1
|
Eriksson M, Larsson A. Avian Antibodies as Potential Therapeutic Tools. Antibodies (Basel) 2025; 14:18. [PMID: 39982233 PMCID: PMC11843883 DOI: 10.3390/antib14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Immunoglobulin Y (IgY) is the primary antibody found in the eggs of chicken (Gallus domesticus), allowing for large-scale antibody production with high titers, making them cost-effective antibody producers. IgY serves as a valuable alternative to mammalian antibodies typically used in immunodiagnostics and immunotherapy. Compared to mammalian antibodies, IgY offers several biochemical advantages, and its straightforward purification from egg yolk eliminates the need for invasive procedures like blood collection, reducing stress in animals. Due to the evolutionary differences between birds and mammals, chicken antibodies can bind to a broader range of epitopes on mammalian proteins than their mammalian counterparts. Studies have shown that chicken antibodies bind 3-5 times more effectively to rabbit IgG than swine antibodies, enhancing the signal in immunological assays. Additionally, IgY does not interact with rheumatoid factors or human anti-mouse IgG antibodies (HAMA), helping to minimize interference from these factors. IgY obtained from egg yolk of hens immunized against Pseudomonas aeruginosa has been used in patients suffering from cystic fibrosis and chronic pulmonary colonization with this bacterium. Furthermore, IgY has been used to counteract streptococcus mutans in the oral cavity and for the treatment of enteral infections in both humans and animals. However, the use of avian antibodies is limited to pulmonary, enteral, or topical application and should, due to immunogenicity, not be used for systemic administration. Thus, IgY expands the range of strategies available for combating pathogens in medicine, as a promising candidate both as an alternative to antibiotics and as a valuable tool in research and diagnostics.
Collapse
Affiliation(s)
- Mats Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care, Uppsala University, SE-751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| | - Anders Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
2
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Liu Y, Zhang J, Yang G, Tang C, Li X, Lu L, Long K, Sun J, Ding Y, Li X, Li M, Ge L, Ma J. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Front Microbiol 2024; 15:1398631. [PMID: 38933022 PMCID: PMC11201156 DOI: 10.3389/fmicb.2024.1398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-β/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Guitao Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
4
|
Li J, Xu Y, Zhang J, Zhang Z, Guo H, Wei D, Wu C, Hai T, Sun HX, Zhao Y. Single-cell transcriptomic analysis reveals transcriptional and cell subpopulation differences between human and pig immune cells. Genes Genomics 2024; 46:303-322. [PMID: 37979077 DOI: 10.1007/s13258-023-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The pig is a promising donor candidate for xenotransplantation. Understanding the differences between human and swine immune systems is critical for addressing xenotransplant rejection and hematopoietic reconstitution. The gene transcriptional profile differences between human and pig immune cell subpopulations have not been studied. To assess the similarities and differences between pigs and humans at the levels of gene transcriptional profiles or cell subpopulations are important for better understanding the cross-species similarity of humans and pigs, and it would help establish the fundamental principles necessary to genetically engineer donor pigs and improve xenotransplantation. OBJECTIVE To assess the gene transcriptional similarities and differences between pigs and humans. METHODS Two pigs and two healthy humans' PBMCs were sorted for 10 × genomics single-cell sequence. We generated integrated human-pig scRNA-seq data from human and pig PBMCs and defined the overall gene expression landscape of pig peripheral blood immune cell subpopulations by updating the set of human-porcine homologous genes. The subsets of immune cells were detected by flow cytometry. RESULTS There were significantly less T cells, NK cells and monocytes but more B cells in pig peripheral blood than those in human peripheral blood. High oxidative phosphorylation, HIF-1, glycolysis, and lysosome-related gene expressions in pig CD14+ monocytes were observed, whereas pig CD14+ monocytes exhibited lower levels of cytokine receptors and JAK-STAT-related genes. Pig activated CD4+T cells decreased cell adhesion and inflammation, while enriched for migration and activation processes. Porcine GNLY+CD8+T cells reduced cytotoxicity and increased proliferation compared with human GNLY+CD8+T cells. Pig CD2+CD8+γδT cells were functionally homologous to human CD2+CD4+ γδT cells. Pig CD2-CD8-γδT cells expressed genes with quiescent and precursor characteristics, while CD2-CD8+γδT cells expressed migration and memory-related molecules. Pig CD24+ and CD5+B cells are associated with inflammatory responses. CONCLUSION Our research with integrated scRNA-seq assays identified the different distribution of pig immune cell subpopulations and the different transcriptional profiles of human and pig immune cells. This study enables a deeper understanding of the development and function of porcine immune cells.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- BGI-Beijing, Beijing, 102601, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Tang Hai
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hai-Xi Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI-Beijing, Beijing, 102601, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
6
|
Wang J, Gao M, Cheng M, Luo J, Lu M, Xing X, Sun Y, Lu Y, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. Single-Cell Transcriptional Analysis of Lamina Propria Lymphocytes in the Jejunum Reveals Innate Lymphoid Cell-like Cells in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:130-142. [PMID: 37975680 DOI: 10.4049/jimmunol.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mei Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xinyuan Xing
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; and Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, Moutelikova R, Salat J, Srutkova D, Schwarzer M, Sinkora S, Skalnikova HK, Nechvatalova K, Hudcovic T, Hermanova P, Pfeiferova S, Kratochvilova M, Kavanova L, Dusankova B, Sinkora MJ. The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect 2023; 25:105146. [PMID: 37142116 DOI: 10.1016/j.micinf.2023.105146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αβ-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Jr Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
9
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Allais L, Perbet A, Condevaux F, Briffaux JP, Pallardy M. Immunosafety evaluation in Juvenile Göttingen Minipigs. J Immunotoxicol 2022; 19:41-52. [PMID: 35767473 DOI: 10.1080/1547691x.2022.2088904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although an extrapolation from the clinical experience in adults can often be considered to support the pediatric use for most pharmaceutical compounds, differences in safety profiles between adult and pediatric patients can be observed. The developing immune system may be affected due to exaggerated pharmacological or non-expected effects of a new drug. Toxicology studies in juvenile animals could therefore be required to better evaluate the safety profile of any new pharmaceutical compound targeting the pediatric population. The Göttingen minipig is now considered a useful non-rodent species for non-clinical safety testing of human pharmaceuticals. However, knowledge on the developing immune system in juvenile minipigs is still limited. The objective of the work reported here was to evaluate across-age proportions of main immune cells circulating in blood or residing in lymphoid organs (thymus, spleen, lymph nodes) in Göttingen Minipigs. In parallel, the main immune cell populations from healthy and immunocompromised piglets were compared following treatment with cyclosporin A (CsA) at 10 mg/kg/day for 4 wk until weaning. The study also assessed functionality of immune responses using an in-vivo model after "Keyhole limpet hemocyanin" (KLH) immunization and an ex-vivo lymph proliferation assay after stimulation with Concanavalin A. The results demonstrated variations across age in circulating immune cell populations including CD21+ B-cells, αβ-T- and γδ-T-cells, NK cells, and monocytes. CsA-induced changes in immune functions were only partially recovered by 5 mo after the end of treatment, whereas the immune cell populations affected by the treatment returned to normal levels in animals of the same age. Taken together, the study here shows that in this model, the immune function endpoints were more sensitive than the immunophenotyping endpoints.
Collapse
Affiliation(s)
- Linda Allais
- Charles River Laboratories France Safety Assessment, Saint-Germain-Nuelles, France
| | - Alicia Perbet
- Charles River Laboratories France Safety Assessment, Saint-Germain-Nuelles, France
| | - Fabienne Condevaux
- Charles River Laboratories France Safety Assessment, Saint-Germain-Nuelles, France
| | - Jean-Paul Briffaux
- Charles River Laboratories France Safety Assessment, Saint-Germain-Nuelles, France
| | - Marc Pallardy
- Inserm, Inflammation, Microbiome, and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
11
|
Wiarda JE, Trachsel JM, Sivasankaran SK, Tuggle CK, Loving CL. Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells. Life Sci Alliance 2022; 5:e202201442. [PMID: 35995567 PMCID: PMC9396248 DOI: 10.26508/lsa.202201442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum. Though general consensus of cell subsets across species was revealed, some porcine-specific lymphocyte subsets were identified. Differential tissue dissection and in situ analyses conferred spatial context, revealing similar locations of lymphocyte subsets in Peyer's patches and epithelium in pig-to-human comparisons. Like humans, activated and effector lymphocytes were abundant in the ileum but not periphery of pigs, suggesting tissue-specific and/or activation-associated gene expression. Gene signatures for peripheral and ileal innate lymphoid cells newly discovered in pigs were defined and highlighted similarities to human innate lymphoid cells. Overall, we reveal novel lymphocyte subsets in pigs and highlight utility of pigs for intestinal research applications.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | | | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
12
|
Maciag SS, Bellaver FV, Bombassaro G, Haach V, Morés MAZ, Baron LF, Coldebella A, Bastos AP. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci Rep 2022; 12:15630. [PMID: 36115917 PMCID: PMC9482628 DOI: 10.1038/s41598-022-20082-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
The effects on the ontogeny of serum cytokines and immune cells caused by feeding suckling piglets with sow/gilt colostrum and milk replacer was assessed in the present study. After farrowing, the piglets born were randomized into six groups: GG and SS (n = 10/group): piglets were kept with their dam; GS (n = 10): piglets were changed from gilts to sows; SG (n = 10): piglets were changed from sows to gilts; GMR (n = 6) and SMR (n = 8): piglets from either gilts or sows were isolated from the dams and were bottle-fed ad libitum with commercial formula milk replacer. The piglets remained in the groups during the first 24 h of life and were later returned to their respective mothers. Serum immunoglobulin concentration and lymphocyte proliferation from the blood, spleen, thymus, and mesenteric lymph node of the piglets were assessed at 24 h and at 28 days of age. Serum cytokine concentrations were measured through a cytokine multiplex assay at 24 h. Overall, piglets suckling on sows (SS and GS) had a higher concentration of serum immunoglobulin at 24 h, which was also associated with a rise in plasma cytokine concentration and greater ability of B and T cells from lymphatic organs and blood mononuclear cells to respond to mitogens. We suggest a bias towards Th1-, Th2-, and Th17-cell polarizing and cytokines during the suckling period, which may be influenced by maternal immunological factors in the colostrum, such as dam parity. All findings suggest sow parity having a possible role, which may contribute to exerting a modulating action on immune response development.
Collapse
Affiliation(s)
- Shaiana Salete Maciag
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil
| | | | | | - Vanessa Haach
- Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Ana Paula Bastos
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, Brazil.
| |
Collapse
|
13
|
Hoog A, Villanueva-Hernández S, Razavi MA, van Dongen K, Eder T, Piney L, Chapat L, de Luca K, Grebien F, Mair KH, Gerner W. Identification of CD4 + T cells with T follicular helper cell characteristics in the pig. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104462. [PMID: 35667468 DOI: 10.1016/j.dci.2022.104462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
T follicular helper (Tfh) cells provide help to germinal center B cells for affinity maturation, class switch and memory formation. Despite these important functions, this subset has not been studied in detail in pigs due to a lack of species-specific antibodies. We investigated putative Tfh cells from lymphoid tissues and blood of healthy pigs by using cross-reactive antibodies for inducible T-cell costimulator (ICOS) and B-cell lymphoma 6 (Bcl-6). In lymph nodes, we identified a CD4+ T cell population with an ICOS+Bcl-6+CD8α+ phenotype, reminiscent of human and murine germinal center Tfh cells. Within blood-derived CD4+ T cells, sorted ICOShiCD25- and ICOSdimCD25dim cells were able to induce the differentiation of CD21+IgM+ B cells into Ig-secreting plasmablasts. Compared to naïve CD4+ T cells, these two phenotypes were 3- to 7-fold enriched for cells expressing the Tfh-related transcripts CD28, CD40LG, IL6R and MAF, as identified by single-cell RNA sequencing. These results provide a first characterization of Tfh cells in swine and confirm their ability to provide B-cell help.
Collapse
Affiliation(s)
- Anna Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Sonia Villanueva-Hernández
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Katinka van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Lauriane Piney
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Ludivine Chapat
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Florian Grebien
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
14
|
Šinkorová Z, Lierová A, Filipová A, Čížková J, Tichý A, Pejchal J, Milanová M, Vilasová Z, Andrejsová L. MITOCHONDRIA IN BIODOSIMETRY: FLOW CYTOMETRY ASSESMENT IN VITRO. RADIATION PROTECTION DOSIMETRY 2022; 198:521-526. [PMID: 36005990 DOI: 10.1093/rpd/ncac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The JC-1 dye is widely used in apoptosis studies to monitor mitochondrial health. The probe was tested in vitro on two established cell lines and peripheral porcine blood lymphocytes after gamma irradiation (IR) to assess its potential in biodosimetric evaluation. In brief, we stained irradiated and non-irradiated cells with the JC-1 dye to determine the existing changes in mitochondrial membrane potential and monitor cell health through flow cytometry. The stage of injury in these cells was evaluated through an irradiated versus non-irradiated ratio (IVNIR), comparing the relative proportion of polarised cells containing red JC-1 aggregates. We observed a decreasing IVNIR as the radiation dose increased (i.e. 0.5; 1; 2; 4; 6; 8 and 10 Gy), performing the analysis at 4, 8 and 24 h after IR in all the tested cells. The results from the JC1-dye test showed that CD4 T lymphocytes were more sensitive to irradiation than other subpopulations.
Collapse
Affiliation(s)
- Zuzana Šinkorová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Anna Lierová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Jana Čížková
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marcela Milanová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Zdena Vilasová
- Department of Clinical Discipline, Faculty of Health Studies, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Lenka Andrejsová
- Department of Radiobiology, University of Defence, 500 01 Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Extraction, Structure and Immunoregulatory Activity of Low Molecular Weight Polysaccharide from Dendrobium officinale. Polymers (Basel) 2022; 14:polym14142899. [PMID: 35890675 PMCID: PMC9315851 DOI: 10.3390/polym14142899] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
The ethanol precipitation method has been widely-used for Dendrobium officinale polysaccharides preparation. However, the alcohol-soluble fractions have always been ignored, which causes significant wastes of resources and energies. In this study, the extraction, physicochemical properties, and immune regulation activity of an edible D. officinale polysaccharide (DOPs) isolated from the supernatant after 75% ethanol precipitation were systematically investigated. The structural characteristics determination results showed that DOPs was mainly composed of glucose and mannose at a molar ratio of 1.00:5.78 with an average molecular weight of 4.56 × 103 Da, which was made up of α-(1,3)-Glcp as the main skeleton, and the α-(1,4)-Glcp and β-(1,4)-Manp as the branches. Subsequently, the cyclophosphamide (CTX)-induced immunosuppressive mice model was established, and the results demonstrated that DOPs could dose-dependently protect the immune organs against CTX damage, improve the immune cells activities, and promote the immune-related cytokines (IL-2, IFN-γ and TNF-α) secretions. Furthermore, DOPs treatment also effectively enhanced the antioxidant enzymes levels (SOD, GSH-Px) in sera and livers, therefore weakening the oxidative damage of CTX-treated mice. Considering these above data, DOPs presented great potential to be explored as a natural antioxidant and supplement for functional foods.
Collapse
|
16
|
Gu W, Madrid DMC, Joyce S, Driver JP. A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs. Cell Rep 2022; 40:111050. [PMID: 35793622 PMCID: PMC9704770 DOI: 10.1016/j.celrep.2022.111050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many aspects of the porcine immune system remain poorly characterized, which poses a barrier to improving swine health and utilizing pigs as preclinical models. Here, we employ single-cell RNA sequencing (scRNA-seq) to create a cell atlas of the early-adolescent pig thymus. Our data show conserved features as well as species-specific differences in cell states and cell types compared with human thymocytes. We also describe several unconventional T cell types with gene expression profiles associated with innate effector functions. This includes a cell census of more than 11,000 differentiating invariant natural killer T (iNKT) cells, which reveals that the functional diversity of pig iNKT cells differs substantially from the iNKT0/1/2/17 subset differentiation paradigm established in mice. Our data characterize key differentiation events in porcine thymopoiesis and iNKT cell maturation and provide important insights into pig T cell development.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Sebastian Joyce
- Department of Veterans Affairs, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institution for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Immunomodulatory Effects of Lepidium meyenii Walp. Polysaccharides on an Immunosuppression Model Induced by Cyclophosphamide. J Immunol Res 2022; 2022:1210890. [PMID: 35832646 PMCID: PMC9273403 DOI: 10.1155/2022/1210890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Background Lepidium meyenii Walp. (Maca) has emerged as a functional plant food and traditional herb owing to its biological activities; Maca polysaccharides as an important active component of Maca have good immunomodulatory effect; however, studies on the immunomodulatory effect of Maca polysaccharides are mainly focused on macrophages; little attention has been devoted to the mechanisms and other immune cells. This study is aimed at investigating the immunomodulatory effects and mechanisms of Maca polysaccharides. Methods Sixty mice were divided into five groups, and the mice were injected with cyclophosphamide to establish an immunosuppression model except for those in the common group. The body weights were measured, as well as immune-related indices, such as organ indices, haematological parameters, lymphocyte cycle, and proliferation, cytokine, and protein expression levels. Results The weight loss and immune organ index decline caused by cyclophosphamide could be reversed by MP. Furthermore, MP increased WBC and HGB counts and reduced the ratio of G0/G1 phase obviously, increased the proportion of S phase and G2/M phase in peripheral blood lymphocytes, increased the counts of CD4+ T cells and the ratio of CD4+/CD8+, and reduced the inhibition rate of splenic lymphocytes. MP affected the production of cytokines by increasing IFN-γ, TNF-α, and IL-2 levels and by decreasing IL-4 levels. MP increased the mRNA expression of T-bet and the protein expression of Bcl-2 in the spleen and decreased the protein expression of caspase-3 and Bax. Conclusions Maca polysaccharides might be the basic material for Maca's immunomodulatory effect. The mechanism was perhaps related to inhibiting lymphocyte apoptosis and promoting the balance of Th1/Th2 cell subsets.
Collapse
|
18
|
Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Sinkora S, Splichal I, Splichalova A, Butler JE, Sinkora M. The order of immunoglobulin light chain κ and λ usage in primary and secondary lymphoid tissues of germ-free and conventional piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104392. [PMID: 35271860 DOI: 10.1016/j.dci.2022.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs. During early B cell development in the bone marrow, more 3' V and 5' J gene segments for both light chains are used. However, in the peripheral naive repertoire, more 5' IGLV and 3' IGLJ genes are used. A similar shift toward the use of more 5' IGKV and 3' IGKJ genes is observed later after antigen exposure in conventional pigs. The expression profile showed that most λ+ B cells are generated earlier, while κ+ B cells develop from late precursors that already contain the λ rearrangement. The initial λ rearrangement is retained in both λ+ and κ+ B lymphocytes, and multiple λ transcripts can be found in individual cells. The overall pool of the IGLV repertoire is therefore much larger and more diversified than for IGKV. The κ repertoire is further restricted to the preferential use of only two major IGKV genes, reflecting the limitation for only two consecutive rearrangements. Tracing of silenced λ transcripts in κ+ B cells further confirmed the unconventional mechanism of differential rearrangements in pigs. Our results underline the diversity of the immune system among mammals.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
19
|
Khan AI, Rehman AU, Farooqui NA, Siddiqui NZ, Ayub Q, Ramzan MN, Zexu W, Zhang X, Yu Y, Xin Y, Wang L. Shrimp peptide hydrolysate modulates the immune response in cyclophosphamide immunosuppressed mice model. J Food Biochem 2022; 46:e14251. [PMID: 35633198 DOI: 10.1111/jfbc.14251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
Abstract
Bioactive peptides are naturally found in various foods and were shown to have various distinct physiological as well as medicinal benefits. In this study shrimp peptide hydrolysate (SPH) was prepared to investigate its immunomodulatory effect against cyclophosphamide (CTX) induced immunosuppressed mice. The SPH effect was also analyzed on murine macrophage (RAW264.7 cells). The findings show that SPH stimulates macrophages to form multiple pseudopodia, has no cytotoxic effect, and increases phagocytic activity in RAW264.7 cells. Furthermore, the immunosuppressed in-vivo model illustrates the improvement in various aspects, that is body weight, escalation in immune organ index, and ameliorates histopathological transformation of thymus along with the spleen. SPH enhances cell-mediated immunity by facilitating splenocyte proliferation and inhibit excessive apoptosis. Moreover, the significant outcome had been observed with the upregulation of cytokines interferon-gamma (IFN-ϒ), interleukin-2 (IL-2) level and simultaneously downregulate certain genes include interleukin-4 (IL-4) and interleukin-10 (IL-10). Additionally, SPH expedites cellular immunity by enhancing the regulation of immunoglobulin A (IgA) and immunoglobulin M (IgM). However, these findings support the hypothesis that SPH is an effective immunomodulatory agent capable of preventing immune system hypofunction. It is necessary to investigate the detailed mechanism to rule out any unforeseen effects of SPH in future research. PRACTICAL APPLICATIONS: Chemotherapy medications, despite their dominating detrimental effects of damaging immunological organs such as the spleen and thymus, extend the treatment process as well as the destruction of the self-immune system. This study found that SPH is an effective immunomodulatory agent capable of avoiding immune organ hypofunction and improving cell mediate immunity by enhancing macrophage activation, phagocytosis, spleenocyte proliferation, suppressing apoptosis, and elevating cytokines and antibodies. As a result, SPH can be utilized as a nutritional and functional dietary supplement to boost immunological modulation in combination with chemotherapy medications in order to lessen their adverse effects.
Collapse
Affiliation(s)
- Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Qamar Ayub
- College of Clinical Laboratory Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaoxiao Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Yingshuo Yu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Liang Wang
- National Joint Engineering Laboratory, Regenerative Medicine Center, Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
20
|
Villanueva-Hernández S, Adib Razavi M, van Dongen KA, Stadler M, de Luca K, Beyersdorf N, Saalmüller A, Gerner W, Mair KH. Co-Expression of the B-Cell Key Transcription Factors Blimp-1 and IRF4 Identifies Plasma Cells in the Pig. Front Immunol 2022; 13:854257. [PMID: 35464468 PMCID: PMC9024106 DOI: 10.3389/fimmu.2022.854257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Antibody-secreting plasma cells (PCs) have remained largely uncharacterized for years in the field of porcine immunology. For an in-depth study of porcine PCs, we identified cross-reactive antibodies against three key transcription factors: PR domain zinc finger protein-1 (Blimp-1), interferon regulatory factor 4 (IRF4), and paired box 5 (Pax5). A distinct Blimp-1+IRF4+ cell population was found in cells isolated from blood, spleen, lymph nodes, bone marrow, and lung of healthy pigs. These cells showed a downregulation of Pax5 compared to other B cells. Within Blimp-1+IRF4+ B cells, IgM-, IgG-, and IgA-expressing cells were identified and immunoglobulin-class distribution was clearly different between the anatomical locations, with IgA+ PCs dominating in lung tissue and IgM+ PCs dominating in the spleen. Expression patterns of Ki-67, MHC-II, CD9, and CD28 were investigated in the different organs. A high expression of Ki-67 was observed in blood, suggesting a plasmablast stage. Blimp-1+IRF4+ cells showed an overall lower expression of MHC-II compared to regular B cells, confirming a progressive loss in B-cell differentiation toward the PC stage. CD28 showed slightly elevated expression levels in Blimp-1+IRF4+ cells in most organs, a phenotype that is also described for PCs in mice and humans. This was not seen for CD9. We further developed a FACS-sorting strategy for live porcine PCs for functional assays. CD3-CD16-CD172a– sorted cells with a CD49dhighFSC-Ahigh phenotype contained Blimp-1+IRF4+ cells and were capable of spontaneous IgG production, thus confirming PC identity. These results reveal fundamental phenotypes of porcine PCs and will facilitate the study of this specific B-cell subset in the future.
Collapse
Affiliation(s)
- Sonia Villanueva-Hernández
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katinka A. van Dongen
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, Julius-Maximilians-University, Würzburg, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H. Mair
- Christian Doppler (CD) Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- *Correspondence: Kerstin H. Mair,
| |
Collapse
|
21
|
Wu M, Jiang Q, Nazmi A, Yin J, Yang G. Swine unconventional T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104330. [PMID: 34863955 DOI: 10.1016/j.dci.2021.104330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pigs are important domestic livestock and a comprehensive understanding of their immune system is critical to improve swine vaccine efficacy. Pig models represent an excellent animal model for immunological studies because of their anatomical and physiological similarities to humans. A significant portion of pig immunological studies focused on characterizing the conventional T cell (Tconv) immune responses. These cells recognize peptides presented by major histocompatibility complex (MHC) proteins. In contrast, unconventional T cells are non-MHC-restricted and profoundly regulate conventional T cells. Key subsets of unconventional T cells reviewed here include natural killer T (NKT) cells, γδ T cells, mucosal-associated invariant T (MAIT) cells, intraepithelial lymphocytes (IELs), and two potential unconventional T cell subsets expressing NKp46 or CD11b. Unlike Tconvs, most of these cells recognize lipids, small molecule metabolites, or modified peptides, and they generally show simplified patterns of T cell receptor (TCR) expression and rapid effector responses. Here, we review that unconventional T cells are an abundant and critical component of the porcine immune system, summarize the current understanding of these cells, and highlight some of the key differences among mouse, human, and porcine unconventional T cells.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ali Nazmi
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
22
|
Sinkora M, Stepanova K, Butler JE, Sinkora M, Sinkora S, Sinkorova J. Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species. Front Immunol 2022; 13:823145. [PMID: 35222402 PMCID: PMC8873125 DOI: 10.3389/fimmu.2022.823145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
23
|
Sinkora M, Stepanova K, Sinkorova J. Consequences of the different order of immunoglobulin gene rearrangements in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104196. [PMID: 34242678 DOI: 10.1016/j.dci.2021.104196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Swine use a reverse order of immunoglobulin chain rearrangement compared to humans and mice, and this altered and modified order should have measurable consequences. Here we perform new and defining experiments with developing and mature B cells, characterizing the B cell populations that do not exist in other species. First, we have finally confirmed that light chains κ and λ are rearranged and expressed on the surface before any heavy chain rearrangements using western-blot. And second, we have analyzed a pool of mature B cells on the single-cell level to demonstrate that many κ+ mature B cells carry λ transcripts. According to these findings, we believe that there may be more groups of mammals; one of which uses a pre-BCR-driven developmental pathway for B cell generation (like mice and humans), the second group uses a pre-BCR-independent one (like swine), and some may be even intermediate.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
24
|
CD200R1 and CD200R1L expression is regulated during B cell development in swine and modulates the Ig production in response to the TLR7 ligand imiquimoid. PLoS One 2021; 16:e0251187. [PMID: 33961666 PMCID: PMC8104416 DOI: 10.1371/journal.pone.0251187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The CD200R family comprises a group of paired receptors that can modulate the activation of immune cells. They are expressed both on myeloid cells and lymphocyte subsets. Here we report that the expression of these receptors on porcine B cells is tightly regulated, being mainly expressed on mature cells. The expression of the inhibitory receptors CD200R1 and/or its splicing variant CD200R1X2, either in combination or not with the activating receptor CD200R1L, is upregulated in sIgM+ effector/memory cells, and tends to decline thereafter as these cells progress to plasmablasts or switch the Ig isotype. sIgM+ naïve and primed cells only express, by contrast, the CD200R1X2 receptor. B-1 like cells also express CD200R1 isoforms, either alone or in combination with CD200R1L. Treatment of peripheral blood mononuclear cells with a monoclonal antibody specific for inhibitory receptors, enhances the IgM and IgG production induced by TLR7 stimulation suggesting a modulatory role of B cell functions of these receptors.
Collapse
|
25
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
26
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
27
|
Lo Verso L, Talbot G, Morissette B, Guay F, Matte JJ, Farmer C, Gong J, Wang Q, Bissonnette N, Beaulieu C, Lessard M. The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. J Anim Sci 2020; 98:5889921. [PMID: 32783055 PMCID: PMC7419736 DOI: 10.1093/jas/skaa208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effects of a combination of feed additives with complementary functional properties on the intestinal microbiota, homocysteine, and vitamins E and B status as well as systemic immune response of weanling piglets. At weaning, 32 litters were assigned to one of the following dietary treatments (DT): 1) conventional diet (CTRL); 2) CTRL diet supplemented with antibiotics (ATB); 3) a cocktail of feed additives containing cranberry extract, encapsulated carvacrol, yeast-derived products, and extra vitamins A, D, E, and B complex (CKTL); or 4) CKTL diet with bovine colostrum in replacement of plasma proteins (CKTL + COL). Within each litter, the piglets with lowest and highest birth weights (LBW and HBW, respectively) and two piglets of medium birth weight (MBW) were identified. The MBW piglets were euthanized at 42 d of age in order to characterize the ileal and colonic microbiota. Blood samples were also collected at weaning and at 42 d of age from LBW and HBW piglets to measure insulin-like growth factor-1 (IGF-1), cysteine, homocysteine, and vitamins E, B6, and B12, and to characterize the leukocyte populations. At 42 d of age, cytokine production by stimulated peripheral blood mononuclear cells was also measured. In a second experiment, piglets were reared under commercial conditions to evaluate the effects of the DT on the growth performance. At the indicator species analysis, the highest indicator value (IV) for Succinivibrio dextrinosolvens was found in the CKTL group, whereas the highest IV for Lactobacillus reuteri and Faecalibacterium prausnitzii was evidenced in the CKTL + COL group (P < 0.05). Compared with the other DT, CTRL piglets had higher concentrations of homocysteine, whereas the CKTL and CKTL + COL supplementations increased the concentrations of vitamins E and B12 (P < 0.05). DT had no effect on IGF-1 concentration and on blood leukocytes populations; however, compared with HBW piglets, LBW animals had lower values of IGF-1, whereas the percentages of γδ T lymphocytes and T helper were decreased and increased, respectively (P < 0.05). CKTL + COL also improved the growth performance of piglets reared under commercial conditions (P < 0.05). This study highlights the impact of birth weight on piglet systemic immune defenses and the potential of weaning diet supplemented with feed additives and bovine colostrum to modulate the homocysteine metabolism and the intestinal microbiota.
Collapse
Affiliation(s)
- Luca Lo Verso
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Bruno Morissette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Chantal Farmer
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Carole Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
28
|
Hahn KE, Dahms I, Butt CM, Salem N, Grimshaw V, Bailey E, Fleming SA, Smith BN, Dilger RN. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front Nutr 2020; 7:592364. [PMID: 33195377 PMCID: PMC7658628 DOI: 10.3389/fnut.2020.592364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA) profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants that are more like those observed in breastfed infants. Consequently, ARA and DHA have been historically added together to infant formula. This study investigated the impact of ARA or DHA supplementation alone or in combination on tissue FA incorporation, immune responses, and neurodevelopment in the young pig. Methods: Male pigs (N = 48 total) received one of four dietary treatments from postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80). Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis. Blood was collected for T cell immunophenotyping and to quantify a panel of immune outcomes. Myelin thickness in the corpus callosum was measured by transmission electron microscopy and pig movement was measured by actigraphy. Results: There were no differences in formula intake or growth between dietary groups. DHA supplementation increased brain DHA, but decreased ARA, compared with all other groups. ARA supplementation increased brain ARA compared with all other groups but did not affect brain DHA. Combined supplementation increased brain DHA levels but did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had the highest. No differences were observed for immune or myelination outcomes. Conclusion: Supplementation with ARA and DHA did not differentially affect immune responses, but ARA levels in RBC and PFC were reduced when DHA was provided without ARA. Supplementation of either ARA or DHA alone induced differences in time spent asleep, and ARA inclusion increased general activity. Therefore, the current data support the combined supplementation with both ARA and DHA in infant formula and raise questions regarding the safety and nutritional suitability of ARA or DHA supplementation individually.
Collapse
Affiliation(s)
- Kaylee E Hahn
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States
| | - Irina Dahms
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD, United States
| | | | - Eileen Bailey
- DSM Nutritional Products, Columbia, MD, United States
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Brooke N Smith
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
29
|
Purification, structural characterization and in vivo immunoregulatory activity of a novel polysaccharide from Polygonatum sibiricum. Int J Biol Macromol 2020; 160:688-694. [DOI: 10.1016/j.ijbiomac.2020.05.245] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
30
|
Sinkora M, Stepanova K, Sinkorova J. Immunoglobulin light chain κ precedes λ rearrangement in swine but a majority of λ + B cells are generated earlier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103751. [PMID: 32454063 DOI: 10.1016/j.dci.2020.103751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Developmental pathways for B cell lymphogenesis are sufficiently known only in mice and humans. However, both of these species rearrange immunoglobulin heavy chains (IgH) before light chains (IgL) while IgL precedes IgH rearrangement in swine. We demonstrate here that this reversed order of rearrangements have some concealed consequences: (1) we confirmed that although IgLκ rearrangement is initial, most IgLλ+ B cells are generated earlier and before IgH rearrangements, while most IgLκ+ B cells later and after IgH rearrangements, (2) the second IgLκ rearrangement can occur after IgLλ rearrangement, (3) early formed B cells bear only single in-frame IgH rearrangements, (4) many IgLκ+ B cells carry IgLλ rearrangements that can be productive and occurring on both alleles in one cell, and (5) although VpreB and λ5 genes are present in swine, they are preferentially expressed in non-B cells. In summary, our findings reveal that swine use an alternative B cell developmental pathway as compared to mice and humans.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
31
|
Ramos L, Lunney JK, Gonzalez-Juarrero M. Neonatal and infant immunity for tuberculosis vaccine development: importance of age-matched animal models. Dis Model Mech 2020; 13:dmm045740. [PMID: 32988990 PMCID: PMC7520460 DOI: 10.1242/dmm.045740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal and infant immunity differs from that of adults in both the innate and adaptive arms, which are critical contributors to immune-mediated clearance of infection and memory responses elicited during vaccination. The tuberculosis (TB) research community has openly admitted to a vacuum of knowledge about neonatal and infant immune responses to Mycobacterium tuberculosis (Mtb) infection, especially in the functional and phenotypic attributes of memory T cell responses elicited by the only available vaccine for TB, the Bacillus Calmette-Guérin (BCG) vaccine. Although BCG vaccination has variable efficacy in preventing pulmonary TB during adolescence and adulthood, 80% of endemic TB countries still administer BCG at birth because it has a good safety profile and protects children from severe forms of TB. As such, new vaccines must work in conjunction with BCG at birth and, thus, it is essential to understand how BCG shapes the immune system during the first months of life. However, many aspects of the neonatal and infant immune response elicited by vaccination with BCG remain unknown, as only a handful of studies have followed BCG responses in infants. Furthermore, most animal models currently used to study TB vaccine candidates rely on adult-aged animals. This presents unique challenges when transitioning to human trials in neonates or infants. In this Review, we focus on vaccine development in the field of TB and compare the relative utility of animal models used thus far to study neonatal and infant immunity. We encourage the development of neonatal animal models for TB, especially the use of pigs.
Collapse
Affiliation(s)
- Laylaa Ramos
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA Building 1040, Room 103, Beltsville, MD 20705, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Chen S, Liu C, Huang X, Hu L, Huang Y, Chen H, Fang Q, Dong N, Li M, Tang W, Nie S. Comparison of immunomodulatory effects of three polysaccharide fractions from Lentinula edodes water extracts. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Blanc F, Prévost-Blondel A, Piton G, Bouguyon E, Leplat JJ, Andréoletti F, Egidy G, Bourneuf E, Bertho N, Vincent-Naulleau S. The Composition of Circulating Leukocytes Varies With Age and Melanoma Onset in the MeLiM Pig Biomedical Model. Front Immunol 2020; 11:291. [PMID: 32180771 PMCID: PMC7059855 DOI: 10.3389/fimmu.2020.00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Immunological research in pigs benefits from many improvements with a direct impact on the veterinary control of pig husbandry and on biomedical models. We compiled the available knowledge to develop gating strategies to monitor simultaneously all blood immune cell types by multicolor flow cytometry in Melanoblastoma-bearing Libechov Minipigs (MeLiM). The MeLiM pig spontaneously develops cutaneous melanomas that regress few months later. We monitored lymphoid and myeloid cell subsets in 3 to 21 weeks old pigs. Interestingly, neutrophils, type III monocytes (CD163+ CD14+ MHC II-) and CD4- CD8α- T cells are less abundant in oldest animals in contrast to eosinophils, type II monocytes (CD163- CD14low MHC II+), B cells, γδ T cells, CD4+ CD8α+ and CD4- CD8α+ T cells. Melanoma occurrence led to changes in the blood cell composition. Higher proportions of NK cells, CD4+ and CD4+ CD8α+ T cells, and CD21- B cells among B cells are found in young melanoma-bearing piglets, consistent with the immune-mediated spontaneous regression in the MeLiM model.
Collapse
Affiliation(s)
- Fany Blanc
- INSERM, U1016, Institut Cochin, Paris, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université de Paris, Paris, France
| | - Guillaume Piton
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | | | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Fabrice Andréoletti
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LCE, Fontenay-aux-Roses, France
| | - Nicolas Bertho
- Université Paris-Saclay, INRAE, VIM, Jouy-en-Josas, France.,BIOEPAR, INRAE, ONIRIS, Nantes, France
| | - Silvia Vincent-Naulleau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas, France
| |
Collapse
|
34
|
Does Neospora caninum cause reproductive problems in pigs? Vet Parasitol 2019; 275:108934. [PMID: 31600613 DOI: 10.1016/j.vetpar.2019.108934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
Abstract
Neospora caninum is known to cause reproductive disturbances in several animal species, such as cattle, sheep, and goats. However, research on the effects of N. caninum on reproduction in pigs is limited. The objective of this study was to verify the transplacental transmission of N. caninum in pigs during several gestational stages. Twelve healthy Toxoplasma gondii and N. caninum seronegative female pigs were selected and separated into four groups of three animals each. Group A was maintained as a control group. Groups B, C, and D were inoculated intravenously with 2.9 × 107 tachyzoites of the N. caninum strain Nc1, 30 days before conception and at 45 and 90 days of gestation, respectively. Blood samples were collected from females periodically through IFAT for IgG and IgM screening to confirm the infection. At birth, after blood samples were collected from the piglets, they were then euthanized for the collection of the brain, heart, lung, liver, and diaphragm, which were then subjected to PCR. All inoculated gilts seroconverted (IgG) from the seventh day after inoculation. Nine of the 12 females expelled 24 mummified fetuses at the time of delivery, two in group A (eight), two in group B (four), three in group C (nine), and two in group D (three). Of the 24 mummified fetuses, nine were positive for N. caninum (one (25%) fetus of group B, seven (77.8%) of group C, and one (33.3%) of group D). A total of 126 live piglets were born. When the organs of the piglets from the inoculated females were analyzed by PCR for N. caninum, 88 (93.61%) were positive. All gilts inoculated produced at least one positive piglet. This demonstrates that there is transplacental transmission of N. caninum in all phases of gestation, regardless of the time of infection.
Collapse
|
35
|
Sinkorova J, Stepanova K, Butler JE, Sinkora M. T cells in swine completely rearrange immunoglobulin heavy chain genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103396. [PMID: 31125574 DOI: 10.1016/j.dci.2019.103396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Porcine thymus contains three independent populations of cells that have rearranged immunoglobulin heavy chain VDJH genes. The first population can be found exclusively in medulla and it consists of existing mature B cells and plasma cells. The second consists of developing B cells characterized by the presence of selected VDJH rearrangement, similar to B cell lymphogenesis in the bone marrow. The third population is entirely unaffected by selection mechanism for productive VDJH rearrangement and represents T lineage cells that rearrange immunoglobulin genes. Transcription of unselected VDJH repertoire is not allowed in T cells. Sequence analysis of unselected VDJH repertoire from T cells also revealed important consequences for B cell lymphogenesis and selection of B cell repertoire. As far as we know, this is the first evidence that some species completely rearrange VDJH genes in T cells. Our results also support the finding that B cells actively develop in the thymus.
Collapse
Affiliation(s)
- Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
36
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
37
|
Paraimmunobiotic Bifidobacteria Modulate the Expression Patterns of Peptidoglycan Recognition Proteins in Porcine Intestinal Epitheliocytes and Antigen Presenting Cells. Cells 2019; 8:cells8080891. [PMID: 31416116 PMCID: PMC6721749 DOI: 10.3390/cells8080891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Peptidoglycan recognition proteins (PGLYRPs) are a family of pattern recognition receptors (PRRs) that are able to induce innate immune responses through their binding to peptidoglycan (PGN), lipopolysaccharide, or lipoteichoic acid, or by interacting with other PRR-ligands. Recently, progress has been made in understanding the immunobiology of PGLYRPs in human and mice, however, their functions in livestock animals have been less explored. In this study, we characterized the expression patterns of PGLYRPs in porcine intestinal epithelial (PIE) cells and antigen-presenting cells (APCs) and their modulation by the interactions of host cells with PRR-ligands and non-viable immunomodulatory probiotics referred to as paraimmunobiotics. We demonstrated that PGLYRP-1, -2, -3, and -4 are expressed in PIE cells and APCs from Peyer’s patches, being PGLYPR-3 and -4 levels higher than PGLYRP-1 and -2. We also showed that PGLYRPs expression in APCs and PIE cells can be modulated by different PRR agonists. By using knockdown PIE cells for TLR2, TLR4, NOD1, and NOD2, or the four PGLYRPs, we demonstrated that PGLYRPs expressions would be required for activation and functioning of TLR2, TLR4, NOD1, and NOD2 in porcine epitheliocytes, but PGLYRPs activation would be independent of those PRR expressions. Importantly, we reported for the first time that PGLYRPs expression can be differentially modulated by paraimmunobiotic bifidobacteria in a strain-dependent manner. These results provide evidence for the use of paraimmunobiotic bifidobacteria as an alternative for the improvement of resistance to intestinal infections or as therapeutic tools for the reduction of the severity of inflammatory damage in diseases in which a role of PGLYRPs-microbe interaction has been demonstrated.
Collapse
|
38
|
Li K, Bai J, Du L, Wang X, Ke C, Yan W, Li C, Ren L, Han H, Zhao Y. Generation of porcine monoclonal antibodies based on single cell technologies. Vet Immunol Immunopathol 2019; 215:109913. [PMID: 31420069 DOI: 10.1016/j.vetimm.2019.109913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
Abstract
The development of a rapid and efficient system to generate porcine monoclonal antibodies (mAbs) is an important step toward the discovery of critical neutralizing targets for designing rational vaccines against porcine viruses. In this study, we established a platform for producing porcine mAbs based on single cell technologies. First, we singled out an optimal donor from 507 pigs based on serum antibody neutralizing activity against porcine reproductive and respiratory syndrome virus (PRRSV). After identifying the contribution of IgG to the neutralizing activity, single CD45R+IgG+Ag+ B cells were sorted from peripheral blood mononuclear cells (PBMCs). Single B cell RT-PCR was performed using primers designed to cover the germline repertoire of the porcine VH/VL gene segments. Paired VH/VLs were cloned into a eukaryotic expression vector and transfected into 293T cells. We demonstrate that full-length porcine mAbs were produced, and antigen-specific mAbs were obtained after further validation. The approach reported in this study can be applied to generate porcine mAbs against any given antigen and may help with the screening of neutralizing antibodies against porcine pathogens.
Collapse
Affiliation(s)
- Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Science, Beijing, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Wei Yan
- XINDAMUYE Company, Henan, People's Republic of China
| | - Changqing Li
- XINDAMUYE Company, Henan, People's Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
39
|
Bordet E, Frétaud M, Crisci E, Bouguyon E, Rault S, Pezant J, Pleau A, Renson P, Giuffra E, Larcher T, Bourge M, Bourry O, Boulesteix O, Langevin C, Schwartz-Cornil I, Bertho N. Macrophage-B Cell Interactions in the Inverted Porcine Lymph Node and Their Response to Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:953. [PMID: 31130951 PMCID: PMC6510060 DOI: 10.3389/fimmu.2019.00953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Swine lymph nodes (LN) present an inverted structure compared to mouse and human, with the afferent lymph diffusing from the center to the periphery. This structure, also observed in close and distant species such as dolphins, hippopotamus, rhinoceros, and elephants, is poorly described, nor are the LN macrophage populations and their relationship with B cell follicles. B cell maturation occurs mainly in LN B cell follicles with the help of LN macrophage populations endowed with different antigen delivery capacities. We identified three macrophage populations that we localized in the inverted LN spatial organization. This allowed us to ascribe porcine LN MΦ to their murine counterparts: subcapsular sinus MΦ, medullary cord MΦ and medullary sinus MΦ. We identified the different intra and extrafollicular stages of LN B cells maturation and explored the interaction of MΦ, drained antigen and follicular B cells. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major porcine pathogen that infects tissue macrophages (MΦ). PRRSV is persistent in the secondary lymphoid tissues and induces a delay in neutralizing antibodies appearance. We observed PRRSV interaction with two LN MΦ populations, of which one interacts closely with centroblasts. We observed BCL6 up-regulation in centroblast upon PRRSV infection, leading to new hypothesis on PRRSV inhibition of B cell maturation. This seminal study of porcine LN will permit fruitful comparison with murine and human LN for a better understanding of normal and inverted LN development and functioning.
Collapse
Affiliation(s)
- Elise Bordet
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Maxence Frétaud
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | - Elisa Crisci
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphane Rault
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Jérémy Pezant
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Alexis Pleau
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Patricia Renson
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Mickael Bourge
- I2BC, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Olivier Bourry
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Virologie et Immunologie Porcines, Zoopôle, BP53, Ploufragan, France.,Université Bretagne Loire, Cité Internationale, Rennes, France
| | - Olivier Boulesteix
- INRA, UE1277, Plate-Forme d'Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Christelle Langevin
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,INRA, EMERG'IN- Plateforme d'Infectiologie Expérimentale IERP- Domaine de Vilvert, Jouy-en-Josas, France
| | | | - Nicolas Bertho
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France.,BIOEPAR, INRA, Oniris, Nantes, France
| |
Collapse
|
40
|
Lessard M, Blais M, Beaudoin F, Deschene K, Verso LL, Bissonnette N, Lauzon K, Guay F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Vet Immunol Immunopathol 2018; 206:25-34. [PMID: 30502909 DOI: 10.1016/j.vetimm.2018.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the effect of the piglet growth during the first week of life on ileal expression of genes and on development of the immune system. Eight litters adjusted to 12 piglets were used. Within each litter, the piglet that showed the lowest weight gain (LWG; n = 8) and the one that showed the highest weight gain (HWG; n = 8) in their first week of life were enrolled. Peripheral blood mononuclear cells (PBMC) were isolated on days 8 and 16 to characterize cellular population profiles and to assess ex-vivo secretion of interleukin-10 (IL-10), IL-6 and tumor necrosis factor-α (TNF-α). On day 16, piglets were euthanized and ileum samples were collected to extract RNA for microarray analysis and gene expression by qPCR. As expected, growth performance of LWG piglet was impaired compared to HWG piglets (P < 0.05). From day 8 to 16, the percentage of CD21+ B cells significantly increased in blood of heavier HWG piglets while the percentage remained constant in smaller LWG piglets (P weight x day = 0.01). For the CD4+CD8α- Th cells, a marked increase was observed in LWG piglets from 8 to 16 days of age (P = 0.002) whereas no significant change occurred in HWG piglets. Percentages of CD14+ monocytes and other MHC-II+ cells were respectively higher and lower on day 8 compared to day 16 for both groups of piglets (P < 0.01). On day 8, LPS-activated PBMC from LWG piglets produced less IL-6 compared to HWG piglets (P < 0.05). Microarray analysis of gene expression in piglets' ileum tissue indicated that several genes involed in defense response and response to oxidative stress were modulated differently in LWG compared to HWG. Gene analysis by Q-PCR confirmed microarray results and revealed that IL-10, SOD1, NOS2, NOD2, TLR4, TLR9, CD40 and CD74 expressions were significantly decreased (P < 0.05) in LWG in comparison to HWG piglets, while MYD88 and NFkBiA showed a tendency to decrease (0.05 ≤ P < 0.07). These results suggest that birth weight and milk intake affect the growth performances and the development of immunity by modulating the expression of genes associated with immunity and oxidative stress in piglets' intestinal tissue, and by affecting the leukocyte populations involved in innate and cell-mediated immunity in nursing piglets. Therefore, impaired development of immune system in LWG piglets might have an impact on their resistance to infections later in life.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada.
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Beaudoin
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karine Deschene
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karoline Lauzon
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Guay
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
41
|
Kloubert V, Blaabjerg K, Dalgaard TS, Poulsen HD, Rink L, Wessels I. Influence of zinc supplementation on immune parameters in weaned pigs. J Trace Elem Med Biol 2018; 49:231-240. [PMID: 29402502 DOI: 10.1016/j.jtemb.2018.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 12/31/2022]
Abstract
Zinc is an essential trace element, highly important for a well functioning immune system. In case of zinc deficiency, proper immune functions are not ensured thus leading to various diseases. Weaning of pigs from the sow causes stress, increasing susceptibility to infections. Moreover, low feed intake during the first two weeks post-weaning, accompanied by low zinc intake, results in temporary zinc deficiency. Therefore, supporting the immune system by zinc supplementation might improve its function and thereby the pigs' health and well-being. In this study, the immune status of weaned pigs was analyzed under different conditions of zinc supplementation. More precisely, the daily porcine diet was either left unsupplemented (0 ppm), or was supplemented with low (100 ppm), or high (2500 ppm) amounts of additional zinc in the form of zinc oxide (ZnO) (Zn0, Zn100, and Zn2500, respectively). Porcine innate and adaptive immune cells of the different dietary groups were analyzed. Results revealed an improved innate immune capacity, represented by increased phagocytosis and slightly increased oxidative burst in cells from the Zn2500 pigs and Zn100 pigs, respectively. Apart from that, zinc supplementation improved adaptive immunity, as seen by increased numbers of CD3+ T cells as well as increased numbers of CD3+CD4+Foxp3+ regulatory T cells, elevated interleukin (IL)-2 production and decreased IL-10 production. Although not significant, supplementing 2500 ppm zinc slightly decreased killing activity of natural killer (NK) cells. Thus, the optimal concentration for zinc supplementation of weaned pigs two weeks post-weaning needs to be further studied, presumably establishing an optimal concentration between 100 ppm and 2500 ppm zinc. Genome comparisons indicate that the porcine genome is more closely related to the human genome than the murine genome is related to the human genome. Therefore, the pig seems to be a suitable organism to study human immunity and diseases. Results obtained in the current study might therefore be transferable to the human immune system.
Collapse
Affiliation(s)
- Veronika Kloubert
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Karoline Blaabjerg
- Department of Animal Science - Animal Nutrition and Physiology, Aarhus University/Foulum, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Tina Sørensen Dalgaard
- Department of Animal Science - Immunology and Microbiology, Aarhus University/Foulum, Blichers Allé 20, Tjele, 8830, Denmark.
| | - Hanne Damgaard Poulsen
- Department of Animal Science - Animal Nutrition and Physiology, Aarhus University/Foulum, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
42
|
|
43
|
Engert LC, Weiler U, Stefanski V, Schmucker SS. Data characterizing diurnal rhythms in the number of peripheral CD8α - and CD8α + γδ T cells in domestic pigs. Data Brief 2018. [PMID: 29541671 PMCID: PMC5847622 DOI: 10.1016/j.dib.2017.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This data article is related to the original research article “Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs” of Engert et al. [1] and describes diurnal rhythms in the number of CD8α− and CD8α+ γδ T cells in peripheral blood of domestic pigs. Blood samples were taken from 18 animals over periods of up to 50 h and immune cell subtypes were determined by flow cytometry. Diurnal rhythmicity of cell numbers of γδ T cell subtypes was analyzed with cosinor analysis and different properties of rhythmicity (mesor, amplitude, and peak time) were calculated. In addition, associations between cell numbers of the investigated cell types in porcine blood with plasma cortisol concentration, hematocrit, and experimental conditions were identified with linear mixed model analysis.
Collapse
Affiliation(s)
- Larissa C Engert
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Ulrike Weiler
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| |
Collapse
|
44
|
Immuno-enhancement effect of polysaccharide extracted from Stichopus japonicus on cyclophosphamide-induced immunosuppression mice. Food Sci Biotechnol 2017; 27:565-573. [PMID: 30263781 DOI: 10.1007/s10068-017-0248-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Polysaccharide (SJP) was extracted from Sea cucumber, Stichopus japonicas, and its immune-enhancing activities were evaluated in vivo immune-suppressed mice systems. Cyclophosphamide(CY)-treated mice were orally administrated with SJP according to different concentrations. The results showed that administration of SJP significantly increased spleen index without variation of the body weight, compared to only CY treatment group. The proliferation of splenic lymphocyte and NK activity was also stimulated by SJP. In addition, the oral administration of SJP up-regulated COX-2 and TLR-4 as well as cytokines such as IL-1β, IL-4, IL-6, IL-10, TNF-α and IFN-γ, which are secreted from splenic lymphocytes in cyclophosphamide-treated mice. Moreover, our results showed that SJP stimulated macrophages via NF-κB and MAPK signaling pathways. These findings provided the potential use of SJP as an alternative means under immune-suppressed conditions, and furthermore can be utilized as a functional material for food and pharmaceutical industries.
Collapse
|
45
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
46
|
Prieto J, Felippe M. Development, phenotype, and function of non-conventional B cells. Comp Immunol Microbiol Infect Dis 2017; 54:38-44. [DOI: 10.1016/j.cimid.2017.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022]
|
47
|
Braun RO, Python S, Summerfield A. Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Front Immunol 2017; 8:1044. [PMID: 28890720 PMCID: PMC5574874 DOI: 10.3389/fimmu.2017.01044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLR) triggering of B cells are known to promote B cell expansion, differentiation of B cells into antibody-producing and memory cells, but the TLR responses of porcine B cells is poorly characterized. Therefore, this study investigated the response pattern of porcine B cell subsets to a large collection of TLR ligands and demonstrates that the TLR2 ligand Pam3Cys-SK4 and the TLR7/8 ligands gardiquimod and resiquimod are particularly efficient at inducing proliferation, CD25 and CCR7. This activation was also determined in B-cell subpopulations including a CD21+IgM+ subset, an IgG+ subset and two putative B1-like subsets, defined as CD21-IgMhighCD11R1+CD11c+CD14+ and CD21-IgMhigh CD11R1-CD11c+CD14- B cells. The latter two were larger and expressed higher levels of CD80/86 and spontaneous phospholipase C-γ2 phosphorylation. All porcine B-cell subsets were activated by TLR2, TLR7, and TLR9 ligands. Naïve and memory conventional B cells responded similar to TLR ligands. The CD11R1+ B1-like subset had the highest proliferative responses. While both B1-like subsets did not spontaneously secrete IgM, they were the only subsets to produce high level of TLR-induced IgM. Similar to polyclonal IgM responses, memory B cells were efficiently induced to produce specific antibodies by CpG oligodinucleotide, resiquimod, and to a weaker extend by Pam3Cys-SK4. Depletion of plasmacytoid dendritic cells (pDCs) enhanced TLR-induced antibodies. The same set of TLR ligands also induced CD40 on cDCs, pDCs, and monocytes with the exception of TLR4 ligand being unable to activate pDCs. Gardiquimod and resiquimod were particularly efficient at inducing CCR7 on pDCs. Porcine B cells expressed high levels of TLR7, but relatively little other TLR mRNA. Nevertheless, TLR2 on B cells was rapidly upregulated following stimulation, explaining the strong responses following stimulation. Subset-specific analysis of TLR expression demonstrated a comparable expression of TLR2, TLR7, and TLR9 in all B cell subsets, but TLR3 was restricted to B1-like cells, whereas TLR4 was only expressed on conventional B cells, although both at low levels. Altogether, our data describe porcine innate B1-like cells, and how different B cell subsets are involved in innate sensing.
Collapse
Affiliation(s)
- Roman Othmar Braun
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Vetsuisse Faculty, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Sinkora M, Sinkorova J, Stepanova K. Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine. THE JOURNAL OF IMMUNOLOGY 2017; 198:1543-1552. [DOI: 10.4049/jimmunol.1601035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
49
|
Wang Y, Qi Q, Li A, Yang M, Huang W, Xu H, Zhao Z, Li S. Immuno-enhancement effects of Yifei Tongluo Granules on cyclophosphamide-induced immunosuppression in Balb/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:72-82. [PMID: 27586820 DOI: 10.1016/j.jep.2016.08.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/08/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Yifei Tongluo Granules has been employed clinically with the combination of chemotherapy agents to treat patients with multidrug-resistant tuberculosis. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study was employed to verify immunomodulatory effect and to investigate the underlying mechanisms which have not been explored. MATERIALS AND METHODS The study samples of total extracts (FB-E) and polysaccharides (FB-P) were prepared by the extraction of the Yifei Tongluo Granules using appropriate techniques. A simple immunodeficient mice model was established by challenging Balb/c mice with cyclophosphamide in order to avoid the handling of tuberculosis viruses. The in vivo study was thus designed to systematically elucidate the immuno-enhancement effects of Yifei Tongluo Granules extracts in immunosuppressed mice induced by cyclophosphamide. Balb/c mice were orally ingested once daily with the low and high doses of two different extracts for ten consecutive days, respectively, accompanied by intraperitoneal injection of cyclophosphamide (60mg/kg) on days 1-3 and 10. RESULTS Compared with the model group, the treatment of immunodeficient mice with the low and high doses of the extracts FB-E or FB-P enhanced spleen and thymus indices, T- and B-cell proliferation as well as increased the activities of splenic natural killer, lymphokine activated killer, cytotoxic T lymphocyte cells and peritoneal macrophage phagocytosis. In addition, the FB-E or FB-P treatment balanced the ratio of Th1/Th2 and up-regulated the CD4+/CD8+ ratio in the serum. CONCLUSIONS These results demonstrate, for the first time, that the treatment of the cyclophosphamide-challenged mice with the Yifei Tongluo Granules extracts resulted in accelerated recovery of immunosuppression, sugguesting that the immunomodulation might be the mechanism for the observed clinical benefits of Yifei Tongluo Granules. Our findings provide preliminary mechanistic study evidences for clinical application of Yifei Tongluo Granules in patients with immunodeficient diseases such as tuberculosis.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Qiuchen Qi
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Min Yang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Weizhen Huang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Hongya Xu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China.
| | - Siying Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| |
Collapse
|
50
|
Butler JE, Santiago-Mateo K, Wertz N, Sun X, Sinkora M, Francis DL. Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis: The ileal Peyer patches (IPP) are the major source of primary, undiversified IgA antibodies in newborn piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:340-351. [PMID: 27497872 DOI: 10.1016/j.dci.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The ileal Peyers patches (IPP) of newborn germfree (GF) piglets were isolated into blind loops and the piglets colonized with a defined probiotic microflora. After 5 weeks, IgA levels in the intestinal lavage (IL) of loop piglets remained at GF levels and IgM comprised ∼70% while in controls, IgA levels were elevated 5-fold and comprised ∼70% of total Igs. Loop piglets also had reduced serum IgA levels suggesting the source of serum IgA had been interrupted. The isotype profile for loop contents was intermediate between that in the IL of GF and probiotic controls. Surprisingly, colonization alone did not result in repertoire diversification in the IPP. Rather, colonization promoted pronounced proliferation of fully switched IgA(+)IgM(-) B cells in the IPP that supply early, non-diversified "natural" SIgA antibodies to the gut lumen and a primary IgA response in serum.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - David L Francis
- Department of Veterinary Sciences, South Dakota State University, Brooking, SD, USA
| |
Collapse
|