1
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
2
|
Talross GJS, Carlson JR. New dimensions in the molecular genetics of insect chemoreception. Trends Genet 2025:S0168-9525(25)00078-2. [PMID: 40340097 DOI: 10.1016/j.tig.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
Chemoreception is the foundation of olfaction and taste, which in insects underlie the detection of humans to whom they spread disease and crops that they ravage. Recent advances have provided clear and in some cases surprising new insights into the molecular genetics of chemoreception. We describe mechanisms that govern the choice of a single Odorant receptor gene by an olfactory receptor neuron in Drosophila. We highlight genetic and epigenetic mechanisms by which chemoreceptor expression can be modulated. Exitrons, RNA editing, and pseudo-pseudogenes in chemosensory systems are described. We summarize key insights from the recent structural determinations of odorant and taste receptors. Finally, new molecular components of chemosensory systems, including long noncoding RNAs, are described.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Capek M, Arenas OM, Alpert MH, Zaharieva EE, Méndez-González ID, Simões JM, Gil H, Acosta A, Su Y, Para A, Gallio M. Evolution of temperature preference in flies of the genus Drosophila. Nature 2025; 641:447-455. [PMID: 40044866 PMCID: PMC12070719 DOI: 10.1038/s41586-025-08682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
The preference for a particular thermal range is a key determinant of the distribution of animal species. However, we know little on how temperature preference behaviour evolves during the colonization of new environments. Here we show that at least two distinct neurobiological mechanisms drive the evolution of temperature preference in flies of the genus Drosophila. Fly species from mild climates (D. melanogaster and D. persimilis) avoid both innocuous and noxious heat, and we show that the thermal activation threshold of the molecular heat receptor Gr28b.d precisely matches species-specific thresholds of behavioural heat avoidance. We find that desert-dwelling D. mojavensis are instead actively attracted to innocuous heat. Notably, heat attraction is also mediated by Gr28b.d (and by the antennal neurons that express it) and matches its threshold of heat activation. Rather, the switch in valence from heat aversion to attraction correlates with specific changes in thermosensory input to the lateral horn, the main target of central thermosensory pathways and a region of the fly brain implicated in the processing of innate valence1-5. Together, our results demonstrate that, in Drosophila, the adaptation to different thermal niches involves changes in thermal preference behaviour, and that this can be accomplished using distinct neurobiological solutions, ranging from shifts in the activation threshold of peripheral thermosensory receptor proteins to a substantial change in the way temperature valence is processed in the brain.
Collapse
Affiliation(s)
- Matthew Capek
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Oscar M Arenas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Chicago, IL, USA
| | | | | | - José Miguel Simões
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Biology, Reed College, Portland, OR, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aldair Acosta
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Yuqing Su
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- NSF-Simons National Institute for Theory and Mathematics in Biology, Chicago, IL, USA.
| |
Collapse
|
4
|
Stürner T, Brooks P, Serratosa Capdevila L, Morris BJ, Javier A, Fang S, Gkantia M, Cachero S, Beckett IR, Marin EC, Schlegel P, Champion AS, Moitra I, Richards A, Klemm F, Kugel L, Namiki S, Cheong HSJ, Kovalyak J, Tenshaw E, Parekh R, Phelps JS, Mark B, Dorkenwald S, Bates AS, Matsliah A, Yu SC, McKellar CE, Sterling A, Seung HS, Murthy M, Tuthill JC, Lee WCA, Card GM, Costa M, Jefferis GSXE, Eichler K. Comparative connectomics of Drosophila descending and ascending neurons. Nature 2025:10.1038/s41586-025-08925-z. [PMID: 40307549 DOI: 10.1038/s41586-025-08925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and an information bottleneck connecting the brain and the ventral nerve cord (an analogue of the spinal cord) and comprises diverse populations of descending neurons (DNs), ascending neurons (ANs) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Here, by integrating three separate electron microscopy (EM) datasets1-4, we provide a complete connectomic description of the ANs and DNs of the Drosophila female nervous system and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions are matched across hemispheres, datasets and sexes. Crucially, we also match 51% of DN cell types to light-level data5 defining specific driver lines, as well as classifying all ascending populations. We use these results to reveal the anatomical and circuit logic of neck connective neurons. We observe connected chains of DNs and ANs spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analyses of selected circuits for reproductive behaviours, including male courtship6 (DNa12; also known as aSP22) and song production7 (AN neurons from hemilineage 08B) and female ovipositor extrusion8 (DNp13). Our work provides EM-level circuit analyses that span the entire central nervous system of an adult animal.
Collapse
Affiliation(s)
- Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Billy J Morris
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Cachero
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isabella R Beckett
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Elizabeth C Marin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Andrew S Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ilina Moitra
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alana Richards
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Finja Klemm
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Leonie Kugel
- Genetics Department, Leipzig University, Leipzig, Germany
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Han S J Cheong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Brain Mind Institute and Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Brandon Mark
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - John C Tuthill
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
- Genetics Department, Leipzig University, Leipzig, Germany.
| |
Collapse
|
5
|
Lee WP, Chiang MH, Chao YP, Wang YF, Chen YL, Lin YC, Jenq SY, Lu JW, Fu TF, Liang JY, Yang KC, Chang LY, Wu T, Wu CL. Dynamics of two distinct memory interactions during water seeking in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2422028122. [PMID: 40244670 PMCID: PMC12036989 DOI: 10.1073/pnas.2422028122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Forming and forgetting memories shape our self-awareness and help us face future challenges. Therefore, understanding how memories are formed and how different memories interact in the brain is important. Previous studies have shown that thirsty flies sense humidity through ionotropic receptors, which help them locate water sources. Here, we showed that thirsty flies can be trained to associate specific odors with humidity to form a humidity memory that lasts for 30 min after association. Humidity memory formation requires the Ir93a and Ir40a ionotropic receptors, which are essential for environmental humidity sensing. Water memory takes precedence, leading to the forgetting of humidity memory by activating a small subset of dopaminergic neurons called protocerebral anterior medial (PAM)-γ4, that project to the restricted region of the mushroom body (MB) γ lobes. Adult-stage-specific silencing of Dop2R dopaminergic receptors in MB γ neurons prolongs humidity memory for 3 h. Live-brain calcium imaging and dopamine sensor studies revealed significantly increased PAM-γ4 neural activity after odor/humidity association, suggesting its role in forgetting the humidity memory. Our results suggest that overlapping neural circuits are responsible for the acquisition of water memory and forgetting humidity memory in thirsty flies.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan33302, Taiwan
| | - Ying-Fong Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yan-Lin Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shan-Yun Jenq
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Jun-Wei Lu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou54561, Taiwan
| | - Jia-Yu Liang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Kai-Cing Yang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Li-Yun Chang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| |
Collapse
|
6
|
Bae JA, Baptiste M, Baptiste MR, Bishop CA, Bodor AL, Brittain D, Brooks V, Buchanan J, Bumbarger DJ, Castro MA, Celii B, Cobos E, Collman F, da Costa NM, Danskin B, Dorkenwald S, Elabbady L, Fahey PG, Fliss T, Froudarakis E, Gager J, Gamlin C, Gray-Roncal W, Halageri A, Hebditch J, Jia Z, Joyce E, Ellis-Joyce J, Jordan C, Kapner D, Kemnitz N, Kinn S, Kitchell LM, Koolman S, Kuehner K, Lee K, Li K, Lu R, Macrina T, Mahalingam G, Matelsky J, McReynolds S, Miranda E, Mitchell E, Mondal SS, Moore M, Mu S, Muhammad T, Nehoran B, Neace E, Ogedengbe O, Papadopoulos C, Papadopoulos S, Patel S, Vega GJYP, Pitkow X, Popovych S, Ramos A, Reid RC, Reimer J, Rivlin PK, Rose V, Sauter ZM, Schneider-Mizell CM, Seung HS, Silverman B, Silversmith W, Sterling A, Sinz FH, Smith CL, Swanstrom R, Suckow S, Takeno M, Tan ZH, Tolias AS, Torres R, Turner NL, Walker EY, Wang T, Wanner A, Wester BA, Williams G, Williams S, Willie K, Willie R, Wong W, Wu J, Xu C, Yang R, Yatsenko D, Ye F, Yin W, Young R, Yu SC, Xenes D, Zhang C. Functional connectomics spanning multiple areas of mouse visual cortex. Nature 2025; 640:435-447. [PMID: 40205214 PMCID: PMC11981939 DOI: 10.1038/s41586-025-08790-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/14/2025] [Indexed: 04/11/2025]
Abstract
Understanding the brain requires understanding neurons' functional responses to the circuit architecture shaping them. Here we introduce the MICrONS functional connectomics dataset with dense calcium imaging of around 75,000 neurons in primary visual cortex (VISp) and higher visual areas (VISrl, VISal and VISlm) in an awake mouse that is viewing natural and synthetic stimuli. These data are co-registered with an electron microscopy reconstruction containing more than 200,000 cells and 0.5 billion synapses. Proofreading of a subset of neurons yielded reconstructions that include complete dendritic trees as well the local and inter-areal axonal projections that map up to thousands of cell-to-cell connections per neuron. Released as an open-access resource, this dataset includes the tools for data retrieval and analysis1,2. Accompanying studies describe its use for comprehensive characterization of cell types3-6, a synaptic level connectivity diagram of a cortical column4, and uncovering cell-type-specific inhibitory connectivity that can be linked to gene expression data4,7. Functionally, we identify new computational principles of how information is integrated across visual space8, characterize novel types of neuronal invariances9 and bring structure and function together to uncover a general principle for connectivity between excitatory neurons within and across areas10,11.
Collapse
|
7
|
Shuai Y, Sammons M, Sterne GR, Hibbard KL, Yang H, Yang CP, Managan C, Siwanowicz I, Lee T, Rubin GM, Turner GC, Aso Y. Driver lines for studying associative learning in Drosophila. eLife 2025; 13:RP94168. [PMID: 39879130 PMCID: PMC11778931 DOI: 10.7554/elife.94168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.
Collapse
Affiliation(s)
- Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - He Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Managan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
8
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.632927. [PMID: 39868125 PMCID: PMC11760703 DOI: 10.1101/2025.01.16.632927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~60 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available data is limited by the incompleteness and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional and evolutionary studies to generate an integrated dataset of these sensory neuron pathways - and associated visualizations - creating an unprecedented comprehensive resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. These examples emphasize the power of this resource to promote further understanding of the construction, function and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Jérôme Mermet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
| | - Keita Endo
- RIKEN Center for Brain Science Wako Saitama 351-0198 Japan
| | - Steeve Cruchet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
- Connecticut Institute for Brain and Cognitive Sciences University of Connecticut Storrs Connecticut 06269 United States
| |
Collapse
|
9
|
Reinhard N, Fukuda A, Manoli G, Derksen E, Saito A, Möller G, Sekiguchi M, Rieger D, Helfrich-Förster C, Yoshii T, Zandawala M. Synaptic connectome of the Drosophila circadian clock. Nat Commun 2024; 15:10392. [PMID: 39638801 PMCID: PMC11621569 DOI: 10.1038/s41467-024-54694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The circadian clock and its output pathways play a pivotal role in optimizing daily processes. To obtain insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated a comprehensive connectivity map of an animal circadian clock using the Drosophila FlyWire brain connectome. Intriguingly, we identified additional dorsal clock neurons, thus showing that the Drosophila circadian network contains ~240 instead of 150 neurons. We revealed extensive contralateral synaptic connectivity within the network and discovered novel indirect light input pathways to the clock neurons. We also elucidated pathways via which the clock modulates descending neurons that are known to regulate feeding and reproductive behaviors. Interestingly, we observed sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate behavior and physiology. Therefore, we integrated single-cell transcriptomics and receptor mapping to decipher putative paracrine peptidergic signaling by clock neurons. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling significantly enriches interconnectivity within the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Emilia Derksen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Gabriel Möller
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of Biochemistry and Molecular Biology and Integrative Neuroscience Program, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
10
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu SC, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K. A Drosophila computational brain model reveals sensorimotor processing. Nature 2024; 634:210-219. [PMID: 39358519 PMCID: PMC11446845 DOI: 10.1038/s41586-024-07763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Eon Systems, San Francisco, CA, USA.
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics, New York, NY, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jinseop S Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
11
|
Chu LA, Tai CY, Chiang AS. Thirst-driven hygrosensory suppression promotes water seeking in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2404454121. [PMID: 39145936 PMCID: PMC11348324 DOI: 10.1073/pnas.2404454121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Survival in animals relies on navigating environments aligned with physiological needs. In Drosophila melanogaster, antennal ionotropic receptors (IRs) sensing humidity changes govern hygrotaxis behavior. This study sheds light on the crucial role of IR8a neurons in the transition from high humidity avoidance to water-seeking behavior when the flies become thirsty. These neurons demonstrate a heightened calcium response toward high humidity stimuli in satiated flies and a reduced response in thirsty flies, modulated by fluctuating levels of the neuropeptide leucokinin, which monitors the internal water balance. Optogenetic activation of IR8a neurons in thirsty flies triggers an avoidance response similar to the moisture aversion in adequately hydrated flies. Furthermore, our study identifies IR40a neurons as associated with dry avoidance, while IR68a neurons are linked to moist attraction. The dynamic interplay among these neurons, each with opposing valences, establishes a preference for approximately 30% relative humidity in well-hydrated flies and facilitates water-seeking behavior in thirsty individuals. This research unveils the intricate interplay between sensory perception, neuronal plasticity, and internal states, providing valuable insights into the adaptive mechanisms governing hygrotaxis in Drosophila.
Collapse
Affiliation(s)
- Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinch30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Chu-Yi Tai
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu30013, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung40402, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung80780, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County35053, Taiwan
| |
Collapse
|
12
|
Delescluse J, Simonnet MM, Ziegler AB, Piffaretti K, Alves G, Grosjean Y, Manière G. A LAT1-Like Amino Acid Transporter Regulates Neuronal Activity in the Drosophila Mushroom Bodies. Cells 2024; 13:1340. [PMID: 39195231 PMCID: PMC11352668 DOI: 10.3390/cells13161340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The proper functioning of neural circuits that integrate sensory signals is essential for individual adaptation to an ever-changing environment. Many molecules can modulate neuronal activity, including neurotransmitters, receptors, and even amino acids. Here, we ask whether amino acid transporters expressed by neurons can influence neuronal activity. We found that minidiscs (mnd), which encodes a light chain of a heterodimeric amino acid transporter, is expressed in different cell types of the adult Drosophila brain: in mushroom body neurons (MBs) and in glial cells. Using live calcium imaging, we found that MND expressed in α/β MB neurons is essential for sensitivity to the L-amino acids: Leu, Ile, Asp, Glu, Lys, Thr, and Arg. We found that the Target Of Rapamycin (TOR) pathway but not the Glutamate Dehydrogenase (GDH) pathway is involved in the Leucine-dependent response of α/β MB neurons. This study strongly supports the key role of MND in regulating MB activity in response to amino acids.
Collapse
Affiliation(s)
- Julie Delescluse
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Mégane M. Simonnet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Anna B. Ziegler
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
- Institute for Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Kévin Piffaretti
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Georges Alves
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Yael Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Gérard Manière
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
13
|
Suito T, Tominaga M. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits 2024; 18:1435757. [PMID: 39045140 PMCID: PMC11263211 DOI: 10.3389/fncir.2024.1435757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, Drosophila melanogaster. Studies of Drosophila thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or Drosophila melanogaster.
Collapse
Affiliation(s)
- Takuto Suito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
14
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
15
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
16
|
Jouandet GC, Alpert MH, Simões JM, Suhendra R, Frank DD, Levy JI, Para A, Kath WL, Gallio M. Rapid threat assessment in the Drosophila thermosensory system. Nat Commun 2023; 14:7067. [PMID: 37923719 PMCID: PMC10624821 DOI: 10.1038/s41467-023-42864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Neurons that participate in sensory processing often display "ON" responses, i.e., fire transiently at the onset of a stimulus. ON transients are widespread, perhaps universal to sensory coding, yet their function is not always well-understood. Here, we show that ON responses in the Drosophila thermosensory system extrapolate the trajectory of temperature change, priming escape behavior if unsafe thermal conditions are imminent. First, we show that second-order thermosensory projection neurons (TPN-IIIs) and their Lateral Horn targets (TLHONs), display ON responses to thermal stimuli, independent of direction of change (heating or cooling) and of absolute temperature. Instead, they track the rate of temperature change, with TLHONs firing exclusively to rapid changes (>0.2 °C/s). Next, we use connectomics to track TLHONs' output to descending neurons that control walking and escape, and modeling and genetic silencing to demonstrate how ON transients can flexibly amplify aversive responses to small thermal change. Our results suggest that, across sensory systems, ON transients may represent a general mechanism to systematically anticipate and respond to salient or dangerous conditions.
Collapse
Affiliation(s)
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Richard Suhendra
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Dominic D Frank
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Joshua I Levy
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - William L Kath
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Chicago, IL, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Watanabe H, Tateishi K. Parallel olfactory processing in a hemimetabolous insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101097. [PMID: 37541388 DOI: 10.1016/j.cois.2023.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
To represent specific olfactory cues from the highly complex and dynamic odor world in the brain, insects employ multiple parallel olfactory pathways that process odors with different coding strategies. Here, we summarize the anatomical and physiological features of parallel olfactory pathways in the hemimetabolous insect, the cockroach Periplaneta americana. The cockroach processes different aspects of odor stimuli, such as odor qualities, temporal information, and dynamics, through parallel olfactory pathways. These parallel pathways are anatomically segregated from the peripheral to higher brain centers, forming functional maps within the brain. In addition, the cockroach may possess parallel pathways that correspond to distinct types of olfactory receptors expressed in sensory neurons. Through comparisons with olfactory pathways in holometabolous insects, we aim to provide valuable insights into the organization, functionality, and evolution of insect olfaction.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan.
| | - Kosuke Tateishi
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
| |
Collapse
|
18
|
Corthals K, Andersson V, Churcher A, Reimegård J, Enjin A. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep 2023; 13:15202. [PMID: 37709909 PMCID: PMC10502013 DOI: 10.1038/s41598-023-42506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vilma Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, 901 87, Umeå, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Gupta K, Chakrabarti S, Janardan V, Gogia N, Banerjee S, Srinivas S, Mahishi D, Visweswariah SS. Neuronal expression in Drosophila of an evolutionarily conserved metallophosphodiesterase reveals pleiotropic roles in longevity and odorant response. PLoS Genet 2023; 19:e1010962. [PMID: 37733787 PMCID: PMC10547211 DOI: 10.1371/journal.pgen.1010962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Evolutionarily conserved genes often play critical roles in organismal physiology. Here, we describe multiple roles of a previously uncharacterized Class III metallophosphodiesterase in Drosophila, an ortholog of the MPPED1 and MPPED2 proteins expressed in the mammalian brain. dMpped, the product of CG16717, hydrolyzed phosphodiester substrates including cAMP and cGMP in a metal-dependent manner. dMpped is expressed during development and in the adult fly. RNA-seq analysis of dMppedKO flies revealed misregulation of innate immune pathways. dMppedKO flies showed a reduced lifespan, which could be restored in Dredd hypomorphs, indicating that excessive production of antimicrobial peptides contributed to reduced longevity. Elevated levels of cAMP and cGMP in the brain of dMppedKO flies was restored on neuronal expression of dMpped, with a concomitant reduction in levels of antimicrobial peptides and restoration of normal life span. We observed that dMpped is expressed in the antennal lobe in the fly brain. dMppedKO flies showed defective specific attractant perception and desiccation sensitivity, correlated with the overexpression of Obp28 and Obp59 in knock-out flies. Importantly, neuronal expression of mammalian MPPED2 restored lifespan in dMppedKO flies. This is the first description of the pleiotropic roles of an evolutionarily conserved metallophosphodiesterase that may moonlight in diverse signaling pathways in an organism.
Collapse
Affiliation(s)
- Kriti Gupta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sveta Chakrabarti
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Vishnu Janardan
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Nishita Gogia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sanghita Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Swarna Srinivas
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Deepthi Mahishi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sandhya S. Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
20
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
21
|
Goda T, Umezaki Y, Hamada FN. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Drosophila melanogaster. J Biol Rhythms 2023; 38:326-340. [PMID: 37222551 PMCID: PMC10330063 DOI: 10.1177/07487304231171624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature influences animal physiology and behavior. Animals must set an appropriate body temperature to maintain homeostasis and maximize survival. Mammals set their body temperatures using metabolic and behavioral strategies. The daily fluctuation in body temperature is called the body temperature rhythm (BTR). For example, human body temperature increases during wakefulness and decreases during sleep. BTR is controlled by the circadian clock, is closely linked with metabolism and sleep, and entrains peripheral clocks located in the liver and lungs. However, the underlying mechanisms of BTR are largely unclear. In contrast to mammals, small ectotherms, such as Drosophila, control their body temperatures by choosing appropriate environmental temperatures. The preferred temperature of Drosophila increases during the day and decreases at night; this pattern is referred to as the temperature preference rhythm (TPR). As flies are small ectotherms, their body temperature is close to that of the surrounding environment. Thus, Drosophila TPR produces BTR, which exhibits a pattern similar to that of human BTR. In this review, we summarize the regulatory mechanisms of TPR, including recent studies that describe neuronal circuits relaying ambient temperature information to dorsal neurons (DNs). The neuropeptide diuretic hormone 31 (DH31) and its receptor (DH31R) regulate TPR, and a mammalian homolog of DH31R, the calcitonin receptor (CALCR), also plays an important role in mouse BTR regulation. In addition, both fly TPR and mammalian BTR are separately regulated from another clock output, locomotor activity rhythms. These findings suggest that the fundamental mechanisms of BTR regulation may be conserved between mammals and flies. Furthermore, we discuss the relationships between TPR and other physiological functions, such as sleep. The dissection of the regulatory mechanisms of Drosophila TPR could facilitate an understanding of mammalian BTR and the interaction between BTR and sleep regulation.
Collapse
Affiliation(s)
- Tadahiro Goda
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Yujiro Umezaki
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Fumika N. Hamada
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| |
Collapse
|
22
|
Sorkaç A, Moșneanu RA, Crown AM, Savaş D, Okoro AM, Memiş E, Talay M, Barnea G. retro-Tango enables versatile retrograde circuit tracing in Drosophila. eLife 2023; 12:e85041. [PMID: 37166114 PMCID: PMC10208638 DOI: 10.7554/elife.85041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/11/2023] [Indexed: 05/12/2023] Open
Abstract
Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here, we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Rareș A Moșneanu
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Anthony M Crown
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Doruk Savaş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Angel M Okoro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Ezgi Memiş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
23
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Szi-chieh Y, McKellar CE, Sterling A, Costa M, Eichler K, Jefferis GS, Murthy M, Bates AS, Eckstein N, Funke J, Bidaye SS, Hampel S, Seeds AM, Scott K. A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539144. [PMID: 37205514 PMCID: PMC10187186 DOI: 10.1101/2023.05.02.539144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K. Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gabriella R. Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinseop S. Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Yu Szi-chieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E. McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge
| | | | - Gregory S.X.E. Jefferis
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
- Centre for Neural Circuits and Behaviour, The University of Oxford
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M. Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Limbania D, Turner GL, Wasserman SM. Dehydrated Drosophila melanogaster track a water plume in tethered flight. iScience 2023; 26:106266. [PMID: 36915685 PMCID: PMC10005904 DOI: 10.1016/j.isci.2023.106266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Perception of sensory stimuli can be modulated by changes in internal state to drive contextually appropriate behavior. For example, dehydration is a threat to terrestrial animals, especially to Drosophila melanogaster due to their large surface area to volume ratio, particularly under the energy demands of flight. While hydrated D. melanogaster avoid water cues, while walking, dehydration leads to water-seeking behavior. We show that in tethered flight, hydrated flies ignore a water stimulus, whereas dehydrated flies track a water plume. Antennal occlusions eliminate odor and water plume tracking, whereas inactivation of moist sensing neurons in the antennae disrupts water tracking only upon starvation and dehydration. Elimination of the olfactory coreceptor eradicates odor tracking while leaving water-seeking behavior intact in dehydrated flies. Our results suggest that while similar hygrosensory receptors may be used for walking and in-flight hygrotaxis, the temporal dynamics of modulating the perception of water vary with behavioral state.
Collapse
Affiliation(s)
- Daniela Limbania
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace Lynn Turner
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Sara M Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
25
|
Laursen WJ, Budelli G, Tang R, Chang EC, Busby R, Shankar S, Gerber R, Greppi C, Albuquerque R, Garrity PA. Humidity sensors that alert mosquitoes to nearby hosts and egg-laying sites. Neuron 2023; 111:874-887.e8. [PMID: 36640768 PMCID: PMC10023463 DOI: 10.1016/j.neuron.2022.12.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
To reproduce and to transmit disease, female mosquitoes must obtain blood meals and locate appropriate sites for egg laying (oviposition). While distinct sensory cues drive each behavior, humidity contributes to both. Here, we identify the mosquito's humidity sensors (hygrosensors). Using generalizable approaches designed to simplify genetic analysis in non-traditional model organisms, we demonstrate that the ionotropic receptor Ir93a mediates mosquito hygrosensation as well as thermosensation. We further show that Ir93a-dependent sensors drive human host proximity detection and blood-feeding behavior, consistent with the overlapping short-range heat and humidity gradients these targets generate. After blood feeding, gravid females require Ir93a to seek high humidity associated with preferred egg-laying sites. Reliance on Ir93a-dependent sensors to promote blood feeding and locate potential oviposition sites is shared between the malaria vector Anopheles gambiae and arbovirus vector Aedes aegypti. These Ir93a-dependent systems represent potential targets for efforts to control these human disease vectors.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Gonzalo Budelli
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Ruocong Tang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Elaine C Chang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shruti Shankar
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Gerber
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Chloe Greppi
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rebecca Albuquerque
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
26
|
Gajardo I, Guerra S, Campusano JM. Navigating Like a Fly: Drosophila melanogaster as a Model to Explore the Contribution of Serotonergic Neurotransmission to Spatial Navigation. Int J Mol Sci 2023; 24:ijms24054407. [PMID: 36901836 PMCID: PMC10002024 DOI: 10.3390/ijms24054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Serotonin is a monoamine that acts in vertebrates and invertebrates as a modulator promoting changes in the structure and activity of brain areas relevant to animal behavior, ranging from sensory perception to learning and memory. Whether serotonin contributes in Drosophila to human-like cognitive abilities, including spatial navigation, is an issue little studied. Like in vertebrates, the serotonergic system in Drosophila is heterogeneous, meaning that distinct serotonergic neurons/circuits innervate specific fly brain regions to modulate precise behaviors. Here we review the literature that supports that serotonergic pathways modify different aspects underlying the formation of navigational memories in Drosophila.
Collapse
Affiliation(s)
- Ivana Gajardo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Neurociencia, Instituto Milenio de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Simón Guerra
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge M. Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: ; Tel.: +56-2-2354-2133
| |
Collapse
|
27
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
28
|
Coutinho-Abreu IV, Akbari OS. Technological advances in mosquito olfaction neurogenetics. Trends Genet 2023; 39:154-166. [PMID: 36414481 PMCID: PMC10564117 DOI: 10.1016/j.tig.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Chown SL, Janion-Scheepers C, Marshall A, Aitkenhead IJ, Hallas R, Amy Liu WP, Phillips LM. Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. CURRENT RESEARCH IN INSECT SCIENCE 2022; 3:100051. [PMID: 36591563 PMCID: PMC9800180 DOI: 10.1016/j.cris.2022.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Biological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants. Although the application of these approaches to animals is growing rapidly, it is rare for arthropods and restricted mostly to investigations of thermal tolerance. Here we study the extent to which desiccation tolerance and its phenotypic plasticity differ between introduced (nine species) and indigenous (seven species) Collembola, specifically testing predictions of the 'ideal weed' and 'phenotypic plasticity' hypotheses of invasion biology. We do so on the F2 generation of adults in a full factorial design across two temperatures, to elicit desiccation responses, for the phenotypic plasticity trials. We also determine whether basal desiccation resistance responds to thermal laboratory natural selection. We first show experimentally that acclimation to different temperatures elicits changes to cuticular structure and function that are typically associated with water balance, justifying our experimental approach. Our main findings reveal that basal desiccation resistance differs, on average, between the indigenous and introduced species, but that this difference is weaker at higher temperatures, and is driven by particular taxa, as revealed by phylogenetic generalised least squares approaches. By contrast, the extent or form of phenotypic plasticity does not differ between the two groups, with a 'hotter is better' response being most common. Beneficial acclimation is characteristic of only a single species. Laboratory natural selection had little influence on desiccation resistance over 8-12 generations, suggesting that environmental filtering rather than adaptation to new environments may be an important factor influencing Collembola invasions.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Angus Marshall
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Ian J Aitkenhead
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Rebecca Hallas
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| | - WP Amy Liu
- School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Victoria 3800, Australia
- Securing Antarctica's Environmental Future, Monash University, Victoria 3800, Australia
| |
Collapse
|
32
|
Kymre JH, Chu X, Ian E, Berg BG. Organization of the parallel antennal-lobe tracts in the moth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:707-721. [PMID: 36112200 PMCID: PMC9734247 DOI: 10.1007/s00359-022-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
The olfactory pathways of the insect brain have been studied comprehensively for more than 40 years, yet the last decade has included a particularly large accumulation of new information relating to this system's structure. In moths, sharp intracellular recording and staining has been used to elucidate the anatomy and physiology of output neurons from the primary olfactory center, the antennal lobe. This review concentrates on the connection patterns characterizing these projection neurons, which follow six separate antennal-lobe tracts. In addition to highlighting the connections between functionally distinct glomerular clusters and higher-order olfactory neuropils, we discuss how parallel tracts in the male convey distinct features of the social signals released by conspecific and heterospecific females. Finally, we consider the current state of knowledge regarding olfactory processing in the moth's protocerebrum and make suggestions as to how the information concerning antennal-lobe output may be used to design future studies.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Xi Chu
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Ian
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Gunnveig Berg
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
33
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
34
|
Alpert MH, Gil H, Para A, Gallio M. A thermometer circuit for hot temperature adjusts Drosophila behavior to persistent heat. Curr Biol 2022; 32:4079-4087.e4. [PMID: 35981537 PMCID: PMC9529852 DOI: 10.1016/j.cub.2022.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.
Collapse
Affiliation(s)
- Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Reinhard N, Schubert FK, Bertolini E, Hagedorn N, Manoli G, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Front Physiol 2022; 13:886432. [PMID: 35574472 PMCID: PMC9100938 DOI: 10.3389/fphys.2022.886432] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Enrico Bertolini
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Würzburg, Germany
| | | | - Giulia Manoli
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
36
|
Rihani K, Sachse S. Shedding Light on Inter-Individual Variability of Olfactory Circuits in Drosophila. Front Behav Neurosci 2022; 16:835680. [PMID: 35548690 PMCID: PMC9084309 DOI: 10.3389/fnbeh.2022.835680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/25/2022] Open
Abstract
Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.
Collapse
Affiliation(s)
- Karen Rihani
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| |
Collapse
|
37
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
38
|
Chen SC, Tang X, Goda T, Umezaki Y, Riley AC, Sekiguchi M, Yoshii T, Hamada FN. Dorsal clock networks drive temperature preference rhythms in Drosophila. Cell Rep 2022; 39:110668. [PMID: 35417715 PMCID: PMC9109596 DOI: 10.1016/j.celrep.2022.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/21/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Animals display a body temperature rhythm (BTR). Little is known about the mechanisms by which a rhythmic pattern of BTR is regulated and how body temperature is set at different times of the day. As small ectotherms, Drosophila exhibit a daily temperature preference rhythm (TPR), which generates BTR. Here, we demonstrate dorsal clock networks that play essential roles in TPR. Dorsal neurons 2 (DN2s) are the main clock for TPR. We find that DN2s and posterior DN1s (DN1ps) contact and the extent of contacts increases during the day and that the silencing of DN2s or DN1ps leads to a lower temperature preference. The data suggest that temporal control of the microcircuit from DN2s to DN1ps contributes to TPR regulation. We also identify anterior DN1s (DN1as) as another important clock for TPR. Thus, we show that the DN networks predominantly control TPR and determine both a rhythmic pattern and preferred temperatures.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xin Tang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tadahiro Goda
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Yujiro Umezaki
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Abigail C Riley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Fumika N Hamada
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
40
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
41
|
Prisco L, Deimel SH, Yeliseyeva H, Fiala A, Tavosanis G. The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. eLife 2021; 10:e74172. [PMID: 34964714 PMCID: PMC8741211 DOI: 10.7554/elife.74172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.
Collapse
Affiliation(s)
- Luigi Prisco
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Hanna Yeliseyeva
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, University of GöttingenGöttingenGermany
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES, Rheinische Friedrich Wilhelms Universität BonnBonnGermany
| |
Collapse
|
42
|
Vulpe A, Kim HS, Ballou S, Wu ST, Grabe V, Nava Gonzales C, Liang T, Sachse S, Jeanne JM, Su CY, Menuz K. An ammonium transporter is a non-canonical olfactory receptor for ammonia. Curr Biol 2021; 31:3382-3390.e7. [PMID: 34111404 PMCID: PMC8355169 DOI: 10.1016/j.cub.2021.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath.1-3 Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests.4,5 Two families of ligand-gated ion channels function as olfactory receptors in insects,6-10 and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.5,11,12 Given the widespread importance of ammonia to insect behavior, it is surprising that the genomes of most insects lack an ortholog of this gene.6 Here, we show that canonical olfactory receptors are not necessary for responses to ammonia in Drosophila. Instead, we demonstrate that a member of the ancient electrogenic ammonium transporter family, Amt, is likely a new type of olfactory receptor. We report two hitherto unidentified olfactory neuron populations that mediate neuronal and behavioral responses to ammonia in Drosophila. Their endogenous ammonia responses are lost in Amt mutant flies, and ectopic expression of either Drosophila or Anopheles Amt confers ammonia sensitivity. These results suggest that Amt is the first transporter known to function as an olfactory receptor in animals and that its function may be conserved across insect species.
Collapse
Affiliation(s)
- Alina Vulpe
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Hyong S Kim
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Sydney Ballou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Shiuan-Tze Wu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Cesar Nava Gonzales
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany Liang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA; Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
43
|
Hernandez-Nunez L, Chen A, Budelli G, Berck ME, Richter V, Rist A, Thum AS, Cardona A, Klein M, Garrity P, Samuel ADT. Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. SCIENCE ADVANCES 2021; 7:7/35/eabg6707. [PMID: 34452914 PMCID: PMC8397275 DOI: 10.1126/sciadv.abg6707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.
Collapse
Affiliation(s)
- Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, Boston, MA 02115, USA
| | - Alicia Chen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Gonzalo Budelli
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Matthew E Berck
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Vincent Richter
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Anna Rist
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Andreas S Thum
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mason Klein
- Department of Physics, University of Miami, Coral Gables, FL 33124, USA.
| | - Paul Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
44
|
Schlegel P, Bates AS, Stürner T, Jagannathan SR, Drummond N, Hsu J, Serratosa Capdevila L, Javier A, Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis GSXE. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 2021; 10:e66018. [PMID: 34032214 PMCID: PMC8298098 DOI: 10.7554/elife.66018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Tomke Stürner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Nikolas Drummond
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joseph Hsu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Alexandre Javier
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Elizabeth C Marin
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Imaan FM Tamimi
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
45
|
Landayan D, Wang BP, Zhou J, Wolf FW. Thirst interneurons that promote water seeking and limit feeding behavior in Drosophila. eLife 2021; 10:e66286. [PMID: 34018925 PMCID: PMC8139827 DOI: 10.7554/elife.66286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Thirst is a motivational state that drives behaviors to obtain water for fluid homeostasis. We identified two types of central brain interneurons that regulate thirsty water seeking in Drosophila, that we term the Janu neurons. Janu-GABA, a local interneuron in the subesophageal zone, is activated by water deprivation and is specific to thirsty seeking. Janu-AstA projects from the subesophageal zone to the superior medial protocerebrum, a higher order processing area. Janu-AstA signals with the neuropeptide Allatostatin A to promote water seeking and to inhibit feeding behavior. NPF (Drosophila NPY) neurons are postsynaptic to Janu-AstA for water seeking and feeding through the AstA-R2 galanin-like receptor. NPF neurons use NPF to regulate thirst and hunger behaviors. Flies choose Janu neuron activation, suggesting that thirsty seeking up a humidity gradient is rewarding. These findings identify novel central brain circuit elements that coordinate internal state drives to selectively control motivated seeking behavior.
Collapse
Affiliation(s)
- Dan Landayan
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
| | - Brian P Wang
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
| | - Jennifer Zhou
- Department of Molecular and Cell Biology, UCMercedUnited States
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
- Department of Molecular and Cell Biology, UCMercedUnited States
| |
Collapse
|
46
|
Abstract
Three new studies use a whole adult brain electron microscopy volume to reveal new long-range connectivity maps of complete populations of neurons in olfactory, thermosensory, hygrosensory, and memory systems in the fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
47
|
Key B, Zalucki O, Brown DJ. Neural Design Principles for Subjective Experience: Implications for Insects. Front Behav Neurosci 2021; 15:658037. [PMID: 34025371 PMCID: PMC8131515 DOI: 10.3389/fnbeh.2021.658037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
How subjective experience is realized in nervous systems remains one of the great challenges in the natural sciences. An answer to this question should resolve debate about which animals are capable of subjective experience. We contend that subjective experience of sensory stimuli is dependent on the brain's awareness of its internal neural processing of these stimuli. This premise is supported by empirical evidence demonstrating that disruption to either processing streams or awareness states perturb subjective experience. Given that the brain must predict the nature of sensory stimuli, we reason that conscious awareness is itself dependent on predictions generated by hierarchically organized forward models of the organism's internal sensory processing. The operation of these forward models requires a specialized neural architecture and hence any nervous system lacking this architecture is unable to subjectively experience sensory stimuli. This approach removes difficulties associated with extrapolations from behavioral and brain homologies typically employed in addressing whether an animal can feel. Using nociception as a model sensation, we show here that the Drosophila brain lacks the required internal neural connectivity to implement the computations required of hierarchical forward models. Consequently, we conclude that Drosophila, and those insects with similar neuroanatomy, do not subjectively experience noxious stimuli and therefore cannot feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah J. Brown
- School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Kymre JH, Berge CN, Chu X, Ian E, Berg BG. Antennal-lobe neurons in the moth Helicoverpa armigera: Morphological features of projection neurons, local interneurons, and centrifugal neurons. J Comp Neurol 2021; 529:1516-1540. [PMID: 32949023 PMCID: PMC8048870 DOI: 10.1002/cne.25034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
The relatively large primary olfactory center of the insect brain, the antennal lobe (AL), contains several heterogeneous neuronal types. These include projection neurons (PNs), providing olfactory information to higher‐order neuropils via parallel pathways, and local interneurons (LNs), which provide lateral processing within the AL. In addition, various types of centrifugal neurons (CNs) offer top‐down modulation onto the other AL neurons. By performing iontophoretic intracellular staining, we collected a large number of AL neurons in the moth, Helicoverpa armigera, to examine the distinct morphological features of PNs, LNs, and CNs. We characterize 190 AL neurons. These were allocated to 25 distinct neuronal types or sub‐types, which were reconstructed and placed into a reference brain. In addition to six PN types comprising 15 sub‐types, three LN and seven CN types were identified. High‐resolution confocal images allowed us to analyze AL innervations of the various reported neurons, which demonstrated that all PNs innervating ventroposterior glomeruli contact a protocerebral neuropil rarely targeted by other PNs, that is the posteriorlateral protocerebrum. We also discuss the functional roles of the distinct CNs, which included several previously uncharacterized types, likely involved in computations spanning from multisensory processing to olfactory feedback signalization into the AL.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christoffer Nerland Berge
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Xi Chu
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Ian
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente G Berg
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Talapka P, Kocsis Z, Marsi LD, Szarvas VE, Kisvárday ZF. Application of the Mirror Technique for Three-Dimensional Electron Microscopy of Neurochemically Identified GABA-ergic Dendrites. Front Neuroanat 2021; 15:652422. [PMID: 33958990 PMCID: PMC8093522 DOI: 10.3389/fnana.2021.652422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
In the nervous system synaptic input arrives chiefly on dendrites and their type and distribution have been assumed pivotal in signal integration. We have developed an immunohistochemistry (IH)-correlated electron microscopy (EM) method – the “mirror” technique – by which synaptic input to entire dendrites of neurochemically identified interneurons (INs) can be mapped due preserving high-fidelity tissue ultrastructure. Hence, this approach allows quantitative assessment of morphometric parameters of synaptic inputs along the whole length of dendrites originating from the parent soma. The method exploits the fact that adjoining sections have truncated or cut cell bodies which appear on the common surfaces in a mirror fashion. In one of the sections the histochemical marker of the GABAergic subtype, calbindin was revealed in cell bodies whereas in the other section the remaining part of the very same cell bodies were subjected to serial section EM to trace and reconstruct the synaptology of entire dendrites. Here, we provide exemplary data on the synaptic coverage of two dendrites belonging to the same calbindin-D28K immunopositive IN and determine the spatial distribution of asymmetric and symmetric synapses, surface area and volume of the presynaptic boutons, morphometric parameters of synaptic vesicles, and area extent of the active zones.
Collapse
Affiliation(s)
- Petra Talapka
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Kocsis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Diána Marsi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Etelka Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán F Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
50
|
Nojima T, Rings A, Allen AM, Otto N, Verschut TA, Billeter JC, Neville MC, Goodwin SF. A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behavior. Curr Biol 2021; 31:1175-1191.e6. [PMID: 33508219 PMCID: PMC7987718 DOI: 10.1016/j.cub.2020.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023]
Abstract
Although males and females largely share the same genome and nervous system, they differ profoundly in reproductive investments and require distinct behavioral, morphological, and physiological adaptations. How can the nervous system, while bound by both developmental and biophysical constraints, produce these sex differences in behavior? Here, we uncover a novel dimorphism in Drosophila melanogaster that allows deployment of completely different behavioral repertoires in males and females with minimum changes to circuit architecture. Sexual differentiation of only a small number of higher order neurons in the brain leads to a change in connectivity related to the primary reproductive needs of both sexes-courtship pursuit in males and communal oviposition in females. This study explains how an apparently similar brain generates distinct behavioral repertoires in the two sexes and presents a fundamental principle of neural circuit organization that may be extended to other species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Annika Rings
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK.
| |
Collapse
|