1
|
Dzhivhuho GA, Jackson PEH, Honeycutt ES, Mesquita FDS, Huang J, Hammarskjold ML, Rekosh D. Rev-RRE activity modulates HIV-1 replication and latency reactivation: Implications for viral persistence and cure strategies. PLoS Pathog 2025; 21:e1012885. [PMID: 40372991 PMCID: PMC12080775 DOI: 10.1371/journal.ppat.1012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/11/2025] [Indexed: 05/17/2025] Open
Abstract
The HIV-1 Rev-RRE regulatory axis plays a crucial role in viral replication by facilitating the nucleo-cytoplasmic export and expression of viral mRNAs with retained introns. In this study, we investigated the impact of variation in Rev-RRE functional activity on HIV-1 replication kinetics and reactivation from latency. Using a novel HIV-1 viral vector with an interchangeable Rev cassette, we engineered viruses with two diverse Rev functional activities and demonstrated that higher Rev-RRE activity confers greater viral replication capacity while maintaining a constant level of Nef expression. In addition, a low Rev activity virus rapidly acquired a compensatory mutation in the RRE that significantly increased Rev-RRE activity and replication. In a latency model, proviruses with differing Rev-RRE activity levels varied in the efficiency of viral reactivation, affecting both initial viral release and subsequent replication kinetics. These results demonstrate that activity differences in the Rev-RRE axis among different viral isolates have important implications for HIV replication dynamics and persistence. Importantly, our findings indicate that bolstering Rev/RRE activity could be explored as part of latency reversal strategies in HIV cure efforts.
Collapse
Affiliation(s)
- Godfrey A. Dzhivhuho
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Patrick E. H. Jackson
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ethan S. Honeycutt
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Flavio da Silva Mesquita
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jing Huang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marie-Louise Hammarskjold
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Rekosh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
2
|
Dzhivhuho GA, Jackson PEH, Honeycutt ES, da Silva Mesquita F, Huang J, Hammarskjold ML, Rekosh D. Rev-RRE activity modulates HIV-1 replication and latency reactivation: Implications for viral persistence and cure strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631466. [PMID: 39829859 PMCID: PMC11741256 DOI: 10.1101/2025.01.06.631466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The HIV-1 Rev-RRE regulatory axis plays a crucial role in viral replication by facilitating the nucleo-cytoplasmic export and expression of viral mRNAs with retained introns. In this study, we investigated the impact of variation in Rev-RRE functional activity on HIV-1 replication kinetics and reactivation from latency. Using a novel HIV-1 clone with an interchangeable Rev cassette, we engineered viruses with different Rev functional activities and demonstrated that higher Rev-RRE activity confers greater viral replication capacity while maintaining a constant level of Nef expression. In addition, a low Rev activity virus rapidly acquired a compensatory mutation in the RRE that significantly increased Rev-RRE activity and replication. In a latency model, proviruses with differing Rev-RRE activity levels varied in the efficiency of viral reactivation, affecting both initial viral release and subsequent replication kinetics. These results demonstrate that activity differences in the Rev-RRE axis among different viral isolates have important implications for HIV replication dynamics and persistence. Importantly, our findings indicate that bolstering Rev/RRE activity could be explored as part of latency reversal strategies in HIV cure efforts.
Collapse
Affiliation(s)
- Godfrey A Dzhivhuho
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick E H Jackson
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ethan S Honeycutt
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Current address: Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Flavio da Silva Mesquita
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Current address: Virology Program, Harvard University Medical School, Boston, Massachusetts. USA
| | - Jing Huang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - David Rekosh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Joseph RE, Bozic J, Werling KL, Krizek RS, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West Nile virus (WNV) in a strain-specific manner in Culex tarsalis mosquitoes. J Gen Virol 2024; 105:002017. [PMID: 39189607 PMCID: PMC11348563 DOI: 10.1099/jgv.0.002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Rachel S. Krizek
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
MIMURA Y, HIONO T, HUYNH LT, OGINO S, KOBAYASHI M, ISODA N, SAKODA Y. Establishment of a superinfection exclusion method for pestivirus titration using a recombinant reporter pestiviruses. J Vet Med Sci 2024; 86:389-395. [PMID: 38355118 PMCID: PMC11061576 DOI: 10.1292/jvms.24-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Pestiviruses are classified into two biotypes based on their cytopathogenicity. As the majority of pestivirus field isolates are noncytopathogenic, their titration requires alternative methods rather than direct observation of cytopathogenic effects, such as immunostaining using specific antibodies or interference with cytopathogenic strains. However, these methods require microscopic observation to assess virus growth, which is time- and labor-intensive, especially when handling several samples. In this study, we developed a novel luciferase-based pestivirus titration method using the superinfection exclusion phenomenon with recombinant reporter pestiviruses that possessed an 11-amino-acid subunit derived from NanoLuc luciferase (HiBiT). In this method, swine kidney cells were inoculated with classical swine fever virus (CSFV) and superinfected with the reporter CSFV vGPE-/HiBiT 5 days postinoculation. Virus titer was determined based on virus growth measured in luminescence using the culture fluid 3 days after superinfection; the resultant virus titer was comparable to that obtained by immunoperoxidase staining. Furthermore, this method has proven to be applicable for the titration of border disease virus (BDV) by superinfection with both the homologous reporter BDV and heterologous reporter CSFV, suggesting that this novel virus titration method is a simple technique for automated virus detection based on the luciferase system.
Collapse
Affiliation(s)
- Yume MIMURA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro HIONO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Loc Tan HUYNH
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can
Tho University, Can Tho, Vietnam
| | - Saho OGINO
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Maya KOBAYASHI
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Norikazu ISODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| | - Yoshihiro SAKODA
- Laboratory of Microbiology, Department of Disease Control,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido,
Japan
- International Collaboration Unit, International Institute
for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Hokkaido University Institute for Vaccine Research and
Development (HU-IVReD), Hokkaido University, Hokkaido, Japan
| |
Collapse
|
5
|
Hattler JB, Irons DL, Luo J, Kim W. Downregulation of CCR5 on brain perivascular macrophages in simian immunodeficiency virus-infected rhesus macaques. Brain Behav 2023; 13:e3126. [PMID: 37366075 PMCID: PMC10454275 DOI: 10.1002/brb3.3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND C-C chemokine receptor 5 (CCR5) is a major coreceptor for Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) cell entry; however, its role in brain pathogenesis is largely understudied. Thus, we sought to examine cell type-specific protein expression of CCR5 during SIV infection of the brain. METHODS We examined occipital cortical tissue from uninfected rhesus macaques and SIV-infected animals with or without encephalitis using immunohistochemistry and immunofluorescence microscopy to determine the number and distribution of CCR5-positive cells. RESULTS An increase in the number of CCR5+ cells in the brain of SIV-infected animals with encephalitis was accounted for by increased CD3+CD8+ cells expressing CCR5, but not by increased CCR5+ microglia or perivascular macrophages (PVMs), and a concurrent decrease in the percentage of CCR5+ PVMs was observed. Levels of CCR5 and SIV Gag p28 protein expression were examined on a per-cell basis, and a significant, negative relationship was established indicating decreased CCR5 expression in productively infected cells. While investigating the endocytosis-mediated CCR5 internalization as a mechanism for CCR5 downregulation, we found that phospho-ERK1/2, an indicator of clathrin-mediated endocytosis, was colocalized with infected PVMs and that macrophages from infected animals showed significantly increased expression of clathrin heavy chain 1. CONCLUSIONS These findings show a shift in CCR5-positive cell types in the brain during SIV pathogenesis with an increase in the number of CCR5+ CD8 T cells, and downregulated CCR5 expression on infected PVMs, likely through ERK1/2-driven, clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Julian B. Hattler
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Derek L. Irons
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Jiangtao Luo
- Department of Health Systems and Population Health SciencesTilman J. Fertitta Family College of Medicine, University of HoustonHoustonTexasUSA
| | - Woong‐Ki Kim
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Division of MicrobiologyTulane National Primate Research CenterCovingtonLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
6
|
Joseph RE, Bozic J, Werling KL, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in Culex tarsalis mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542294. [PMID: 37292979 PMCID: PMC10245884 DOI: 10.1101/2023.05.25.542294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the United States. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and Culex tarsalis mosquitoes. The titers of both WNV strains-WN02-1956 and NY99-were suppressed by EILV in C6/36 cells as early as 48-72 h post superinfection at both multiplicity of infections (MOIs) tested in our study. The titers of WN02-1956 at both MOIs remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titers. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In Cx. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titers at 3 days post superinfection, but this effect disappeared at 7 days post superinfection. In contrast, WN02-1956 infection titers were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in Cx. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Sherlock Biosciences, Watertown, Massachusetts, United States
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Oxford University, Oxford, United Kingdom
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Davidson A, Hume PJ, Greene NP, Koronakis V. Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP. iScience 2023; 26:106643. [PMID: 37168569 PMCID: PMC10164908 DOI: 10.1016/j.isci.2023.106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.
Collapse
Affiliation(s)
| | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, UK
- Corresponding author
| |
Collapse
|
8
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
9
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
10
|
Abstract
In nature, viral coinfection is as widespread as viral infection alone. Viral coinfections often cause altered viral pathogenicity, disrupted host defense, and mixed-up clinical symptoms, all of which result in more difficult diagnosis and treatment of a disease. There are three major virus-virus interactions in coinfection cases: viral interference, viral synergy, and viral noninterference. We analyzed virus-virus interactions in both aspects of viruses and hosts and elucidated their possible mechanisms. Finally, we summarized the protocol of viral coinfection studies and key points in the process of virus separation and purification.
Collapse
|
11
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Abstract
Superinfection exclusion (SIE) is a phenomenon in which a primary viral infection interferes with secondary viral infections within that same cell. Although SIE has been observed across many viruses, it has remained relatively understudied. A recently characterized glycoprotein D (gD)-independent SIE of alphaherpesviruses presents a novel mechanism of coinfection restriction for herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). In this study, we evaluated the role of multiplicity of infection (MOI), receptor expression, and trafficking of virions to gain greater insight into potential mechanisms of alphaherpesvirus SIE. We observed that high-MOI secondary viral infections were able to overcome SIE in a manner that was independent of receptor availability. We next assessed virion localization during SIE through live microscopy of fluorescently labeled virions and capsid assemblies. Analysis of these fluorescent assemblies identified changes in the distribution of capsids during SIE. These results indicate that SIE during PRV infection inhibits viral entry or fusion while HSV-1 SIE inhibits infection through a postentry mechanism. Although the timing and phenotype of SIE are similar between alphaherpesviruses, the related viruses implement different mechanisms to restrict coinfection. IMPORTANCE Most viruses utilize a form of superinfection exclusion to conserve resources and control population dynamics. gD-dependent superinfection exclusion in alphaherpesviruses is well documented. However, the undercharacterized gD-independent SIE provides new insight into how alphaherpesviruses limit sequential infection. The observations described here demonstrate that gD-independent SIE differs between PRV and HSV-1. Comparing these differences provides new insights into the underlying mechanisms of SIE implemented by two related viruses.
Collapse
|
13
|
Gusachenko ON, Woodford L, Balbirnie-Cumming K, Evans DJ. First come, first served: superinfection exclusion in Deformed wing virus is dependent upon sequence identity and not the order of virus acquisition. THE ISME JOURNAL 2021; 15:3704-3713. [PMID: 34193965 PMCID: PMC8630095 DOI: 10.1038/s41396-021-01043-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Deformed wing virus (DWV) is the most important globally distributed pathogen of honey bees and, when vectored by the ectoparasite Varroa destructor, is associated with high levels of colony losses. Divergent DWV types may differ in their pathogenicity and are reported to exhibit superinfection exclusion upon sequential infections, an inevitability in a Varroa-infested colony. We used a reverse genetic approach to investigate competition and interactions between genetically distinct or related virus strains, analysing viral load over time, tissue distribution with reporter gene-expressing viruses and recombination between virus variants. Transient competition occurred irrespective of the order of virus acquisition, indicating no directionality or dominance. Over longer periods, the ability to compete with a pre-existing infection correlated with the genetic divergence of the inoculae. Genetic recombination was observed throughout the DWV genome with recombinants accounting for ~2% of the population as determined by deep sequencing. We propose that superinfection exclusion, if it occurs at all, is a consequence of a cross-reactive RNAi response to the viruses involved, explaining the lack of dominance of one virus type over another. A better understanding of the consequences of dual- and superinfection will inform development of cross-protective honey bee vaccines and landscape-scale DWV transmission and evolution.
Collapse
Affiliation(s)
- Olesya N. Gusachenko
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Luke Woodford
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - Katharin Balbirnie-Cumming
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| | - David J. Evans
- grid.11914.3c0000 0001 0721 1626Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, UK
| |
Collapse
|
14
|
Beaudoin CA, Hamaia SW, Huang CLH, Blundell TL, Jackson AP. Can the SARS-CoV-2 Spike Protein Bind Integrins Independent of the RGD Sequence? Front Cell Infect Microbiol 2021; 11:765300. [PMID: 34869067 PMCID: PMC8637727 DOI: 10.3389/fcimb.2021.765300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
The RGD motif in the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) spike protein has been predicted to bind RGD-recognizing integrins. Recent studies have shown that the spike protein does, indeed, interact with αVβ3 and α5β1 integrins, both of which bind to RGD-containing ligands. However, computational studies have suggested that binding between the spike RGD motif and integrins is not favourable, even when unfolding occurs after conformational changes induced by binding to the canonical host entry receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, non-RGD-binding integrins, such as αx, have been suggested to interact with the SARS-CoV-2 spike protein. Other viral pathogens, such as rotaviruses, have been recorded to bind integrins in an RGD-independent manner to initiate host cell entry. Thus, in order to consider the potential for the SARS-CoV-2 spike protein to bind integrins independent of the RGD sequence, we investigate several factors related to the involvement of integrins in SARS-CoV-2 infection. First, we review changes in integrin expression during SARS-CoV-2 infection to identify which integrins might be of interest. Then, all known non-RGD integrin-binding motifs are collected and mapped to the spike protein receptor-binding domain and analyzed for their 3D availability. Several integrin-binding motifs are shown to exhibit high sequence similarity with solvent accessible regions of the spike receptor-binding domain. Comparisons of these motifs with other betacoronavirus spike proteins, such as SARS-CoV and RaTG13, reveal that some have recently evolved while others are more conserved throughout phylogenetically similar betacoronaviruses. Interestingly, all of the potential integrin-binding motifs, including the RGD sequence, are conserved in one of the known pangolin coronavirus strains. Of note, the most recently recorded mutations in the spike protein receptor-binding domain were found outside of the putative integrin-binding sequences, although several mutations formed inside and close to one motif, in particular, may potentially enhance binding. These data suggest that the SARS-CoV-2 spike protein may interact with integrins independent of the RGD sequence and may help further explain how SARS-CoV-2 and other viruses can evolve to bind to integrins.
Collapse
Affiliation(s)
- Christopher A Beaudoin
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, United Kingdom
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Segura J, He B, Ireland J, Zou Z, Shen T, Roth G, Sun PD. The Role of L-Selectin in HIV Infection. Front Microbiol 2021; 12:725741. [PMID: 34659153 PMCID: PMC8511817 DOI: 10.3389/fmicb.2021.725741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
HIV envelope glycoprotein is the most heavily glycosylated viral protein complex identified with over 20 glycans on its surface. This glycan canopy is thought to primarily shield the virus from host immune recognition as glycans are poor immunogens in general, however rare HIV neutralizing antibodies nevertheless potently recognize the glycan epitopes. While CD4 and chemokine receptors have been known as viral entry receptor and coreceptor, for many years the role of viral glycans in HIV entry was controversial. Recently, we showed that HIV envelope glycan binds to L-selectin in solution and on CD4 T lymphocytes. The viral glycan and L-selectin interaction functions to facilitate the viral adhesion and entry. Upon entry, infected CD4 T lymphocytes are stimulated to progressively shed L-selectin and suppressing this lectin receptor shedding greatly reduced HIV viral release and caused aggregation of diminutive virus-like particles within experimental infections and from infected primary T lymphocytes derived from both viremic and aviremic individuals. As shedding of L-selectin is mediated by ADAM metalloproteinases downstream of host-cell stimulation, these findings showed a novel mechanism for HIV viral release and offer a potential new class of anti-HIV compounds.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Biao He
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Thomas Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
16
|
Biggs KRH, Bailes CL, Scott L, Wichman HA, Schwartz EJ. Ecological Approach to Understanding Superinfection Inhibition in Bacteriophage. Viruses 2021; 13:1389. [PMID: 34372595 PMCID: PMC8310164 DOI: 10.3390/v13071389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
In microbial communities, viruses compete with each other for host cells to infect. As a consequence of competition for hosts, viruses evolve inhibitory mechanisms to suppress their competitors. One such mechanism is superinfection exclusion, in which a preexisting viral infection prevents a secondary infection. The bacteriophage ΦX174 exhibits a potential superinfection inhibition mechanism (in which secondary infections are either blocked or resisted) known as the reduction effect. In this auto-inhibitory phenomenon, a plasmid containing a fragment of the ΦX174 genome confers resistance to infection among cells that were once permissive to ΦX174. Taking advantage of this plasmid system, we examine the inhibitory properties of the ΦX174 reduction effect on a range of wild ΦX174-like phages. We then assess how closely the reduction effect in the plasmid system mimics natural superinfection inhibition by carrying out phage-phage competitions in continuous culture, and we evaluate whether the overall competitive advantage can be predicted by phage fitness or by a combination of fitness and reduction effect inhibition. Our results show that viral fitness often correctly predicts the winner. However, a phage's reduction sequence also provides an advantage to the phage in some cases, modulating phage-phage competition and allowing for persistence where competitive exclusion was expected. These findings provide strong evidence for more complex dynamics than were previously thought, in which the reduction effect may inhibit fast-growing viruses, thereby helping to facilitate coexistence.
Collapse
Affiliation(s)
- Karin R. H. Biggs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - Clayton L. Bailes
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
| | - Holly A. Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (L.S.); (H.A.W.)
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Elissa J. Schwartz
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (K.R.H.B.); (C.L.B.)
- Department of Mathematics & Statistics, Washington State University, P.O. Box 643113, Pullman, WA 99164, USA
| |
Collapse
|
17
|
Bastolla U. Mathematical Model of SARS-Cov-2 Propagation Versus ACE2 Fits COVID-19 Lethality Across Age and Sex and Predicts That of SARS. Front Mol Biosci 2021; 8:706122. [PMID: 34322518 PMCID: PMC8311794 DOI: 10.3389/fmolb.2021.706122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The fatality rate of Covid-19 escalates with age and is larger in men than women. I show that these variations correlate strongly with the level of the viral receptor protein ACE2 in rat lungs, which is consistent with the still limited data on human ACE2. Surprisingly, lower receptor levels correlate with higher fatality. I propose two possible explanations of this negative correlation: First, a previous mathematical model predicts that the velocity of viral progression in the organism as a function of the receptor level has a maximum and declines for abundant receptor. Secondly, degradation of ACE2 by the virus may cause the runaway inflammatory response that characterizes severe CoViD-19. I present here a mathematical model that predicts the lethality as a function of ACE2 protein level based on the two above hypothesis. The model fits Covid-19 fatality rate across age and sex in three countries with high accuracy (r 2 > 0.9 ) under the hypothesis that the speed of viral progression in the infected organism is a decreasing function of the ACE2 level. Moreover, rescaling the fitted parameters by the ratio of the binding rates of the spike proteins of SARS-CoV and SARS-CoV-2 allows predicting the fatality rate of SARS-CoV across age and sex, thus linking the molecular and epidemiological levels.
Collapse
Affiliation(s)
- Ugo Bastolla
- Centro de Biologia Molecular “Severo Ochoa”, CSIC-UAM Cantoblanco, Madrid, Spain
| |
Collapse
|
18
|
Abstract
Macrophages are one of the major targets of Human Immunodeficiency virus 1 (HIV-1) and play crucial roles in viral dissemination and persistence during AIDS progression. Here, we reveal the dynamic podosome-mediated entry of HIV-1 into macrophages. Inhibition of podosomes prevented HIV-1 entry into macrophages, while stimulation of podosome formation promoted viral entry. Single-virus tracking revealed the temporal and spatial mechanism of the dynamic podosome-mediated viral entry process. The core and ring structures of podosomes played complex roles in viral entry. The HIV coreceptor, CCR5, was recruited to form specific clusters at the podosome ring, where it participated in viral entry. The podosome facilitated HIV-1 entry with a rotation mode triggered by dynamic actin. Our discovery of this novel HIV-1 entry route into macrophages, mediated by podosomes critical for cell migration and tissue infiltration, provides a new view of HIV infection and pathogenesis, which may assist in the development of new antiviral strategies.IMPORTANCEMacrophages are motile leukocytes and play critical roles in HIV-1 infection and AIDS progression. Podosomes, as small dynamic adhesion microdomains driven by the dynamic actin cytoskeleton, are mainly involved in cell migration of macrophages. Herein, we found that HIV-1 uses dynamic podosomes to facilitate its entry into macrophages. Single-virus imaging coupled with drug assays revealed the mechanism underlying the podosome-mediated route of HIV-1 entry into macrophages, including the dynamic relationship between the viral particles and the podosome core and ring structures, the CCR5 coreceptor. The dynamic podosome-mediated entry of HIV-1 into macrophages will be very significant for HIV-1 pathogenesis, especially for viral dissemination via macrophage migration and tissue infiltration. Thus, we report a novel HIV-1 entry route into macrophages mediated by podosomes, which extends our understanding of HIV infection and pathogenesis.
Collapse
|
19
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
20
|
Banerjee T, Bhattacharya BB, Mukherjee G. A nearest-neighbor based nonparametric test for viral remodeling in heterogeneous single-cell proteomic data. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Impaired ability of Nef to counteract SERINC5 is associated with reduced plasma viremia in HIV-infected individuals. Sci Rep 2020; 10:19416. [PMID: 33173092 PMCID: PMC7656250 DOI: 10.1038/s41598-020-76375-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Nef plays an essential role in enhancing virion infectivity by antagonizing the host restriction molecule SERINC5. Because Nef is highly polymorphic due to the selective forces of host cellular immunity, we hypothesized that certain immune-escape polymorphisms may impair Nef’s ability to antagonize SERINC5 and thereby influence viral fitness in vivo. To test this hypothesis, we identified 58 Nef polymorphisms that were overrepresented in HIV-infected patients in Japan sharing the same HLA genotypes. The number of immune-associated Nef polymorphisms was inversely correlated with the plasma viral load. By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load. A series of biochemical experiments showed that the double mutations Y120F/Q125H, but not either single mutation, impaired Nef’s ability to antagonize SERINC5 and was associated with decreasing virion infectivity and viral replication in primary lymphocytes. In contrast, other Nef functions such as CD4, CCR5, CXCR4 and HLA class I downregulation and CD74 upregulation remained unchanged. Taken together, our results suggest that the differential ability of Nef to counteract SERINC5 by naturally occurring immune-associated mutations was associated with the plasma viral load in vivo.
Collapse
|
22
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
23
|
Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 2020; 81:537-540. [PMID: 32129518 PMCID: PMC7228359 DOI: 10.1002/ddr.21656] [Citation(s) in RCA: 608] [Impact Index Per Article: 121.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
At the time of writing this commentary (February 2020), the coronavirus COVID-19 epidemic has already resulted in more fatalities compared with the SARS and MERS coronavirus epidemics combined. Therapeutics that may assist to contain its rapid spread and reduce its high mortality rates are urgently needed. Developing vaccines against the SARS-CoV-2 virus may take many months. Moreover, vaccines based on viral-encoded peptides may not be effective against future coronavirus epidemics, as virus mutations could make them futile. Indeed, new Influenza virus strains emerge every year, requiring new immunizations. A tentative suggestion based on existing therapeutics, which would likely be resistant to new coronavirus mutations, is to use available angiotensin receptor 1 (AT1R) blockers, such as losartan, as therapeutics for reducing the aggressiveness and mortality from SARS-CoV-2 virus infections. This idea is based on observations that the angiotensin-converting enzyme 2 (ACE2) very likely serves as the binding site for SARS-CoV-2, the strain implicated in the current COVID-19 epidemic, similarly to strain SARS-CoV implicated in the 2002-2003 SARS epidemic. This commentary elaborates on the idea of considering AT1R blockers as tentative treatment for SARS-CoV-2 infections, and proposes a research direction based on datamining of clinical patient records for assessing its feasibility.
Collapse
Affiliation(s)
- David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
24
|
Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J 2020; 34:6017-6026. [PMID: 32306452 PMCID: PMC7264803 DOI: 10.1096/fj.202000782] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
Human angiotensin-converting enzyme 2 (ACE2) facilitates cellular entry of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 as their common receptor. During infection, ACE2-expressing tissues become direct targets, resulting in serious pathological changes and progressive multiple organ failure or even death in severe cases. However, as an essential component of renin-angiotensin system (RAS), ACE2 confers protective effects in physiological circumstance, including maintaining cardiovascular homeostasis, fluid, and electrolyte balance. The absence of protective role of ACE2 leads to dysregulated RAS and thus acute changes under multiple pathological scenarios including SARS. This potentially shared mechanism may also be the molecular explanation for pathogenesis driven by SARS-CoV-2. We reasonably speculate several potential directions of clinical management including host-directed therapies aiming to restore dysregulated RAS caused by ACE2 deficiency. Enriched knowledge of ACE2 learned from SARS and COVID-19 outbreaks can provide, despite their inherent tragedy, informative clues for emerging pandemic preparedness.
Collapse
Affiliation(s)
- Tiantian Yan
- Military Burn Centerthe 990th Hospital of People's Liberation ArmyZhumadianChina
| | - Rong Xiao
- Military Burn Centerthe 990th Hospital of People's Liberation ArmyZhumadianChina
| | - Guoan Lin
- Military Burn Centerthe 990th Hospital of People's Liberation ArmyZhumadianChina
| |
Collapse
|
25
|
Lubow J, Virgilio MC, Merlino M, Collins DR, Mashiba M, Peterson BG, Lukic Z, Painter MM, Gomez-Rivera F, Terry V, Zimmerman G, Collins KL. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. eLife 2020; 9:e51035. [PMID: 32119644 PMCID: PMC7051176 DOI: 10.7554/elife.51035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR's normal role, which is to trap and destroy mannose-expressing pathogens.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Maria C Virgilio
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Madeline Merlino
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - David R Collins
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Michael Mashiba
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Brian G Peterson
- Department of Biological ChemistryUniversity of MichiganAnn ArborUnited States
| | - Zana Lukic
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Mark M Painter
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | | | - Valeri Terry
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Gretchen Zimmerman
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| |
Collapse
|
26
|
Łyszkiewicz M, Ziętara N, Frey L, Pannicke U, Stern M, Liu Y, Fan Y, Puchałka J, Hollizeck S, Somekh I, Rohlfs M, Yilmaz T, Ünal E, Karakukcu M, Patiroğlu T, Kellerer C, Karasu E, Sykora KW, Lev A, Simon A, Somech R, Roesler J, Hoenig M, Keppler OT, Schwarz K, Klein C. Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun 2020; 11:1031. [PMID: 32098969 PMCID: PMC7042371 DOI: 10.1038/s41467-020-14809-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for internalisation of molecules across cell membranes. The FCH domain only 1 (FCHO1) protein is key molecule involved in the early stages of CME formation. The consequences of mutations in FCHO1 in humans were unknown. We identify ten unrelated patients with variable T and B cell lymphopenia, who are homozygous for six distinct mutations in FCHO1. We demonstrate that these mutations either lead to mislocalisation of the protein or prevent its interaction with binding partners. Live-cell imaging of cells expressing mutant variants of FCHO1 provide evidence of impaired formation of clathrin coated pits (CCP). Patient T cells are unresponsive to T cell receptor (TCR) triggering. Internalisation of the TCR receptor is severely perturbed in FCHO1-deficient Jurkat T cells but can be rescued by expression of wild-type FCHO1. Thus, we discovered a previously unrecognised critical role of FCHO1 and CME during T-cell development and function in humans.
Collapse
Affiliation(s)
- Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany.
| | - Natalia Ziętara
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
- Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany
| | - Laura Frey
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Sebastian Hollizeck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Ido Somekh
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Tuğba Yilmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Türkan Patiroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
- Department of Pediatrics, Division of Pediatric Immunology, Erciyes University, Kayseri, Turkey
| | | | - Ebru Karasu
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Karl-Walter Sykora
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Amos Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Joachim Roesler
- Department of Pediatrics, Carl Gustav Carus Technical University Dresden, Dresden, Germany
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Centre Ulm, Ulm, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
27
|
Sudderuddin H, Kinloch NN, Jin SW, Miller RL, Jones BR, Brumme CJ, Joy JB, Brockman MA, Brumme ZL. Longitudinal within-host evolution of HIV Nef-mediated CD4, HLA and SERINC5 downregulation activity: a case study. Retrovirology 2020; 17:3. [PMID: 31918727 PMCID: PMC6953280 DOI: 10.1186/s12977-019-0510-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/26/2019] [Indexed: 11/29/2022] Open
Abstract
The HIV accessory protein Nef downregulates the viral entry receptor CD4, the Human Leukocyte Antigen (HLA)-A and -B molecules, the Serine incorporator 5 (SERINC5) protein and other molecules from the infected cell surface, thereby promoting viral infectivity, replication and immune evasion. The nef locus also represents one of the most genetically variable regions in the HIV genome, and nef sequences undergo substantial evolution within a single individual over the course of infection. Few studies however have simultaneously characterized the impact of within-host nef sequence evolution on Nef protein function over prolonged timescales. Here, we isolated 50 unique Nef clones by single-genome amplification over an 11-year period from the plasma of an individual who was largely naïve to antiretroviral treatment during this time. Together, these clones harbored nonsynonymous substitutions at 13% of nef’s codons. We assessed their ability to downregulate cell-surface CD4, HLA and SERINC5 and observed that all three Nef functions declined modestly over time, where the reductions in CD4 and HLA downregulation (an average of 0.6% and 2.0% per year, respectively) achieved statistical significance. The results from this case study support all three Nef activities as being important to maintain throughout untreated HIV infection, but nevertheless suggest that, despite nef’s mutational plasticity, within-host viral evolution can compromise Nef function, albeit modestly, over prolonged periods.
Collapse
Affiliation(s)
- Hanwei Sudderuddin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Rachel L Miller
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | - Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey B Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Multifunctional Roles of the N-Terminal Region of HIV-1 SF2Nef Are Mediated by Three Independent Protein Interaction Sites. J Virol 2019; 94:JVI.01398-19. [PMID: 31597760 DOI: 10.1128/jvi.01398-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Nef promotes virus spread and disease progression by altering host cell transport and signaling processes through interaction with multiple host cell proteins. The N-terminal region in HIV-1 Nef encompassing residues 12 to 39 has been implicated in many Nef activities, including disruption of CD4 T lymphocyte polarization and homing to lymph nodes, antagonism of SERINC5 restriction to virion infectivity, downregulation of cell surface CD4 and major histocompatibility complex class I (MHC-I), release of Nef-containing extracellular vesicles, and phosphorylation of Nef by recruitment of the Nef-associated kinase complex (NAKC). How this region mediates these pleiotropic functions is unclear. Characterization of a panel of alanine mutants spanning the N-terminal region to identify specific functional determinants revealed this region to be dispensable for effects of Nef from HIV-1 strain SF2 (HIV-1SF2Nef) on T cell actin organization and chemotaxis, retargeting of the host cell kinase Lck to the trans-Golgi network, and incorporation of Nef into extracellular vesicles. MHC-I downmodulation was specific to residue M20, and inhibition of T cell polarization by Nef required the integrity of the entire region. In contrast, downmodulation of cell surface CD4 and SERINC5 antagonism were mediated by a specific motif encompassing residues 32 to 39 that was also essential for efficient HIV replication in primary CD4 T lymphocytes. Finally, Nef phosphorylation via association with the NAKC was mediated by two EP repeats within residues 24 to 29 but was dispensable for other functions. These results identify the N-terminal region as a multifunctional interaction module for at least three different host cell ligands that mediate independent functions of HIV-1SF2Nef to facilitate immune evasion and virus spread.IMPORTANCE HIV-1 Nef critically determines virus spread and disease progression in infected individuals by acting as a protein interaction adaptor via incompletely defined mechanisms and ligands. Residues 12 to 39 near the N terminus of Nef have been described as an interaction platform for the Nef-associated kinase complex (NAKC) and were recently identified as essential determinants for a broad range of Nef activities. Here, we report a systematic mapping of this amino acid stretch that revealed the presence of three independent interaction motifs with specific ligands and activities. While downmodulation of cell surface MHC-I depends on M20, two EP repeats are the minimal binding site for the NAKC, and residues 32 to 39 mediate antagonism of the host cell restriction factor SERINC5 as well as downmodulation of cell surface CD4. These results reveal that the N-terminal region of HIV-1SF2Nef is a versatile and multifunctional protein interaction module that exerts essential functions of the pathogenicity factor via independent mechanisms.
Collapse
|
29
|
Ding S, Gasser R, Gendron-Lepage G, Medjahed H, Tolbert WD, Sodroski J, Pazgier M, Finzi A. CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. J Virol 2019; 93:e01403-19. [PMID: 31484748 PMCID: PMC6819941 DOI: 10.1128/jvi.01403-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
CD4 downregulation on infected cells is a highly conserved function of primate lentiviruses. It has been shown to positively impact viral replication by a variety of mechanisms, including enhanced viral release and infectivity, decrease of cell reinfection, and protection from antibody-dependent cellular cytotoxicity (ADCC), which is often mediated by antibodies that require CD4 to change envelope (Env) conformation. Here, we report that incorporation of CD4 into HIV-1 viral particles affects Env conformation resulting in the exposure of occluded epitopes recognized by CD4-induced antibodies. This translates into enhanced neutralization susceptibility by these otherwise nonneutralizing antibodies but is prevented by the HIV-1 Nef accessory protein. Altogether, these findings suggest that another functional consequence of Nef-mediated CD4 downregulation is the protection of viral particles from neutralization by commonly elicited CD4-induced antibodies.IMPORTANCE It has been well established that Env-CD4 complexes expose epitopes recognized by commonly elicited CD4-induced antibodies at the surface of HIV-1-infected cells, rendering them vulnerable to ADCC responses. Here, we show that CD4 incorporation has a profound impact on Env conformation at the surface of viral particles. Incorporated CD4 exposes CD4-induced epitopes on Env, rendering HIV-1 susceptible to neutralization by otherwise nonneutralizing antibodies.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Marrero-Hernández S, Márquez-Arce D, Cabrera-Rodríguez R, Estévez-Herrera J, Pérez-Yanes S, Barroso-González J, Madrid R, Machado JD, Blanco J, Valenzuela-Fernández A. HIV-1 Nef Targets HDAC6 to Assure Viral Production and Virus Infection. Front Microbiol 2019; 10:2437. [PMID: 31736889 PMCID: PMC6831784 DOI: 10.3389/fmicb.2019.02437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
HIV Nef is a central auxiliary protein in HIV infection and pathogenesis. Our results indicate that HDAC6 promotes the aggresome/autophagic degradation of the viral polyprotein Pr55Gag to inhibit HIV-1 production. Nef counteracts this antiviral activity of HDAC6 by inducing its degradation and subsequently stabilizing Pr55Gag and Vif viral proteins. Nef appears to neutralize HDAC6 by an acidic/endosomal-lysosomal processing and does not need the downregulation function, since data obtained with the non-associated cell-surface Nef-G2A mutant - the cytoplasmic location of HDAC6 - together with studies with chemical inhibitors and other Nef mutants, point to this direction. Hence, the polyproline rich region P72xxP75 (69-77 aa) and the di-Leucin motif in the Nef-ExxxLL160-165 sequence of Nef, appear to be responsible for HDAC6 clearance and, therefore, required for this novel Nef proviral function. Nef and Nef-G2A co-immunoprecipitate with HDAC6, whereas the Nef-PPAA mutant showed a reduced interaction with the anti-HIV-1 enzyme. Thus, the P72xxP75 motif appears to be responsible, directly or indirectly, for the interaction of Nef with HDAC6. Remarkably, by neutralizing HDAC6, Nef assures Pr55Gag location and aggregation at plasma membrane, as observed by TIRFM, promotes viral egress, and enhances the infectivity of viral particles. Consequently, our results suggest that HDAC6 acts as an anti-HIV-1 restriction factor, limiting viral production and infection by targeting Pr55Gag and Vif. This function is counteracted by functional HIV-1 Nef, in order to assure viral production and infection capacities. The interplay between HIV-1 Nef and cellular HDAC6 may determine viral infection and pathogenesis, representing both molecules as key targets to battling HIV.
Collapse
Affiliation(s)
- Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ricardo Madrid
- BioAssays SL, Campus de Cantoblanco, Madrid, Spain.,Departmento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Universitat de Vic-Central de Catalunya, UVIC-UCC, Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
31
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Liu B, Zhang X, Zhang W, Wu L, Jing S, Liu W, Xia B, Zou F, Lu L, Ma X, He D, Hu Q, Zhang Y, Deng K, Cai W, Tang X, Peng T, Zhang H, Li L. Lovastatin Inhibits HIV-1-Induced MHC-I Downregulation by Targeting Nef-AP-1 Complex Formation: A New Strategy to Boost Immune Eradication of HIV-1 Infected Cells. Front Immunol 2019; 10:2151. [PMID: 31572371 PMCID: PMC6749138 DOI: 10.3389/fimmu.2019.02151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Current combined antiretroviral therapy (cART) mainly targets 3 of the 15 HIV proteins leaving many potential viral vulnerabilities unexploited. To purge the HIV-1 latent reservoir, various strategies including “shock and kill” have been developed. A key question is how to restore impaired immune surveillance. HIV-1 protein Nef has long been known to mediate the downregulation of cell-surface MHC-I and assist HIV-1 to evade the immune system. Through high throughput screening of Food and Drug Administration (FDA) approved drugs, we identified lovastatin, a statin drug, to significantly antagonize Nef to downregulate MHC-I, CD4, and SERINC5, and inhibit the intrinsic infectivity of virions. In addition, lovastatin boosted autologous CTLs to eradicate the infected cells and effectively inhibit the subsequent viral rebound in CD4+ T-lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Furthermore, we found that lovastatin inhibits Nef-induced MHC-I downregulation by directly binding with Nef and disrupting the Nef–AP-1 complex. These results demonstrate that lovastatin is a promising agent for counteracting Nef-mediated downregulation of MHC-I, CD4, and SERINC5. Lovastatin could potentially be used in the clinic to enhance anti-HIV-1 immune surveillance.
Collapse
Affiliation(s)
- Bingfeng Liu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xu Zhang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Wanying Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Shuliang Jing
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Baijin Xia
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Fan Zou
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Department of Molecular Therapy, Qianyang Biomedical Research Institute, Guangzhou, China.,Guangzhou Women and Children Hospital, Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Lijuan Lu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiancai Ma
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Dalian He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Qifei Hu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Department of Molecular Therapy, Qianyang Biomedical Research Institute, Guangzhou, China
| | - Yiwen Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Department of Molecular Therapy, Qianyang Biomedical Research Institute, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Mailler E, Waheed AA, Park SY, Gershlick DC, Freed EO, Bonifacino JS. The autophagy protein ATG9A promotes HIV-1 infectivity. Retrovirology 2019; 16:18. [PMID: 31269971 PMCID: PMC6607583 DOI: 10.1186/s12977-019-0480-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Nef is a multifunctional accessory protein encoded by HIV-1, HIV-2 and SIV that plays critical roles in viral pathogenesis, contributing to viral replication, assembly, budding, infectivity and immune evasion, through engagement of various host cell pathways. RESULTS To gain a better understanding of the role of host proteins in the functions of Nef, we carried out tandem affinity purification-mass spectrometry analysis, and identified over 70 HIV-1 Nef-interacting proteins, including the autophagy-related 9A (ATG9A) protein. ATG9A is a transmembrane component of the machinery for autophagy, a catabolic process in which cytoplasmic components are degraded in lysosomal compartments. Pulldown experiments demonstrated that ATG9A interacts with Nef from not only HIV-1 and but also SIV (cpz, smm and mac). However, expression of HIV-1 Nef had no effect on the levels and localization of ATG9A, and on autophagy, in the host cells. To investigate a possible role for ATG9A in virus replication, we knocked out ATG9A in HeLa cervical carcinoma and Jurkat T cells, and analyzed virus release and infectivity. We observed that ATG9A knockout (KO) had no effect on the release of wild-type (WT) or Nef-defective HIV-1 in these cells. However, the infectivity of WT virus produced from ATG9A-KO HeLa and Jurkat cells was reduced by ~ fourfold and eightfold, respectively, relative to virus produced from WT cells. This reduction in infectivity was independent of the interaction of Nef with ATG9A, and was not due to reduced incorporation of the viral envelope (Env) glycoprotein into the virus. The loss of HIV-1 infectivity was rescued by pseudotyping HIV-1 virions with the vesicular stomatitis virus G glycoprotein. CONCLUSIONS These studies indicate that ATG9A promotes HIV-1 infectivity in an Env-dependent manner. The interaction of Nef with ATG9A, however, is not required for Nef to enhance HIV-1 infectivity. We speculate that ATG9A could promote infectivity by participating in either the removal of a factor that inhibits infectivity or the incorporation of a factor that enhances infectivity of the viral particles. These studies thus identify a novel host cell factor implicated in HIV-1 infectivity, which may be amenable to pharmacologic manipulation for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Elodie Mailler
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdul A Waheed
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Sang-Yoon Park
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Eric O Freed
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Palmeira JDF, Argañaraz GA, de Oliveira GXLM, Argañaraz ER. Physiological relevance of ACOT8-Nef interaction in HIV infection. Rev Med Virol 2019; 29:e2057. [PMID: 31179598 DOI: 10.1002/rmv.2057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/06/2022]
Abstract
During human immunodeficiency virus (HIV) infection, Nef viral protein plays a crucial role in viral pathogenesis and progression of acquired immunodeficiency syndrome. Nef is expressed in the early stages of infection and alters the cellular environment increasing infectivity, viral replication, and the evasion of host immune response through several mechanisms. Nef has numerous functional domains that allow it to interact with a number of proteins, interfering with intracellular traffic. Among these proteins, human peroxisomal thioesterase 8, ACOT8, has been shown to be an important cellular partner of Nef. It has been suggested that this interaction may be involved in Nef-dependent endocytosis and also in the modulation of lipid composition in membrane rafts. However, the actual role of this interaction, as well as the mechanisms involved, has not yet been fully elucidated. In this review, we focused on the interplay between Nef and ACOT8 proteins, highlighting the possible physiological relevance in HIV infection.
Collapse
Affiliation(s)
| | - Gustavo A Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brazil
| | | | - Enrique R Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brazil
| |
Collapse
|
35
|
Usmani SM, Murooka TT, Deruaz M, Koh WH, Sharaf RR, Di Pilato M, Power KA, Lopez P, Hnatiuk R, Vrbanac VD, Tager AM, Allen TM, Luster AD, Mempel TR. HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell Host Microbe 2019; 25:73-86.e5. [PMID: 30629922 DOI: 10.1016/j.chom.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/11/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
HIV-1 primarily infects T lymphocytes and uses these motile cells as migratory vehicles for effective dissemination in the host. Paradoxically, the virus at the same time disrupts multiple cellular processes underlying lymphocyte motility, seemingly counterproductive to rapid systemic infection. Here we show by intravital microscopy in humanized mice that perturbation of the actin cytoskeleton via the lentiviral protein Nef, and not changes to chemokine receptor expression or function, is the dominant cause of dysregulated infected T cell motility in lymphoid tissue by preventing stable cellular polarization required for fast migration. Accordingly, disrupting the Nef hydrophobic patch that facilitates actin cytoskeletal perturbation initially accelerates systemic viral dissemination after female genital transmission. However, the same feature of Nef was subsequently critical for viral persistence in immune-competent hosts. Therefore, a highly conserved activity of lentiviral Nef proteins has dual effects and imposes both fitness costs and benefits on the virus at different stages of infection.
Collapse
Affiliation(s)
- Shariq M Usmani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thomas T Murooka
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Maud Deruaz
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Wan Hon Koh
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Radwa R Sharaf
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Di Pilato
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Paul Lopez
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Ryan Hnatiuk
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Vladimir D Vrbanac
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Todd M Allen
- Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Jin SW, Markle TJ, Anmole G, Rahimi A, Kuang XT, Brumme ZL, Brockman MA. Modulation of TCR-dependent NFAT signaling is impaired in HIV-1 Nef isolates from elite controllers. Virology 2019; 530:39-50. [PMID: 30780124 DOI: 10.1016/j.virol.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/24/2022]
Abstract
HIV-1 Nef modulates the activation state of CD4+ T cells by altering signaling events elicited by the T cell receptor (TCR). Primary nef sequences exhibit extensive inter-individual diversity that influences their ability to downregulate CD4 and HLA class I; however, the impact of nef variation on modulation of T cell signaling is poorly characterized. Here, we measured TCR-mediated activation of NFAT transcription factor in the presence of nef alleles isolated from 45 elite controllers (EC) and 46 chronic progressors (CP). EC Nef clones displayed lower ability to inhibit NFAT signaling (median 87 [IQR 75-93]% relative to SF2 Nef) compared to CP clones (94 [IQR 89-98]%) (p < 0.001). Polymorphisms in Nef's N-terminal domain impaired its ability to inhibit NFAT signaling. Results indicate that primary nef alleles exhibit a range of abilities to modulate TCR-dependent NFAT signaling, implicating natural variation in this function as a potential contributor to differential HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Steven W Jin
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Tristan J Markle
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gursev Anmole
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Asa Rahimi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Bayliss RJ, Piguet V. Masters of manipulation: Viral modulation of the immunological synapse. Cell Microbiol 2018; 20:e12944. [PMID: 30123959 PMCID: PMC6492149 DOI: 10.1111/cmi.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
In order to thrive, viruses have evolved to manipulate host cell machinery for their own benefit. One major obstacle faced by pathogens is the immunological synapse. To enable efficient replication and latency in immune cells, viruses have developed a range of strategies to manipulate cellular processes involved in immunological synapse formation to evade immune detection and control T-cell activation. In vitro, viruses such as human immunodeficiency virus 1 and human T-lymphotropic virus type 1 utilise structures known as virological synapses to aid transmission of viral particles from cell to cell in a process termed trans-infection. The formation of the virological synapse provides a gateway for virus to be transferred between cells avoiding the extracellular space, preventing antibody neutralisation or recognition by complement. This review looks at how viruses are able to subvert intracellular signalling to modulate immune function to their advantage and explores the role synapse formation has in viral persistence and cell-to-cell transmission.
Collapse
Affiliation(s)
- Rebecca J. Bayliss
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
| | - Vincent Piguet
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of DermatologyWomen's College HospitalTorontoOntarioCanada
| |
Collapse
|
38
|
Lamas-Murua M, Stolp B, Kaw S, Thoma J, Tsopoulidis N, Trautz B, Ambiel I, Reif T, Arora S, Imle A, Tibroni N, Wu J, Cui G, Stein JV, Tanaka M, Lyck R, Fackler OT. HIV-1 Nef Disrupts CD4 + T Lymphocyte Polarity, Extravasation, and Homing to Lymph Nodes via Its Nef-Associated Kinase Complex Interface. THE JOURNAL OF IMMUNOLOGY 2018; 201:2731-2743. [PMID: 30257886 DOI: 10.4049/jimmunol.1701420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
HIV-1 Nef is a multifunctional protein that optimizes virus spread and promotes immune evasion of infected cells to accelerate disease progression in AIDS patients. As one of its activities, Nef reduces the motility of infected CD4+ T lymphocytes in confined space. In vivo, Nef restricts T lymphocyte homing to lymph nodes as it reduces the ability for extravasation at the diapedesis step. Effects of Nef on T lymphocyte motility are typically mediated by its ability to reduce actin remodeling. However, interference with diapedesis does not depend on residues in Nef required for inhibition of host cell actin dynamics. In search for an alternative mechanism by which Nef could alter T lymphocyte extravasation, we noted that the viral protein interferes with the polarization of primary human CD4+ T lymphocytes upon infection with HIV-1. Expression of Nef alone is sufficient to disrupt T cell polarization, and this effect is conserved among lentiviral Nef proteins. Nef acts by arresting the oscillation of CD4+ T cells between polarized and nonpolarized morphologies. Mapping studies identified the binding site for the Nef-associated kinase complex (NAKC) as critical determinant of this Nef activity and a NAKC-binding-deficient Nef variant fails to impair CD4+ T lymphocyte extravasation and homing to lymph nodes. These results thus imply the disruption of T lymphocyte polarity via its NAKC binding site as a novel mechanism by which lentiviral Nef proteins alter T lymphocyte migration in vivo.
Collapse
Affiliation(s)
- Miguel Lamas-Murua
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sheetal Kaw
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, University of Heidelberg, 69120 Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Birthe Trautz
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sakshi Arora
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Imle
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jingxia Wu
- T Cell Metabolism (D140), German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism (D140), German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; and
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, University of Heidelberg, 69120 Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; and
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
39
|
Tamhankar M, Gerhardt DM, Bennett RS, Murphy N, Jahrling PB, Patterson JL. Heparan sulfate is an important mediator of Ebola virus infection in polarized epithelial cells. Virol J 2018; 15:135. [PMID: 30165875 PMCID: PMC6117897 DOI: 10.1186/s12985-018-1045-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Currently, no FDA-approved vaccines or treatments are available for Ebola virus disease (EVD), and therapy remains largely supportive. Ebola virus (EBOV) has broad tissue tropism and can infect a variety of cells including epithelial cells. Epithelial cells differ from most other cell types by their polarized phenotype and barrier function. In polarized cells, the apical and basolateral membrane domains are demarcated by tight junctions, and specialized sorting machinery, which results in a difference in composition between the two membrane domains. These specialized sorting functions can have important consequences for viral infections. Differential localization of a viral receptor can restrict virus entry to a particular membrane while polarized sorting can lead to a vectorial virus release. The present study investigated the impact of cell polarity on EBOV infection. METHODS Characteristics of EBOV infection in polarized cells were evaluated in the polarized Caco-2 model grown on semipermeable transwells. Transepithelial resistance (TEER), which is a function of tight junctions, was used to assess epithelial cell polarization. EBOV infection was assessed with immunofluorescence microscopy and qPCR. Statistical significance was calculated using one-way ANOVA and significance was set at p < 0.05. RESULTS Our data indicate that EBOV preferentially infects cells from the basolateral route, and this preference may be influenced by the resistance across the Caco-2 monolayer. Infection occurs without changes in cellular permeability. Further, our data show that basolateral infection bias may be dependent on polarized distribution of heparan sulfate, a known viral attachment factor. Treatment with iota-carrageenan, or heparin lyase, which interrupts viral interaction with cellular heparan sulfate, significantly reduced cell susceptibility to basolateral infection, likely by inhibiting virus attachment. CONCLUSIONS Our results show cell polarity has an impact on EBOV infection. EBOV preferentially infects polarized cells through the basolateral route. Access to heparan sulfate is an important factor during basolateral infection and blocking interaction of cellular heparan sulfate with virus leads to significant inhibition of basolateral infection in the polarized Caco-2 cell model.
Collapse
Affiliation(s)
- Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX USA
- University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Dawn M. Gerhardt
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Richard S. Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Nicole Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Peter B. Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD USA
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX USA
| |
Collapse
|
40
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
41
|
Cavrois M, Banerjee T, Mukherjee G, Raman N, Hussien R, Rodriguez BA, Vasquez J, Spitzer MH, Lazarus NH, Jones JJ, Ochsenbauer C, McCune JM, Butcher EC, Arvin AM, Sen N, Greene WC, Roan NR. Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Rep 2018; 20:984-998. [PMID: 28746881 DOI: 10.1016/j.celrep.2017.06.087] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/17/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
To characterize susceptibility to HIV infection, we phenotyped infected tonsillar T cells by single-cell mass cytometry and created comprehensive maps to identify which subsets of CD4+ T cells support HIV fusion and productive infection. By comparing HIV-fused and HIV-infected cells through dimensionality reduction, clustering, and statistical approaches to account for viral perturbations, we identified a subset of memory CD4+ T cells that support HIV entry but not viral gene expression. These cells express high levels of CD127, the IL-7 receptor, and are believed to be long-lived lymphocytes. In HIV-infected patients, CD127-expressing cells preferentially localize to extrafollicular lymphoid regions with limited viral replication. Thus, CyTOF-based phenotyping, combined with analytical approaches to distinguish between selective infection and receptor modulation by viruses, can be used as a discovery tool.
Collapse
Affiliation(s)
- Marielle Cavrois
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trambak Banerjee
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA 90089, USA
| | - Gourab Mukherjee
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA 90089, USA
| | - Nandhini Raman
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Rajaa Hussien
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Brandon Aguilar Rodriguez
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Joshua Vasquez
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Nicole H Lazarus
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305-5324, USA; Palo Alto Veterans Institute for Research and the Palo Alto Veterans Affairs Health Care Center, Palo Alto, CA 94304-1290, USA
| | - Jennifer J Jones
- Department of Medicine, University of Alabama, Birmingham, AL 35233-1912, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama, Birmingham, AL 35233-1912, USA; Center for AIDS Research, University of Alabama, Birmingham, AL 35294-2107, USA
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eugene C Butcher
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305-5324, USA; Palo Alto Veterans Institute for Research and the Palo Alto Veterans Affairs Health Care Center, Palo Alto, CA 94304-1290, USA
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305-5324, USA
| | - Nandini Sen
- Departments of Pediatrics and Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305-5324, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Superinfection Exclusion between Two High-Risk Human Papillomavirus Types during a Coinfection. J Virol 2018; 92:JVI.01993-17. [PMID: 29437958 DOI: 10.1128/jvi.01993-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
Superinfection exclusion is a common phenomenon whereby a single cell is unable to be infected by two types of the same pathogen. Superinfection exclusion has been described for various viruses, including vaccinia virus, measles virus, hepatitis C virus, influenza A virus, and human immunodeficiency virus. Additionally, the mechanism of exclusion has been observed at various steps of the viral life cycle, including attachment, entry, viral genomic replication, transcription, and exocytosis. Human papillomavirus (HPV) is the causative agent of cervical cancer. Recent epidemiological studies indicate that up to 50% women who are HPV positive (HPV+) are infected with more than one HPV type. However, no mechanism of superinfection exclusion has ever been identified for HPV. Here, we show that superinfection exclusion exists during a HPV coinfection and that it occurs on the cell surface during the attachment/entry phase of the viral life cycle. Additionally, we are able to show that the minor capsid protein L2 plays a role in this exclusion. This study shows, for the first time, that superinfection exclusion occurs during HPV coinfections and describes a potential molecular mechanism through which it occurs.IMPORTANCE Superinfection exclusion is a phenomenon whereby one cell is unable to be infected by multiple related pathogens. This phenomenon has been described for many viruses and has been shown to occur at various points in the viral life cycle. HPV is the causative agent of cervical cancer and is involved in other anogenital and oropharyngeal cancers. Recent epidemiological research has shown that up to 50% of HPV-positive individuals harbor more than one type of HPV. We investigated the interaction between two high-risk HPV types, HPV16 and HPV18, during a coinfection. We present data showing that HPV16 is able to block or exclude HPV18 on the cell surface during a coinfection. This exclusion is due in part to differences in the HPV minor capsid protein L2. This report provides, for the first time, evidence of superinfection exclusion for HPV and leads to a better understanding of the complex interactions between multiple HPV types during coinfections.
Collapse
|
43
|
Chase AJ, Wombacher R, Fackler OT. Intrinsic properties and plasma membrane trafficking route of Src family kinase SH4 domains sensitive to retargeting by HIV-1 Nef. J Biol Chem 2018; 293:7824-7840. [PMID: 29588370 DOI: 10.1074/jbc.ra118.002794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 01/18/2023] Open
Abstract
The HIV type 1 pathogenicity factor Nef enhances viral replication by modulating multiple host cell pathways, including tuning the activation state of infected CD4 T lymphocytes to optimize virus spread. For this, Nef inhibits anterograde transport of the Src family kinase (SFK) Lck toward the plasma membrane (PM). This leads to retargeting of the kinase to the trans-Golgi network, whereas the intracellular transport of a related SFK, Fyn, is unaffected by Nef. The 18-amino acid Src homology 4 (SH4) domain membrane anchor of Lck is necessary and sufficient for Nef-mediated retargeting, but other details of this process are not known. The goal of this study was therefore to identify characteristics of SH4 domains responsive to Nef and the transport machinery used. Screening a panel of SFK SH4 domains revealed two groups that were sensitive or insensitive for trans-Golgi network retargeting by Nef as well as the importance of the amino acid at position 8 for determining Nef sensitivity. Anterograde transport of Nef-sensitive domains was characterized by slower delivery to the PM and initial targeting to Golgi membranes, where transport was arrested in the presence of Nef. For Nef-sensitive SH4 domains, ectopic expression of the lipoprotein binding chaperone Unc119a or the GTPase Arl3 or reduction of their endogenous expression phenocopied the effect of Nef. Together, these results suggest that, analogous to K-Ras, Nef-sensitive SH4 domains are transported to the PM by a cycle of solubilization and membrane insertion and that intrinsic properties define SH4 domains as cargo of this Nef-sensitive lipoprotein binding chaperone-GTPase transport cycle.
Collapse
Affiliation(s)
- Amanda J Chase
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Rebecka Wombacher
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
45
|
SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV. J Immunol Res 2017; 2017:1548905. [PMID: 29359168 PMCID: PMC5735641 DOI: 10.1155/2017/1548905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022] Open
Abstract
The serine incorporator 5 (SERINC5) is a recently discovered restriction factor that inhibits viral infectivity by preventing fusion. Retroviruses have developed strategies to counteract the action of SERINC5, such as the expression of proteins like negative regulatory factor (Nef), S2, and glycosylated Gag (glycoGag). These accessory proteins downregulate SERINC5 from the plasma membrane for subsequent degradation in the lysosomes. The observed variability in the action of SERINC5 suggests the participation of other elements like the envelope glycoprotein (Env) that modulates susceptibility of the virus towards SERINC5. The exact mechanism by which SERINC5 inhibits viral fusion has not yet been determined, although it has been proposed that it increases the sensitivity of the Env by exposing regions which are recognized by neutralizing antibodies. More studies are needed to understand the role of SERINC5 and to assess its utility as a therapeutic strategy.
Collapse
|
46
|
Kuang WD, Zhou YH, Zhong P, Zhang C, Wang JH. Amino acids at positions 3, 168, and 169 are associated with the ability of Nef proteins from HIV-1 CRF01_AE to downmodulate CD4. J Med Virol 2017; 89:1788-1795. [PMID: 28500742 DOI: 10.1002/jmv.24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 11/08/2022]
Abstract
Several HIV-1 subtypes are co-circulating among various high-risk groups in China, and an increasing prevalence of CRF01_AE was observed among MSM (men who have sex with men) within recent years. Patients infected with CRF01_AE may experience a more rapid disease progression than patients infected with non-CRF01_AE; however, the underlying mechanisms remains elusive. HIV-1 Nef is a multifunctional protein and plays critical roles in viral pathogenesis. Nef downregulates CD4 and human leukocyte antigen (HLA) to promote viral transmission and escape from the host immune response. In this study, we investigated the CD4 downmodulation activity of Nef proteins isolated from HIV-1 CRF01_AE and analyzed a potential relationship of Nef's capacity to downregulate CD4 with disease progression. We found that the majority of these Nefs from HIV-1 CRF01_AE efficiently downregulated CD4; Nefs with weaker CD4 downmodulation activity tended to be associated with higher CD4 levels and lower viral loads. Further elucidation revealed that amino acid residues at positions 3, 168, and 169 of CRF01_AE Nefs were associated with the capacity to downregulate CD4. Our data suggest that the capacity of Nef-mediated CD4 downregulation is not the only determinant for controlling disease progression, and other host and viral factors should be considered to explain the rapid disease progression of patients infected with HIV-1 CRF01_AE.
Collapse
Affiliation(s)
- Wen-Dong Kuang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Heng Zhou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhong
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chiyu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Shu ST, Emert-Sedlak LA, Smithgall TE. Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation. J Biol Chem 2016; 292:2670-2678. [PMID: 28031466 DOI: 10.1074/jbc.m116.770016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/21/2016] [Indexed: 02/03/2023] Open
Abstract
The HIV-1 Nef accessory factor enhances viral infectivity, immune evasion, and AIDS progression. Nef triggers rapid down-regulation of CD4 via the endocytic adaptor protein 2 (AP-2) complex, a process linked to enhanced viral infectivity and immune escape. Here, we describe a bimolecular fluorescence complementation (BiFC) assay to visualize the interaction of Nef with AP-2 and CD4 in living cells. Interacting protein pairs were fused to complementary non-fluorescent fragments of YFP and co-expressed in 293T cells. Nef interactions with both CD4 and AP-2 resulted in complementation of YFP and a bright fluorescent signal by confocal microcopy that localized to the cell periphery. Co-expression of the AP-2 α subunit enhanced the Nef·AP-2 σ2 subunit BiFC signal and vice versa, suggesting that the AP-2 α-σ2 hemicomplex interacts cooperatively with Nef. Mutagenesis of Nef amino acids Arg-134, Glu-174, and Asp-175, which stabilize Nef for AP-2 α-σ2 binding in a recent co-crystal structure, substantially reduced AP-2 interaction without affecting CD4 binding. A dimerization-defective mutant of Nef failed to interact with either CD4 or AP-2 in the BiFC assay, indicating that Nef quaternary structure is required for CD4 and AP-2 recruitment as well as CD4 down-regulation. A small molecule previously shown to bind the Nef dimerization interface also reduced Nef interactions with AP-2 and CD4 and restored CD4 expression to the surface of HIV-infected cells. Our findings provide a mechanistic explanation for previous observations that dimerization-defective Nef mutants fail to down-regulate CD4 and validate the Nef dimerization interface as a target site for antiretroviral drug development.
Collapse
Affiliation(s)
- Sherry T Shu
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A Emert-Sedlak
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Thomas E Smithgall
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
48
|
The Antagonism of HIV-1 Nef to SERINC5 Particle Infectivity Restriction Involves the Counteraction of Virion-Associated Pools of the Restriction Factor. J Virol 2016; 90:10915-10927. [PMID: 27681140 DOI: 10.1128/jvi.01246-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
SERINC3 (serine incorporator 3) and SERINC5 are recently identified host cell inhibitors of HIV-1 particle infectivity that are counteracted by the viral pathogenesis factor Nef. Here we confirm that HIV-1 Nef, but not HIV-1 Vpu, antagonizes the particle infectivity restriction of SERINC5. SERINC5 antagonism occurred in parallel with other Nef activities, including cell surface receptor downregulation, trans-Golgi network targeting of Lck, and inhibition of host cell actin dynamics. Interaction motifs with host cell endocytic machinery and the Nef-associated kinase complex, as well as CD4 cytoplasmic tail/HIV-1 protease, were identified as essential Nef determinants for SERINC5 antagonism. Characterization of antagonism-deficient Nef mutants revealed that counteraction of SERINC5 occurs in the absence of retargeting of the restriction factor to intracellular compartments and reduction of SERINC5 cell surface density is insufficient for antagonism. Consistent with virion incorporation of SERINC5 being a prerequisite for its antiviral activity, the infectivity of HIV-1 particles produced in the absence of a SERINC5 antagonist decreased with increasing amounts of virion SERINC5. At low levels of SERINC5 expression, enhancement of virion infectivity by Nef was associated with reduced virion incorporation of SERINC5 and antagonism-defective Nef mutants failed to exclude SERINC5 from virions. However, at elevated levels of SERINC5 expression, Nef maintained infectious HIV particles, despite significant virion incorporation of the restriction factor. These results suggest that in addition to virion exclusion, Nef employs a cryptic mechanism to antagonize virion-associated SERINC5. The involvement of common determinants suggests that the antagonism of Nef to SERINC5 and the downregulation of cell surface CD4 by Nef involve related molecular mechanisms. IMPORTANCE HIV-1 Nef critically determines virus spread and disease progression in infected individuals by incompletely defined mechanisms. SERINC3 and SERINC5 were recently identified as potent inhibitors of HIV particle infectivity whose antiviral activity is antagonized by HIV-1 Nef. To address the mechanism of SERINC5 antagonism, we identified four molecular determinants of Nef antagonism that are all linked to the mechanism by which Nef downregulates cell surface CD4. Functional characterization of these mutants revealed that endosomal targeting and cell surface downregulation of SERINC5 are dispensable and insufficient for antagonism, respectively. In contrast, virion exclusion and antagonism of SERINC5 were correlated; however, Nef was also able to enhance the infectivity of virions that incorporated robust levels of SERINC5. These results suggest that the antagonism of HIV-1 Nef to SERINC5 restriction of virion infectivity is mediated by a dual mechanism that is related to CD4 downregulation.
Collapse
|
49
|
Cell Surface Downregulation of NK Cell Ligands by Patient-Derived HIV-1 Vpu and Nef Alleles. J Acquir Immune Defic Syndr 2016; 72:1-10. [PMID: 26656785 DOI: 10.1097/qai.0000000000000917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE HIV-1 Vpu and Nef proteins downregulate cell surface levels of natural killer (NK) cell ligands but functional consequences of individual downregulation events are unclear. We tested how well-conserved NK cell ligand downregulation is among Vpu and Nef variants isolated from chronic HIV patients. METHODS Proviral vpu and nef sequences were amplified from 27 chronic HIV patients, subcloned, and tested for their ability to downregulate cell surface receptors. RESULTS Cell surface downregulation of CD4, CD317/tetherin, and major histocompatibility complex class 1 that exert biological functions other than NK cell activation were well conserved among patient-derived Vpu and Nef variants. Among NK cell ligands, NK-T-B-antigen, poliovirus receptor, and UL16-binding protein were identified as main targets for Vpu and Nef, the downregulation of which by at least 1 viral protein was highly conserved. NK cell ligands displayed specific sensitivity to Vpu (NK-T-B-antigen) or Nef (poliovirus receptor), and downregulation of cell surface UL16-binding protein was identified as a novel and highly conserved activity of HIV-1 Vpu but not Nef. CONCLUSIONS The conservation of downregulation of major NK cell ligands by either HIV-1 Vpu or Nef suggests an important pathophysiological role of this activity, which may impact the acute but not the chronic phase of HIV infection.
Collapse
|
50
|
D186/D190 is an allele-dependent determinant of HIV-1 Nef function. Virology 2016; 498:44-56. [PMID: 27560372 DOI: 10.1016/j.virol.2016.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/23/2023]
Abstract
The HIV-1 pathogenesis factor Nef interacts with numerous ligands to affect cellular vesicular transport, signal transduction and cytoskeletal dynamics. While most Nef functions depend on multivalent protein interaction motifs, disrupting actin dynamics requires a motif that specifically recruits the host kinase PAK2. An adjacent aspartate was recently predicted to mediate Nef-β-catenin interactions. We report here that β-catenin can be co-immunoprecipitated with Nef.GFP from Jurkat T cell lysates. This association is conserved among lentiviral Nef proteins but does not involve classical Nef protein interaction motifs, including the critical aspartate. While aspartate-to-alanine mutations impaired cell surface receptor downregulation and interference with actin dynamics and cell motility by HIV-1 NA7 Nef, analogous mutations did not affect HIV-1 SF2 Nef function. These allelic differences were determined by a proximal lysine/arginine polymorphism. These results emphasize differences between Nef alleles regarding the functional role of individual residues and underscore the need for allele-specific structure-function analyses.
Collapse
|