on the skin epidermoid cancer cell proliferation and progression were investigated. The pyridazine isomer with pyridine revealed a significant decrease in the level of nitric oxide p < 0.01 than the activity of caffeine phenecyl ester. The activity of the three active isomers recorded significant activity for their total antioxidant content that triggers their ability for the scavenging the oxygen free radicals significantly p < 0.01. Moreover, revealing the pharmaceutical activity of the isomers as anti-inflammatory agents, IL-6, IL10, and IL12 have been decreased by variable significant values. Additionally, the active isomers revealed variable actions on the skin cancer cell to induce apoptosis using annexin V-FITC/PI. Pyridine was the highest isomer to induce late apoptosis and necrosis for the skin cancer cells against the use of cisplatin. Importantly, Molecular modeling experiments including docking and dynamic simulations were done for the most active 3 analogs to explore the ligand binding and stability leading to exploring the structure-activity relationship with biological target PARP1 which showed a good binding propensity to pyridazine binding site which supports the in vitro data. In conclusion, the pyridazine moieties with piperdine, naphthayl, and pyridine have pharmacological activities against skin cancer epidermoid by triggering action in inhibition of the proliferation and progression with an up-regulated apoptotic mechanism that evades the emergence of cisplatin resistance among different cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rana Bershawy
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Hani S Hafez
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Sahar S El-Sakka
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Ali Hammad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed H Soliman
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|