1
|
Bergame CP, Dong C, Bandi S, Schlemper-Scheidt MD, Sutour S, von Reuß SH. Identification and synthesis of 4'- ortho-aminobenzoyl ascarosides as sex pheromones of gonochoristic Caenorhabditis nigoni. Org Biomol Chem 2025; 23:3654-3670. [PMID: 40126449 DOI: 10.1039/d5ob00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Using a combination of RP-C18 chromatography, MS and NMR techniques, a new class of homologous modular ascarosides carrying a 4'-ortho-aminobenzoyl moiety was identified from Caenorhabditis nigoni and Caenorhabditis tropicalis. These compounds could not be detected using targeted ascaroside screens based on precursor ion screening for m/z 73.0294 [C3H5O2]-, which highlighted a limitation of the current protocols. Their structure assignment was established by total synthesis of AB-asc-C5 (SMID: abas#9) as a representative example in about 1% yield over 14 steps. To achieve this aim, a new method for the synthesis of orthogonally protected ascarosides has been developed which provides methyl 2-benzoyl-ascaroside as a highly versatile building block for regioselective ascaroside synthesis. Furthermore, a new synthesis for short chain C5 ascarosides was developed that employs selective reduction and Grubbs cross metathesis. The identity of synthetic AB-asc-C5 and the natural product isolated from C. nigoni was established by an NMR mixing experiment. Retention of C. nigoni males by the exclusively female produced AB-asc-C5 suggests a function as a sex pheromone component. Along with the indole ascarosides (icas), the new class of 4'-ortho-aminobenzoyl ascarosides (abas) represents a mechanism to translate bacterial food dependent L-tryptophan availability into species-specific signaling molecules.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Chuanfu Dong
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Marie-Désirée Schlemper-Scheidt
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Sylvain Sutour
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
2
|
Zhang L, Zhang T, Xu YR, Sun JM, Pan XR, Gu KZ, Zhang KQ, Zhang ZG, Liang LM. Induction of conidial traps in the nematode-trapping fungus Drechslerella dactyloides by soil microbes. mSystems 2025; 10:e0129124. [PMID: 39945538 PMCID: PMC11915823 DOI: 10.1128/msystems.01291-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Nematode-trapping fungi, renowned for their specialized predatory structures that ensnare nematodes, offer a promising biological approach to managing plant-parasitic nematodes. However, the efficacy of these fungi is frequently hampered by biotic and abiotic factors within the soil, which can significantly impede fungal germination (fungistasis). To counteract these environmental challenges, certain nematode-trapping fungi have evolved to produce traps from their conidia, referred to as conidial traps. This adaptation allows them to bypass the inhibitory effects of their surroundings, enhancing their predatory capabilities. In this study, we explored how soil affects conidial trap formation in Drechslerella dactyloides. Our findings revealed that Acinetobacter spp. and Pantoea spp. present in soil extracts play pivotal roles in triggering the development of these traps. Using metagenomic sequencing, we mapped the shifts in bacterial communities and their relative abundances before and after incubation for up to 24 hours to optimize soil induction effects. This analysis highlighted the enrichment of specific functional genes in soil microbes and provided insights into the mechanisms driving conidial trap formation, based on changes in soil characteristics. Furthermore, through bacterial isolation procedures, we successfully cultured and characterized the bacteria responsible for this phenomenon, confirming their potent ability to stimulate the production of conidial traps in nematode-trapping fungi. This study not only underscores the critical role of bacterial diversity in modulating the life cycle transitions of nematode-trapping fungi but also sets the stage for the development of more effective and sustainable strategies to harness these fungi in the battle against pathogenic nematodes. IMPORTANCE Predatory nematode-trapping fungi are important microbial antagonists of nematodes and can be developed into biocontrol agents. However, microbial biocontrol agents often suffer from inconsistent efficacy, primarily due to biotic and abiotic stresses in the rhizosphere soil. Drechslerella dactyloides, a nematode-trapping fungus, produces conidial traps in soil, serving as a survival strategy to overcome these stresses. In this study, we optimized soil suspensions to efficiently induce the formation of conidial traps. We found that bacteria in the soil directly trigger this formation. Metagenomic sequencing revealed bacterial enrichment during optimization, and we isolated and purified these bacteria with inducible activity. Our research deepens the understanding of this survival strategy of nematode-trapping fungi in nature, laying the foundation for enhancing the effectiveness of nematode biocontrol using this mechanism.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Translational Pharmaceutical Laboratory, Jining First People′s Hospital, Shandong First Medical University, Jining, China
| | - Yan-Rui Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jia-Mei Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xue-Rong Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Kun-Ze Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhi-Gang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Kotowska AM, Hiramatsu F, Alexander MR, Scurr DJ, Lightfoot JW, Chauhan VM. Surface Lipids in Nematodes are Influenced by Development and Species-specific Adaptations. J Am Chem Soc 2025; 147:6439-6449. [PMID: 39936408 PMCID: PMC11869268 DOI: 10.1021/jacs.4c12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
The surface of an organism is a dynamic interface that continually adapts to its environment. In nematodes, the cuticle forms a complex boundary that protects against the physicochemical pressures. However, the precise molecular composition and function of this surface remain largely unexplored. By utilizing 3D-OrbiSIMS, an advanced surface-sensitive mass spectrometry method, we directly characterized the molecular composition of the outermost regions (∼50 nm) of Caenorhabditis elegans and Pristionchus pacificus to improve the understanding of species-specific surface lipid composition and its potential roles in nematode biology. We found that nematode surfaces consist of a lipid-dominated landscape (>81% C. elegans and >69% P. pacificus of all surveyed chemistries) with distinct compositions, which enrich in granularity and complexity through development. The surface lipids are also species-specific, potentially highlighting distinct molecular compositions that are derived from diverging evolutionary paths. By exploring the effect of mutations on lipid production, we found the peroxisomal fatty acid β-oxidation component daf-22 is essential for defining the surface molecular fingerprint. This pathway is conserved across species in producing distinct chemical profiles, indicating its fundamental role in lipid metabolism and maintaining the surface integrity and function. Furthermore, we discovered that variations in surface lipids of C. elegans daf-22 larvae contribute to significantly increased susceptibility to predation by P. pacificus. Therefore, our findings reveal that nematode surface lipids are developmentally dependent, species-specific, and fundamental in interspecies interactions. These insights pave the way for further exploration into the physiological and behavioral significance of surface lipids.
Collapse
Affiliation(s)
- Anna M. Kotowska
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - Fumie Hiramatsu
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Morgan R. Alexander
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - David J. Scurr
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - James W. Lightfoot
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Veeren M. Chauhan
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| |
Collapse
|
4
|
Wu CL, Wang RQ, Yang JT, Sun JM, Xu YR, Xu J, Zhang KQ, Liang LM. Genomic and Transcriptomic Analyses Revealed DdSTE2 Play a Role in Constricting Ring Formation in the Nematode-Trapping Fungi Drechslerella dactyloides. Microorganisms 2024; 12:2190. [PMID: 39597578 PMCID: PMC11596859 DOI: 10.3390/microorganisms12112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The carnivorous fungus Drechslerella dactyloides can form constricting rings through hyphal specialization to capture nematodes. The formation of constricting rings is a prerequisite for capturing nematodes and a characteristic of entering the carnivorous stage. Currently, there is limited research on the molecular mechanism of constricting ring formation. In this study, two D. dactyloides mutants unable to form constricting rings were obtained through UV irradiation mutagenesis, and their growth and development phenotypes were compared with the wild-type strain. Transcriptome comparisons revealed differences between the mutants and the wild-type strain in metabolic pathways related to cell wall structure, peroxisomes, lipid metabolism, and MAPK signal transduction, which we validated through qPCR. We further deleted one differentially expressed gene, DdSTE2, of the MAPK pathway and confirmed its role in conidiogenesis and trap formation in D. dactyloides. Together, our results indicate that the remodeling of cell wall structure, peroxisomes, lipid metabolism, and MAPK signal transduction pathways are involved in the formation and maturation of D. dactyloides constricting rings. We discuss the implications of these results for utilizing these fungi to control animal and plant parasitic nematodes.
Collapse
Affiliation(s)
- Cheng-Lin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Ren-Qiao Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Jin-Ting Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Jia-Mei Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Yan-Rui Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China; (C.-L.W.); (R.-Q.W.); (J.-T.Y.); (J.-M.S.); (Y.-R.X.)
| |
Collapse
|
5
|
Shen Y, Yang X, Zhu M, Duan S, Liu Q, Yang J. The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:626. [PMID: 39330386 PMCID: PMC11432822 DOI: 10.3390/jof10090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
Collapse
Affiliation(s)
- Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
6
|
Emser J, Wernet N, Hetzer B, Wohlmann E, Fischer R. The cysteine-rich virulence factor NipA of Arthrobotrys flagrans interferes with cuticle integrity of Caenorhabditis elegans. Nat Commun 2024; 15:5795. [PMID: 38987250 PMCID: PMC11237121 DOI: 10.1038/s41467-024-50096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.
Collapse
Affiliation(s)
- Jennifer Emser
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Nicole Wernet
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Birgit Hetzer
- Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Elke Wohlmann
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany.
| |
Collapse
|
7
|
Chantab K, Rao Z, Zheng X, Han R, Cao L. Ascarosides and Symbiotic Bacteria of Entomopathogenic Nematodes Regulate Host Immune Response in Galleria mellonella Larvae. INSECTS 2024; 15:514. [PMID: 39057246 PMCID: PMC11277396 DOI: 10.3390/insects15070514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation. However, whether ascarosides influence the immune response of insects remains unexplored. In this study, we co-injected ascarosides and symbiotic Photorhabdus luminescens subsp. kayaii H06 bacteria derived from Heterorhabditis bacteriophora H06 into the last instar larvae of Galleria mellonella. We recorded larval mortality and analyzed the expressions of AMPs, ROS/RNS, and LPSs. Our results revealed a process in which ascarosides, acting as enhancers of the symbiotic bacteria, co-induced G. mellonella immunity by significantly increasing oxidative stress responses and secreting AMPs (gallerimycin, gloverin, and cecropin). This led to a reduction in color intensity and the symbiotic bacteria load, ultimately resulting in delayed host mortality compared to either ascarosides or symbiotic bacteria. These findings demonstrate the cross-kingdom regulation of insects and symbiotic bacteria by nematode pheromones. Furthermore, our results suggest that G. mellonella larvae may employ nematode pheromones secreted by IJs to modulate insect immunity during early infection, particularly in the presence of symbiotic bacteria, for enhancing resistance to invasive bacteria in the hemolymph.
Collapse
Affiliation(s)
- Kanjana Chantab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
- Department of Plant Sciences, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Xuehong Zheng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (K.C.); (Z.R.); (X.Z.); (R.H.)
| |
Collapse
|
8
|
Kuo CY, Tay RJ, Lin HC, Juan SC, Vidal-Diez de Ulzurrun G, Chang YC, Hoki J, Schroeder FC, Hsueh YP. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol 2024; 9:1738-1751. [PMID: 38649409 PMCID: PMC11724650 DOI: 10.1038/s41564-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The ability to sense prey-derived cues is essential for predatory lifestyles. Under low-nutrient conditions, Arthrobotrys oligospora and other nematode-trapping fungi develop dedicated structures for nematode capture when exposed to nematode-derived cues, including a conserved family of pheromones, the ascarosides. A. oligospora senses ascarosides via conserved MAPK and cAMP-PKA pathways; however, the upstream receptors remain unknown. Here, using genomic, transcriptomic and functional analyses, we identified two families of G protein-coupled receptors (GPCRs) involved in sensing distinct nematode-derived cues. GPCRs homologous to yeast glucose receptors are required for ascaroside sensing, whereas Pth11-like GPCRs contribute to ascaroside-independent nematode sensing. Both GPCR classes activate conserved cAMP-PKA signalling to trigger trap development. This work demonstrates that predatory fungi use multiple GPCRs to sense several distinct nematode-derived cues for prey recognition and to enable a switch to a predatory lifestyle. Identification of these receptors reveals the molecular mechanisms of cross-kingdom communication via conserved pheromones also sensed by plants and animals.
Collapse
Affiliation(s)
- Chih-Yen Kuo
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Rebecca J Tay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Chian Juan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason Hoki
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yen-Ping Hsueh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Hu X, Hoffmann DS, Wang M, Schuhmacher L, Stroe MC, Schreckenberger B, Elstner M, Fischer R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat Microbiol 2024; 9:1752-1763. [PMID: 38877225 PMCID: PMC11222155 DOI: 10.1038/s41564-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - David S Hoffmann
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Mai Wang
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Maria C Stroe
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
10
|
Jia H, Xia R, Zhang R, Liang G, Zhuang Y, Zhou Y, Li D, Wang F. Transcriptome analysis highlights the influence of temperature on hydrolase and traps in nematode-trapping fungi. Front Microbiol 2024; 15:1384459. [PMID: 38774504 PMCID: PMC11106486 DOI: 10.3389/fmicb.2024.1384459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
Pine wilt disease caused by Bursaphelenchus xylophilus poses a serious threat to the economic and ecological value of forestry. Nematode trapping fungi trap and kill nematodes using specialized trapping devices, which are highly efficient and non-toxic to the environment, and are very promising for use as biological control agents. In this study, we isolated several nematode-trapping fungi from various regions and screened three for their high nematocidal efficiency. However, the effectiveness of these fungi as nematicides is notably influenced by temperature and exhibits different morphologies in response to temperature fluctuations, which are categorized as "NA," "thin," "dense," and "sparse." The trend of trap formation with temperature was consistent with the trend of nematocidal efficiency with temperature. Both of which initially increased and then decreased with increasing temperature. Among them, Arthrobotrys cladodes exhibited the highest level of nematocidal activity and trap formation among the tested species. Transcriptome data were collected from A. cladodes with various trap morphologies. Hydrolase activity was significantly enriched according to GO and KEGG enrichment analyses. Eight genes related to hydrolases were found to be consistent with the trend of trap morphology with temperature. Weighted gene co-expression analysis and the Cytoscape network revealed that these 8 genes are associated with either mitosis or autophagy. This suggests that they contribute to the formation of "dense" structures in nematode-trapping fungi. One of these genes is the serine protein hydrolase gene involved in autophagy. This study reveals a potentially critical role for hydrolases in trap formation and nematocidal efficiency. And presents a model where temperature affects trap formation and nematocidal efficiency by influencing the serine protease prb1 involved in the autophagy process.
Collapse
Affiliation(s)
- Hanqi Jia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Xia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guanjun Liang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Yuting Zhuang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Yantao Zhou
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Danlei Li
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Feng Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Pop M, Klemke AL, Seidler L, Wernet N, Steudel PL, Baust V, Wohlmann E, Fischer R. Caenorhabditis elegans neuropeptide NLP-27 enhances neurodegeneration and paralysis in an opioid-like manner during fungal infection. iScience 2024; 27:109484. [PMID: 38784855 PMCID: PMC11112505 DOI: 10.1016/j.isci.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
The nervous system of metazoans is involved in host-pathogen interactions to control immune activation. In Caenorhabditis elegans, this includes sleep induction, mediated by neuropeptide-like proteins (NLPs), which increases the chance of survival after wounding. Here we analyzed the role of NLP-27 in the infection of C. elegans with the nematode-trapping fungus Arthrobotrys flagrans. Early responses of C. elegans were the upregulation of nlp-27, the induction of paralysis (sleep), and neurodegeneration of the mechanosensing PVD (Posterior Ventral Process D) neurons. Deletion of nlp-27 reduced neurodegeneration during fungal attack. Induction of nlp-27 was independent of the MAP kinase PMK-1, and expression of nlp-27 in the hypodermis was sufficient to induce paralysis, although NLP-27 was also upregulated in head neurons. NLP-27 contains the pentapeptide YGGYG sequence known to bind the human μ- and κ-type opioid receptors suggesting NLP-27 or peptides thereof act on opioid receptors. The opioid receptor antagonist naloxone shortened the paralysis time like overexpression of NLP-27.
Collapse
Affiliation(s)
- Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Anna-Lena Klemke
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Lena Seidler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Pietrina Loredana Steudel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Vanessa Baust
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Elke Wohlmann
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Lee HK, Lee TY, Lee JI, Park KS, Yoon KH. Precise sensorimotor control impacts reproductive fitness of C. elegans in 3D environments. Neuroreport 2024; 35:123-128. [PMID: 38109381 PMCID: PMC10766090 DOI: 10.1097/wnr.0000000000001986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
The ability of animals to sense and navigate towards relevant cues in complex and elaborate habitats is paramount for their survival and reproductive success. The nematode Caenorhabditis elegans uses a simple and elegant sensorimotor program to track odors in its environments. Whether this allows the worm to effectively navigate a complex environment and increase its evolutionary success has not been tested yet. We designed an assay to test whether C. elegans can track odors in a complex 3D environment. We then used a previously established 3D cultivation system to test whether defect in tracking odors to find food in a complex environment affected their brood size. We found that wild-type worms can accurately migrate toward a variety of odors in 3D. However, mutants of the muscarinic acetylcholine receptor GAR-3 which have a sensorimotor integration defect that results in a subtle navigational defect steering towards attractive odors, display decreased chemotaxis to the odor butanone not seen in the traditional 2D assay. We also show that the decreased ability to locate appetitive stimuli in 3D leads to reduced brood size not observed in the standard 2D culture conditions. Our study shows that mutations in genes previously overlooked in 2D conditions can have a significant impact in the natural habitat, and highlights the importance of considering the evolutionary selective pressures that have shaped the behavior, as well as the underlying genes and neural circuits.
Collapse
Affiliation(s)
- Hee Kyung Lee
- Department of Physiology, Yonsei University Wonju College of Medicine
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
- Department of Global Medical Science, Yonsei University Wonju College of Medicine
| | - Tong Young Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, South Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, South Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
- Department of Global Medical Science, Yonsei University Wonju College of Medicine
| | - Kyoung-hye Yoon
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine
| |
Collapse
|
13
|
Zheng H, Chen T, Li W, Hong J, Xu J, Yu Z. Endosymbiotic bacteria within the nematode-trapping fungus Arthrobotrys musiformis and their potential roles in nitrogen cycling. Front Microbiol 2024; 15:1349447. [PMID: 38348183 PMCID: PMC10860758 DOI: 10.3389/fmicb.2024.1349447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Endosymbiotic bacteria (ESB) have important effects on their hosts, contributing to its growth, reproduction and biological functions. Although the effects of exogenous bacteria on the trap formation of nematode-trapping fungi (NTF) have been revealed, the effects of ESB on NTF remain unknown. In this study, we investigated the species diversity of ESB in the NTF Arthrobotrys musiformis using high-throughput sequencing and culture-dependent approaches, and compared bacterial profiles to assess the effects of strain source and culture media on A. musiformis. PICRUSt2 and FAPROTAX were used to predict bacterial function. Our study revealed that bacterial communities in A. musiformis displayed high diversity and heterogeneity, with Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria as the dominant phyla. The ESB between A. musiformis groups isolated from different habitats and cultured in the same medium were more similar to each other than the other groups isolated from the same habitat but cultured in different media. Function analysis predicted a broad and diverse functional repertoire of ESB in A. musiformis, and unveiled that ESB have the potential to function in five modules of the nitrogen metabolism. We isolated nitrogen-fixing and denitrifying bacteria from the ESB and demonstrated their effects on trap formation of A. musiformis. Among seven bacteria that we tested, three bacterial species Bacillus licheniformis, Achromobacter xylosoxidans and Stenotrophomonas maltophilia were found to be efficient in inducing trap formation. In conclusion, this study revealed extensive ESB diversity within NTF and demonstrated that these bacteria likely play important roles in nitrogen cycling, including nematode trap formation.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Wenjie Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianan Hong
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Zhang F, Yang YQ, Zhou FP, Xiao W, Boonmee S, Yang XY. Multilocus Phylogeny and Characterization of Five Undescribed Aquatic Carnivorous Fungi ( Orbiliomycetes). J Fungi (Basel) 2024; 10:81. [PMID: 38276027 PMCID: PMC10817524 DOI: 10.3390/jof10010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The diversity of nematode-trapping fungi (NTF) holds significant theoretical and practical implications in the study of adaptive evolution and the bio-control of harmful nematodes. However, compared to terrestrial ecosystems, research on aquatic NTF is still in its early stages. During a survey of NTF in six watersheds in Yunnan Province, China, we isolated 10 taxa from freshwater sediment. Subsequent identification based on morphological and multigene (ITS, TEF1-α, and RPB2) phylogenetic analyses inferred they belong to five new species within Arthrobotrys. This paper provides a detailed description of these five novel species (Arthrobotrys cibiensis, A. heihuiensis, A. jinshaensis, A. yangbiensis, and A. yangjiangensis), contributing novel insights for further research into the diversity of NTF and providing new material for the biological control of aquatic harmful nematodes. Additionally, future research directions concerning aquatic NTF are also discussed.
Collapse
Affiliation(s)
- Fa Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; (F.Z.); (Y.-Q.Y.); (F.-P.Z.); (W.X.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yao-Quan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; (F.Z.); (Y.-Q.Y.); (F.-P.Z.); (W.X.)
| | - Fa-Ping Zhou
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; (F.Z.); (Y.-Q.Y.); (F.-P.Z.); (W.X.)
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; (F.Z.); (Y.-Q.Y.); (F.-P.Z.); (W.X.)
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- Yunling Back-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali 671003, China
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China; (F.Z.); (Y.-Q.Y.); (F.-P.Z.); (W.X.)
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| |
Collapse
|
15
|
Lin HC, de Ulzurrun GVD, Chen SA, Yang CT, Tay RJ, Iizuka T, Huang TY, Kuo CY, Gonçalves AP, Lin SY, Chang YC, Stajich JE, Schwarz EM, Hsueh YP. Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus. PLoS Biol 2023; 21:e3002400. [PMID: 37988381 PMCID: PMC10662756 DOI: 10.1371/journal.pbio.3002400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Nutritional deprivation triggers a switch from a saprotrophic to predatory lifestyle in soil-dwelling nematode-trapping fungi (NTF). In particular, the NTF Arthrobotrys oligospora secretes food and sex cues to lure nematodes to its mycelium and is triggered to develop specialized trapping devices. Captured nematodes are then invaded and digested by the fungus, thus serving as a food source. In this study, we examined the transcriptomic response of A. oligospora across the stages of sensing, trap development, and digestion upon exposure to the model nematode Caenorhabditis elegans. A. oligospora enacts a dynamic transcriptomic response, especially of protein secretion-related genes, in the presence of prey. Two-thirds of the predicted secretome of A. oligospora was up-regulated in the presence of C. elegans at all time points examined, and among these secreted proteins, 38.5% are predicted to be effector proteins. Furthermore, functional studies disrupting the t-SNARE protein Sso2 resulted in impaired ability to capture nematodes. Additionally, genes of the DUF3129 family, which are expanded in the genomes of several NTF, were highly up-regulated upon nematode exposure. We observed the accumulation of highly expressed DUF3129 proteins in trap cells, leading us to name members of this gene family as Trap Enriched Proteins (TEPs). Gene deletion of the most highly expressed TEP gene, TEP1, impairs the function of traps and prevents the fungus from capturing prey efficiently. In late stages of predation, we observed up-regulation of a variety of proteases, including metalloproteases. Following penetration of nematodes, these metalloproteases facilitate hyphal growth required for colonization of prey. These findings provide insights into the biology of the predatory lifestyle switch in a carnivorous fungus and provide frameworks for other fungal-nematode predator-prey systems.
Collapse
Affiliation(s)
- Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | - Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ching-Ting Yang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Rebecca J. Tay
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tomoyo Iizuka
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Kuo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - A. Pedro Gonçalves
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Siou-Ying Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Miao Q, Wang Z, Yin Z, Liu X, Li R, Zhang KQ, Li J. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2663-2679. [PMID: 37233873 DOI: 10.1007/s11427-022-2300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.
Collapse
Affiliation(s)
- Qiao Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhengqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ran Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
17
|
Huang J, Zheng X, Tian M, Zhang K. Ammonia and Nematode Ascaroside Are Synergistic in Trap Formation in Arthrobotrys oligospora. Pathogens 2023; 12:1114. [PMID: 37764922 PMCID: PMC10536950 DOI: 10.3390/pathogens12091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Nematode-trapping (NT) fungi are natural predators of the soil living nematodes. Diverse external signals mediate the generation of predatory devices of NT fungi. Among these, broad ascarosides and nitrogenous ammonia are highly efficient inducers for trap structure initiation. However, the overlay effect of ammonia and ascaroside on the trap morphogenesis remains unclear. This study demonstrated that the combination of nitrogenous substances with nematode-derived ascarosides led to higher trap production compared to the single inducing cues; notably, ammonia and Ascr#18 had the most synergistic effect on the trap in A. oligospora. Further, the deletion of ammonia transceptor Amt43 blocked trap formation against ammonia addition in A. oligospora but not for the ascaroside Ascr#18 induction. Moreover, ammonia addition could promote plasma endocytosis in the process of trap formation. In contrast, ascaroside addition would facilitate the stability of intracellular organization away from endocytosis. Therefore, there is a synergistic effect on trap induction from different nitrogenous and ascaroside signals.
Collapse
Affiliation(s)
- Jinrong Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| | - Xi Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| | - Mengqing Tian
- Key Laboratory for Potato Biology of Yunnan Province, The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming 650091, China;
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (J.H.); (X.Z.)
| |
Collapse
|
18
|
Liu Y, Zhu M, Wang W, Li X, Bai N, Xie M, Yang J. AoMae1 Regulates Hyphal Fusion, Lipid Droplet Accumulation, Conidiation, and Trap Formation in Arthrobotrys oligospora. J Fungi (Basel) 2023; 9:jof9040496. [PMID: 37108952 PMCID: PMC10146936 DOI: 10.3390/jof9040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid (TCA) cycle and is essential for energy balance, growth, and tolerance to cold and salt stresses in plants. However, the role of MDH in filamentous fungi is still largely unknown. In this study, we characterized an ortholog of MDH (AoMae1) in a representative nematode-trapping (NT) fungus Arthrobotrys oligospora via gene disruption, phenotypic analysis, and nontargeted metabolomics. We found that the loss of Aomae1 led to a weakening of MDH activity and ATP content, a remarkable decrease in conidia yield, and a considerable increase in the number of traps and mycelial loops. In addition, the absence of Aomae1 also caused an obvious reduction in the number of septa and nuclei. In particular, AoMae1 regulates hyphal fusion under low nutrient conditions but not in nutrient-rich conditions, and the volumes and sizes of the lipid droplets dynamically changed during trap formation and nematode predation. AoMae1 is also involved in the regulation of secondary metabolites such as arthrobotrisins. These results suggest that Aomae1 has an important role in hyphal fusion, sporulation, energy production, trap formation, and pathogenicity in A. oligospora. Our results enhance the understanding of the crucial role that enzymes involved in the TCA cycle play in the growth, development, and pathogenicity of NT fungi.
Collapse
Affiliation(s)
- Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Xuemei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| | - Meihua Xie
- School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China
| |
Collapse
|
19
|
Ashrafi S, Wennrich JP, Becker Y, Maciá-Vicente JG, Brißke-Rode A, Daub M, Thünen T, Dababat AA, Finckh MR, Stadler M, Maier W. Polydomus karssenii gen. nov. sp. nov. is a dark septate endophyte with a bifunctional lifestyle parasitising eggs of plant parasitic cyst nematodes (Heterodera spp.). IMA Fungus 2023; 14:6. [PMID: 36998098 PMCID: PMC10064538 DOI: 10.1186/s43008-023-00113-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
In this study fungal strains were investigated, which had been isolated from eggs of the cereal cyst nematode Heterodera filipjevi, and roots of Microthlaspi perfoliatum (Brassicaceae). The morphology, the interaction with nematodes and plants and the phylogenetic relationships of these strains originating from a broad geographic range covering Western Europe to Asia Minor were studied. Phylogenetic analyses using five genomic loci including ITSrDNA, LSUrDNA, SSUrDNA, rpb2 and tef1-α were carried out. The strains were found to represent a distinct phylogenetic lineage most closely related to Equiseticola and Ophiosphaerella, and Polydomus karssenii (Phaeosphaeriaceae, Pleosporales) is introduced here as a new species representing a monotypic genus. The pathogenicity tests against nematode eggs fulfilled Koch's postulates using in vitro nematode bioassays and showed that the fungus could parasitise its original nematode host H. filipjevi as well as the sugar beet cyst nematode H. schachtii, and colonise cysts and eggs of its hosts by forming highly melanised moniliform hyphae. Light microscopic observations on fungus-root interactions in an axenic system revealed the capacity of the same fungal strain to colonise the roots of wheat and produce melanised hyphae and microsclerotia-like structure typical for dark septate endophytes. Confocal laser scanning microscopy further demonstrated that the fungus colonised the root cells by predominant intercellular growth of hyphae, and frequent formation of appressorium-like as well as penetration peg-like structures through internal cell walls surrounded by callosic papilla-like structures. Different strains of the new fungus produced a nearly identical set of secondary metabolites with various biological activities including nematicidal effects irrespective of their origin from plants or nematodes.
Collapse
Affiliation(s)
- Samad Ashrafi
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany.
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany.
| | - Jan-Peer Wennrich
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Anke Brißke-Rode
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthias Daub
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dürener Str. 71, 50189, Elsdorf, Germany
| | - Torsten Thünen
- Institute for Crop and Soil Science, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116, Brunswick, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), Emek, P.O. Box 39, 06511, Ankara, Turkey
| | - Maria R Finckh
- Department of Ecological Plant Protection, University of Kassel, Witzenhausen, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Brunswick, Germany
| | - Wolfgang Maier
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11/12, 38104, Brunswick, Germany
| |
Collapse
|
20
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
21
|
Tang P, Han JJ, Zhang CC, Tang PP, Qi FN, Zhang KQ, Liang LM. The Growth and Conidiation of Purpureocillium lavendulum Are Co-Regulated by Nitrogen Sources and Histone H3K14 Acetylation. J Fungi (Basel) 2023; 9:325. [PMID: 36983493 PMCID: PMC10054409 DOI: 10.3390/jof9030325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Plant-parasitic nematodes cause severe economic losses to agriculture. As important biocontrol agents, nematophagous fungi evolved the ability to obtain nitrogen sources from nematodes. However, the impact of nitrogen sources on the growth and development of these fungi is largely unknown. In this study, we aimed to better understand how nitrogen sources could influence vegetative growth and conidiation through epigenetic regulation in the nematophagous fungus, Purpureocillium lavendulum. Through nutrition screening, we found a phenomenon of the fungus, limited colony extension with a large amount of conidia production when cultured on PDA media, can be altered by adding ammonia nitrate. Characterized by site-directed mutagenesis, the histone H3K14 acetylation was found to be involved in the alternation. Furthermore, the acetyltransferase PlGCN5 was responsible for H3K14 acetylation. Knockout of Plgcn5 severely diminished conidiation in P. lavendulum. Chip-seq showed that H3K14ac distributed in conidiation regulating genes, and genes in the MAPK pathway which may be the downstream targets in the regulation. These findings suggest that histone modification and nitrogen sources coordinated lifestyle regulation in P. lavendulum, providing new insight into the mechanism of growth regulation by nutritional signals for the carnivorous fungus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, China
| |
Collapse
|
22
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
23
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
24
|
Hao X, Chen J, Li Y, Liu X, Li Y, Wang B, Cao J, Gu Y, Ma W, Ma L. Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta. Cells 2023; 12:cells12040543. [PMID: 36831210 PMCID: PMC9953903 DOI: 10.3390/cells12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Bursaphelenchus xylophilus causes pine wilt disease, which poses a serious threat to forestry ecology around the world. Microorganisms are environmentally friendly alternatives to the use of chemical nematicides to control B. xylophilus in a sustainable way. In this study, we isolated a nematophagous fungus-Arthrobotrys robusta-from the xylem of diseased Pinus massoniana. The nematophagous activity of A. robusta against the PWNs was observed after just 6 h. We found that B. xylophilus entered the trap of A. robusta at 24 h, and the nervous system and immunological response of B. xylophilus were stimulated by metabolites that A. robusta produced. At 30 h of exposure to A. robusta, B. xylophilus exhibited significant constriction, and we were able to identify xenobiotics. Bursaphelenchus xylophilus activated xenobiotic metabolism, which expelled the xenobiotics from their bodies, by providing energy through lipid metabolism. When PWNs were exposed to A. robusta for 36 h, lysosomal and autophagy-related genes were activated, and the bodies of the nematodes underwent disintegration. Moreover, a gene co-expression pattern network was constructed by WGCNA and Cytoscape. The gene co-expression pattern network suggested that metabolic processes, developmental processes, detoxification, biological regulation, and signaling were influential when the B. xylophilus specimens were exposed to A. robusta. Additionally, bZIP transcription factors, ankyrin, ATPases, innexin, major facilitator, and cytochrome P450 played critical roles in the network. This study proposes a model in which mobility improved whenever B. xylophilus entered the traps of A. robusta. The model will provide a solid foundation with which to understand the molecular and evolutionary mechanisms underlying interactions between nematodes and nematophagous fungi. Taken together, these findings contribute in several ways to our understanding of B. xylophilus exposed to microorganisms and provide a basis for establishing an environmentally friendly prevention and control strategy.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Xuefeng Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China
| | - Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yaru Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
25
|
Wernet V, Fischer R. Establishment of Arthrobotrys flagrans as biocontrol agent against the root pathogenic nematode Xiphinema index. Environ Microbiol 2023; 25:283-293. [PMID: 36354014 DOI: 10.1111/1462-2920.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Plant-parasitic nematodes cause devastating agricultural damage worldwide. Only a few synthetic nematicides can be used and their application is limited in fields. Therefore, there is a need for sustainable and environment-friendly alternatives. Nematode-trapping fungi (NTF) are natural predators of nematodes. They capture and digest them with their hyphae and are starting to being used as bio-control agents. In this study, we applied the NTF Arthrobotrys flagrans (Duddingtonia flagrans) against the wine pathogenic nematode Xiphinema index. A. flagrans reduced the number of X. index juveniles in pot cultures of Ficus carica, an alternative host plant for X. index, significantly. Sodium-alginate pellets with A. flagrans spores were produced for vineyard soil inoculation under laboratory conditions. The NTF A. conoides, A. musiformis and A. superba were enriched from several soil samples, showing their natural presence. Trap formation is an energy-consuming process and depends upon various biotic and abiotic stimuli. Here, we show that bacteria of the genus Delftia, Bacillus, Pseudomonas, Enterobacter and Serratia induced trap formation in NTF like A. conoides and A. oligospora but not in A. flagrans in the absence of nematodes. The application of NTF along with such bacteria could be a combinatorial way of efficient biocontrol in nematode-infested soil.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
26
|
Santamaria B, Verbeken A, Haelewaters D. Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. J Fungi (Basel) 2023; 9:163. [PMID: 36836278 PMCID: PMC9968043 DOI: 10.3390/jof9020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Collapse
Affiliation(s)
- Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Centro de Investigaciones Micológicas (CIMi), Universidad Autónoma de Chiriquí, David 0427, Panama
| |
Collapse
|
27
|
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. SCIENCE ADVANCES 2023; 9:eade4809. [PMID: 36652525 PMCID: PMC9848476 DOI: 10.1126/sciadv.ade4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.
Collapse
Affiliation(s)
- Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Pon
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| |
Collapse
|
28
|
Zhang L, Mo MH, Cao YR, Liang LM. Characterization of the complete mitochondrial genome of the nematode-trapping fungus Drechslerella dactyloides. Mitochondrial DNA B Resour 2023; 8:484-487. [PMID: 37063240 PMCID: PMC10101663 DOI: 10.1080/23802359.2023.2197084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
The complete mitochondrial genome of Drechslerella dactyloides was characterized in this study. This mitogenome is a closed circular molecule of 246860 bp in length with a GC content of 26.16%, including 87 predicted protein-coding genes, 29 transfer RNA genes, and two rRNA gens. Phylogenetic analyses based on concatenated amino acid sequences at 14 conserved mitochondrial protein-coding genes showed that D. dactyloides was closely related to Dactylellina haptotyla.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yan-Ru Cao
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan province, College of Agriculture and Life Sciences, Kunming University, Kunming, China
- Yan-Ru Cao Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan province, College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- CONTACT Lian-Ming Liang State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
29
|
Zhu MC, Zhao N, Liu YK, Li XM, Zhen ZY, Zheng YQ, Zhang KQ, Yang JK. The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora. Environ Microbiol 2022; 24:6524-6538. [PMID: 36260054 DOI: 10.1111/1462-2920.16253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.
Collapse
Affiliation(s)
- Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Yan-Kun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Xue-Mei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng-Yi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Qing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
30
|
Pribadi AK, Chalasani SH. Fear conditioning in invertebrates. Front Behav Neurosci 2022; 16:1008818. [PMID: 36439964 PMCID: PMC9686301 DOI: 10.3389/fnbeh.2022.1008818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 09/30/2023] Open
Abstract
Learning to identify and predict threats is a basic skill that allows animals to avoid harm. Studies in invertebrates like Aplysia californica, Drosophila melanogaster, and Caenorhabditis elegans have revealed that the basic mechanisms of learning and memory are conserved. We will summarize these studies and highlight the common pathways and mechanisms in invertebrate fear-associated behavioral changes. Fear conditioning studies utilizing electric shock in Aplysia and Drosophila have demonstrated that serotonin or dopamine are typically involved in relaying aversive stimuli, leading to changes in intracellular calcium levels and increased presynaptic neurotransmitter release and short-term changes in behavior. Long-term changes in behavior typically require multiple, spaced trials, and involve changes in gene expression. C. elegans studies have demonstrated these basic aversive learning principles as well; however, fear conditioning has yet to be explicitly demonstrated in this model due to stimulus choice. Because predator-prey relationships can be used to study learned fear in a naturalistic context, this review also summarizes what is known about predator-induced behaviors in these three organisms, and their potential applications for future investigations into fear conditioning.
Collapse
Affiliation(s)
- Amy K. Pribadi
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, United States
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sreekanth H. Chalasani
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, United States
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
31
|
Yoon KH, Indong RA, Lee JI. Making "Sense" of Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. Metabolites 2022; 12:1084. [PMID: 36355167 PMCID: PMC9697003 DOI: 10.3390/metabo12111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2023] Open
Abstract
Our knowledge of animal and behavior in the natural ecology is based on over a century's worth of valuable field studies. In this post-genome era, however, we recognize that genes are the underpinning of ecological interactions between two organisms. Understanding how genes contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic animal model experimental systems, experiences a complex microbial world in its natural habitat, providing us with a window into the interplay of genes and molecules that result in an animal-microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its sensory system to detect the microbes and metabolites that it encounters, and then discuss some of the fascinating ecological dances, including behaviors, that have evolved between the nematode and the microbes in its environment.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rocel Amor Indong
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
32
|
Isolation of nematophagous fungi from soil samples collected from three different agro-ecologies of Ethiopia. BMC Microbiol 2022; 22:159. [PMID: 35715731 PMCID: PMC9204992 DOI: 10.1186/s12866-022-02572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Several species of nematophagous fungi exist in nature that can capture and kill nematodes as natural predators of soil-dwelling worms. These are important in agriculture and animal husbandry as biological control agents. The diversity of nematophagous fungi found from soil had not been studied in Ethiopia. Objective This study aimed to isolate Nematophagous Fungi from Soil Samples Collected From three Different Agro-Ecologies of Ethiopia. Methods Cross-sectional study was conducted and samples were collected from three different agro-climatic zones of Ethiopia; Debre-Berhan (highland), Bishoftu (mid-altitude), and Awash (lowland). Twenty-seven soil samples were randomly taken from each of the three different agro-ecological climates (9 from each agro-ecological climatic zone). For each study site, samples were collected from the soil of decomposed animal feces/dung, agricultural/farmlands, and forest lands in triplicates. Results The present study disclosed that nematophagous fungi were widespread from the study area. A total of 33 species of nematophagous fungi belonging to four genera, Arthrobotryes, Paecilomyces, Monacrosporium, and Harposporium were identified. Arthrobotrys were the most commonly isolated genera followed by Paecilomyces. The six identified species were Arthrobotrys oligospora, Paecilomyces lilacinus, Arthrobotryes dactyloides, Monacosporum eudermatum, Harposporium helicoides, and Monacosporum cionopagum. Conclusion This study indicated that Arthrobothryes oligospora was the most common species in Bishoftu and Awash whereas. In Debre-Berhan, Paecilomyces lilacinus was the most prevalent species. Monacosporum cionapagum was not isolated from dung soil and agricultural soil whereas Harposporium helicoides and Arthrobothryes dactyloides were not found from dung and forest soil respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02572-4.
Collapse
|
33
|
Gives PMD, Rodríguez-Labastida M, Olmedo-Juárez A, Gamboa-Angulo MM, Reyes-Estebanez M. A Nematode Crude Extract Acts as an Elicitor of the Nematocidal Activity of Nematophagous Fungi Liquid Culture Filtrates Against Haemonchus contortus (Nematoda: Trichostrongylidae). Acta Parasitol 2022; 67:678-686. [PMID: 35013941 DOI: 10.1007/s11686-021-00502-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
AIM This study was designed to investigate if culturing nematophagous fungi (NF) in the presence of a Haemonchus contortus larva crude extract (HcCE) enhances the nematocidal activity of nematophagous fungi liquid culture filtrates (NFCF). MATERIALS AND METHODS Four NF Arthrobotrys oligospora, A. musiformis, Duddingtonia flagrans and Clonostachys rosea were cultured in flasks (n = 5) containing Czapek-Dox broth medium (CDB) in the presence or absence of HcCE. NFCF recovered by filtration of each fungus (200 mg/mL) were assessed on H. contortus infective larvae (L3) using 96-well micro-titer plates (n = 4). Additionally, CDB and water were considered negative controls, while Ivermectin acted as a positive control. After 48 h confrontation, ten 10-μL aliquots of each well were deposited on slides and observed under the microscope (40 ×). Dead and alive larvae in the aliquots were quantified, and a mortality rate (MR) was estimated. RESULTS The MR of the different NFCF was greatly enhanced by the presence of HcCE. The four NF incubated in the absence of HcCE showed low mortality percentages from 8.2 to 25.8%; in contrast, when the assessed NF growth in the presence of HcCE showed a lethal activity ranging from 66.8 to 80.5%. Only C. rosea showed a moderate increase in the presence of the elicitor (42.7%). CONCLUSION This study shows evidence about the HcCE enhances the production of nematocidal activity in NFCF. Future studies should be performed to elucidate the compounds responsible of the nematocidal activity that could have important implications in the control of sheep haemonchosis.
Collapse
Affiliation(s)
- Pedro Mendoza-de Gives
- Unidad de Investigación en Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevar Paseo Cuauhnahuac No. 8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Marilem Rodríguez-Labastida
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Agustín Olmedo-Juárez
- Unidad de Investigación en Helmintología, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Boulevar Paseo Cuauhnahuac No. 8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - María Marcela Gamboa-Angulo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Manuela Reyes-Estebanez
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar S/N Entre Calle 20 y Juan de la Barrera, Col. Buenavista, 24039, San Francisco de Campeche, Campeche, Mexico.
| |
Collapse
|
34
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
35
|
Maizels RM. Ascarosides from helminths pack a punch against allergy. Proc Natl Acad Sci U S A 2022; 119:e2202250119. [PMID: 35353624 PMCID: PMC9169083 DOI: 10.1073/pnas.2202250119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
36
|
Fischer R, Requena N. Small-secreted proteins as virulence factors in nematode-trapping fungi. Trends Microbiol 2022; 30:615-617. [PMID: 35337698 DOI: 10.1016/j.tim.2022.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Nematode-trapping fungi (NTF), such as Arthrobotrys flagrans (Duddingtonia flagrans), are soil-borne fungi able to form adhesive trapping networks to attract and catch nematodes. In this forum piece we highlight some of their most fascinating features with a special focus on the role of small-secreted proteins in the predatory interaction.
Collapse
Affiliation(s)
- Reinhard Fischer
- Karlsruhe Institute of Technology (KIT), Department of Microbiology and Department of Botany, Karlsruhe, Germany.
| | - Natalia Requena
- Karlsruhe Institute of Technology (KIT), Department of Microbiology and Department of Botany, Karlsruhe, Germany
| |
Collapse
|
37
|
Cohen SM, Wrobel CJJ, Prakash SJ, Schroeder FC, Sternberg PW. Formation and function of dauer ascarosides in the nematodes Caenorhabditis briggsae and Caenorhabditis elegans. G3 GENES|GENOMES|GENETICS 2022; 12:6517505. [PMID: 35094091 PMCID: PMC8895998 DOI: 10.1093/g3journal/jkac014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The biosynthetic pathways and functions of ascaroside signaling molecules in the nematode Caenorhabditis elegans have been studied to better understand complex, integrative developmental decision-making. Although it is known that ascarosides play multiple roles in the development and behavior of nematode species other than C. elegans, these parallel pheromone systems have not been well-studied. Here, we show that ascarosides in the nematode Caenorhabditis briggsae are biosynthesized in the same manner as C. elegans and act to induce the alternative developmental pathway that generates the stress-resistant dauer lifestage. We show that ascr#2 is the primary component of crude dauer pheromone in C. briggsae; in contrast, C. elegans dauer pheromone relies on a combination of ascr#2, ascr#3, and several other components. We further demonstrate that Cbr-daf-22, like its C. elegans ortholog Cel-daf-22, is necessary to produce short-chain ascarosides. Moreover, Cbr-daf-22 and Cel-daf-22 mutants produce an ascaroside-independent metabolite that acts antagonistically to crude dauer pheromone and inhibits dauer formation.
Collapse
Affiliation(s)
- Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sharan J Prakash
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
38
|
Nematode ascarosides attenuate mammalian type 2 inflammatory responses. Proc Natl Acad Sci U S A 2022; 119:2108686119. [PMID: 35210367 PMCID: PMC8892368 DOI: 10.1073/pnas.2108686119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
Animal proof-of-concept studies have shown that roundworms have a protective effect against immune-dysregulated disorders, but it has been difficult to study in human trials without individual nematode-derived molecules to develop and test. We discovered that ascarosides, molecules that are secreted by diverse nematodes, suppress asthma in a rodent model via modulation of expression of Il33, a key epithelial cytokine for induction of type 2 immunity, in addition to decreasing memory-type pathogenic Th2 cells and ILC2s and increasing the Il10-expressing subpopulation of interstitial macrophages in the lung. Thus, ascarosides suppress type 2 immune response by affecting both innate and adaptive immunity and could define a potent class of small molecule drugs to treat allergic airway diseases. Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.
Collapse
|
39
|
Zhou L, Li M, Cui P, Tian M, Xu Y, Zheng X, Zhang K, Li G, Wang X. Arrestin-Coding Genes Regulate Endocytosis, Sporulation, Pathogenicity, and Stress Resistance in Arthrobotrys oligospora. Front Cell Infect Microbiol 2022; 12:754333. [PMID: 35252023 PMCID: PMC8890662 DOI: 10.3389/fcimb.2022.754333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Arrestins are a family of scaffold proteins that play a crucial role in regulating numerous cellular processes, such as GPCR signaling. The Arthrobotrys oligospora arrestin family contains 12 members, which have highly conserved N-terminal and C-terminal domains. In the presence of ammonia, A. oligospora can change its lifestyle from saprotrophic to carnivorous. During this transition, the expression pattern of arrestin-coding (AoArc) genes was markedly upregulated. Therefore, we disrupted seven AoArc genes from A. oligospora to identify their functions. Although individual arrestin mutant strains display similar pathogenesis, phenotypes, and stress resistance, the fundamental data on the roles of AoArc genes in A. oligospora are obtained in this study. Membrane endocytosis in AoArc mutants was significantly reduced. Meanwhile, the capacity of trap device formation against nematodes and ammonia was impaired due to AoArc deletions. We also found that AoArc genes could regulate conidial phenotypes, cell nuclear distribution, pH response, and stress resistance. Results of qRT-PCR assays revealed that sporulation-regulated genes were affected after the deletion of AoArc genes. In particular, among the 12 arrestins, AoArc2 mediates pH signaling in the fungus A. oligospora. Notably, combined with the classical paradigm of arrestin–GPCR signal transduction, we suggest that arrestin-regulated trap formation in A. oligospora may be directly linked to the receptor endocytosis pathway.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Mengfei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Peijie Cui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Mengqing Tian
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ya Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xi Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Guohong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- *Correspondence: Xin Wang, ; Guohong Li,
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- *Correspondence: Xin Wang, ; Guohong Li,
| |
Collapse
|
40
|
Wernet V, Wäckerle J, Fischer R. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genetics 2022; 220:iyab153. [PMID: 34849851 PMCID: PMC8733638 DOI: 10.1093/genetics/iyab153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation, and pathogenicity. In this study, we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| |
Collapse
|
41
|
Isolation, Identification, and Characterization of the Nematophagous Fungus Arthrobotrys oligospora from Kyrgyzstan. Acta Parasitol 2021; 66:1349-1365. [PMID: 34021467 DOI: 10.1007/s11686-021-00404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Predatory fungi have been the subject of fundamental studies and their potential as biological control agents against parasitic plant nematodes has been assessed. The aim of the present study was to isolate and identify predatory fungi, performing in vitro and in vivo screening to select highly active strains to control parasitic nematodes. METHODS Different nutrient media were used to isolate predatory fungi and determine their morphological and cultural properties. Identification was performed by classical and molecular biology methods. In vitro and in vivo screening was conducted to select highly active strains. RESULTS Twelve isolates of Arthrobotrys oligospora (Orbiliomycetes) found in nature were investigated for their predaceous efficacy against garlic stem nematodes (Ditylenchus dipsaci). The effect of temperature and pH on the growth rate and trap formation of representative isolates was determined and isolates were characterized by light microscopy and molecular markers. BLAST was used to sequence the rDNA internal transcribed spacer of A. oligospora isolate KTMU-7. The optimum growth of A. oligospora strains was achieved at 20-25 °C on 1-2% corn meal agar (CMA) within the pH range of 5.6-8.6. The factors responsible for the trap formation of these fungal strains were identified. In vitro and in vivo experiments were performed to evaluate the nematicidal activity of local predatory fungal isolates against soil nematodes. CONCLUSIONS Preliminary studies proved A. oligospora to be a potentially effective biological control agent, immobilizing 85.7 ± 2.19% of garlic stem nematodes in soil from the rhizosphere of potato plants.
Collapse
|
42
|
Erdogan H, Cruzado-Gutierrez K, Stevens G, Shapiro-Ilan D, Kaplan F, Alborn H, Lewis E. Nematodes Follow a Leader. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aggregated movement and population structure are known in entomopathogenic nematodes, which are obligate insect parasites. Aggregation behavior in the absence of external stimuli suggests communication among individuals, often in the form of trail-following, which has not been shown by nematodes of any kind. Interactions among individuals are an essential basis of following behaviors and can have significant fitness consequences. We explored intraspecific and interspecific interactions among three Steinernema species (S. glaseri, S. carpocapsae, and S. feltiae) in terms of trail following, and fitness outcomes of following heterospecific individuals. We found that the following behavior is context dependent. Following behavior among conspecifics was significantly increased when the lead nematode had prior contact with host cuticle. However, we did not find a clear association between the following response to heterospecific IJs and their reproductive success in a co-infected host.
Collapse
|
43
|
Wernet N, Wernet V, Fischer R. The small-secreted cysteine-rich protein CyrA is a virulence factor participating in the attack of Caenorhabditis elegans by Duddingtonia flagrans. PLoS Pathog 2021; 17:e1010028. [PMID: 34735554 PMCID: PMC8568293 DOI: 10.1371/journal.ppat.1010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a diverse and intriguing group of fungi that live saprotrophically but can switch to a predatory lifestyle when starving and in the presence of nematodes. NTF like Arthrobotrys oligospora or Duddingtonia flagrans produce adhesive trapping networks to catch and immobilize nematodes. After penetration of the cuticle, hyphae grow and develop inside the worm and secrete large amounts of hydrolytic enzymes for digestion. In many microbial pathogenic interactions small-secreted proteins (SSPs) are used to manipulate the host. The genome of D. flagrans encodes more than 100 of such putative SSPs one of which is the cysteine-rich protein CyrA. We have chosen this gene for further analysis because it is only found in NTF and appeared to be upregulated during the interaction. We show that the cyrA gene was transcriptionally induced in trap cells, and the protein accumulated at the inner rim of the hyphal ring before Caenorhabditis elegans capture. After worm penetration, the protein appeared at the fungal infection bulb, where it is likely to be secreted with the help of the exocyst complex. A cyrA-deletion strain was less virulent, and the time from worm capture to paralysis was extended. Heterologous expression of CyrA in C. elegans reduced its lifespan. CyrA accumulated in C. elegans in coelomocytes where the protein possibly is inactivated. This is the first example that SSPs may be important in predatory microbial interactions.
Collapse
Affiliation(s)
- Nicole Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Karlsruhe, Germany
| |
Collapse
|
44
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
45
|
Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiß G, Keller J, Bunzel M, Fischer R. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun 2021; 12:5462. [PMID: 34526503 PMCID: PMC8443565 DOI: 10.1038/s41467-021-25535-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes.
Collapse
Affiliation(s)
- Xi Yu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiaodi Hu
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Gerald Brenner-Weiß
- Karlsruhe Institute of Technology (KIT) - North Campus, Institute of Functional Interfaces, Department of Bioengineering and Biosystems, Eggenstein Leopoldshafen, Germany
| | - Julia Keller
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Adenauerring 20 A, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute of Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
46
|
Chen SA, Lin HC, Schroeder FC, Hsueh YP. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021; 217:5995318. [PMID: 33724405 DOI: 10.1093/genetics/iyaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator-prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
47
|
Huang TY, Lee YY, Vidal-Diez de Ulzurrun G, Hsueh YP. Forward genetic screens identified mutants with defects in trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3-GENES GENOMES GENETICS 2021; 11:6055540. [PMID: 33585866 PMCID: PMC8022932 DOI: 10.1093/g3journal/jkaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
Nematode-trapping fungi (NTF) are carnivorous fungi that prey on nematodes under nutrient-poor conditions via specialized hyphae that function as traps. The molecular mechanisms involved in the interactions between NTF and their nematode prey are largely unknown. In this study, we conducted forward genetic screens to identify potential genes and pathways that are involved in trap morphogenesis and predation in the NTF Arthrobotrys oligospora. Using Ethyl methanesulfonate and UV as the mutagens, we generated 5552 randomly mutagenized A. oligospora strains and identified 15 mutants with strong defects in trap morphogenesis. Whole-genome sequencing and bioinformatic analyses revealed mutations in genes with roles in signaling, transcription or membrane transport that may contribute to the defects of trap morphogenesis in these mutants. We further conducted functional analyses on a candidate gene, YBP-1, and demonstrate that mutation of that gene was causative of the phenotypes observed in one of the mutants. The methods established in this study might provide helpful insights for establishing forward genetic screening methods for other non-model fungal species.
Collapse
Affiliation(s)
- Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | | | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, 128 Academia Road, Section 2, Nangang, Taipei, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
48
|
Aleklett K, Boddy L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol Evol 2021; 36:787-796. [PMID: 34172318 DOI: 10.1016/j.tree.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
As human beings, behaviours make up our everyday lives. What we do from the moment we wake up to the moment we go back to sleep at night can all be classified and studied through the concepts of behavioural ecology. The same applies to all vertebrates and, to some extent, invertebrates. Fungi are, in most people's eyes perhaps, the eukaryotic multicellular organisms with which we humans share the least commonalities. However, they still express behaviours, and we argue that we could obtain a better understanding of their lives - although they are very different from ours - through the lens of behavioural ecology. Moreover, insights from fungal behaviour may drive a better understanding of behavioural ecology in general.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden.
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
49
|
Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chem Biol 2021; 16:1050-1058. [PMID: 34019369 DOI: 10.1021/acschembio.1c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bacterivorous and parasitic nematodes secrete signaling molecules called ascarosides that play a central role regulating their behavior and development. Combining stable-isotope labeling and mass spectrometry-based comparative metabolomics, here we show that ascarosides are taken up from the environment and metabolized by a wide range of phyla, including plants, fungi, bacteria, and mammals, as well as nematodes. In most tested eukaryotes and some bacteria, ascarosides are metabolized into derivatives with shortened fatty acid side chains, analogous to ascaroside biosynthesis in nematodes. In plants and C. elegans, labeled ascarosides were additionally integrated into larger, modular metabolites, and use of different ascaroside stereoisomers revealed the stereospecificity of their biosynthesis. The finding that nematodes extensively metabolize ascarosides taken up from the environment suggests that pheromone editing may play a role in conspecific and interspecific interactions. Moreover, our results indicate that plants, animals, and microorganisms may interact with associated nematodes via manipulation of ascaroside signaling.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Anshu Kumari
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Hung Nguyen
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Pratyush Routray
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrea Choe
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek 2021; 114:885-912. [PMID: 33893903 DOI: 10.1007/s10482-021-01577-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022]
Abstract
Plant parasitic nematodes (Root-knot nematodes, Meloidogyne spp.) are rounded worms, microscopic, and cause many agricultural economic losses. Their attacks have a direct impact on the productivity of cultivated crops by reducing their fruit quantity. Chemical control is widespread all over the world, but biological control is the most effective way to reduce the number of pests that infect crops, particularly by the use of microorganisms like fungi and bacteria. Biological control is rapidly evolving, and more products are being sold worldwide over time. They can be produced by fungi, bacteria, or actinomycetes that can destruct plant parasite nematodes and feed on them. Nematophagous microorganisms as the natural enemies of nematodes have a promising way of controlling nematodes. Some of them create net-like substances and traps to take the worms from outside and finally kill them. Other parasites serve as internal parasites in order to produce toxins and to produce virulence to kill nematodes. Comprehension of the molecular basis for microbial nematode interactions gives important insights into how successful biological nematode control agents can be created. We discuss recent advances in our understanding of nematodes and nematophagous microorganisms, with an emphasis on molecular mechanisms that infect nematodes with nematophagous microorganisms and on nematode safety from pathogenic attacks. Finally, we addressed numerous key areas for future research and development, including possible approaches to the application of our recent expertise in the development of successful biocontrol strategies.
Collapse
|