1
|
Jablonska O, Duda S, Gajowniczek S, Nitkiewicz A, Fopp-Bayat D. Toll-like Receptor Type 2 and 13 Gene Expression and Immune Cell Profiles in Diploid and Triploid Sterlets ( Acipenser ruthenus): Insights into Immune Competence in Polyploid Fish. Int J Mol Sci 2025; 26:3986. [PMID: 40362225 PMCID: PMC12071315 DOI: 10.3390/ijms26093986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system in fish, responsible for recognizing pathogen-associated molecular patterns derived from bacteria, viruses, and fungi. The sterlet (Acipenser ruthenus), an endangered sturgeon species valued for its meat and caviar, is a promising model for studying the effects of polyploidy on immune gene regulation. This study examined the expression of Toll-like receptor type 2 (TLR2) and type 13 (TLR13) in the heart, liver, gills, spleen, and kidney of diploid and triploid healthy sterlets using real-time PCR. TLR2 and TLR13 were expressed in all tissues of both diploids and triploids. In diploids, TLR2 expression was the highest in the kidney and the lowest in the liver (p < 0.05). Similarly, TLR13 expression in diploids was highest in the kidney and gills, and lowest in the liver (p < 0.05). In triploids, no significant tissue-specific variation in TLR expression was observed (p > 0.05). Comparisons between diploid and triploid sterlets revealed higher TLR2 expression in the kidney and higher TLR13 expression in the heart and kidney of diploids (p < 0.05). These molecular findings were supported by leukocyte analysis, which showed a significantly lower percentage of lymphocytes and a higher proportion of neutrophils in triploids compared to diploids. Additionally, the proportion of thrombocytes was significantly elevated in triploids (p < 0.05). This study provides the first report of TLR expression in polyploid fish, offering new insights into immune modulation associated with polyploidy in sturgeons.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
| | - Sara Duda
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
| | - Szczepan Gajowniczek
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-718 Olsztyn, Poland; (S.D.); (S.G.)
- Department of Anatomy, School of Medicine, Collegium Medicum, Warszawska 30 St., 10-082 Olsztyn, Poland
| | - Anna Nitkiewicz
- Department of Pond Fishery, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland;
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Becerra S, Arriagada-Solimano M, Escobar-Aguirre S, Palomino J, Aedo J, Estrada JM, Barra-Valdebenito V, Zuloaga R, Valdes JA, Dettleff P. High temperature induces oxidative damage, immune modulation, and atrophy in the gills and skeletal muscle of the teleost fish black cusk-eel (Genypterus maculatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105332. [PMID: 39892682 DOI: 10.1016/j.dci.2025.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The high temperature associated with heat waves is a relevant abiotic factor that could impact the biology of teleost fish. The innate immune response, muscular growth, and oxidative stress status are relevant functions in fish tissues that could be affected by increased temperature. In this study, black cusk-eel (Genypterus maculatus) juveniles were subjected to increased temperature, to experimentally replicate heat waves registered from the South Pacific Ocean for five days. The results showed that thermal stress modulated the immune response in gills, with up-regulation of antibacterial peptides, pro-inflammatory cytokines, and Toll-like receptors genes, including hepcidin, gzma, tnfa, cxcl8, and tlr5, with no effect on complement system genes. In skeletal muscle, high temperature triggered atrophy-related gene expression, with up-regulation of foxo1, foxo3, fbxo32, murf1, and atg16l. Increased temperature also generated an up-regulation of transcripts encoding heat shock protein (hsp60 and hsp70) in gills and skeletal muscle, generating oxidative stress in both tissues, with increased expression of the antioxidant genes sod1 and gpx1 in gills and skeletal muscle, respectively, with oxidative damage observed at the DNA level (AP sites), protein (carbonyl content), and lipoperoxidation (HNE content) in both tissues. The present study shows that short-term increases in temperature like those observed in heat waves could affect the immune response in gills, induced atrophy in skeletal muscle, and generate oxidative stress in a teleost species important for Chilean aquaculture diversification, information relevant under the context of climate change scenario.
Collapse
Affiliation(s)
- Sofia Becerra
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Marcia Arriagada-Solimano
- Escuela de Medicina Veterinaria, Centro de Estudios e Investigación en Salud y Sociedad, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | - Sebastian Escobar-Aguirre
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Jaime Palomino
- Escuela de Medicina Veterinaria, Centro de Estudios e Investigación en Salud y Sociedad, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Veronica Barra-Valdebenito
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| |
Collapse
|
4
|
Wang L, Hui F, Liu Y, Zhang Y, Xu W, Bai Q, Zhu T. Evolution and expression of TLR5a and TLR5b in lamprey (Lampetra japonica). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110061. [PMID: 39631554 DOI: 10.1016/j.fsi.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The lamprey serves as a key model organism for studying the origin and evolution of species, embryonic development, and the immune system. The immune system primarily relies on pattern recognition receptors, including Toll-like receptors (TLRs), with Toll-like receptor 5 (TLR5) having a particularly complex evolutionary history. Currently, although TLR5 is being identified in an expanding array of taxonomic groups, a comprehensive study on its evolutionary aspects is yet to be conducted. In this study, we identified Lj-TLR5a and Lj-TLR5b in Lampetra japonica and examined their distribution across various tissues in this species. Furthermore, we conducted preliminary investigations into their immune functions and discovered that, as primitive genes, they are highly sensitive to various pathogens. Upon recognizing flagellar proteins, both Lj-TLR5a and Lj-TLR5b work together; however, these TLRs may function independently in response to other stimuli. Subsequently, we performed comprehensive structural and evolutionary analyses of the TLR5 family, incorporating TLR5 data from various species at different evolutionary stages. Our findings revealed that TLR5a and TLR5b in lamprey are in a relatively primitive evolutionary state. Meanwhile, TLR5L differentiated during the early stages of evolution and exhibits a pseudogenic trend throughout this evolutionary process; notably, this TLR is currently preserved only in certain amphibian and reptile species. In cartilaginous fish, only one type of TLR5 is usually retained, whereas bony fish typically possess both TLR5 and TLR5S. TLR5S has a relatively simple structure, likely arising from repetitive whole-genome events in bony fishes. Among bony fishes, flesh-finned fish were found to retain only one TLR5, which eventually evolved into the TLR5 found in quadrupeds. In summary, this study provides significant insights into the origin and evolution of the TLR5 family by analyzing the evolutionary status and immune functions of Lj-TLR5a and Lj-TLR5b in Japanese lampreys.
Collapse
Affiliation(s)
- Lutian Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Fan Hui
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yu Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yijie Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Weiyin Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingkui Bai
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China.
| |
Collapse
|
5
|
Campos-Sánchez JC, Cabrera-Álvarez MJ, Saraiva JL. Review of Fish Neuropeptides: A Novel Perspective on Animal Welfare. J Comp Neurol 2025; 533:e70029. [PMID: 40008573 DOI: 10.1002/cne.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Neuropeptides are highly variable but widely conserved molecules, the main functions of which are the regulation and coordination of physiological processes and behaviors. They are synthesized in the nervous system and generally act on other neuronal and non-neuronal tissues or organs. In recent years, diverse neuropeptide isoforms and their receptors have been identified in different fish species, regulating functions in the neuroendocrine (e.g., corticotropin-releasing hormone and arginine vasotocin), immune (e.g., vasoactive intestinal polypeptide and somatostatin), digestive (e.g., neuropeptide Y), and reproductive (e.g., isotocin) systems, as well as in the commensal microbiota. Interestingly, all these processes carried out by neuropeptides are integrated into the nervous system and are manifested externally in the behavior and affective states of fish, thus having an impact on the modulation of these actions. In this sense, the monitoring of neuropeptides may represent a new approach to assess animal welfare, targeting both physiological and affective aspects in fish. Therefore, although there are many studies investigating the action of neuropeptides in a wide range of paradigms, especially in mammals, their study within a fish welfare framework is scarce. To the best of our knowledge, this is the first review that gathers and integrates up-to-date information on neuropeptides from an animal welfare perspective. In this review, we summarize current findings on neuropeptides in fish and discuss their possible implication in the physiological and emotional state of fish, and therefore in their welfare.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
| | - María José Cabrera-Álvarez
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| | - Joao L Saraiva
- Fish Ethology and Welfare Group, Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Edificio 7, Universidade do Algarve - CCMAR/CIMAR-LA, Faro, Portugal
- FishEthoGroup Association, Incubadora de Empresas da Universidade do Algarve Campus de Gambelas, pavilhão B1 8005-226, Faro, Portugal
| |
Collapse
|
6
|
Hou ZG, Xing MC, Luo JX, Xu YH, Zhang LH, Gao XW, Wang JJ, Hanafiah F, Khor W, Hao X, Zhao X, Wu CB. Single-cell transcriptome sequencing analysis of physiological and immune profiling of crucian carp (Carassius auratus) gills. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110087. [PMID: 39662647 DOI: 10.1016/j.fsi.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Gills are the main respiratory organs of fish and bear important physiological and immunological functions, but the functional heterogeneity of interlamellar cell mass (ILCM) at the single-cell level has rarely been reported. Here, we identified 19 cell types from the gills of crucian carp (Carassius auratus) by single-cell RNA sequencing (scRNA-seq) in combination with histological analysis. We annotated ILCM and analyzed its functional heterogeneity at the single-cell level for the first time. Functional enrichment analysis and cell cycle analysis identified ILCM as a type of metabolically active cells in a state of constant proliferation, and identified the major pathways responsible for ILCM immunoregulation. Histological analysis revealed the morphology and positional relationships of 6 cell types. Meanwhile, the gene regulatory network of ILCM was established through weighted gene co-expression network analysis (WGCNA), and one transcription factor and five hub genes related to immunoregulation were identified. We found that pyroptosis might be an important pathway responsible for the immune response of ILCM. Our findings provide an insight into the physiological and immune functions of gills and ILCM at the single-cell level and lay a solid foundation for further exploration of the molecular mechanism of ILCM immunity functions.
Collapse
Affiliation(s)
- Zhi-Guang Hou
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Meng-Chao Xing
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jia-Xing Luo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Yi-Huan Xu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Li-Han Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Xiao-Wei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jiang-Jiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Fazhan Hanafiah
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Xin Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Xin Zhao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Cheng-Bin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| |
Collapse
|
7
|
Bentley-Hewitt KL, Flammensbeck CK, Crowhurst RN, Hedderley DI, Wellenreuther M. Development of a Novel Stress and Immune Gene Panel for the Australasian Snapper ( Chrysophrys auratus). Genes (Basel) 2024; 15:1390. [PMID: 39596589 PMCID: PMC11594050 DOI: 10.3390/genes15111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Snapper (Chrysophrys auratus) is a commercially, recreationally and culturally important teleost species in New Zealand and has been selected as a potential new species for aquaculture. Selective breeding to enhance stress tolerance, survival and growth are major breeding targets, yet research into snapper immune and stress responses has been limited. METHODS We explored a set of candidate genes in the fin, head kidney and liver tissues of 50 individuals by exposing 20 fish to increasing temperature (up to 31 °C) and 20 fish to decreasing temperature (down to 7 °C) for up to 37 h. Of these, we analysed 10 temperature-sensitive and 10 temperature-tolerant fish, along with 10 fish kept at 18 °C (acclimation temperature) as a control group. RESULTS Expression analyses of candidate stress genes in the three tissue types via NanoString Technologies, Inc., Seattle, WA, USA. showed that 20 out of 25 genes significantly changed in each experiment, demonstrating the significant impact of temperature on stress and immune responses. We further document that 10 key gene biomarkers can be used to predict genotypes that are tolerant to extreme temperatures. CONCLUSIONS Taken together, our novel NanoString method can be used to monitor stress in snapper rapidly, and applications of this tool in this and potentially closely related teleost species can provide insights into stress resilience of wild stocks and inform the selection of grow-out locations for aquaculture.
Collapse
Affiliation(s)
- Kerry L. Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Christina K. Flammensbeck
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, Box 5114, Port Nelson, Nelson 7043, New Zealand (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ross N. Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Duncan I. Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Limited, Nelson Research Centre, Box 5114, Port Nelson, Nelson 7043, New Zealand (M.W.)
- The School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Deng J, Han M, Gong J, Ma H, Hao Y, Fang C, Zhang H, Li J, Jiang W. Transcriptomic analysis of spleen-derived macrophages in response to lipopolysaccharide shows dependency on the MyD88-independent pathway in Chinese giant salamanders (Andrias davidianus). BMC Genomics 2024; 25:1005. [PMID: 39465384 PMCID: PMC11514755 DOI: 10.1186/s12864-024-10888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Gram-negative bacteria are the main bacterial pathogens infecting Chinese giant salamanders (Andrias davidianus; CGS) in captivity and the wild, causing substantial economic losses in the CGS industry. However, the molecular mechanisms underlying pathogenesis following infection remain unclear. RESULTS Spleen-derived macrophages from healthy CGS were isolated, cultured, and identified using density gradient centrifugation and immunofluorescence. A macrophage transcriptome database was established 0, 6, and 12 h post lipopolysaccharide stimulation using RNA-sequencing. In the final database 76,743 unigenes and 4,698 differentially expressed genes (DEGs) were functionally annotated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results showed that DEGs were concentrated in toll-like receptor-nuclear factor kappa B-related immune pathways. Ten DEGs were validated 12 h after lipopolysaccharide (LPS) stimulation. Although the common LPS recognition receptor toll-like receptor 4 was not activated and the key adaptor protein MyD88 showed no significant response, we observed significant up-regulation of the following adaptors: toll/interleukin-1 receptor domain-containing adaptor inducing interferon-β, tumour necrosis factor receptor-associated factor 6, and transforming growth factor-β activated kinase 1, which are located downstream of the non-classical MyD88 pathway. CONCLUSIONS In contrast to that in other species, macrophage activation in CGS could depend on the non-classical MyD88 pathway in response to bacterial infection. Our study provides insights into the molecular mechanisms regulating CGS antibacterial responses, with implications for disease prevention and understanding immune evolution in amphibians.
Collapse
Affiliation(s)
- Jie Deng
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Mengdi Han
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Jingyu Gong
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Hongying Ma
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Yinting Hao
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Cheng Fang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Han Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Jia Li
- College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Wei Jiang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an, 710032, China.
| |
Collapse
|
9
|
Tian Y, Zhang H, Ge L, Wang Z, Wang P, Xiong S, Wang X, Hu Y. Toll-like Receptor Expression in Pelodiscus sinensis Reveals Differential Responses after Aeromonas hydrophila Infection. Genes (Basel) 2024; 15:1230. [PMID: 39336821 PMCID: PMC11431187 DOI: 10.3390/genes15091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Toll-like receptor (TLR), as an important pattern recognition receptor, is a bridge between non-specific immunity and specific immunity, and plays a vital role in the disease resistance of aquatic animals. However, the function of TLR in Pelodiscus sinensis is still unclear. Methods and Results: The sequence characteristics and homology of three TLRs (PsTLR2, PsTLR3 and PsTLR5) were determined in this investigation. Their annotation and orthologies were supported by phylogenetic analysis, functional domain prediction, and sequence similarity analysis. qPCR showed that the identified TLRs were expressed in all tissues, among the high expression of PsTLR5 in the brain and liver and the high expression of PsTLR2 and PsTLR3 in the liver. PsTLR2 mRNA expression increased 6.7-fold in the liver 12 h after Aeromonas hydrophila infection, while the mRNA expression of PsTLR3 was down-regulated by 0.29 times in liver and 0.31 times in spleen. The mRNA expression of PsTLR5 was significantly up-regulated in four immune tissues, and it was up-regulated by 122.8 times in the spleen after 72 h infection. Finally, the recombinant proteins of extracellular LRR domains of these three TLRs were obtained by prokaryotic expression technology, and the binding tests were performed to discover their ability of binding pathogenic microorganisms. Microbial binding test showed that rPsTLR2, rPsTLR3 and rPsTLR5 can combine A. hydrophila, Edwardsiella tarda, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus agalactiae and Candida albicans, while rPsTLR3 can bind A. hydrophila, E. tarda, V. parahaemolyticus and C. albicans. Conclusions: Our findings suggested that TLRs may be crucial to turtles' innate immune response against microbes.
Collapse
Affiliation(s)
- Yu Tian
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Hui Zhang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Lingrui Ge
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Zi’ao Wang
- Department of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; (L.G.); (Z.W.)
| | - Pei Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Shuting Xiong
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Xiaoqing Wang
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| | - Yazhou Hu
- College of Aquaculture, Hunan Agricultural University, Changsha 410128, China; (Y.T.); (H.Z.); (S.X.); (X.W.)
| |
Collapse
|
10
|
Prete R, Merola C, Garcia-Gonzalez N, Fanti F, Angelozzi G, Sergi M, Battista N, Perugini M, Corsetti A. Investigating the modulation of the endocannabinoid system by probiotic Lactiplantibacillus plantarum IMC513 in a zebrafish model of di-n-hexyl phthalate exposure. Sci Rep 2024; 14:19328. [PMID: 39164319 PMCID: PMC11336085 DOI: 10.1038/s41598-024-70053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Environmental pollutants used as plasticizers in food packaging and in thousands of everyday products have become harmful for their impact on human health. Among them, phthalates, recognized as emerging endocrine disruptors (EDs) can induce toxic effects leading to different health disorders. Only few studies evaluated the effects of di-n-hexyl phthalate (DnHP) in in vivo models and no studies have been conducted to investigate the effect of DnHP on the endocannabinoid system (ECS), one of the majors signaling pathways involved in the microbiota-gut-brain axis. Due to the current relevance of probiotic bacteria as beneficial dietary interventions, the present study was aimed at evaluating the potential neuroprotective impact of daily administration of Lactiplantibacillus (Lpb.) plantarum IMC513 on zebrafish adults exposed to DnHP, with a focus on ECS modulation. Gene expression analysis revealed a promising protective role of probiotic through the restoration of ECS genes expression to the control level, in the brain of zebrafish daily exposed to DnHP. In addition, the levels of main endocannabinoids were also modulated. These findings confirm the potential ability of probiotics to interact at central level by modulating the ECS, suggesting the use of probiotics as innovative dietary strategy to counteract alterations by EDs exposure.
Collapse
Affiliation(s)
- Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Natalia Garcia-Gonzalez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
11
|
Mohamed Alipiah N, Salleh A, Sarizan NM, Ikhsan N. Molecular characterization and gene expression of pattern recognition receptors in brown-marbled grouper (Epinephelus fuscoguttatus) fingerlings responding to vibriosis infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105253. [PMID: 39168397 DOI: 10.1016/j.dci.2024.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
The pathogen recognition system involves receptors and genes that play a crucial role in activating innate immune response in brown-marbled grouper (Epinephelus fuscoguttatus) as a control agent against various infections including vibriosis. Here, we report the molecular cloning of partial open reading frames, sequences characterization, and expression profiles of Pattern Recognition Receptors (PRRs) in brown-marbled grouper. The PRRs, namely pglyrp5, tlr5, ctlD, and ctlE in brown-marbled grouper, possess conserved domains and showed shared evolutionary relationships with other fishes, humans, mammals, birds, reptilians, amphibians, and insects. In infection experiments, up to 50% mortality was found in brown-marbled grouper fingerlings infected with Vibrio alginolyticus compared to 27% mortality infected Vibrio parahaemolyticus and 100% survival of control groups. It is also demonstrated that all four PRRs had higher expression in samples infected with V. alginolyticus compared to V. parahaemolyticus. This PRRs gene expression analysis revealed that all four PRRs expressed rapidly at 4-h post-inoculation even though the Vibrio count was only detected earliest at 12-h post-inoculation in samples. The highest expression recorded was from V. alginolyticus inoculated fish spleen with up to 73-fold change for pglyrp5 gene, followed by 14 to 38-fold expression for the same treatment in spleen, head kidney, and blood samples for other PRRs, namely tlr5, ctlD, and ctlE genes. Meanwhile less than a 10% increase in expression of all four genes was detected in spleen, head kidney, and blood samples inoculated with V. parahaemolyticus. These findings indicated that pglyrp5, tlr5, ctlD, and ctlE play important roles in the early immune response to vibriosis infected, brown-marbled grouper fingerlings.
Collapse
Affiliation(s)
- Norfarrah Mohamed Alipiah
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Annas Salleh
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Laboratory Diagnostic, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Maisarah Sarizan
- Faculty of Applied Sciences, Universiti Teknologi MARA, Arau Campus, Perlis Branch, 02600, Arau, Perlis, Malaysia
| | - Natrah Ikhsan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Gao F, Dong J, Li J, Zhu Z, Zhang H, Sun C, Ye X. TLR21 is involved in the NF-κB and IFN-β pathways in largemouth bass (Micropterus salmoides) and interacts with TRIF but not with the Myd88 adaptor. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109734. [PMID: 38950759 DOI: 10.1016/j.fsi.2024.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that trigger host immune responses against various pathogens by detecting evolutionarily conserved pathogen-associated molecular patterns (PAMPs). TLR21 is a member of the Toll-like receptor family, and emerging data suggest that it recognises unmethylated CpG DNA and is considered a functional homologue of mammalian TLR9. However, little is known regarding the role of TLR21 in the fish immune response. In the present study, we isolated the cDNA sequence of TLR21 from the largemouth bass (Micropterus salmoides) and termed it MsTLR21. The MsTLR21 gene contained an open reading frame (ORF) of 2931 bp and encodes a polypeptide of 976 amino acids. The predicted MsTLR21 protein has two conserved domains, a conserved leucine-rich repeats (LRR) domain and a C-terminal Toll-interleukin (IL) receptor (TIR) domain, similar to those of other fish and mammals. In healthy largemouth bass, the TLR21 transcript was broadly expressed in all the examined tissues, with the highest expression levels in the gills. After challenge with Nocardia seriolae and polyinosinic polycytidylic acid (Poly[I:C]), the expression of TLR21 mRNA was upregulated or downregulated in all tissues tested. Overexpression of TLR21 in 293T cells showed that it has a positive regulatory effect on nuclear factor-kappaB (NF-κB) and interferons-β (IFN-β) activity. Subcellular localisation analysis showed that TLR21 was expressed in the cytoplasm. We performed pull-down assays and determined that TLR21 did not interact with myeloid differentiation primary response gene 88 (Myd88); however, it interacted with TIR domain-containing adaptor inducing interferon-β (TRIF). Taken together, these findings suggest that MsTLR21 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Fengying Gao
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Jiaxin Li
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China; College of Fisheries, Tianjin Agricultural University, China
| | - Zhilin Zhu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China; College of Fisheries, Tianjin Agricultural University, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| | - Xing Ye
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| |
Collapse
|
13
|
Rao H, Tian H, Wang X, Huo C, Zhu L, Li Z, Li Y. Diversification of Toll-like receptor 1 in swamp eel (Monopterus albus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105190. [PMID: 38697378 DOI: 10.1016/j.dci.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.
Collapse
Affiliation(s)
- Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China.
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
14
|
Li H, Jiang X, Zhang S, Li Y, Wang X, Liang J. MiR-214_L-1R+4 regulate gossypol-induced immune response through MyD88-dependent signaling pathway in Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109744. [PMID: 38960107 DOI: 10.1016/j.fsi.2024.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.
Collapse
Affiliation(s)
- Hui Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China.
| | - Xinyu Jiang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Shuying Zhang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Yanling Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| |
Collapse
|
15
|
Felch KL, Crider JD, Bhattacharjee D, Huhn C, Wilson M, Bengtén E. TLR7 in channel catfish (Ictalurus punctatus) is expressed in the endolysosome and is stimulated by synthetic ssRNA analogs, imiquimod, and resiquimod. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105197. [PMID: 38763479 PMCID: PMC11234115 DOI: 10.1016/j.dci.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.
Collapse
Affiliation(s)
- Kristianna L Felch
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Jonathan D Crider
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Department of Biology, Belmont University, 1900 Belmont Blvd, 37212, Nashville, TN, USA.
| | - Debduti Bhattacharjee
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Cameron Huhn
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Melanie Wilson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| |
Collapse
|
16
|
Harshitha M, D'souza R, Akshay SD, Nayak A, Disha S, Aditya V, Akshath US, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Oral administration of recombinant outer membrane protein A-based nanovaccine affords protection against Aeromonas hydrophila in zebrafish. World J Microbiol Biotechnol 2024; 40:250. [PMID: 38910219 DOI: 10.1007/s11274-024-04059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.
Collapse
Affiliation(s)
- Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Ruveena D'souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Sadanand Dangari Akshay
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vankadari Aditya
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Infectious Diseases & Microbial Genomics, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Uchangi Satyaprasad Akshath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Saurabh Dubey
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
17
|
Gong X, Hu F, Hu J, Bao Z, Wang M. The interactions between CpG oligodeoxynucleotides and Toll-like receptors in Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105157. [PMID: 38423492 DOI: 10.1016/j.dci.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
CpG oligodeoxynucleotides (ODNs), as a novel type of adjuvant with immunomodulatory effects, are recognized by Toll-like receptors (TLRs) in Litopenaeus vannamei. In the present study, eleven LvTLRs-pCMV recombinants (rLvTLRs) were constructed to investigate the relationships between various CpG ODNs and different LvTLRs in human embryonic kidney 293T (HEK293T) cells, which was further confirmed by bio-layer interferometry (BLI) technique. The results of dual luciferase reporter assay showed that every LvTLR could activate multiple downstream genes, mainly including NF-κB, CREB, ISRE, IL-6-promoter, TNF-α-promoter and Myc, thereby inducing main signaling pathways in shrimps. Most CpG ODNs possessed affinities to more than one LvTLR, while each LvTLR could recognize multiple CpG ODNs, and the widely recognized ligands within CpG ODNs are A-class and B-class. Moreover, BLI analysis showed that CpG 2216, Cpg 2006, CpG 2143 and CpG 21425 exhibited dose-dependent affinity to the expressed TLR protein, which were consistent with the results in HEK293T cells. It suggested that the interactions of CpG ODNs with LvTLRs were indispensable for the immune regulation triggered by CpG ODNs, and these findings would lay foundations for studying the activations of LvTLRs to immune signaling pathways and shedding lights on the immune functions and mechanisms of CpG ODNs.
Collapse
Affiliation(s)
- Xuerui Gong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou, 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China.
| |
Collapse
|
18
|
Mao X, Wang Y, Zhang T, Ma J, Zhao J, Xu D. Dietary arginine regulates the growth performance, antioxidant capacity, and immune response in Culter alburnus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1251-1264. [PMID: 38578588 DOI: 10.1007/s10695-024-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Culter alburnus is sensitive to stressors. Arginine is a precursor of nitric oxide, which can effectively relieve the level of oxidative stress and improve the antioxidant and immune capacity of fish. The effect of different arginine levels on topmouth culter (Culter alburnus) fry development performance, liver antioxidant capacity, and immune parameters were investigated in this study. Five diets (1.96%, ARG1, control group; 2.28%, ARG2; 2.52%, ARG3; 2.81%, ARG4; 3.09%, ARG5) were used to feed fry (initial weight 0.31 ± 0.01 g) for 8 weeks. The data showed that the final weight (FW), weight gain rate (WGR), and specific growth rate (SGR) of the ARG3 and ARG4 groups were significantly improved, while the feed conversion ratio (FCR) reduced significantly. Compared with the ARG1 group, all groups remarkably reduced the crude ash content of the whole body. The activity of hepatic superoxide dismutase (SOD) and the content of hepatic glutathione (GSH) were significantly increased in the ARG3 and ARG4 groups, while the malondialdehyde (MDA) content was significantly decreased. Compared with the ARG1 group, arginine levels in ARG2, ARG3, and ARG4 groups up-regulated the expression levels of Nrf2, down-regulated the gene expression level of Keap1 in the liver. And the expression of Nrf2/Keap1 pathway downstream genes Mn-SOD and CAT was up-regulated in ARG2 and ARG3 groups. Furthermore, the expression levels of MyD88 and IL-1β were down-regulated, and the anti-inflammatory gene TGF-β expression levels were up-regulated in the ARG2, ARG3, and ARG4 groups. Additionally, compared to the ARG1 group, there was a significant increase in the relative expression levels of the C3 and C4 genes in the ARG4 group. In conclusion, 2.28-2.81% dietary arginine levels improved the growth performance, promoted antioxidant capacity, and enhance immune response. The optimal level of arginine was determined by the quadratic regression analysis of SGR and FCR to be 2.55% of diet (5.43% of dietary protein) and 2.53% of diet (5.38% of dietary protein), accordingly.
Collapse
Affiliation(s)
- Xinyuan Mao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yue Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Ting Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junlei Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jihao Zhao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
19
|
Jang JH, Kim H, Kim HR, Cho JH. Rainbow trout DUBA inhibits type I interferon signaling by deubiquitinating TRAF3. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109581. [PMID: 38670412 DOI: 10.1016/j.fsi.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.
Collapse
Affiliation(s)
- Ju Hye Jang
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Kim
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ha Rang Kim
- Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea
| | - Ju Hyun Cho
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Division of Applied Life Science (BK21Four), Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
20
|
Su L, Guo B, Jiang L, Lin Y, Xu Q, Zheng D, Xiu Y. Intestinal epithelial cells of Japanese flounder (Paralichthys olivaceus) as an in vitro model for studying intestine immune function based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109473. [PMID: 38458502 DOI: 10.1016/j.fsi.2024.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Japanese flounder (Paralichthys olivaceus) is an economically crucial marine species, but diseases like hemorrhagic septicemia caused by Edwardsiella tarda have resulted in significant economic losses. E. tarda infects various hosts, and its pathogenicity in fish is not fully understood. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and are representative of typical PAMP molecules that cause activation of the immune system. The PoIEC cell line is a newly established intestinal epithelial cell line from P. olivaceus. In order to investigate whether it can be used as an in vitro model for studying the pathogenesis of E. tarda and LPS stimulation, we conducted RNA-seq experiments for the PoIECs model of E. tarda infection and LPS stimulation. In this study, transcriptome sequencing was carried out in the PoIEC cell line after treatment with LPS and E. tarda. A total of 62.52G of high-quality data from transcriptome sequencing results were obtained in nine libraries, of which an average of 87.96% data could be aligned to the P. olivaceus genome. Data analysis showed that 283 and 414 differentially expressed genes (DEGs) in the LPS versus Control (LPS-vs-Con) and E. tarda versus Control groups (Et-vs-Con), respectively, of which 60 DEGs were shared in two comparation groups. The GO terms were predominantly enriched in the extracellular space, inflammatory response, and cytokine activity in the LPS-vs-Con group, whereas GO terms were predominantly enriched in nucleus and positive regulation of transcription by RNA polymerase II in the Et-vs-Con group. KEGG analysis revealed that three immune-related pathways were co-enriched in both comparison groups, including the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and Cytokine-cytokine receptor interaction. Five genes were randomly screened to confirm the validity and accuracy of the transcriptome data. These results suggest that PoIEC cell line can be an ideal in vitro model for studies of marine fish gut immunity and pathogenesis of Edwardsiellosis.
Collapse
Affiliation(s)
- Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baoshan Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingyue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
22
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Yang Y, Xu S, He H, Zhu X, Liu Y, Ai X, Chen Y. Mechanism of sturgeon intestinal inflammation induced by Yersinia ruckeri and the effect of florfenicol intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116138. [PMID: 38394759 DOI: 10.1016/j.ecoenv.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1β, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China
| | - Shijian Xu
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China.
| | - Hao He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Machado M, Cruz F, Cunha A, Ramos-Pinto L, Laranjeira A, Pacheco M, Rocha RJM, Costas B. Dietary Salicornia ramosissima improves the European seabass ( Dicentrarchus labrax) inflammatory response against Photobacterium damselae piscicida. Front Immunol 2024; 15:1342144. [PMID: 38500885 PMCID: PMC10944916 DOI: 10.3389/fimmu.2024.1342144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Modern fish farming faces challenges in sourcing feed ingredients, most related with their prices, 21 availability, and specifically for plant protein sources, competition for the limited cultivation space for 22 vegetable crops. In that sense, halophytes have the added value of being rich in valuable bioactive compounds and salt tolerant. This study assessed the inclusion of non-food fractions of S. ramosissima in European seabass diets. Methods Different levels (2.5%, 5%, and 10%) were incorporated into seabass diets, replacing wheat meal (diets ST2.5, ST5, and ST10) or without inclusion (CTRL). Experimental diets were administered to seabass juveniles (8.62 ± 0.63 g) for 34 and 62 days and subsequent inflammatory responses to a heat-inactivated Photobacterium damselae subsp. piscicida (Phdp) were evaluated in a time-course manner (4, 24, 48, and 72 h after the challenge). At each sampling point, seabass haematological profile, plasma immune parameters, and head-kidney immune-related gene expression were evaluated. Results After both feeding periods, most parameters remained unaltered by S. ramosissima inclusion; nonetheless, seabass fed ST10 showed an upregulation of macrophage colony-stimulating factor 1 receptor 1 (mcsf1r1) and cluster of differentiation 8 (cd8β) compared with those fed CTRL after 62 days of feeding. Regarding the inflammatory response, seabass fed ST10 showed lower plasma lysozyme levels than their counterparts fed ST2.5 and ST5 at 24 h following injection, while 4 h after the inflammatory stimulus, seabass fed ST10 presented higher numbers of peritoneal leucocytes than fish fed CTRL. Moreover, at 4 h, fish fed ST2.5, ST5, and ST10 showed a higher expression of interleukin 1β (il1β), while fish fed ST5 showed higher levels of ornithine decarboxylase (odc) than those fed CTRL. An upregulation of macrophage colony-stimulating factor 1 receptor 1 (mcsf1r1) and glutathione peroxidase (gpx) was also observed at 72 h in fish fed ST10 or ST5 and ST10 compared with CTRL, respectively. Discussion In conclusion, incorporating up to 10% of the non-food fraction S. ramosissima in feed did not compromise seabass growth or immune status after 62 days, aligning with circular economy principles. However, S. ramosissima inclusion improved the leucocyte response and upregulated key immune-related genes in seabass challenged with an inactivated pathogen.
Collapse
Affiliation(s)
- Marina Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Francisco Cruz
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de Leiria, Peniche, Portugal
| | - André Cunha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences (ICBAS-UP), University of Porto, Porto, Portugal
| | - Lourenço Ramos-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | | | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences (ICBAS-UP), University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Vásquez-Suárez A, Muñoz-Flores C, Ortega L, Roa F, Castillo C, Romero A, Parra N, Sandoval F, Macaya L, González-Chavarría I, Astuya A, Starck MF, Villegas MF, Agurto N, Montesino R, Sánchez O, Valenzuela A, Toledo JR, Acosta J. Design and functional characterization of Salmo salar TLR5 agonist peptides derived from high mobility group B1 acidic tail. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109373. [PMID: 38272332 DOI: 10.1016/j.fsi.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Castillo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Sandoval
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Macaya
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - María Francisca Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge R Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
26
|
Liao Z, Ji W, Yang C, Su J. TLR5M and TLR5S Synergistically Sense Flagellin in Early Endosome in Lamprey Petromyzon marinus, Switched by the N-Glycosylation Site N239. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:855-867. [PMID: 38231121 DOI: 10.4049/jimmunol.2300490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
In mammals, TLR5 functions as a homodimer to recognize bacterial flagellin on the cytomembrane. The current investigations reveal the existence of two types of TLR5, a membrane-bound PmTLR5M, and a soluble variant PmTLR5S, in lamprey (Petromyzon marinus). Although both PmTLR5M and PmTLR5S can bind flagellin, only PmTLR5M is capable of eliciting a proinflammatory response, whereas PmTLR5S can detect the flagellin and facilitate the role of PmTLR5M in early endosomes. The trafficking chaperone UNC93B1 enhances the ligand-induced signaling via PmTLR5M or the combination of PmTLR5M and PmTLR5S. PmTLR5M recruits MyD88 as an adaptor. Furthermore, chimeric receptor studies demonstrate the indispensability of the intradomain of PmTLR5M in effective activation of the proinflammatory pathway upon flagellin stimulation, and the combination of PmTLR5S with a singular intradomain in both homodimer and heterodimer ectodomain arrangements can very significantly augment the immune response. Furthermore, the flagellin binding sites between PmTLR5M and PmTLR5S are conserved, which are essential for ligand binding and signal transduction. Moreover, investigations on N-linked glycosylation modifications reveal that the N239 site in PmTLR5M and PmTLR5S plays a switch role in both flagellin binding and immune responses. In addition, PmTLR5M exhibits the high-mannose-type and complex-type N-glycosylation modifications; however, PmTLR5S shows exclusive complex-type N-glycosylation modification. The key N239 site demonstrates complex-type N-glycosylation modification. The findings address the function and mechanism of TLR5 in ligand recognition, subcellular localization, and signaling pathway in lowest vertebrate and immune system transition species, highlight the regulatory role of N-glycosylation modification in TLRs, and augment immune evolutionary research on the TLR signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Ji
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Peng J, Zhang S, Han F, Wang Z. C1QBP is a critical component in the immune response of large yellow croaker (Larimichthys crocea) against visceral white spot disease caused by Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109372. [PMID: 38218420 DOI: 10.1016/j.fsi.2024.109372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The large yellow croaker (Larimichthys crocea) stands as a cornerstone of mariculture in China due to its significant value. However, the threat of Pseudomonas plecoglossicida infection looms large, capable of triggering "visceral white spot disease" and subsequently inflicting severe economic ramifications. Through a prior genome-wide association analysis (GWAS) aimed at understanding the resistance of the large yellow croaker to this ailment, a pivotal player emerged: the complement component 1q binding protein, aptly named LcC1qbp. This protein assumes a crucial role in the activation of the complement system. This study delves deeper into the immune response by examining the expression patterns of LcC1QBP when confronted with P. plecoglossicida. The investigation into gene expression patterns reveals LcC1qbp's widespread presence, with its highest transcriptional abundance identified in the kidney tissues. Upon infection by P. plecoglossicida, the up-regulation of LcC1qbp in major immune organs manifests at both the transcriptional and translational levels. In the context of RNA interference, transcriptome analysis of C1qbp in HEK 293T cells uncovers 1327 differentially expressed genes (DEGs), featuring 41 significant immune genes. This includes pivotal components such as C1S and C3 of the complement system, along with IL11, IL12RB2, and Myd88, among others. The outcomes of enrichment analysis spotlight the prevalence of DEGs within key pathways like immune system development, myeloid leukocyte-mediated immunity, MAPK signaling, and other immune-related routes. By unveiling the immune response mechanisms of the large yellow croaker to P. plecoglossicida infection, this study bolsters our understanding. Furthermore, it lays the groundwork for pursuing effective strategies in both preventing and treating "visceral white spot disease" in the large yellow croaker.
Collapse
Affiliation(s)
- Jia Peng
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Sen Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China.
| | - Zhiyong Wang
- State Key Laboratory of Mariculture Breeding, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, 361000, PR China
| |
Collapse
|
28
|
Cano I, Blaker E, Hartnell D, Farbos A, Moore KA, Cobb A, Santos EM, van Aerle R. Transcriptomic Responses to Koi Herpesvirus in Isolated Blood Leukocytes from Infected Common Carp. Viruses 2024; 16:380. [PMID: 38543746 PMCID: PMC10974277 DOI: 10.3390/v16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to KHV at 17 °C. After confirming the presence of viral transcripts in blood leukocytes at ten days post infection, RNA-Seq was performed on peripheral blood leukocytes on the Illumina NovaSeq. KHV infection triggered a robust immune response mediated by pattern recognition receptors, mainly toll-like receptors (tlr2, tlr5, tlr7, and tlr13), urokinase plasminogen activator surface receptor-like, galectin proteins, and lipid mediators such as leukotriene B4 receptor 1. Enriched pathways showed increased mitochondria oxidative phosphorylation and the activation of signalling pathways such as mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF). KHV-infected leukocytes showed low production of reactive oxygen species (ROS) and glutathione metabolism, high iron export and phagocytosis activity, and low autophagy. Macrophage polarization was deduced from the up-regulation of genes such as arginase non-hepatic 1-like, macrophage mannose receptor-1, crem, il-10, and il-13 receptors, while markers for cytotoxic T cells were observed to be down-regulated. Further work is required to characterise these leukocyte subsets and the molecular events leading to KHV latency in blood leukocytes.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| | - Ellen Blaker
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - David Hartnell
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Audrey Farbos
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Karen A. Moore
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Adele Cobb
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Eduarda M. Santos
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| |
Collapse
|
29
|
Tsoulia T, Sundaram AYM, Braaen S, Jørgensen JB, Rimstad E, Wessel Ø, Dahle MK. Transcriptomics of early responses to purified Piscine orthoreovirus-1 in Atlantic salmon ( Salmo salar L.) red blood cells compared to non-susceptible cell lines. Front Immunol 2024; 15:1359552. [PMID: 38420125 PMCID: PMC10899339 DOI: 10.3389/fimmu.2024.1359552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation.
Collapse
Affiliation(s)
- Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Arvind Y. M. Sundaram
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Stine Braaen
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Espen Rimstad
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Maria K. Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
He L, Liang Y, Yu X, Zhao Y, Zou Z, Dai Q, Wu J, Gan S, Lin H, Zhang Y, Lu D. UNC93B1 facilitates the localization and signaling of TLR5M in Epinephelus coioides. Int J Biol Macromol 2024; 258:128729. [PMID: 38086430 DOI: 10.1016/j.ijbiomac.2023.128729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Toll-like receptor 5 (TLR5), serving as a sensor of bacterial flagellin, mediates the innate immune response to actively engage in the host's immune processes against pathogen invasion. However, the mechanism underlying TLR5-mediated immune response in fish remains unclear. Despite the presumed cell surface expression of TLR5 member form (TLR5M), its trafficking dynamics remain elusive. Here, we have identified Epinephelus coioides TLR5M as a crucial mediator of Vibrio flagellin-induced cytokine expression in grouper cells. EcTLR5M facilitated the activation of NF-κB signaling pathway in response to flagellin stimulation and exerted a modest influence on the mitogen-activated protein kinase (MAPK)-extracellular regulated kinase (ERK) signaling. The trafficking chaperone Unc-93 homolog B1 (EcUNC93B1) participated in EcTLR5M-mediated NF-κB signaling activation and downstream cytokine expression. In addition, EcUNC93B1 combined with EcTLR5M to mediate its exit from the endoplasmic reticulum, and also affected its post-translational maturation. Collectively, these findings first discovered that EcTLR5M mediated the flagellin-induced cytokine expression primarily by regulating the NF-κB signaling pathway, and EcUNC93B1 mediated EcTLR5M function through regulating its trafficking and post-translational maturation. This research expanded the understanding of fish innate immunity and provided a novel concept for the advancement of anti-vibrio immunity technology.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhenjiang Zou
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qinxi Dai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510145, PR China
| | - Songyong Gan
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510145, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
31
|
Gao S, Huang W, Peng S, Zhou J, Zhan H, Lu T, Liang W, Li J, Zhang Y, Li W, Han C, Li Q. Molecular characterization and expression analysis of nine toll like receptor (TLR) genes in Scortum barcoo under Streptococcus agalactiae infection. Int J Biol Macromol 2024; 254:127667. [PMID: 37918608 DOI: 10.1016/j.ijbiomac.2023.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Toll like receptors (TLRs) are important pattern recognition receptors participating in innate immune system. Up to now, no TLR has been identified in Jade perch (Scortum barcoo). In this study, we successfully identified 9 members of TLRs from the Jade perch. Amino acid sequence alignment analysis showed that the whole sequences of these TLRs were highly conserved among different fish species, especially in LRR, TM and TIR domains. Phylogenetic analysis revealed that each SbTLR was successfully grouped into corresponding gene family of teleosts. Expression analysis showed that most SbTLRs mainly expressed in liver, spleen, muscle and skin, while expressed less in brain and stomach. After Streptococcus agalactiae infection, expression of SbTLR2, SbTLR5S and SbTLR22 were significantly upregulated, while SbTLR3, SbTLR5M, SbTLR9, SbTLR13, and SbTLR14 were significantly downregulated. In all, this research first reported molecular characterization and expression profiles of 9 TLRs in Jade perch. These data will make a contribution for better understanding the antibacterial mechanism of TLRs in teleosts.
Collapse
Affiliation(s)
- Songze Gao
- Guangzhou Mygene Diagnostics Co., Ltd., Guangzhou 510320, PR China
| | - Wenwei Huang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Suhan Peng
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Jiangwei Zhou
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Huawei Zhan
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Tongfu Lu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Weiqian Liang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Junwu Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Yuying Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Wenjun Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Chong Han
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Qiang Li
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
32
|
Lv M, Zhang J, Wang W, Jiang R, Su J. Re-identification and characterization of grass carp Ctenopharyngodon idella TLR20. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100119. [PMID: 37841419 PMCID: PMC10568090 DOI: 10.1016/j.fsirep.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the recognition of microbial-associated molecular patterns in the innate immune system. Fish TLRs have undergone significant gene expansion to adapt to complex aquatic environments. Among them, TLR20 from the TLR11 family actively responds to viral and bacterial invasions. Previous studies have reported two TLR20s in grass carp (Ctenopharyngodon idella), and in this study, we revised this conclusion. Based on the latest grass carp genome, we identified a new TLR20 member. These three TLR20s are arranged in tandem on chromosome 9, indicating that they are generated by gene duplication events. They were renamed CiTLR20.1 to CiTLR20.3 based on their chromosomal positions. The CiTLR20s in C. idella exhibit higher similarities with those in Danio rerio, Cyprinus carpio, and Megalobrama amblycephala, and lower similarities with those in other distantly related fish species. Selective pressure analysis revealed low conservation and negative evolution of TLR20s during evolution. The 3D structures of the three TLR20s showed significant differences, reflecting functional variations and different downstream adaptor molecule recruitment. Transcriptome data revealed tissue distribution differences of TLR20s, with TLR20.1 showing relatively low expression levels in all the tissues, while TLR20.2 and TLR20.3 showed higher expression in the head kidney, spleen, and gill. Additionally, TLR20.2 and TLR20.3 actively responded to GCRV-II infection, with higher upregulation of TLR20.2 in response to Aeromonas hydrophila challenge. In conclusion, this study corrected the number of grass carp TLR20 members and analyzed TLR20 from an evolutionary and structural perspective, exploring its role in antiviral and antibacterial defense. This study provides reference for future research on fish TLR20.
Collapse
Affiliation(s)
- Maolin Lv
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjing Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Jiang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
33
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
34
|
Gao J, Hu Y, Xie M, Wu H, Wu J, Xi B, Song R, Ou D. Alterations of Plasma Biochemical and Immunological Parameters and Spatiotemporal Expression of TLR2 and TLR9 in Gibel Carp ( Carassius auratus gibelio) after CyHV-2 Infection. Pathogens 2023; 12:1329. [PMID: 38003793 PMCID: PMC10675598 DOI: 10.3390/pathogens12111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cyprinid herpesvirus II (CyHV-2), a highly contagious pathogen of gibel carp (Carassius auratus gibelio), causes herpesviral hematopoietic necrosis disease (HVHND) and enormous financial losses. However, there is limited information available regarding the changes in plasma biochemical and immunological parameters and the response characteristics of Toll-like receptor 2 (TLR2) and Toll-like receptor 9 (TLR9) in gibel carp after CyHV-2 infection. To address this knowledge gap, a sub-lethal CyHV-2 infection was conducted in gibel carp, and the sample was collected daily from 1 to 7 days post infection. The plasma biochemical analyses showed significant decreases in the content of glucose, total cholesterol (TCHO), and total protein (TP), along with marked increases in the level of uric acid, urea, creatinine (CREA), Complement 3 (C3), immunoglobulin D (IgD), and immunoglobulin M (IgM) as well as in the activity of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the infected group. Compared with the control group, the concentration of cortisol, triglyceride (TG), and Complement 4 (C4) had no noticeable alterations in the infected group. Real-time quantitative PCR analysis showed significant upregulation of TLR2 and TLR9 mRNA expression in the spleen, kidney, brain, liver, intestine, and gill post CyHV-2 infection. Interestingly, a time- and tissue-dependent expression profile has been comparatively observed for TLR2 and TLR9 in the above tissues of gibel carp after CyHV-2 infection, suggesting distinct roles between TLR2 and TLR9 in antiviral response to CyHV-2 infection. Overall, our results demonstrated that CyHV-2 infection led to the disruption of the physiological metabolic process and damage to the liver and kidney, and induced different spatiotemporal expression patterns of TLR2 and TLR9, ultimately stimulating antiviral response via innate and adaptive immune system. These findings may provide a deeper understanding of the host immunity response to CyHV-2 infection and offer novel perspectives for the prevention and treatment and therapeutic drug development against CyHV-2.
Collapse
Affiliation(s)
- Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Yiwen Hu
- Changsha Customs, Changsha 410000, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Bingwen Xi
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China; (J.G.); (M.X.)
| |
Collapse
|
35
|
Bai L, Yu G, Liu Y, Aizaz M, Yang G, Chen L. Common carp intelectin 3 (cITLN3) plays a role in the innate immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109057. [PMID: 37673388 DOI: 10.1016/j.fsi.2023.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Intelectin is a lectin with the capacity to recognize and bind to carbohydrates. In this study, we successfully cloned cITLN3 from common carp, which consists of a signal peptide domain, a FReD domain, and an intelectin domain. The expression levels of cITLN3 were detected in various organs of common carp, including the liver, head kidney, spleen, foregut, midgut, and hindgut, with the highest expression observed in the liver. Following infection with Staphylococcus aureus (S. aureus) or Aeromonas hydrophila (A. hydrophila), the expression level of cITLN3 was significantly upregulated in all organs of common carp. Subsequently, we expressed and purified the recombinant cITLN3 protein using an E. coli expression system. The cITLN3 could aggregate both gram-positive and gram-negative bacteria in the presence of Ca2+, with a stronger affinity for gram-positive bacteria. Moreover, our study demonstrated that cITLN3 displayed a higher binding affinity towards PGN compared to LPS. Furthermore, we observed that cITLN3 had the potential to inhibit bacterial proliferation in common carp and safeguard intestinal integrity during bacterial stimulation. And the results also indicated that cITLN3 might played a role in the Toll-like receptors (TLRs) signaling pathway activation.
Collapse
Affiliation(s)
- Linyi Bai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Guanliu Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Yujie Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China.
| |
Collapse
|
36
|
He L, Yu X, Zhao Y, Lin H, Zhang Y, Lu D. TLR5S negatively regulates the TLR5M-mediated NF-κB signaling pathway in Epinephelus coioides. Int J Biol Macromol 2023; 249:126048. [PMID: 37517756 DOI: 10.1016/j.ijbiomac.2023.126048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKβ. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
37
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
38
|
Zhang B, Xiao W, Qin G, Chen Z, Qiu L, Wang X, Lin Q. Gene loss and co-option of toll-like receptors facilitate paternal immunological adaptation in the brood pouch of pregnant male seahorses. Front Immunol 2023; 14:1224698. [PMID: 37588592 PMCID: PMC10426278 DOI: 10.3389/fimmu.2023.1224698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023] Open
Abstract
Male pregnancy in syngnathids (seahorses, pipefishes, and sea dragons) is an evolutionary innovation in the animal kingdom. Paternal immune resistance to the fetus is a critical challenge, particularly in seahorses with fully enclosed brood pouches and sophisticated placentas. In this study, comparative genomic analysis revealed that all syngnathid species lost three vertebrate-conserved Toll-like receptors (TLR1, TLR2, and TLR9), of which all play essential roles in immune protection and immune tolerance in the uterus and placenta. Quantitative real-time PCR (qRT-PCR) analysis showed that the TLR paralog genes including TLR18, TLR25, and TLR21 were highly expressed in the placenta inside the seahorse brood pouch and changed dynamically during the breeding cycle, suggesting the potentially important role of the TLRs during male pregnancy. Furthermore, the immune challenge test in vitro showed a remarkable expression response from all three TLR genes to specific pathogenic antigens, confirming their immune function in seahorse brood pouches. Notably, the altered antigen recognition spectrum of these genes appeared to functionally compensate in part for the lost TLRs, in contrast to that observed in other species. Therefore, we suggest that gene loss and co-option of TLRs may be a typical evolutionary strategy for facilitating paternal immunological adaptation during male pregnancy.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wanghong Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
39
|
Zhang J, Huang J, Zhao H. Molecular Cloning of Toll-like Receptor 2 and 4 ( SpTLR2, 4) and Expression of TLR-Related Genes from Schizothorax prenanti after Poly (I:C) Stimulation. Genes (Basel) 2023; 14:1388. [PMID: 37510293 PMCID: PMC10379648 DOI: 10.3390/genes14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) signaling is conserved between fish and mammals, except for TLR4, which is absent in most fish. In the present study, we aimed to evaluate whether TLR4 is expressed in Schizothorax prenanti (SpTLR4). The SpTLR2 and SpTLR4 were cloned and identified, and their tissue distribution was examined. The cDNA encoding SpTLR4 and SpTLR2 complete coding sequences (CDS) were identified and cloned. Additionally, we examined the expression levels of seven SpTLRs (SpTLR2, 3, 4, 18, 22-1, 22-2, and 22-3), as well as SpMyD88 and SpIRF3 in the liver, head kidney, hindgut, and spleen of S. prenanti, after intraperitoneal injection of polyinosinic-polycytidylic acid (poly (I:C)). The SpTLR2 and SpTLR4 shared amino acid sequence identity of 42.15-96.21% and 36.21-93.58%, respectively, with sequences from other vertebrates. SpTLR2 and SpTLR4 were expressed in all S. prenanti tissues examined, particularly in immune-related tissues. Poly (I:C) significantly upregulated most of the genes evaluated in the four immune organs compared with the PBS-control (p < 0.05); expression of these different genes was tissue-specific. Our findings demonstrate that TLR2 and TLR4 are expressed in S. prenanti and that poly (I:C) affects the expression of nine TLR-related genes, which are potentially involved in S. prenanti antiviral immunity or mediating pathological processes with differential kinetics. This will contribute to a better understanding of the roles of these TLR-related genes in antiviral immunity.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| |
Collapse
|
40
|
Leiva-Rebollo R, Gémez-Mata J, Castro D, Borrego JJ, Labella AM. Immune response of DNA vaccinated-gilthead seabream ( Sparus aurata) against LCDV-Sa infection: relevance of the inflammatory process. Front Immunol 2023; 14:1209926. [PMID: 37346045 PMCID: PMC10279854 DOI: 10.3389/fimmu.2023.1209926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Lymphocystis disease is one of the main viral pathologies affecting cultured gilthead seabream (Sparus aurata) in the Mediterranean region. Recently, we have developed a DNA vaccine based on the major capsid protein (MCP) of the Lymphocystis disease virus 3 (LCDV-Sa). The immune response triggered by either LCDV-Sa infection or vaccination have been previously studied and seem to be highly related to the modulation of the inflammatory and the IFN response. However, a comprehensive evaluation of immune-related gene expression in vaccinated fish after viral infection to identify immunogenes involved in vaccine-induced protection have not been carried out to date. The present study aimed to fulfill this objective by analyzing samples of head-kidney, spleen, intestine, and caudal fin from fish using an OpenArray® platform containing targets related to the immune response of gilthead seabream. The results obtained showed an increase of deregulated genes in the hematopoietic organs between vaccinated and non-vaccinated fish. However, in the intestine and fin, the results showed the opposite trend. The global effect of fish vaccination was a significant decrease (p<0.05) of viral replication in groups of fish previously vaccinated, and the expression of the following immune genes related to viral recognition (tlr9), humoral and cellular response (rag1 and cd48), inflammation (csf1r, elam, il1β, and il6), antiviral response (isg15, mx1, mx2, mx3), cell-mediated cytotoxicity (nccrp1), and apoptosis (prf1). The exclusive modulation of the immune response provoked by the vaccination seems to control the progression of the infection in the experimentally challenged gilthead seabream.
Collapse
Affiliation(s)
| | | | | | | | - Alejandro M. Labella
- Department of Microbiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| |
Collapse
|
41
|
Zou Y, Xu X, Xiao X, Wang Y, Yang H, Zhang Z. Genome-wide identification and characterization of Toll-like receptors (TLR) genes in Haliotis discus hannai, H. rufescens, and H. laevigata. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108728. [PMID: 37011737 DOI: 10.1016/j.fsi.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 05/22/2023]
Abstract
Toll-like receptors (TLRs) play essential roles in the innate immune system and have been extensively studied in mollusks. In this study, through a genome-wide search, TLR genes were identified as 29 in Haliotis discus hannai, 33 in H. rufescens, and 16 in H. laevigata. Domain analysis indicated that these TLR genes contain leucine-rich repeat (LRR) and Toll/IL-1 receptor (TIR) domains and exons ranging from 1 to 5. Polymorphism analysis showed that the TLRs in abalones did not have high diversities with 143 SNPs and no Indel in H. discus hannai, 92 SNPs and 3 Indels together with 6 missense mutations in H. rufescens, and no SNP or Indel in H. laevigata. The expression of 8 TLR genes in H. discus hannai was confirmed in the hepatopancreas, gill, hemolymph, gonads, intestine, muscle, and mantle. The expression of five TLR genes (out of 8) in gills (p < 0.05), three in hepatopancreas (p < 0.05), and three in hemolymph (p < 0.05) was upregulated separately in response to the infection caused by Vibrio parahaemolyticus. The findings in this study would contribute to a better understanding of the molecular immune mechanism of H. discus hannai against stimulation by V. parahaemolyticus and provide a basis for the study of TLRs in abalones.
Collapse
Affiliation(s)
- Yuelian Zou
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Xu
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaotian Xiao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32615, USA
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
42
|
Chen D, Chen Y, Lu L, Zhu H, Zhang X, Huang X, Li Z, Ouyang P, Zhang X, Li L, Geng Y. Transcriptome Revealed the Macrophages Inflammatory Response Mechanism and NOD-like Receptor Characterization in Siberian Sturgeon ( Acipenser baerii). Int J Mol Sci 2023; 24:ijms24119518. [PMID: 37298469 DOI: 10.3390/ijms24119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NOD-like receptors, NLRs) can regulate the inflammatory response to eliminate pathogens and maintain the host's homeostasis. In this study, the head kidney macrophages of Siberian sturgeon were treated with lipopolysaccharide (LPS) to induce inflammation by evaluating the expression of cytokines. The high-throughput sequencing for macrophages after 12 h treatment showed that 1224 differentially expressed genes (DEGs), including 779 upregulated and 445 downregulated, were identified. DEGs mainly focus on pattern recognition receptors (PRRs) and the adaptor proteins, cytokines, and cell adhesion molecules. In the NOD-like receptor signaling pathway, multiple NOD-like receptor family CARD domains containing 3-like (NLRC3-like) were significantly downregulated, and pro-inflammatory cytokines were upregulated. Based on the transcriptome database, 19 NLRs with NACHT structural domains were mined and named in Siberian sturgeon, including 5 NLR-A, 12 NLR-C, and 2 other NLRs. The NLR-C subfamily had the characteristics of expansion of the teleost NLRC3 family and lacked the B30.2 domain compared with other fish. This study revealed the inflammatory response mechanism and NLRs family characterization in Siberian sturgeon by transcriptome and provided basic data for further research on inflammation in teleost.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinqiu Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
43
|
Lee D, Kim KH, Park JW, Lee JH, Kim JH. High water temperature-mediated immune gene expression of olive flounder, Paralichthys olivaceus according to pre-stimulation at high temperatures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104159. [PMID: 37245611 DOI: 10.1016/j.etap.2023.104159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Increased ocean temperature due to global warming affects the health and immunity of fish. In this study, juvenile Paralichthys olivaceus were exposed to high temperature after pre-heat (Acute: Acute heat shock at 32 °C, AH-S: Acquired heat shock at 28 °C & short recovery (2h) and heat shock at 32 °C, AH-L: acquired heat shock at 28 °C and long recovery (2 days), AH-LS: acquired heat shock at 28 °C & long (2 days) + short (2h) recovery). Heat shock after pre-heat significantly upregulated various immune-related genes, including interleukin 8 (IL-8), c-type lysozyme (c-lys), immunoglobulin M (IgM), Toll-like receptor 3 (tlr3), major histocompatibility complex IIα (mhcIIα) and cluster of differentiation 8α (cd8α) in the liver and brain of P. olivaceus. This study showed pre-exposure to high temperatures below the critical temperature can activate fish immunity and increase tolerance to high temperatures.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Korea
| | - Kyung-Hee Kim
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Korea
| | - Jong-Won Park
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, Korea
| | - Ju-Hyeong Lee
- Department of Aquatic Life and Medical Science, Pukyong National University, Busan, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, Republic of Korea.
| |
Collapse
|
44
|
Yao T, Wang R, Han P, Liu X, Wang X. Identification of olive flounder (Paralichthys olivaceus) toll-like receptor genes: Involvement in immune response to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108841. [PMID: 37209756 DOI: 10.1016/j.fsi.2023.108841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Toll-like receptor (TLR) genes are best known for their roles in the innate immune defense. However, studies focusing on the reaction mechanisms of TLR genes in olive flounder (Paralichthys olivaceus) immune responses are still limited. In this study, 11 TLR family members (PoTLRs) were identified and classified from P. olivaceus genome. Phylogenetic analysis showed that PoTLRs were highly conserved in olive flounder. The analysis of motif prediction and gene structure indicated that TLRs had high sequence similarity. The expression patterns in developmental stages and different tissues showed that TLR members were spatially and temporally specific. RNA-Seq analysis of temperature stress and Edwardsiella tarda infection suggested that TLR members were involved in inflammatory responses, PoTLR5b and PoTLR22 showed significant differences in response to both temperature stress and E. tarda stress, indicating their potential immune functions. The results of this study suggested that TLR genes played important roles in the innate immune response of olive flounder, and would provide a solid basis for further study of their functions.
Collapse
Affiliation(s)
- Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| |
Collapse
|
45
|
Huo C, Tian H, Rao H, Zeng B, Li D, Li Z, Li Y. Genetic diversity of Toll-like receptor 9 in swamp eels (Monopterus albus). JOURNAL OF FISH BIOLOGY 2023; 102:1149-1156. [PMID: 36879356 DOI: 10.1111/jfb.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
The swamp eel, Monopterus albus, is an important aquaculture species in Asia (mainly China) whose production has seriously suffered from infectious diseases. In spite of the critical requirement for aquaculture practices, to date there is scant information on its immune defence. Here, the genetic characteristics of Toll-like receptor 9 (TLR9), which plays crucial roles in the initiation of host defence against microbial invasion, were analysed. It exhibits a striking lack of genetic variation resulting from a recent demographic bottleneck. A comparison with the homologue of M. javanensis revealed that replacement but not silent differences have nonrandomly accumulated in the coding sequences at the early stage following their split from a common ancestor. Furthermore, the replacements relevant to the type II functional divergence have mainly occurred in structural motifs mediating ligand recognition and receptor homodimerization. These results provide hints to understand the diversity-based strategy of TLR9 in the arms race against pathogens. Furthermore, the findings reported here give credence to the importance of basic immunology knowledge, especially for the key elements, in genetic engineering and breeding for disease resistance in the eel and other fishes.
Collapse
Affiliation(s)
- Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, People's Republic of China
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, People's Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Debing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, People's Republic of China
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, People's Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
46
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Characterization analysis of TLR5a and TLR5b immune response after different bacterial infection in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108716. [PMID: 37001745 DOI: 10.1016/j.fsi.2023.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
47
|
Zhu Y, Li W, Zhang M, Zhong Z, Zhou Z, Han J, Zhang C, Yang J, Wu Y, Shu H. Screening of host gut-derived probiotics and effects of feeding probiotics on growth, immunity, and antioxidant enzyme activity of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108700. [PMID: 36966895 DOI: 10.1016/j.fsi.2023.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the widespread use of antibiotics in intensive grouper mariculture has resulted in the ineffectiveness of antibiotic treatment, leading to an increasing incidence of diseases caused by bacteria, viruses, and parasites, causing serious economic losses. Hence, it is crucial to develop alternative strategies to antibiotics for healthy and sustainable development of the mariculture industry. Here, we aimed to screen host gut-derived probiotics and evaluate its effects on growth and immunity of grouper. In this study, 43 bacterial strains were isolated from the intestine of the hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), and a potential probiotic strain G1-26, which can efficiently secrete amylase, protease, and lipase, was obtained using different screening mediums. Based on 16S rDNA sequencing, the potential probiotic strain G1-26 was identified as Vibrio fluvialis. The results of a biological characteristic evaluation showed that V. fluvialis G1-26 could grow at 25-45 °C, pH 5.5-7.5, salinity 10-40, and bile salt concentration 0-0.030%, and produce amylase, lipase, and protease under different culture conditions. Additionally, V. fluvialis G1-26 is sensitive to many antibiotics and does not exhibit aquatic biotoxicity. Subsequently, hybrid groupers were fed diets containing V. fluvialis G1-26 at different concentrations (0, 106, 108, and 1010 CFU/g) for 60 d. The results showed that V. fluvialis G1-26 at 108 CFU/g did not significantly affect the growth performance of the hybrid grouper (P > 0.05). V. fluvialis G1-26 supplementation at 108 and 1010 CFU/g significantly promoted the relative expression of immune-related genes in hybrid groupers (TLR3, TLR5, IL-1β, IL-8, IL-10, CTL, LysC, TNF-2, and MHC-2) and improved the activities of alkaline phosphatase, acid phosphatase, total superoxide dismutase, and total protein in the liver. In conclusion, V. fluvialis G1-26, a potential probiotic strain isolated from the intestine of the hybrid grouper, can be used as an effective immunopotentiator at an optimal dose of 108 CFU/g diet. Our results provide a scientific basis for the development and utilization of probiotics in the grouper mariculture industry.
Collapse
Affiliation(s)
- Yating Zhu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Wen Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Mingqing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhongxuan Zhong
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zhiqian Zhou
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jiayi Han
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Cuiping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinlin Yang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yuxin Wu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
48
|
Understanding the molecular response of non-mammalian toll-like receptor 22 (TLR22) in amphibious air-breathing catfish, Clarias magur (Hamilton, 1822) to bacterial infection or ligand stimulation through molecular cloning and expression profiling. Gene 2023; 866:147351. [PMID: 36893873 DOI: 10.1016/j.gene.2023.147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Toll-like receptor (TLR) 22 is a non-mammalian TLR, which is identified initially as a functional substitute of mammalian TLR3 in recognizing cell surface long dsRNA in teleosts. To understand the pathogen surveillance role played by TLR22 in an air-breathing catfish model the full-length cDNA of TLR22 was identified in Clarias magur and found to be consisted of 3597 nucleotides encoding for 966 amino acids. In the deduced amino acid sequence of C. magur TLR22 (CmTLR22) key signature domains such as one signal peptide, 13 LRRs, one transmembrane domain, one LRR_CT domain and an intracellular TIR domain could be identified. The CmTLR22 formed a separate cluster with other catfish TLR22 genes and situated within the TLR22 cluster in the phylogenetic analysis of teleost TLR groups. The CmTLR22 was constitutively expressed in all the 12 tested tissues of healthy C. magur juveniles with the highest transcript abundance in spleen followed by brain, intestine and head kidney. Following induction with the dsRNA viral analogue, poly (I:C), the level of expression of CmTLR22 was up-regulated in tissues such as kidney, spleen and gills. Whereas, in Aeromonas hydrophila-challenged C. magur, the expression levels of CmTLR22 was found to be up-regulated in gills, kidney and spleen, and down-regulated in liver. The findings of the current study suggest that the specific function of TLR22 is evolutionarily conserved in C. magur and might play a key role in mounting immune response by recognizing Gram-negative fish pathogen such as A. hydrophila and aquatic viruses in air-breathing amphibious catfishes.
Collapse
|
49
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Liu Y, Yang M, Tang X, Xu D, Chi C, Lv Z, Liu H. Characterization of a novel Toll-like receptor 13 homologue from a marine fish Nibea albiflora, revealing its immunologic function as PRRs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104563. [PMID: 36209842 DOI: 10.1016/j.dci.2022.104563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Congenital immunity mediated by Toll-like receptor (TLR) family is the first line of defense for disease-resistant immunity of fish and plays a vital role as a bridge between innate immunity and acquired immunity. As a less known member of the TLR family TLR13 can participate in the immune and inflammatory reactions of the body for recognizing the conserved sequence of 23S rRNA in bacteria and induce immune response. In this study, the full-length cDNA of TLR13 from Nibea albiflora (named as NaTLR13) was cloned and was functionally characterized. It was 4210bp (GenBank accession no. MT701899) including an open reading frame (ORF) of 2886bp to encode 962 amino acids with molecular weight of 110.37 kDa and the theoretical isoelectric point of 9.08. There were several conservative structures in NaTLR13 such as 15 leucine-rich repeat sequences (LRRs), a Toll-IL-1 receptor domain (TIR), an LRR-CT terminal domain, two LRR-TYP structures and two transmembrane domains. The multiple sequence alignment and phylogenetic analysis manifested that NaTLR13 had high similarity with Larimichthys crocea and Collichthys lucidus (88.79% and 87.02%, respectively) and they fell into the same branch. The Real-time PCR showed that NaTLR13 was expressed in all selected tissues, with the highest in the spleen, followed by the liver, kidney, gill, heart and muscle. After being challenged by Vibrio alginolyticus, Vibrio parahaemolyticus or Poly (I:C), the expression of NaTLR13 increased firstly, then decreased and finally stabilized with time for its immune defense function. Subcellular localization analysis revealed that NaTLR13 was unevenly distributed in the cytoplasm with green fluorescence and MyD88 was evenly spread in the cytoplasm with red signals. When NaTLR13 and MyD88 were co-transfected, they obviously overlapped and displayed orange-yellow color, which showed that the homologous TLR13 might interact with MyD88 for NFκB signaling pathway transmission. The functional domains of NaTLR13 (named NaTLR13-TIR and NaTLR13-LRR) were expressed in E.coli BL21 (DE3) and purified by Ni-NAT Superflow Resin conforming to the expected molecular weights, and the recombinant proteins could bind to three Vibrios (V.alginolyticus, V.parahaemolyticus and Vibrio harveyi), indicating that NaTLR13 could be bounden to bacteria through its functional domain. These results suggested that NaTLR13 might play an important role in the defense of N.albiflora against bacteria or viral infection and the data would provide some information for further understanding the regulatory mechanism of the innate immune system in fish.
Collapse
Affiliation(s)
- Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Meijun Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiuqin Tang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|