1
|
Ding X, Chen Y, Du L, Li J, Meng X, Lv H, Tong B, Niu G, Jian T, Chen J. Benefits of inulin and fructo-oligosaccharides on high fat diet-induced type 2 diabetes mellitus by regulating the gut microbiota in mice. J Nutr Biochem 2025; 141:109908. [PMID: 40122150 DOI: 10.1016/j.jnutbio.2025.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is pathologically associated with gut microbiota imbalance, which is implicated in disease progression through metabolic and inflammatory pathways. The therapeutic potential of inulin, a well-characterized prebiotic, has been explored to mitigate T2DM via microbiota modulation. However, the efficacy of this intervention, with its performance dependent on the degree of polymerization (DP), requires further investigation. This study assessed the therapeutic roles of inulin (DP3-60) and fructo-oligosaccharides (FOS, DP3-10) in T2DM management. Dietary administration of these prebiotic compounds demonstrated a significant capacity to alleviate multiple metabolic pathologies, including obesity, insulin resistance, systemic inflammation, oxidative stress, dyslipidemia and hepatic steatosis in high-fat diet (HFD)-fed induced T2DM mice. Significant superior efficacy was observed in FOS for ameliorating glucose metabolic dysregulation, adipocyte hypertrophy, liver weight, and histopathological alterations in colonic tissue, while inulin exhibited greater potency in alleviating oxidative stress. Both inulin and FOS enhanced gut microbiota diversity and richness in T2DM mice, accompanied by a significant reduction in Firmicutes/Bacteroidetes ratio. Notably, the S24-7 family emerged as a crucial microbial taxon modulated by both inulin and FOS. Furthermore, FOS demonstrated superior capacity to restore HFD-induced gut microbiota. Taxonomically significant amplicon sequence variants (ASVs), which were altered by HFD and modulated by inulin and FOS, exhibited distinct taxonomic profiles between the two compounds. This study provides preliminary evidence that the biological effects and beneficial properties of inulin-type fructans exhibit DP-dependent variations, which may enhance their efficient utilization in metabolic disorders.
Collapse
Affiliation(s)
- Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lanlan Du
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri B, Blekhman R, Willis AD, Yu MK, Fernàndez-Guerra A, Füssel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 2025; 12:RP89862. [PMID: 40377187 PMCID: PMC12084026 DOI: 10.7554/elife.89862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
Affiliation(s)
- Iva Veseli
- Biophysical Sciences Program, The University of ChicagoChicagoUnited States
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Yiqun T Chen
- Data Science Institute and Department of Biomedical Data Science, Stanford UniversityStanfordUnited States
| | - Matthew S Schechter
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of BremenBremenGermany
| | - Emily C Fogarty
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Andrea R Watson
- Department of Medicine, The University of ChicagoChicagoUnited States
- Committee on Microbiology, The University of ChicagoChicagoUnited States
| | - Bana Jabri
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Ran Blekhman
- Department of Medicine, The University of ChicagoChicagoUnited States
| | - Amy D Willis
- Department of Biostatistics, University of WashingtonSeattleUnited States
| | - Michael K Yu
- Toyota Technological Institute at ChicagoChicagoUnited States
| | - Antonio Fernàndez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of CopenhagenCopenhagenDenmark
| | - Jessika Füssel
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
| | - A Murat Eren
- Department of Medicine, The University of ChicagoChicagoUnited States
- Institute for Chemistry and Biology of the Marine Environment, University of OldenburgOldenburgGermany
- Marine ‘Omics Bridging Group, Max Planck Institute for Marine MicrobiologyBremenGermany
- Helmholtz Institute for Functional Marine BiodiversityOldenburgGermany
- Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
3
|
Andreu-Sánchez S, Blanco-Míguez A, Wang D, Golzato D, Manghi P, Heidrich V, Fackelmann G, Zhernakova DV, Kurilshikov A, Valles-Colomer M, Weersma RK, Zhernakova A, Fu J, Segata N. Global genetic diversity of human gut microbiome species is related to geographic location and host health. Cell 2025:S0092-8674(25)00416-7. [PMID: 40311618 DOI: 10.1016/j.cell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/23/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
The human gut harbors thousands of microbial species, each exhibiting significant inter-individual genetic variability. Although many studies have associated microbial relative abundances with human-health-related phenotypes, the substantial intraspecies genetic variability of gut microbes has not yet been comprehensively considered, limiting the potential of linking such genetic traits with host conditions. Here, we analyzed 32,152 metagenomes from 94 microbiome studies across the globe to investigate the human microbiome intraspecies genetic diversity. We reconstructed 583 species-specific phylogenies and linked them to geographic information and species' horizontal transmissibility. We identified 484 microbial-strain-level associations with 241 host phenotypes, encompassing human anthropometric factors, biochemical measurements, diseases, and lifestyle. We observed a higher prevalence of a Ruminococcus gnavus clade in nonagenarians correlated with distinct plasma bile acid profiles and a melanoma and prostate-cancer-associated Collinsella clade. Our large-scale intraspecies genetic analysis highlights the relevance of strain diversity as it relates to human health.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | - Daoming Wang
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Golzato
- Department of CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of CIBIO, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of CIBIO, University of Trento, Trento, Italy
| | | | - Daria V Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Mireia Valles-Colomer
- Department of CIBIO, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Nicola Segata
- Department of CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
4
|
Davison S, Mascellani Bergo A, Ward Z, Sackett A, Strykova A, Jaimes JD, Travis D, Clayton JB, Murphy HW, Danforth MD, Smith BK, Blekhman R, Fuh T, Niatou Singa FS, Havlik J, Petrzelkova K, Gomez A. Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism. NPJ Biofilms Microbiomes 2025; 11:33. [PMID: 39984469 PMCID: PMC11845621 DOI: 10.1038/s41522-025-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Cardiometabolic disease is the leading cause of death in zoo apes; yet its etiology remains unknown. Here, we investigated compositional and functional microbial markers in fecal samples from 57 gorillas across U.S. zoos, 20 of which are diagnosed with cardiovascular disease, in contrast with 17 individuals from European zoos and 19 wild gorillas from Central Africa. Results show that zoo-housed gorillas in the U.S. exhibit the most diverse gut microbiomes and markers of increased protein and carbohydrate fermentation, at the expense of microbial metabolic traits associated with plant cell-wall degradation. Machine learning models identified unique microbial traits in U.S. gorillas with cardiometabolic distress; including reduced metabolism of sulfur-containing amino acids and hexoses, increased abundance of potential enteric pathogens, and low fecal butyrate and propionate production. These findings show that cardiometabolic disease in gorillas is potentially associated with altered gut microbial function, influenced by zoo-specific diets and environments.
Collapse
Affiliation(s)
- Samuel Davison
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zoe Ward
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - April Sackett
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Anna Strykova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Dominic Travis
- The Marine Mammal Center, Sausalito, CA, USA
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jonathan B Clayton
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hayley W Murphy
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | - Marietta D Danforth
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | | | - Ran Blekhman
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terence Fuh
- WWF Central African Republic, Bayanga, Central African Republic
| | | | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Klara Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Brno, Czech Republic.
- Liberec Zoo, Liberec, Czech Republic.
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA.
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
5
|
Jiang Y, Wang Y, Che L, Yang S, Zhang X, Lin Y, Shi Y, Zou N, Wang S, Zhang Y, Zhao Z, Li S. GutMetaNet: an integrated database for exploring horizontal gene transfer and functional redundancy in the human gut microbiome. Nucleic Acids Res 2025; 53:D772-D782. [PMID: 39526401 PMCID: PMC11701528 DOI: 10.1093/nar/gkae1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Metagenomic studies have revealed the critical roles of complex microbial interactions, including horizontal gene transfer (HGT) and functional redundancy (FR), in shaping the gut microbiome's functional capacity and resilience. However, the lack of comprehensive data integration and systematic analysis approaches has limited the in-depth exploration of HGT and FR dynamics across large-scale gut microbiome datasets. To address this gap, we present GutMetaNet (https://gutmetanet.deepomics.org/), a first-of-its-kind database integrating extensive human gut microbiome data with comprehensive HGT and FR analyses. GutMetaNet contains 21 567 human gut metagenome samples with whole-genome shotgun sequencing data related to various health conditions. Through systematic analysis, we have characterized the taxonomic profiles and FR profiles, and identified 14 636 HGT events using a shared reference genome database across the collected samples. These HGT events have been curated into 8049 clusters, which are annotated with categorized mobile genetic elements, including transposons, prophages, integrative mobilizable elements, genomic islands, integrative conjugative elements and group II introns. Additionally, GutMetaNet incorporates automated analyses and visualizations for the HGT events and FR, serving as an efficient platform for in-depth exploration of the interactions among gut microbiome taxa and their implications for human health.
Collapse
Affiliation(s)
- Yiqi Jiang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yanfei Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
| | - Lijia Che
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuo Yang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
| | - Yu Lin
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yucheng Shi
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Nanhe Zou
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuai Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yuanzheng Zhang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Zicheng Zhao
- OmicLab Limited, Unit 917, 19 Science Park West Avenue, New Territories, Hong Kong
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| |
Collapse
|
6
|
Manghi P, Bhosle A, Wang K, Marconi R, Selma-Royo M, Ricci L, Asnicar F, Golzato D, Ma W, Hang D, Thompson KN, Franzosa EA, Nabinejad A, Tamburini S, Rimm EB, Garrett WS, Sun Q, Chan AT, Valles-Colomer M, Arumugam M, Bermingham KM, Giordano F, Davies R, Hadjigeorgiou G, Wolf J, Strowig T, Berry SE, Huttenhower C, Spector TD, Segata N, Song M. Coffee consumption is associated with intestinal Lawsonibacter asaccharolyticus abundance and prevalence across multiple cohorts. Nat Microbiol 2024; 9:3120-3134. [PMID: 39558133 PMCID: PMC11602726 DOI: 10.1038/s41564-024-01858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Although diet is a substantial determinant of the human gut microbiome, the interplay between specific foods and microbial community structure remains poorly understood. Coffee is a habitually consumed beverage with established metabolic and health benefits. We previously found that coffee is, among >150 items, the food showing the highest correlation with microbiome components. Here we conducted a multi-cohort, multi-omic analysis of US and UK populations with detailed dietary information from a total of 22,867 participants, which we then integrated with public data from 211 cohorts (N = 54,198). The link between coffee consumption and microbiome was highly reproducible across different populations (area under the curve of 0.89), largely driven by the presence and abundance of the species Lawsonibacter asaccharolyticus. Using in vitro experiments, we show that coffee can stimulate growth of L. asaccharolyticus. Plasma metabolomics on 438 samples identified several metabolites enriched among coffee consumers, with quinic acid and its potential derivatives associated with coffee and L. asaccharolyticus. This study reveals a metabolic link between a specific gut microorganism and a specific food item, providing a framework for the understanding of microbial dietary responses at the biochemical level.
Collapse
Affiliation(s)
- Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
- Computational Biology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Amrisha Bhosle
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai Wang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Liviana Ricci
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Wenjie Ma
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong Hang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey N Thompson
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sabrina Tamburini
- IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University, Venice, Italy
| | - Eric B Rimm
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy
- MELIS Department, University Pompeu Fabra, Barcelona, Spain
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kate M Bermingham
- Department of Nutritional Sciences, King's College London, London, UK
| | | | | | | | | | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | - Mingyang Song
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| |
Collapse
|
7
|
Velsko IM, Fagernäs Z, Tromp M, Bedford S, Buckley HR, Clark G, Dudgeon J, Flexner J, Galipaud JC, Kinaston R, Lewis CM, Matisoo-Smith E, Nägele K, Ozga AT, Posth C, Rohrlach AB, Shing R, Simanjuntak T, Spriggs M, Tamarii A, Valentin F, Willie E, Warinner C. Exploring the potential of dental calculus to shed light on past human migrations in Oceania. Nat Commun 2024; 15:10191. [PMID: 39582065 PMCID: PMC11586442 DOI: 10.1038/s41467-024-53920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
The Pacific islands and Island Southeast Asia have experienced multiple waves of human migrations, providing a case study for exploring the potential of ancient microbiomes to study human migration. We perform a metagenomic study of archaeological dental calculus from 102 individuals, originating from 10 Pacific islands and 1 island in Island Southeast Asia spanning ~3000 years. Oral microbiome DNA preservation in calculus is far higher than that of human DNA in archaeological bone, and comparable to that of calculus from temperate regions. Oral microbial community composition is minimally driven by time period and geography in Pacific and Island Southeast Asia calculus, but is found to be distinctive compared to calculus from Europe, Africa, and Asia. Phylogenies of individual bacterial species in Pacific and Island Southeast Asia calculus reflect geography. Archaeological dental calculus shows good preservation in tropical regions and the potential to yield information about past human migrations, complementing studies of the human genome.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Copenhagen, Globe Institute, Copenhagen, Denmark
| | - Monica Tromp
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Southern Pacific Archaeological Research, Archaeology Programme, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stuart Bedford
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australia
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hallie R Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geoffrey Clark
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australia
| | - John Dudgeon
- Department of Anthropology, Idaho State University, Pocatello, ID, USA
| | - James Flexner
- Archaeology, School of Humanities, University of Sydney, Sydney, Australia
| | | | | | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Elizabeth Matisoo-Smith
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew T Ozga
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Truman Simanjuntak
- National Research and Development Centre for Archaeology, Jakarta, Indonesia
| | - Matthew Spriggs
- Vanuatu Cultural Centre, Port-Vila, Vanuatu
- School of Archaeology and Anthropology, College of Arts & Social Sciences, The Australian National University, Canberra, Australia
| | | | | | | | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Archaeogenetics Unit, Leibniz Institute for Infection Biology and Natural Products Research Hans Knoll Institute, Jena, Germany.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Romero-Rodríguez A, Ruíz-Villafán B, Sánchez S, Paredes-Sabja D. Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Microbiol Res 2024; 288:127870. [PMID: 39173554 DOI: 10.1016/j.micres.2024.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.
Collapse
Affiliation(s)
- A Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México 04510, Mexico.
| | - B Ruíz-Villafán
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - S Sánchez
- Laboratorio de Microbiología Industrial. Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Fleskes RE, Johnson SJ, Honap TP, Abin CA, Gilmore JK, Oubré L, Bueschgen WD, Abel SM, Ofunniyin AA, Lewis CM, Schurr TG. Oral microbial diversity in 18th century African individuals from South Carolina. Commun Biol 2024; 7:1213. [PMID: 39342044 PMCID: PMC11439080 DOI: 10.1038/s42003-024-06893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
As part of the Anson Street African Burial Ground Project, we characterized the oral microbiomes of twelve 18th century African-descended individuals (Ancestors) from Charleston, South Carolina, USA, to study their oral health and diet. We found that their oral microbiome composition resembled that of other historic (18th-19th century) dental calculus samples but differed from that of modern samples, and was not influenced by indicators of oral health and wear observed in the dentition. Phylogenetic analysis of the oral bacteria, Tannerella forsythia and Pseudoramibacter alactolyticus, revealed varied patterns of lineage diversity and replacement in the Americas, with the Ancestors carrying strains similar to historic period Europeans and Africans. Functional profiling of metabolic pathways suggested that the Ancestors consumed a diet low in animal protein. Overall, our study reveals important insights into the oral microbial histories of African-descended individuals, particularly oral health and diet in colonial North American enslavement contexts.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, Dartmouth College, Hanover, NH, USA.
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Joanna K Gilmore
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - La'Sheia Oubré
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
| | | | - Suzanne M Abel
- Charleston County Coroner's Office, North Charleston, SC, USA
| | - Ade A Ofunniyin
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA
- Department of Sociology and Anthropology, College of Charleston, Charleston, SC, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, Norman, OK, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
| | - Theodore G Schurr
- The Anson Street African Burial Ground Project, Mount Pleasant, SC, USA.
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
12
|
Alencar RM, Martínez JG, Machado VN, Alzate JF, Ortiz-Ojeda CP, Matias RR, Benzaquem DC, Santos MCF, Assunção EN, Lira EC, Astolfi-Filho S, Hrbek T, Farias IP, Fantin C. Preliminary profile of the gut microbiota from amerindians in the Brazilian amazon experiencing a process of transition to urbanization. Braz J Microbiol 2024; 55:2345-2354. [PMID: 38913252 PMCID: PMC11405645 DOI: 10.1007/s42770-024-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
The Yanomami are one of the oldest indigenous tribes in the Amazon and are direct descendants of the first people to colonize South America 12,000 years ago. They are located on the border between Venezuela and Brazil, with the Venezuelan side remaining uncontacted. While they maintain a hunter-gatherer society, they are currently experiencing contact with urbanized populations in Brazil. The human gut microbiota of traditional communities has become the subject of recent studies due to the Westernization of their diet and the introduction of antibiotics and other chemicals, which have affected microbial diversity in indigenous populations, thereby threatening their existence. In this study, we preliminarily characterized the diversity of the gut microbiota of the Yanomami, a hunter-gatherer society from the Amazon, experiencing contact with urbanized populations. Similarly, we compared their diversity with the population in Manaus, Amazonas. A metabarcoding approach of the 16 S rRNA gene was carried out on fecal samples. Differences were found between the two populations, particularly regarding the abundance of genera (e.g., Prevotella and Bacteroides) and the higher values of the phyla Bacteroidetes over Firmicutes, which were significant only in the Yanomami. Some bacteria were found exclusively in the Yanomami (Treponema and Succinivibrio). However, diversity was statistically equal between them. In conclusion, the composition of the Yanomami gut microbiota still maintains the profile characteristic of a community with a traditional lifestyle. However, our results suggest an underlying Westernization process of the Yanomami microbiota when compared with that of Manaus, which must be carefully monitored by authorities, as the loss of diversity can be a sign of growing danger to the health of the Yanomami.
Collapse
Affiliation(s)
- Rodrigo M Alencar
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - José G Martínez
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil.
- Grupo de investigación Biociencias, Facultad de Ciencias de la Salud, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia.
| | - Valéria N Machado
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
| | - Juan F Alzate
- National Center for Genomic Sequencing, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Cinthya P Ortiz-Ojeda
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
- Universidad Tecnológica del Perú, Lima, Peru
| | - Rosiane R Matias
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Denise C Benzaquem
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maria C F Santos
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Enedina N Assunção
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil
| | - Evelyn C Lira
- Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Tomas Hrbek
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
- Department of Biology, Trinity University, San Antonio, USA
| | - Izeni P Farias
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus, Brazil
| | - Cleiton Fantin
- Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
13
|
Piperni E, Nguyen LH, Manghi P, Kim H, Pasolli E, Andreu-Sánchez S, Arrè A, Bermingham KM, Blanco-Míguez A, Manara S, Valles-Colomer M, Bakker E, Busonero F, Davies R, Fiorillo E, Giordano F, Hadjigeorgiou G, Leeming ER, Lobina M, Masala M, Maschio A, McIver LJ, Pala M, Pitzalis M, Wolf J, Fu J, Zhernakova A, Cacciò SM, Cucca F, Berry SE, Ercolini D, Chan AT, Huttenhower C, Spector TD, Segata N, Asnicar F. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 2024; 187:4554-4570.e18. [PMID: 38981480 DOI: 10.1016/j.cell.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.
Collapse
Affiliation(s)
- Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Hanseul Kim
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alberto Arrè
- Department CIBIO, University of Trento, Trento, Italy; Zoe Ltd, London, UK
| | - Kate M Bermingham
- Zoe Ltd, London, UK; Department of Nutritional Sciences, King's College London, London, UK
| | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | | | - Emily R Leeming
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy; Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | | |
Collapse
|
14
|
de Jonge PA, van den Born BJH, Zwinderman AH, Nieuwdorp M, Dutilh BE, Herrema H. Phylogeny and disease associations of a widespread and ancient intestinal bacteriophage lineage. Nat Commun 2024; 15:6346. [PMID: 39068184 PMCID: PMC11283538 DOI: 10.1038/s41467-024-50777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Viruses are core components of the human microbiome, impacting health through interactions with gut bacteria and the immune system. Most human microbiome viruses are bacteriophages, which exclusively infect bacteria. Until recently, most gut virome studies focused on low taxonomic resolution (e.g., viral operational taxonomic units), hampering population-level analyses. We previously identified an expansive and widespread bacteriophage lineage in inhabitants of Amsterdam, the Netherlands. Here, we study their biodiversity and evolution in various human populations. Based on a phylogeny using sequences from six viral genome databases, we propose the Candidatus order Heliusvirales. We identify heliusviruses in 82% of 5441 individuals across 39 studies, and in nine metagenomes from humans that lived in Europe and North America between 1000 and 5000 years ago. We show that a large lineage started to diversify when Homo sapiens first appeared some 300,000 years ago. Ancient peoples and modern hunter-gatherers have distinct Ca. Heliusvirales populations with lower richness than modern urbanized people. Urbanized people suffering from type 1 and type 2 diabetes, as well as inflammatory bowel disease, have higher Ca. Heliusvirales richness than healthy controls. We thus conclude that these ancient core members of the human gut virome have thrived with increasingly westernized lifestyles.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology; Biostatistics and Bioinformatics; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics; Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity; Faculty of Biological Sciences; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hilde Herrema
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC, Watson AR, Jabri BA, Blekhman R, Willis AD, Yu MK, Fernandez-Guerra A, Fussel J, Eren AM. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540289. [PMID: 37293035 PMCID: PMC10245760 DOI: 10.1101/2023.05.10.540289] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health versus IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.
Collapse
|
16
|
Nanetti E, Scicchitano D, Palladino G, Interino N, Corlatti L, Pedrotti L, Zanetti F, Pagani E, Esposito E, Brambilla A, Grignolio S, Marotti I, Turroni S, Fiori J, Rampelli S, Candela M. The Alpine ibex (Capra ibex) gut microbiome, seasonal dynamics, and potential application in lignocellulose bioconversion. iScience 2024; 27:110194. [PMID: 38989465 PMCID: PMC11233967 DOI: 10.1016/j.isci.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings revealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout to fully exploit the available food. Besides confirming the importance of the host-associated microbiome in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level genome bins and identified minimal gut microbiome community modules of 11-14 interacting strains as a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds, such as volatile fatty acids.
Collapse
Affiliation(s)
- Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Nicolò Interino
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Corlatti
- Stelvio National Park, 23032 Bormio, Italy
- University of Freiburg, 79098 Freiburg, Germany
| | | | - Federica Zanetti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Elena Pagani
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (CH), Switzerland
- Centro Studi Fauna Alpina, Parco Nazionale Gran Paradiso, Loc. Degioz 11, 11010 Valsavarenche, Aosta, Italy
| | - Stefano Grignolio
- University of Ferrara, Department of Life Science and Biotechnology, via Borsari 46, I-44121 Ferrara, Italy
| | - Ilaria Marotti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| |
Collapse
|
17
|
Lozada‐Martinez ID, Lozada‐Martinez LM, Anaya J. Gut microbiota in centenarians: A potential metabolic and aging regulator in the study of extreme longevity. Aging Med (Milton) 2024; 7:406-413. [PMID: 38975304 PMCID: PMC11222757 DOI: 10.1002/agm2.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Centenarians, those aged 100 years or older, are considered the most successful biological aging model in humans. This population is commonly characterized by a low prevalence of chronic diseases, with favorable maintenance of functionality and independence, thus determining a health phenotype of successful aging. There are many factors usually associated with extreme longevity: genetics, lifestyles, diet, among others. However, it is most likely a multifactorial condition where protective factors contribute individually to some extent. The gut microbiota (GM) has emerged as a potential factor associated with the establishment of a favorable health phenotype that allows for extreme longevity, as seen in centenarians. To understand the possible impact generated by the GM, its changes, and the probable causes for successful aging, the aim of this review was to synthesize evidence on the role of the GM as a potential protective factor for achieving extreme longevity, using its relationship with centenarians.
Collapse
Affiliation(s)
- Ivan David Lozada‐Martinez
- Health Research and Innovation Center at Coosalud EPSCartagenaColombia
- Universidad de la CostaBarranquillaColombia
| | | | - Juan‐Manuel Anaya
- Health Research and Innovation Center at Coosalud EPSCartagenaColombia
- Universidad de la CostaBarranquillaColombia
| |
Collapse
|
18
|
Kok CR, Rose DJ, Cui J, Whisenhunt L, Hutkins R. Identification of carbohydrate gene clusters obtained from in vitro fermentations as predictive biomarkers of prebiotic responses. BMC Microbiol 2024; 24:183. [PMID: 38796418 PMCID: PMC11127362 DOI: 10.1186/s12866-024-03344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Prebiotic fibers are non-digestible substrates that modulate the gut microbiome by promoting expansion of microbes having the genetic and physiological potential to utilize those molecules. Although several prebiotic substrates have been consistently shown to provide health benefits in human clinical trials, responder and non-responder phenotypes are often reported. These observations had led to interest in identifying, a priori, prebiotic responders and non-responders as a basis for personalized nutrition. In this study, we conducted in vitro fecal enrichments and applied shotgun metagenomics and machine learning tools to identify microbial gene signatures from adult subjects that could be used to predict prebiotic responders and non-responders. RESULTS Using short chain fatty acids as a targeted response, we identified genetic features, consisting of carbohydrate active enzymes, transcription factors and sugar transporters, from metagenomic sequencing of in vitro fermentations for three prebiotic substrates: xylooligosacharides, fructooligosacharides, and inulin. A machine learning approach was then used to select substrate-specific gene signatures as predictive features. These features were found to be predictive for XOS responders with respect to SCFA production in an in vivo trial. CONCLUSIONS Our results confirm the bifidogenic effect of commonly used prebiotic substrates along with inter-individual microbial responses towards these substrates. We successfully trained classifiers for the prediction of prebiotic responders towards XOS and inulin with robust accuracy (≥ AUC 0.9) and demonstrated its utility in a human feeding trial. Overall, the findings from this study highlight the practical implementation of pre-intervention targeted profiling of individual microbiomes to stratify responders and non-responders.
Collapse
Affiliation(s)
- Car Reen Kok
- Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Devin J Rose
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Food Science and Technology, University of Nebraska, 268 Food Innovation Center, Lincoln, NE, 68588, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lisa Whisenhunt
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert Hutkins
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Food Science and Technology, University of Nebraska, 268 Food Innovation Center, Lincoln, NE, 68588, USA.
- Department of Food Science and Technology, University of Nebraska, 258 Food Innovation Center, Lincoln, NE, 68588-6205, USA.
| |
Collapse
|
19
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
20
|
García-Bayona L, Said N, Coyne MJ, Flores K, Elmekki NM, Sheahan ML, Camacho AG, Hutt K, Yildiz FH, Kovács ÁT, Waldor MK, Comstock LE. A pervasive large conjugative plasmid mediates multispecies biofilm formation in the intestinal microbiota increasing resilience to perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590671. [PMID: 38746121 PMCID: PMC11092513 DOI: 10.1101/2024.04.29.590671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.
Collapse
|
21
|
Huang KD, Amend L, Gálvez EJC, Lesker TR, de Oliveira R, Bielecka A, Blanco-Míguez A, Valles-Colomer M, Ruf I, Pasolli E, Buer J, Segata N, Esser S, Strowig T, Kehrmann J. Establishment of a non-Westernized gut microbiota in men who have sex with men is associated with sexual practices. Cell Rep Med 2024; 5:101426. [PMID: 38366600 PMCID: PMC10982974 DOI: 10.1016/j.xcrm.2024.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Romulo de Oliveira
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Isabel Ruf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Stefan Esser
- Department of Dermatology and Venerology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Moraïs S, Winkler S, Zorea A, Levin L, Nagies FSP, Kapust N, Lamed E, Artan-Furman A, Bolam DN, Yadav MP, Bayer EA, Martin WF, Mizrahi I. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024; 383:eadj9223. [PMID: 38484069 PMCID: PMC7615765 DOI: 10.1126/science.adj9223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sarah Winkler
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Falk S. P. Nagies
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Eva Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - Avital Artan-Furman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Madhav P. Yadav
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Edward A. Bayer
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Rampelli S, Gallois S, D’Amico F, Turroni S, Fabbrini M, Scicchitano D, Candela M, Henry A. The gut microbiome of Baka forager-horticulturalists from Cameroon is optimized for wild plant foods. iScience 2024; 27:109211. [PMID: 38433907 PMCID: PMC10904984 DOI: 10.1016/j.isci.2024.109211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
The human gut microbiome is losing biodiversity, due to the "microbiome modernization process" that occurs with urbanization. To keep track of it, here we applied shotgun metagenomics to the gut microbiome of the Baka, a group of forager-horticulturalists from Cameroon, who combine hunting and gathering with growing a few crops and working for neighboring Bantu-speaking farmers. We analyzed the gut microbiome of individuals with different access to and use of wild plant and processed foods, to explore the variation of their gut microbiome along the cline from hunter-gatherer to agricultural subsistence patterns. We found that 26 species-level genome bins from our cohort were pivotal for the degradation of the wild plant food substrates. These microbes include Old Friend species and are encoded for genes that are no longer present in industrialized gut microbiome. Our results highlight the potential relevance of these genes to human biology and health, in relation to lifestyle.
Collapse
Affiliation(s)
- Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, 40126 Bologna, Italy
| | - Sandrine Gallois
- Department of Archaeological Sciences, Faculty of Archaeology, Leiden University, 2311 Leiden, the Netherlands
- Institute of Environmental Science and Technology, ST, 08193 Bellaterra, Spain
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences (DiMeC), Alma Mater Studiorum – University of Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences (DiMeC), Alma Mater Studiorum – University of Bologna, 40138 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, 40126 Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum – University of Bologna, 40126 Bologna, Italy
| | - Amanda Henry
- Department of Archaeological Sciences, Faculty of Archaeology, Leiden University, 2311 Leiden, the Netherlands
| |
Collapse
|
24
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore RM, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Ruscheweyh HJ, Sunagawa S, Mclellan SL, Willis AD, Comstock LE, Eren AM. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 2024; 187:1206-1222.e16. [PMID: 38428395 PMCID: PMC10973873 DOI: 10.1016/j.cell.2024.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry, University of Chicago, Chicago, IL 60637, USA
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Laurie E Comstock
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany.
| |
Collapse
|
25
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
26
|
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Kazadi D, Halaweish H, Khan MH, Hoeschen A, Cao Q, Luo X, Kabage AJ, Lopez S, Holtan SG, Weisdorf DJ, Liu C, Ishii S, Khoruts A, Staley C. Long- and short-term effects of fecal microbiota transplantation on antibiotic resistance genes: results from a randomized placebo-controlled trial. Gut Microbes 2024; 16:2327442. [PMID: 38478462 PMCID: PMC10939144 DOI: 10.1080/19490976.2024.2327442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.
Collapse
Affiliation(s)
- Armin Rashidi
- Clinical Research Division, Fred Hutchinson Cancer Center and Division of Oncology, University of Washington, Seattle, WA, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Ebadi
- Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tauseef Ur Rehman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Heba Elhusseini
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Kazadi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hossam Halaweish
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Mohammad H. Khan
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Amanda J. Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Chang Liu
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, MN, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
27
|
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, Sharman JE, Vogt L, Burrell LM, Korostovtseva L, Zec M, Patil M, Schultz MG, Wallen MP, Renna NF, Islam SMS, Hiremath S, Gyeltshen T, Chia YC, Gupta A, Schutte AE, Klein B, Borghi C, Browning CJ, Czesnikiewicz-Guzik M, Lee HY, Itoh H, Miura K, Brunström M, Campbell NR, Akinnibossun OA, Veerabhadrappa P, Wainford RD, Kruger R, Thomas SA, Komori T, Ralapanawa U, Cornelissen VA, Kapil V, Li Y, Zhang Y, Jafar TH, Khan N, Williams B, Stergiou G, Tomaszewski M. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens 2024; 42:23-49. [PMID: 37712135 PMCID: PMC10713007 DOI: 10.1097/hjh.0000000000003563] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
Collapse
Affiliation(s)
- Fadi J. Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Priscilla R. Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Charlotte Mills
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Dinesh Neupane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Liffert Vogt
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lyudmila Korostovtseva
- Department of Hypertension, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Mansi Patil
- Department of Nutrition and Dietetics, Asha Kiran JHC Hospital, Chinchwad
- Hypertension and Nutrition, Core Group of IAPEN India, India
| | - Martin G. Schultz
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | | | - Nicolás F. Renna
- Unit of Hypertension, Hospital Español de Mendoza, School of Medicine, National University of Cuyo, IMBECU-CONICET, Mendoza, Argentina
| | | | - Swapnil Hiremath
- Department of Medicine, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Tshewang Gyeltshen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhinav Gupta
- Department of Medicine, Acharya Shri Chander College of Medical Sciences and Hospital, Jammu, India
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
- Hypertension in Africa Research Team, SAMRC Unit for Hypertension and Cardiovascular Disease, North-West University
- SAMRC Developmental Pathways for Health Research Unit, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt Klein
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy
| | - Colette J. Browning
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing-Dental School, University of Glasgow, UK
- Department of Periodontology, Prophylaxis and Oral Medicine; Jagiellonian University, Krakow, Poland
| | - Hae-Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hiroshi Itoh
- Department of Internal Medicine (Nephrology, Endocrinology and Metabolism), Keio University, Tokyo
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Norm R.C. Campbell
- Libin Cardiovascular Institute, Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Praveen Veerabhadrappa
- Kinesiology, Division of Science, The Pennsylvania State University, Reading, Pennsylvania
| | - Richard D. Wainford
- Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston
- Division of Cardiology, Emory University, Atlanta, USA
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Shane A. Thomas
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Udaya Ralapanawa
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, BRC, Faculty of Medicine and Dentistry, Queen Mary University London
- Barts BP Centre of Excellence, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences, Chinese Hypertension League, Beijing, China
| | - Tazeen H. Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nadia Khan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bryan Williams
- University College London (UCL), Institute of Cardiovascular Science, National Institute for Health Research (NIHR), UCL Hospitals Biomedical Research Centre, London, UK
| | - George Stergiou
- Hypertension Centre STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Academic Health Science Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
28
|
Hamilton T, Joris BR, Shrestha A, Browne TS, Rodrigue S, Karas BJ, Gloor GB, Edgell DR. De Novo Synthesis of a Conjugative System from Human Gut Metagenomic Data for Targeted Delivery of Cas9 Antimicrobials. ACS Synth Biol 2023; 12:3578-3590. [PMID: 38049144 PMCID: PMC10729033 DOI: 10.1021/acssynbio.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.
Collapse
Affiliation(s)
- Thomas
A. Hamilton
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Benjamin R. Joris
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Arina Shrestha
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Tyler S. Browne
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Sébastien Rodrigue
- Départment
de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Gregory B. Gloor
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - David R. Edgell
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| |
Collapse
|
29
|
Yan J, Zhang R, Kang J, Zhong Y, Abudurexiti A, Tan H, Lei Y, Ma X. Effect of Cichorium glandulosum on intestinal microbiota and bile acid metabolism in db/db mice. Food Sci Nutr 2023; 11:7765-7778. [PMID: 38107125 PMCID: PMC10724598 DOI: 10.1002/fsn3.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 12/19/2023] Open
Abstract
This study aims to investigate the effects of Chorum glandulosum Boiss. et Huet (CG) on the intestinal microbiota and serum bile acid (BA) in db/db mice. A total of 12 db/db mice were randomly divided into model (MOD), high-dose CG (CGH), and control (CON) groups. The CON and MOD groups received distilled water by gavage for 8 weeks. Whereas, the CGH group received an alcohol extract of CG at a dose of 200 mg/kg/day. Results showed that CG can reduce blood lipid levels. It change the composition of the intestinal microbiota, and increase the relative abundances of Muribaculaceae, Prevotellaceae, Bifidobacterium_pseudolongum, Bacteroidaceae in db/db mice as well. LC-MS metabolomics results showed that CG adjusted the serum BA levels. The results reduced the levels of primary BAs, such as cholic acid (CA) and chenodeoxycholic acid (CDCA). The results decreased the primary BA/secondary BA (PSA/SBA) ratio in db/db mice. Correlation analysis showed that the abundances of Bifidobacterium_pseudolongum and Bacteroidaceae were positively correlated with acetic acid level and negatively correlated with ursocholic acid (UCA), α-muricholic acid (αMCA), triglyceride (TG), and total cholesterol levels (TC), indicating an interaction between the intestinal microbiota and serum BAs. CG may play a positive role in the interaction between the intestinal microbiota and BAs in lipid metabolism.
Collapse
Affiliation(s)
- Junlin Yan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Rui Zhang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Jinsen Kang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yewei Zhong
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | | | - Huiwen Tan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yi Lei
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Xiaoli Ma
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| |
Collapse
|
30
|
Honap TP, Monroe CR, Johnson SJ, Jacobson DK, Abin CA, Austin RM, Sandberg P, Levine M, Sankaranarayanan K, Lewis CM. Oral metagenomes from Native American Ancestors reveal distinct microbial lineages in the pre-contact era. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:542-556. [PMID: 37002784 DOI: 10.1002/ajpa.24735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Limited studies have focused on how European contact and colonialism impacted Native American oral microbiomes, specifically, the diversity of commensal or opportunistically pathogenic oral microbes, which may be associated with oral diseases. Here, we studied the oral microbiomes of pre-contact Wichita Ancestors, in partnership with the Descendant community, The Wichita and Affiliated Tribes, Oklahoma, USA. MATERIALS AND METHODS Skeletal remains of 28 Wichita Ancestors from 20 archeological sites (dating approximately to 1250-1450 CE) were paleopathologically assessed for presence of dental calculus and oral disease. DNA was extracted from calculus, and partial uracil deglycosylase-treated double-stranded DNA libraries were shotgun-sequenced using Illumina technology. DNA preservation was assessed, the microbial community was taxonomically profiled, and phylogenomic analyzes were conducted. RESULTS Paleopathological analysis revealed signs of oral diseases such as caries and periodontitis. Calculus samples from 26 Ancestors yielded oral microbiomes with minimal extraneous contamination. Anaerolineaceae bacterium oral taxon 439 was found to be the most abundant bacterial species. Several Ancestors showed high abundance of bacteria typically associated with periodontitis such as Tannerella forsythia and Treponema denticola. Phylogenomic analyzes of Anaerolineaceae bacterium oral taxon 439 and T. forsythia revealed biogeographic structuring; strains present in the Wichita Ancestors clustered with strains from other pre-contact Native Americans and were distinct from European and/or post-contact American strains. DISCUSSION We present the largest oral metagenome dataset from a pre-contact Native American population and demonstrate the presence of distinct lineages of oral microbes specific to the pre-contact Americas.
Collapse
Affiliation(s)
- Tanvi P Honap
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| | - Cara R Monroe
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
- Center for the Ethics of Indigenous Genomics Research (CEIGR), University of Oklahoma, 73072, Norman, Oklahoma, USA
| | - Sarah J Johnson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| | - David K Jacobson
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| | - Christopher A Abin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
| | - Rita M Austin
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| | - Paul Sandberg
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 73072, Norman, Oklahoma, USA
| | - Marc Levine
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 73072, Norman, Oklahoma, USA
| | - Krithivasan Sankaranarayanan
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| | - Cecil M Lewis
- Laboratories of Molecular Anthropology and Microbiome Research (LMAMR), University of Oklahoma, 73072, Norman, Oklahoma, USA
- Department of Anthropology, University of Oklahoma, 73019, Norman, Oklahoma, USA
| |
Collapse
|
31
|
Liang C, Wei Y, Wang X, Gao J, Cui H, Zhang C, Liu J. Analysis of Resistance Gene Diversity in the Intestinal Microbiome of Broilers from Two Types of Broiler Farms in Hebei Province, China. Antibiotics (Basel) 2023; 12:1664. [PMID: 38136698 PMCID: PMC10741226 DOI: 10.3390/antibiotics12121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The crucial reservoir of antibiotic resistance genes (ARGs) within the chicken intestinal microbiome poses a serious threat to both animal and human health. In China, the overuse of antibiotics has significantly contributed to the proliferation of ARGs in the chicken intestinal microbiome, which is a serious concern. However, there has been relatively little research on the diversity of resistance genes in the chicken intestinal microbiome since the implementation of the National Pilot Work Program for Action to Reduce the Use of Veterinary Antimicrobial Drugs in China. The objective of this study was to analyze the diversity of antibiotic resistance genes carried by the chicken intestinal microbiome in both standard farms (SFs), which implement antibiotic reduction and passed national acceptance, and nonstandard farms (NSFs), which do not implement antibiotic reductions, in Hebei Province. Fresh fecal samples of broiler chickens were collected from SFs (n = 4) and NSF (n = 1) and analyzed using high-throughput qPCR technology. Our findings revealed that all five farms exhibited a wide range of highly abundant ARGs, with a total of 201 ARGs and 7 MGEs detected in all fecal samples. The dominant ARGs identified conferred resistance to aminoglycosides, macrolide-lincosamide-streptomycin B (MLSB), and tetracycline antibiotics. Cellular protection mechanisms were found to be the primary resistance mechanism for these ARGs. The analysis of the co-occurrence network demonstrated a significant positive correlation between the abundance of MGEs and ARGs. The SF samples showed a significantly lower relative abundance of certain ARGs than the NSF samples (p < 0.05). The results of this study show that the abundance of ARGs demonstrated a downward trend after the implementation of the National Pilot Work Program for Action to Reduce the Usage of Veterinary Antimicrobial Drugs in Hebei Province, China.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China (J.G.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China (J.G.)
| |
Collapse
|
32
|
Han N, Peng X, Qiang Y, Zhang T, Li X, Zhang W. Genetic characteristics of Blastocystis sp. ST3 at the genome level in the Chinese population. Parasitol Res 2023; 122:2719-2727. [PMID: 37715083 DOI: 10.1007/s00436-023-07973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The gut microbiota comprises the collective genomes of microbial symbionts and is composed of bacteria, fungi, viruses, and protists within the gastrointestinal tract of a host. Although the literature associated with gut microbiota is increasing, studies on eukaryotes in the human gut are just beginning to surface. Blastocystis is one of the most common intestinal parasites of humans and animals and is estimated to colonise more than 1 billion people on a global scale. However, the understanding of the genetic characteristics of Blastocystis subtype (ST) at the genome level and its relationship with other members of the gut microbiota is still limited. In this study, by surveying the prevalence and genome characteristics of Blastocystis sp. ST3 in a Chinese population (prevalence % = 6.09%), the association of Blastocystis sp. ST3 with region and time and the structure of the resident gut bacterial population was clarified. We identified novel sequences (50 mitochondrial and 41 genome sequences) and determined their genetic diversity amongst strains within Blastocystis sp. ST3 (4.14 SNPs/kb). Furthermore, we found that colonisation of Blastocystis was strongly associated with increased bacterial richness and higher abundance of several anaerobes. Finally, we performed time series sampling on two Blastocystis-positive individuals and confirmed that Blastocystis could exist continually in the human gut microbiota and persist for a long time, even for 4 years.
Collapse
Affiliation(s)
- Na Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xianhui Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yujun Qiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tingting Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiuwen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wen Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
33
|
Przewłócka K, Folwarski M, Kaczmarczyk M, Skonieczna-Żydecka K, Palma J, Bytowska ZK, Kujach S, Kaczor JJ. Combined probiotics with vitamin D 3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Front Nutr 2023; 10:1256226. [PMID: 37885441 PMCID: PMC10599147 DOI: 10.3389/fnut.2023.1256226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Mixed Martial Arts (MMA) is characterized as an interval sport in which the training program focuses on enhancing both aerobic and anaerobic capacities. Therefore, strategies targeting the intestinal microbiome may be beneficial for MMA athletes. Moreover, vitamin D supplementation may amplify the positive effects of certain bacterial strains. We previously demonstrated that the combined of probiotics and vitamin D3 supplementation improved the lactate utilization ratio, total work, and average power achieved during anaerobic tests in MMA. Therefore, this study aimed to investigate whether combined probiotic and vitamin D3 ingestion can modify the composition of the gut microbiome and epithelial cell permeability, influence the inflammatory response, and ultimately enhance aerobic capacity. Methods A 4-week clinical trial was conducted with 23 male MMA athletes randomly assigned to either the probiotic + vitamin D3 (PRO + VIT D) group or the vitamin D3 group (VIT D). The trial employed a double-blind, placebo-controlled design and involved measurements of serum inflammatory markers, gut microbiome composition, epithelial cell permeability, and aerobic performance. Results After 4-week of supplementation, we found a significantly lower concentration of calprotectin in the PRO + VIT D group (34.79 ± 24.38 mmol/L) compared to the value before (69.50 ± 46.91) supplementation (p = 0.030), augmentation of beta diversity after the intervention in the PRO + VIT D group (p = 0.0005) and an extended time to exhaustion to 559.00 ± 68.99; compared to the value before (496.30 ± 89.98; p = 0.023) after combined probiotic and vitamin D3 supplementation in MMA athletes. No effect was observed in the VIT D group. Conclusion Our results indicate that combined treatment of probiotics and vitamin D3 may cause alterations in alpha and beta diversity and the composition of the gut microbiota in MMA athletes. We observed an improvement in epithelial cell permeability and an extended time to exhaustion during exercise in MMA athletes following a 4-week combined probiotic and vitamin D3 treatment.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Joanna Palma
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Zofia Kinga Bytowska
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Jacek Kaczor
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
34
|
Parizadeh M, Arrieta MC. The global human gut microbiome: genes, lifestyles, and diet. Trends Mol Med 2023; 29:789-801. [PMID: 37516570 DOI: 10.1016/j.molmed.2023.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
A growing number of human gut microbiome studies consistently describe differences between human populations. Here, we review how factors related to host genetics, ethnicity, lifestyle, and geographic location help explain this variation. Studies from contrasting environmental scenarios point to diet and lifestyle as the most influential. The effect of human migration and displacement demonstrates how the microbiome adapts to newly adopted lifestyles and contributes to the profound biological and health consequences attributed to migration. This information strongly suggests against a universal scale for healthy or dysbiotic gut microbiomes, and prompts for additional microbiome population surveys, particularly from less industrialized nations. Considering these important differences will be critical for designing strategies to diagnose and restore dysbiosis in various human populations.
Collapse
Affiliation(s)
- Mona Parizadeh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; International Microbiome Center, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
35
|
Schmit KJ, Garcia P, Sciortino A, Aho VTE, Pardo Rodriguez B, Thomas MH, Gérardy JJ, Bastero Acha I, Halder R, Cialini C, Heurtaux T, Ostahi I, Busi SB, Grandmougin L, Lowndes T, Singh Y, Martens EC, Mittelbronn M, Buttini M, Wilmes P. Fiber deprivation and microbiome-borne curli shift gut bacterial populations and accelerate disease in a mouse model of Parkinson's disease. Cell Rep 2023; 42:113071. [PMID: 37676767 PMCID: PMC10548091 DOI: 10.1016/j.celrep.2023.113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.
Collapse
Affiliation(s)
- Kristopher J Schmit
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Institute for Medical Genetics and Applied Genomics, Hospital University Tubingen, 72076 Tubingen, Germany; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg.
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Alessia Sciortino
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Velma T E Aho
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Mélanie H Thomas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Irati Bastero Acha
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Camille Cialini
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Tony Heurtaux
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Irina Ostahi
- National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Susheel B Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Tuesday Lowndes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Yogesh Singh
- Institute for Medical Genetics and Applied Genomics, Hospital University Tubingen, 72076 Tubingen, Germany
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
36
|
Park Y, Kim W, Kim M, Park W. The β-Lactamase Activity at the Community Level Confers β-Lactam Resistance to Bloom-Forming Microcystis aeruginosa Cells. J Microbiol 2023; 61:807-820. [PMID: 37851310 DOI: 10.1007/s12275-023-00082-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of blaOXA-related antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Raychaudhuri S, Shahinozzaman M, Fan S, Ogedengbe O, Subedi U, Obanda DN. Resistance to Diet Induced Visceral Fat Accumulation in C57BL/6NTac Mice Is Associated with an Enriched Lactococcus in the Gut Microbiota and the Phenotype of Immune B Cells in Intestine and Adipose Tissue. Microorganisms 2023; 11:2153. [PMID: 37763997 PMCID: PMC10535569 DOI: 10.3390/microorganisms11092153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Humans and rodents exhibit a divergent obesity phenotype where not all individuals exposed to a high calorie diet become obese. We hypothesized that in C57BL/6NTac mice, despite a shared genetic background and diet, variations in individual gut microbiota function, immune cell phenotype in the intestine and adipose determine predisposition to obesity. From a larger colony fed a high-fat (HF) diet (60% fat), we obtained twenty-four 18-22-week-old C57BL/6NTac mice. Twelve had responded to the diet, had higher body weight and were termed obese prone (OP). The other 12 had retained a lean frame and were termed obese resistant (OR). We singly housed them for three weeks, monitored food intake and determined insulin resistance, fat accumulation, and small intestinal and fecal gut microbial community membership and structure. From the lamina propria and adipose tissue, we determined the population of total and specific subsets of T and B cells. The OP mice with higher fat accumulation and insulin resistance harbored microbial communities with enhanced capacity for processing dietary sugars, lower alpha diversity, greater abundance of Lactobacilli and low abundance of Clostridia and Desulfobacterota. The OR with less fat accumulation retained insulin sensitivity and harbored microbial communities with enhanced capacity for processing and synthesizing amino acids and higher diversity and greater abundance of Lactococcus, Desulfobacterota and class Clostridia. The B cell phenotype in the lamina propria and mesenteric adipose tissue of OR mice was characterized by a higher population of IgA+ cells and B1b IgM+ cells, respectively, compared to the OP. We conclude that variable responses to the HF diet are associated with the function of individuals' gut microbiota and immune responses in the lamina propria and adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Diana N. Obanda
- Department of Nutrition and Food Sciences, University of Maryland, College Park, MD 20742, USA; (S.R.); (M.S.); (S.F.); (O.O.); (U.S.)
| |
Collapse
|
38
|
Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B, Bedu-Addo K, Plange-Rhule J, Oti Boateng P, Forrester TE, Williams M, Lambert EV, Rae D, Sinyanya N, Luke A, Layden BT, O'Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun 2023; 14:5160. [PMID: 37620311 PMCID: PMC10449869 DOI: 10.1038/s41467-023-40874-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | | | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Oti Boateng
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Terrence E Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Marie Williams
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Nandipha Sinyanya
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Stephen O'Keefe
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jack A Gilbert
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA.
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
39
|
Sprockett DD, Coyte KZ. When microbes go missing: Understanding the impact of diversity loss within the gut microbiome. Cell Host Microbe 2023; 31:1249-1251. [PMID: 37562357 DOI: 10.1016/j.chom.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Two recent papers published in Cell highlight the power of both top-down and bottom-up approaches to understanding the gut microbiome. The first uses ultra-deep sequencing to identify patterns across a gradient of human industrialization, while the second uses synthetic communities to determine how strain interactions impact microbiome structure and function.
Collapse
Affiliation(s)
- Daniel D Sprockett
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Katharine Z Coyte
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
40
|
Mattock J, Watson M. A comparison of single-coverage and multi-coverage metagenomic binning reveals extensive hidden contamination. Nat Methods 2023; 20:1170-1173. [PMID: 37386187 DOI: 10.1038/s41592-023-01934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/28/2023] [Indexed: 07/01/2023]
Abstract
Metagenomic binning has revolutionized the study of uncultured microorganisms. Here we compare single- and multi-coverage binning on the same set of samples, and demonstrate that multi-coverage binning produces better results than single-coverage binning and identifies contaminant contigs and chimeric bins that other approaches miss. While resource expensive, multi-coverage binning is a superior approach and should always be performed over single-coverage binning.
Collapse
Affiliation(s)
- Jennifer Mattock
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mick Watson
- Centre for Digital Innovation, DSM Biotechnology Center, Delft, The Netherlands.
- Scotland's Rural College, Peter Wilson Building, King's Buildings, Edinburgh, UK.
| |
Collapse
|
41
|
Song Z, Feng S, Zhou X, Song Z, Li J, Li P. Taxonomic identification of bile salt hydrolase-encoding lactobacilli: Modulation of the enterohepatic bile acid profile. IMETA 2023; 2:e128. [PMID: 38867937 PMCID: PMC10989828 DOI: 10.1002/imt2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/14/2024]
Abstract
Bile salt hydrolases (BSHs) are enzymes that are essential for the enterohepatic metabolism of bile acids (BAs). BSHs catalyze the production of unconjugated BAs and regulate the homeostasis of BA pool. This study identified Lactobacillus as a crucial BSH-encoding genus, and 16 main species were obtained using metagenomic data from publicly available human gut microbiome databases. Then, the 16 species of lactobacilli were classified into four typical categories by BSH phylotypes, including five species encoding BSH-T0, six species encoding BSH-T2, four species encoding BSH-T3, and Ligilactobacillus salivarius encoding both BSH-T0 and BSH-T3. The lactobacilli with the highest in vitro deconjugation activities against seven conjugated BAs were the BSH-T3-encoding strains. Furthermore, in vivo studies in mice administered four representative lactobacilli strains encoding different BSH phylotypes showed that treatment with BSH-T3-encoding Limosilactobacillus reuteri altered the structure of the gut microbiome and metabolome and significantly increased the levels of unconjugated BAs and total BA excretion. Our findings facilitated the taxonomic identification of crucial BSH-encoding lactobacilli in human gut microbiota and shed light on their contributions toward modulation of the enterohepatic circulation of BAs, which will contribute to future therapeutic applications of BSH-encoding probiotics to improve human health.
Collapse
Affiliation(s)
- Ziwei Song
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| | - Shuo Feng
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Xingchen Zhou
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease, Department of BiotechnologyBeijing Institute of Radiation MedicineBeijingChina
| | - Zhengxing Song
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Jing Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
42
|
Gao Y, Tian T. mTOR Signaling Pathway and Gut Microbiota in Various Disorders: Mechanisms and Potential Drugs in Pharmacotherapy. Int J Mol Sci 2023; 24:11811. [PMID: 37511569 PMCID: PMC10380532 DOI: 10.3390/ijms241411811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) integrates multiple intracellular and extracellular upstream signals involved in the regulation of anabolic and catabolic processes in cells and plays a key regulatory role in cell growth and metabolism. The activation of the mTOR signaling pathway has been reported to be associated with a wide range of human diseases. A growing number of in vivo and in vitro studies have demonstrated that gut microbes and their complex metabolites can regulate host metabolic and immune responses through the mTOR pathway and result in disorders of host physiological functions. In this review, we summarize the regulatory mechanisms of gut microbes and mTOR in different diseases and discuss the crosstalk between gut microbes and their metabolites and mTOR in disorders in the gastrointestinal tract, liver, heart, and other organs. We also discuss the promising application of multiple potential drugs that can adjust the gut microbiota and mTOR signaling pathways. Despite the limited findings between gut microbes and mTOR, elucidating their relationship may provide new clues for the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
43
|
Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, Yu FB, Jain S, Neff N, Jha AR, Sonnenburg ED, Sonnenburg JL. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 2023; 186:3111-3124.e13. [PMID: 37348505 PMCID: PMC10330870 DOI: 10.1016/j.cell.2023.05.046] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/12/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.
Collapse
Affiliation(s)
- Matthew M Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Dylan Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Surya Tripathi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sean P Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
44
|
Abstract
Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.
Collapse
Affiliation(s)
- Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition (C.L.G.), Vanderbilt University Medical Center, Nashville
- Tennessee Center for AIDS Research (C.L.G.), Vanderbilt University Medical Center, Nashville
| | - Jane F Ferguson
- Division of Cardiovascular Medicine (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Microbiome Innovation Center (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Infection, Immunology, and Inflammation (J.F.F.), Vanderbilt University Medical Center, Nashville
| |
Collapse
|
45
|
Watson AR, Füssel J, Veseli I, DeLongchamp JZ, Silva M, Trigodet F, Lolans K, Shaiber A, Fogarty E, Runde JM, Quince C, Yu MK, Söylev A, Morrison HG, Lee STM, Kao D, Rubin DT, Jabri B, Louie T, Eren AM. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol 2023; 24:78. [PMID: 37069665 PMCID: PMC10108530 DOI: 10.1186/s13059-023-02924-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.
Collapse
Affiliation(s)
- Andrea R Watson
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jessika Füssel
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany
| | - Iva Veseli
- Biophysical Sciences Program, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Marisela Silva
- Department of Medicine, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Karen Lolans
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alon Shaiber
- Biophysical Sciences Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Emily Fogarty
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph M Runde
- Department of Pediatrics, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich, Norwich, NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Falmouth, MA, 02543, USA
| | - Sonny T M Lee
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Dina Kao
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - David T Rubin
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Louie
- Department of Medicine, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - A Murat Eren
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany.
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Falmouth, MA, 02543, USA.
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany.
| |
Collapse
|
46
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore R, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Mclellan SL, Willis AD, Comstock LE, Eren AM. A highly conserved and globally prevalent cryptic plasmid is among the most numerous mobile genetic elements in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534219. [PMID: 36993556 PMCID: PMC10055365 DOI: 10.1101/2023.03.25.534219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L. Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, 10032 USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany
| |
Collapse
|
47
|
Ecklu-Mensah G, Choo-Kang C, Gjerstad Maseng M, Donato S, Bovet P, Bedu-Addo K, Plange-Rhule J, Forrester TE, Lambert EV, Rae D, Luke A, Layden BT, O’Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533195. [PMID: 36993742 PMCID: PMC10055249 DOI: 10.1101/2023.03.21.533195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The relationship between the gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity remains unclear due to conflicting reports from studies with limited statistical power. Additionally, this association has rarely been explored in large scale diverse populations. Here, we investigated associations between fecal microbial composition, predicted metabolic potential, SCFA concentrations, and obesity in a large ( N = 1,934) adult cohort of African-origin spanning the epidemiologic transition, from Ghana, South Africa, Jamaica, Seychelles, and the United States (US). The greatest gut microbiota diversity and total fecal SCFA concentration was found in the Ghanaian population, while the lowest levels were found in the US population, respectively representing the lowest and the highest end of the epidemiologic transition spectrum. Country-specific bacterial taxa and predicted-functional pathways were observed, including an increased prevalence of Prevotella , Butyrivibrio , Weisella and Romboutsia in Ghana and South Africa, while Bacteroides and Parabacteroides were enriched in Jamaican and the US populations. Importantly, 'VANISH' taxa, including Butyricicoccus and Succinivibrio , were significantly enriched in the Ghanaian cohort, reflecting the participants' traditional lifestyles. Obesity was significantly associated with lower SCFA concentrations, a decrease in microbial richness, and dissimilarities in community composition, and reduction in the proportion of SCFA synthesizing bacteria including Oscillospira , Christensenella , Eubacterium , Alistipes , Clostridium and Odoribacter . Further, the predicted proportions of genes in the lipopolysaccharide (LPS) synthesis pathway were enriched in obese individuals, while genes associated with butyrate synthesis via the dominant pyruvate pathway were significantly reduced in obese individuals. Using machine learning, we identified features predictive of metabolic state and country of origin. Country of origin could accurately be predicted by the fecal microbiota (AUC = 0.97), whereas obesity could not be predicted as accurately (AUC = 0.65). Participant sex (AUC = 0.75), diabetes status (AUC = 0.63), hypertensive status (AUC = 0.65), and glucose status (AUC = 0.66) could all be predicted with different success. Interestingly, within country, the predictive accuracy of the microbiota for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). Collectively, our findings reveal profound variation in the gut microbiota, inferred functional pathways, and SCFA synthesis as a function of country of origin. While obesity could be predicted accurately from the microbiota, the variation in accuracy in parallel with the epidemiological transition suggests that differences in the microbiota between obesity and non-obesity may be larger in low-to-middle countries compared to high-income countries. Further examination of independent study populations using multi-omic approaches will be necessary to determine the factors that drive this association.
Collapse
Affiliation(s)
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland& Ministry of Health, Republic of Seychelles Department of Physiology, SMS
| | - Kweku Bedu-Addo
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V. Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T. Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | | | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lara R. Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Mattiola I, Diefenbach A. Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Semin Immunol 2023; 66:101724. [PMID: 36758379 DOI: 10.1016/j.smim.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany.
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
49
|
Musciotto F, Dobon B, Greenacre M, Mira A, Chaudhary N, Salali GD, Gerbault P, Schlaepfer R, Astete LH, Ngales M, Gomez-Gardenes J, Latora V, Battiston F, Bertranpetit J, Vinicius L, Migliano AB. Agta hunter-gatherer oral microbiomes are shaped by contact network structure. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e9. [PMID: 37587930 PMCID: PMC10426009 DOI: 10.1017/ehs.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/25/2023] Open
Abstract
Here we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta hunter-gatherers from the Philippines. Our comparisons of microbiome composition showed that the Agta are more similar to Central African BaYaka hunter-gatherers than to neighbouring farmers. We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly influenced by social contact (quantified through wireless sensors of short-range interactions). We show that large interaction networks including strong links between close kin, spouses and even unrelated friends can significantly predict bacterial transmission networks across Agta camps. Finally, we show that more central individuals to social networks are also bacterial supersharers. We conclude that hunter-gatherer social microbiomes are predominantly pathogenic and were shaped by evolutionary tradeoffs between extensive sociality and disease spread.
Collapse
Affiliation(s)
- Federico Musciotto
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Begoña Dobon
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra & Barcelona Graduate School of Economics, Barcelona, Spain
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Norway
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Nikhil Chaudhary
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Gul Deniz Salali
- Department of Anthropology, University College London, London, UK
| | - Pascale Gerbault
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Leonora H. Astete
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Marilyn Ngales
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Jesus Gomez-Gardenes
- GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems, and Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain
- Center for Computational Social Science, Kobe University, Kobe, Japan
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, UK
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, Catania, Italy
- Complexity Science Hub Vienna, Vienna, Austria
| | - Federico Battiston
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Network and Data Science, Central European University, Vienna, Austria
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucio Vinicius
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Anthropology, University College London, London, UK
| | - Andrea Bamberg Migliano
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
50
|
Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, Moustafa AM, Liu L. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr 2023; 9:1058910. [PMID: 36712525 PMCID: PMC9879625 DOI: 10.3389/fnut.2022.1058910] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Fructooligosaccharides (FOS) are well-known carbohydrates that promote healthy gut microbiota and have been previously demonstrated to enhance levels of Bifidobacterium and Lactobacillus. Its bifidogenic properties are associated with positive health outcomes such as reduced obesity and anti-inflammatory properties, and, therefore, is in use as a prebiotic supplement to support healthy gut microbiota. However, the gut microbiota changes with age, which may lead to differential responses to treatments with prebiotics and other dietary supplements. Methods To address this concern, we implemented a 24-h in vitro culturing method to determine whether FOS treatment in three different adult age groups would have a differential effect. The age groups of interest ranged from 25 to 70 years and were split into young adults, adults, and older adults for the purposes of this analysis. Metagenomics and short-chain fatty acid analysis were performed to determine changes in the structure and function of the microbial communities. Results These analyses found that FOS created a bifidogenic response in all age groups, increased overall SCFA levels, decreased alpha diversity, and shifted the communities to be more similar in beta diversity metrics. However, the age groups differed in which taxa were most prevalent or most affected by FOS treatment. Discussion Overall, the results of this study demonstrate the positive effects of FOS on the gut microbiome, and importantly, how age may play a role in the effectiveness of this prebiotic.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States,*Correspondence: Karley K. Mahalak,
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|