1
|
Boršić E, Ramuta TŽ, Orehek S, Kreft ME, Geyer M, Jerala R, Hafner-Bratkovič I. Clustering of NLRP3 induced by membrane or protein scaffolds promotes inflammasome assembly. Nat Commun 2025; 16:4887. [PMID: 40425567 DOI: 10.1038/s41467-025-60277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
NLRP3 is a pattern recognition receptor forming an inflammasome in response to diverse pathogen and self-derived triggers, but molecular insights on NLRP3 activation are still lacking. Here, we drive ectopic NLRP3 to different subcellular locations in NLRP3-deficient macrophages to map the spatial activation profile of NLRP3, and find that NLRP3 variants enriched at the organellar membranes respond to canonical triggers similarly to wild-type NLRP3; however, unlike wild-type, these NLRP3 variants can be activated even in the absence of the polybasic phospholipid-binding segment. Mechanistically, membrane or protein scaffolds mediate NLRP3 clustering, which leads to the unfastening of the inactive NACHT domain conformation preceding the activated NLRP3 oligomer formation. Our data thus suggest that scaffold-promoted clustering is an important step in NLRP3 activation, enabling NLRP3 to sense distinct activator-induced cellular anomalies exhibited via lipid or protein assemblies, thereby establishing NLRP3 as the master sensor of perturbations in cell homeostasis.
Collapse
Affiliation(s)
- Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, Bonn, Germany
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
2
|
Ferme LC, Ryan AQ, Haase R, Modes CD, Norden C. Timely neurogenesis drives the transition from nematic to crystalline nuclear packing during retinal morphogenesis. SCIENCE ADVANCES 2025; 11:eadu6843. [PMID: 40344072 PMCID: PMC12063663 DOI: 10.1126/sciadv.adu6843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Correct organogenesis depends on the timely coordination of developmental processes, such as cell proliferation, differentiation, and migration. This coordination is particularly critical in crowded tissues, such as pseudostratified epithelia (PSE) that are often found as organ precursors. They are composed of elongated epithelial cells with densely packed nuclei aligned along the apicobasal axis. While cell cycle-dependent nuclear movements in PSE are well studied, less is known about how nuclear packing influences tissue morphogenesis. To investigate this, we analyzed nuclear shapes, sizes, and neighborhood statistics in zebrafish neuroepithelia, focusing on the retinal PSE. We found that nuclei exhibit elongated shapes and biaxial nematic-like orientational order but remain positionally disordered. During retinal development, nuclear packing density increases, approaching theoretical limits. This occurs when the tissue transitions to a laminated structure and nuclear shapes are remodeled. Timely neurogenesis is critical as failure to initiate neurogenesis leads to tissue deformations. These findings highlight the influence of nuclear shape and positioning for organ morphogenesis.
Collapse
Affiliation(s)
- Lucrezia C. Ferme
- Gulbenkian Institute for Molecular Medicine, rua da Quinta Grande 6, 2780-156 Oeiras, Portugal (formerly Instituto Gulbenkian de Ciência, IGC)
| | - Allyson Q. Ryan
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Robert Haase
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Data Science Center, Leipzig University, Humboldtstraße 25, 04105 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - Carl D. Modes
- Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Excellence Cluster, Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
- Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Caren Norden
- Gulbenkian Institute for Molecular Medicine, rua da Quinta Grande 6, 2780-156 Oeiras, Portugal (formerly Instituto Gulbenkian de Ciência, IGC)
| |
Collapse
|
3
|
Watson A, Queen R, Ferrández-Peral L, Dorgau B, Collin J, Nelson A, Hussain R, Coxhead J, McCorkindale M, Atkinson R, Zerti D, Chichagova V, Conesa A, Armstrong L, Cremers FPM, Lako M. Unravelling genotype-phenotype correlations in Stargardt disease using patient-derived retinal organoids. Cell Death Dis 2025; 16:108. [PMID: 39971915 PMCID: PMC11840025 DOI: 10.1038/s41419-025-07420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Stargardt disease is an inherited retinopathy affecting approximately 1:8000 individuals. It is characterised by biallelic variants in ABCA4 which encodes a vital protein for the recycling of retinaldehydes in the retina. Despite its prevalence and impact, there are currently no treatments available for this condition. Furthermore, 35% of STGD1 cases remain genetically unsolved. To investigate the cellular and molecular characteristics associated with STGD1, we generated iPSCs from two monoallelic unresolved (PT1 & PT2), late-onset STGD1 cases with the heterozygous complex allele - c.[5461-10 T > C;5603 A > T]. Both patient iPSCs and those from a biallelic affected control (AC) carrying -c.4892 T > C and c.4539+2001G > A, were differentiated to retinal organoids, which developed all key retinal neurons and photoreceptors with outer segments positive for ABCA4 expression. We observed patient-specific disruption to lamination with OPN1MW/LW+ cone photoreceptor retention in the retinal organoid centre during differentiation. Photoreceptor retention was more severe in the AC case affecting both cones and rods, suggesting a genotype/phenotype correlation. scRNA-Seq suggests retention may be due to the induction of stress-related pathways in photoreceptors. Whole genome sequencing successfully identified the missing alleles in both cases; PT1 reported c.-5603A > T in homozygous state and PT2 uncovered a rare hypomorph - c.-4685T > C. Furthermore, retinal organoids were able to recapitulate the retina-specific splicing defect in PT1 as shown by long-read RNA-seq data. Collectively, these results highlight the suitability of retinal organoids in STGD1 modelling. Their ability to display genotype-phenotype correlations enhances their utility as a platform for therapeutic development.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Ferrández-Peral
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Nelson
- NU-OMICs, Northumbria University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell'Aquila, L'Aquila, Italy
| | | | - Ana Conesa
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcells Biotech Ltd., Newcastle upon Tyne, UK
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Maia-Gil M, Gorjão M, Belousov R, Espina JA, Coelho J, Gouhier J, Ramos AP, Barriga EH, Erzberger A, Norden C. Nuclear deformability facilitates apical nuclear migration in the developing zebrafish retina. Curr Biol 2024; 34:5429-5443.e8. [PMID: 39481375 DOI: 10.1016/j.cub.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Nuclear positioning is a crucial aspect of cell and developmental biology. One example is the apical movement of nuclei in neuroepithelia before mitosis, which is essential for proper tissue formation. While the cytoskeletal mechanisms that drive nuclei to the apical side have been explored, the influence of nuclear properties on apical nuclear migration is less understood. Nuclear properties, such as deformability, can be linked to lamin A/C expression levels, as shown in various in vitro studies. Interestingly, many nuclei in early development, including neuroepithelial nuclei, express only low levels of lamin A/C. Therefore, we investigated whether increased lamin A expression in the densely packed zebrafish retinal neuroepithelium affects nuclear deformability and, consequently, migration phenomena. We found that overexpressing lamin A in retinal nuclei increases nuclear stiffness, which in turn indeed impairs apical nuclear migration. Interestingly, nuclei that do not overexpress lamin A but are embedded in a stiffer lamin A-overexpressing environment also exhibit impaired apical nuclear migration, indicating that these effects can be cell non-autonomous. Additionally, in the less crowded hindbrain neuroepithelium, only minor effects on apical nuclear migration are observed. Together, this suggests that the material properties of the nucleus influence nuclear movements in a tissue-dependent manner.
Collapse
Affiliation(s)
- Mariana Maia-Gil
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maria Gorjão
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jaime A Espina
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - João Coelho
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Juliette Gouhier
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana P Ramos
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elias H Barriga
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Caren Norden
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
5
|
Doobin DJ, Helmer P, Carabalona A, Bertipaglia C, Vallee RB. The Role of Nde1 phosphorylation in interkinetic nuclear migration and neural migration during cortical development. Mol Biol Cell 2024; 35:ar129. [PMID: 39167527 PMCID: PMC11481692 DOI: 10.1091/mbc.e24-05-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Nde1 is a cytoplasmic dynein regulatory protein with important roles in vertebrate brain development. One noteworthy function is in the nuclear oscillatory behavior in neural progenitor cells, the control and mechanism of which remain poorly understood. Nde1 contains multiple phosphorylation sites for the cell cycle-dependent protein kinase CDK1, though the function of these sites is not well understood. To test their role in brain development, we expressed phosphorylation-state mutant forms of Nde1 in embryonic rat brains using in utero electroporation. We find that Nde1 T215 and T243 phosphomutants block apical interkinetic nuclear migration (INM) and, consequently, mitosis in radial glial progenitor cells. Another Nde1 phosphomutant at T246 also interfered with mitotic entry without affecting INM, suggesting a more direct role for Nde1 T246 in mitotic regulation. We also found that the Nde1 S214F mutation, which is associated with schizophrenia, inhibits Cdk5 phosphorylation at an adjacent residue which causes alterations in neuronal lamination. These results together identify important new roles for Nde1 phosphorylation in neocortical development and disease, and represent the first evidence for Nde1 phosphorylation roles in INM and neuronal lamination.
Collapse
Affiliation(s)
| | - Paige Helmer
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Aurelie Carabalona
- Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | | | - Richard B. Vallee
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
6
|
Despin-Guitard E, Rosa VS, Plunder S, Mathiah N, Van Schoor K, Nehme E, Merino-Aceituno S, Egea J, Shahbazi MN, Theveneau E, Migeotte I. Non-apical mitoses contribute to cell delamination during mouse gastrulation. Nat Commun 2024; 15:7364. [PMID: 39198421 PMCID: PMC11358383 DOI: 10.1038/s41467-024-51638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
During the epithelial-mesenchymal transition driving mouse embryo gastrulation, cells divide more frequently at the primitive streak, and half of those divisions happen away from the apical pole. These observations suggest that non-apical mitoses might play a role in cell delamination. We aim to uncover and challenge the molecular determinants of mitosis position in different regions of the epiblast through computational modeling and pharmacological treatments of embryos and stem cell-based epiblast spheroids. Blocking basement membrane degradation at the streak has no impact on the asymmetry in mitosis frequency and position. By contrast, disturbance of the actomyosin cytoskeleton or cell cycle dynamics elicits ectopic non-apical mitosis and shows that the streak region is characterized by local relaxation of the actomyosin cytoskeleton and less stringent regulation of cell division. These factors are essential for normal dynamics at the streak and favor cell delamination from the epiblast.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, UK
| | - Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Navrita Mathiah
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Kristof Van Schoor
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | | | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium.
| |
Collapse
|
7
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
8
|
Ochoa A, Herrera A, Menendez A, Estefanell M, Ramos C, Pons S. Vinculin is required for interkinetic nuclear migration (INM) and cell cycle progression. J Cell Biol 2024; 223:e202106169. [PMID: 37889294 PMCID: PMC10609122 DOI: 10.1083/jcb.202106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Vinculin is an actin-binding protein (ABP) that strengthens the connection between the actin cytoskeleton and adhesion complexes. It binds to β-catenin/N-cadherin complexes in apical adherens junctions (AJs), which maintain cell-to-cell adhesions, and to talin/integrins in the focal adhesions (FAs) that attach cells to the basal membrane. Here, we demonstrate that β-catenin targets vinculin to the apical AJs and the centrosome in the embryonic neural tube (NT). Suppression of vinculin slows down the basal-to-apical part of interkinetic nuclear migration (BAINM), arrests neural stem cells (NSCs) in the G2 phase of the cell cycle, and ultimately dismantles the apical actin cytoskeleton. In the NSCs, mitosis initiates when an internalized centrosome gathers with the nucleus during BAINM. Notably, our results show that the first centrosome to be internalized is the daughter centrosome, where β-catenin and vinculin accumulate, and that vinculin suppression prevents centrosome internalization. Thus, we propose that vinculin links AJs, the centrosome, and the actin cytoskeleton where actomyosin contraction forces are required.
Collapse
Affiliation(s)
- Andrea Ochoa
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - Antonio Herrera
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - Anghara Menendez
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - María Estefanell
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - Carlota Ramos
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - Sebastian Pons
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Rocha-Martins M. Cell behaviors that pattern developing tissues: the case of the vertebrate nervous system. Curr Top Dev Biol 2023; 159:30-58. [PMID: 38729679 DOI: 10.1016/bs.ctdb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.
Collapse
|
10
|
Casas Gimeno G, Dvorianinova E, Lembke CS, Dijkstra ESC, Abbas H, Liu Y, Paridaen JTML. A quantitative characterization of early neuron generation in the developing zebrafish telencephalon. Dev Neurobiol 2023; 83:237-254. [PMID: 37679904 DOI: 10.1002/dneu.22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The adult brain is made up of anatomically and functionally distinct regions with specific neuronal compositions. At the root of this neuronal diversity are neural stem and progenitor cells (NPCs) that produce many neurons throughout embryonic development. During development, NPCs switch from initial expanding divisions to neurogenic divisions, which marks the onset of neurogenesis. Here, we aimed to understand when NPCs switch division modes to generate the first neurons in the anterior-most part of the zebrafish brain, the telencephalon. To this end, we used the deep learning-based segmentation method Cellpose and clonal analysis of individual NPCs to assess the production of neurons by NPCs in the first 24 h of zebrafish telencephalon development. Our results provide a quantitative atlas detailing the production of telencephalic neurons and NPC division modes between 14 and 24 h postfertilization. We find that within this timeframe, the switch to neurogenesis is gradual, with considerable heterogeneity in individual NPC neurogenic potential and division rates. This quantitative characterization of initial neurogenesis in the zebrafish telencephalon establishes a basis for future studies aimed at illuminating the molecular mechanisms and regulators of early neurogenesis.
Collapse
Affiliation(s)
- Glòria Casas Gimeno
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Ekaterina Dvorianinova
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carla-Sophie Lembke
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Emma S C Dijkstra
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Hussam Abbas
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Yuanyuan Liu
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Rocha-Martins M, Nerli E, Kretzschmar J, Weigert M, Icha J, Myers EW, Norden C. Neuronal migration prevents spatial competition in retinal morphogenesis. Nature 2023; 620:615-624. [PMID: 37558872 DOI: 10.1038/s41586-023-06392-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
The concomitant occurrence of tissue growth and organization is a hallmark of organismal development1-3. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear. Here, to understand how cell movements that are key for growth and organization are orchestrated, we study the emergence of photoreceptor neurons that occur during the peak of retinal growth, using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on the active bidirectional translocation of photoreceptors, leading to a transient transfer of the entire cell population away from the apical proliferative zone. This pattern of migration is driven by cytoskeletal machineries that differ depending on the direction: microtubules are exclusively required for basal translocation, whereas actomyosin is involved in apical movement. Blocking the basal translocation of photoreceptors induces apical congestion, which hampers the apical divisions of progenitor cells and leads to secondary defects in lamination. Thus, photoreceptor migration is crucial to prevent competition for space, and to allow concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning4, can be involved in coordinating morphogenesis.
Collapse
Affiliation(s)
- Mauricio Rocha-Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Elisa Nerli
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Jenny Kretzschmar
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Institute of Bioengineering, School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Caren Norden
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
12
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
13
|
Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022; 32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.
Collapse
|
14
|
Martinez MAQ, Matus DQ. CDK activity sensors: genetically encoded ratiometric biosensors for live analysis of the cell cycle. Biochem Soc Trans 2022; 50:1081-1090. [PMID: 35674434 PMCID: PMC9661961 DOI: 10.1042/bst20211131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023]
Abstract
Cyclin-dependent kinase (CDK) sensors have facilitated investigations of the cell cycle in living cells. These genetically encoded fluorescent biosensors change their subcellular location upon activation of CDKs. Activation is primarily regulated by their association with cyclins, which in turn trigger cell-cycle progression. In the absence of CDK activity, cells exit the cell cycle and become quiescent, a key step in stem cell maintenance and cancer cell dormancy. The evolutionary conservation of CDKs has allowed for the rapid development of CDK activity sensors for cell lines and several research organisms, including nematodes, fish, and flies. CDK activity sensors are utilized for their ability to visualize the exact moment of cell-cycle commitment. This has provided a breakthrough in understanding the proliferation-quiescence decision. Further adoption of these biosensors will usher in new discoveries focused on the cell-cycle regulation of development, ageing, and cancer.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, U.S.A
| |
Collapse
|
15
|
Royer C, Sandham E, Slee E, Schneider F, Lagerholm CB, Godwin J, Veits N, Hathrell H, Zhou F, Leonavicius K, Garratt J, Narendra T, Vincent A, Jones C, Child T, Coward K, Graham C, Fritzsche M, Lu X, Srinivas S. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat Commun 2022; 13:941. [PMID: 35177595 PMCID: PMC8854694 DOI: 10.1038/s41467-022-28590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress. The early embryo maintains its structure in the face of large mechanical stresses during morphogenesis. Here they show that ASPP2 acts to preserve epithelial integrity in regions of high apical tension during early development.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Elizabeth Sandham
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christoffer B Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nisha Veits
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Holly Hathrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Jemma Garratt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tanaya Narendra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK.,Rosalind Franklin Institute, Didcot, OX11 0QS, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
16
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
17
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
19
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
20
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
21
|
Jimenez AJ, Schaeffer A, De Pascalis C, Letort G, Vianay B, Bornens M, Piel M, Blanchoin L, Théry M. Acto-myosin network geometry defines centrosome position. Curr Biol 2021; 31:1206-1220.e5. [DOI: 10.1016/j.cub.2021.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
|
22
|
Gao L, Meiring JCM, Kraus Y, Wranik M, Weinert T, Pritzl SD, Bingham R, Ntouliou E, Jansen KI, Olieric N, Standfuss J, Kapitein LC, Lohmüller T, Ahlfeld J, Akhmanova A, Steinmetz MO, Thorn-Seshold O. A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chem Biol 2021; 28:228-241.e6. [PMID: 33275880 DOI: 10.1016/j.chembiol.2020.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable "SBT" scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal "SBTub" photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Rebekkah Bingham
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Evangelia Ntouliou
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Klara I Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Julia Ahlfeld
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland; Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany.
| |
Collapse
|
23
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
24
|
Adikes RC, Kohrman AQ, Martinez MAQ, Palmisano NJ, Smith JJ, Medwig-Kinney TN, Min M, Sallee MD, Ahmed OB, Kim N, Liu S, Morabito RD, Weeks N, Zhao Q, Zhang W, Feldman JL, Barkoulas M, Pani AM, Spencer SL, Martin BL, Matus DQ. Visualizing the metazoan proliferation-quiescence decision in vivo. eLife 2020; 9:e63265. [PMID: 33350383 PMCID: PMC7880687 DOI: 10.7554/elife.63265] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.
Collapse
Affiliation(s)
- Rebecca C Adikes
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Maria D Sallee
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Ononnah B Ahmed
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nuri Kim
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Robert D Morabito
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Nicholas Weeks
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Qinyun Zhao
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | | | | | - Ariel M Pani
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
25
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
26
|
Wang J, Li T, Wang JL, Xu Z, Meng W, Wu QF. Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Rep 2020; 33:108495. [DOI: 10.1016/j.celrep.2020.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
|
27
|
Mathiah N, Despin-Guitard E, Stower M, Nahaboo W, Eski ES, Singh SP, Srinivas S, Migeotte I. Asymmetry in the frequency and position of mitosis in the mouse embryo epiblast at gastrulation. EMBO Rep 2020; 21:e50944. [PMID: 33016470 DOI: 10.15252/embr.202050944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages. Mouse embryo epiblast cells were labelled ubiquitously or in a mosaic fashion. Cell shape, packing, organization and division were recorded through live imaging during primitive streak formation. Posterior epiblast displays a higher frequency of rosettes, some of which associate with a central cell undergoing mitosis. Cells at the primitive streak, in particular delaminating cells, undergo mitosis more frequently than other epiblast cells. In pseudostratified epithelia, mitosis takes place at the apical side of the epithelium. However, mitosis is not restricted to the apical side of the epiblast, particularly on its posterior side. Non-apical mitosis occurs specifically in the streak even when ectopically located. Posterior non-apical mitosis results in one or two daughter cells leaving the epiblast layer. Cell rearrangement associated with mitotic cell rounding in posterior epiblast, in particular when non-apical, might thus facilitate cell ingression and transition to a mesenchymal phenotype.
Collapse
Affiliation(s)
| | | | - Matthew Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Wallis Nahaboo
- Université Libre de Bruxelles, IRIBHM, Brussels, Belgium
| | - Elif Sema Eski
- Université Libre de Bruxelles, IRIBHM, Brussels, Belgium
| | | | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
28
|
Nerli E, Rocha-Martins M, Norden C. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 2020; 9:e60462. [PMID: 33141024 PMCID: PMC7679139 DOI: 10.7554/elife.60462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.
Collapse
Affiliation(s)
- Elisa Nerli
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Instituto Gulbenkian de CiênciaOeirasPortugal
| |
Collapse
|
29
|
Abstract
New work reveals that interkinetic nuclear migration - the movement of nuclei towards the apical surface of dividing epithelial cells - is mechanically regulated, relying on a balance of forces between the mitotic cell and the surrounding tissue.
Collapse
Affiliation(s)
- Christian M Cammarota
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Dan Bergstralh
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
30
|
Kuzmicz-Kowalska K, Kicheva A. Regulation of size and scale in vertebrate spinal cord development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e383. [PMID: 32391980 PMCID: PMC8244110 DOI: 10.1002/wdev.383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern. This article is categorized under:Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Signaling Pathways > Global Signaling Mechanisms Nervous System Development > Vertebrates: General Principles
Collapse
|
31
|
Aguilar‐Aragon M, Bonello TT, Bell GP, Fletcher GC, Thompson BJ. Adherens junction remodelling during mitotic rounding of pseudostratified epithelial cells. EMBO Rep 2020; 21:e49700. [PMID: 32030856 PMCID: PMC7132200 DOI: 10.15252/embr.201949700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.
Collapse
Affiliation(s)
| | - Teresa T Bonello
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| | - Graham P Bell
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | | | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
32
|
The extracellular and intracellular regions of Crb2a play distinct roles in guiding the formation of the apical zonula adherens. Biomed Pharmacother 2020; 125:109942. [PMID: 32044715 DOI: 10.1016/j.biopha.2020.109942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
The transmembrane protein Crumbs (Crb), a key regulator of apical polarity, has a known involvement in establishment of the apical zonula adherens in epithelia, although the precise mechanism remains elusive. The zonula adherens are required to maintain the integrity and orderly arrangement of epithelia. Loss of the zonula adherens leads to morphogenetic defects in the tissues derived from epithelium. In this study, we revealed that the intracellular tail of Crb2a promoted the apical distribution of adherens junctions (AJs) in zebrafish retinal and lens epithelia, but caused assembly into unstable punctum adherens-like adhesion plaques. The extracellular region of Crb2a guided the transformation of AJs from the punctum adherens into stable zonula adherens. Accordingly, a truncated form of Crb2a lacking the extracellular region (Crb2aΔEX) could only partially rescue the retinal patterning defects in crb2a null mutant zebrafish (crb2am289). By contrast, constitutive over-expression of Crb2aΔEX disrupted the integrity of the outer limiting membrane in photoreceptors, which is derived from the zonula adherens of the retinal neuroepithelium. This study demonstrated that both the extracellular region and the intracellular tail of Crb2a are required to guide the formation of the apical zonula adherens.
Collapse
|
33
|
Brenneis G, Beltz BS. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol 2019; 528:1459-1485. [PMID: 31743442 DOI: 10.1002/cne.24820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 02/04/2023]
Abstract
Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit-amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.
Collapse
Affiliation(s)
- Georg Brenneis
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA.,Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Greifswald, Germany
| | - Barbara S Beltz
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA
| |
Collapse
|
34
|
Petrova ES, Kolos EA. Changes in the Distribution of Cell Contacts and Mitotic Cycle Disturbances in Cells of the Allograft of Rat Embryonic Neocortex. Bull Exp Biol Med 2019; 167:556-560. [PMID: 31502126 DOI: 10.1007/s10517-019-04571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/25/2022]
Abstract
Morphological changes in the allograft of rat anterior cerebral vesicle at the early stages after transplantation into the peripheral nerve of an adult rat were studied by immunohistochemical methods. Immunohistochemical reaction to bromodeoxyuridine showed that the delay of mitotic division in neural stem/progenitor cells in the grafts occurred during S/G2 stage. In transplants of rat embryonic neocortex (E13), changes in the cell cycle of neural stem/progenitor cells in 3 h after transplantation into the nerve correlated with abnormal distribution of adherens junctions and interkinetic nuclear migration.
Collapse
Affiliation(s)
- E S Petrova
- Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - E A Kolos
- Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
35
|
Bowes C, Redd M, Yousfi M, Tauzin M, Murayama E, Herbomel P. Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils. J Cell Biol 2019; 218:3258-3271. [PMID: 31471458 PMCID: PMC6781450 DOI: 10.1083/jcb.201901024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bowes et al. show that in zebrafish embryos deficient in the cofilin cofactor AIP1/Wdr1, neutrophils display F-actin as cytoplasmic aggregates, spatially uncoupled from active myosin, then undergo a progressive unwinding of their nucleus followed by eruptive cell death. This adverse phenotype is fully rescued by depletion of another cofilin cofactor, coronin 1A. Actin dynamics is central for cells, and especially for the fast-moving leukocytes. The severing of actin filaments is mainly achieved by cofilin, assisted by Aip1/Wdr1 and coronins. We found that in Wdr1-deficient zebrafish embryos, neutrophils display F-actin cytoplasmic aggregates and a complete spatial uncoupling of phospho-myosin from F-actin. They then undergo an unprecedented gradual disorganization of their nucleus followed by eruptive cell death. Their cofilin is mostly unphosphorylated and associated with F-actin, thus likely outcompeting myosin for F-actin binding. Myosin inhibition reproduces in WT embryos the nuclear instability and eruptive death of neutrophils seen in Wdr1-deficient embryos. Strikingly, depletion of the main coronin of leukocytes, coronin 1A, fully restores the cortical location of F-actin, nuclear integrity, viability, and mobility of Wdr1-deficient neutrophils in vivo. Our study points to an essential role of actomyosin contractility in maintaining the integrity of the nucleus of neutrophils and a new twist in the interplay of cofilin, Wdr1, and coronin in regulating F-actin dynamics.
Collapse
Affiliation(s)
- Charnese Bowes
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Michael Redd
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT
| | - Malika Yousfi
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Muriel Tauzin
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Emi Murayama
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France .,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| |
Collapse
|
36
|
Yanakieva I, Erzberger A, Matejčić M, Modes CD, Norden C. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J Cell Biol 2019; 218:3272-3289. [PMID: 31420451 PMCID: PMC6781452 DOI: 10.1083/jcb.201901077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
Using quantitative live imaging in the developing zebrafish embryo, Yanakieva et al. show that distinct actin-dependent mechanisms position nuclei in neuroepithelia of different morphology. In curved neuroepithelia, a novel formin-dependent mechanism is discovered for which the authors propose a proof-of-principle theoretical model. Correct nuclear position is crucial for cellular function and tissue development. Depending on cell context, however, the cytoskeletal elements responsible for nuclear positioning vary. While these cytoskeletal mechanisms have been intensely studied in single cells, how nuclear positioning is linked to tissue morphology is less clear. Here, we compare apical nuclear positioning in zebrafish neuroepithelia. We find that kinetics and actin-dependent mechanisms of nuclear positioning vary in tissues of different morphology. In straight neuroepithelia, nuclear positioning is controlled by Rho-ROCK–dependent myosin contractility. In contrast, in basally constricted neuroepithelia, a novel formin-dependent pushing mechanism is found for which we propose a proof-of-principle force generation theory. Overall, our data suggest that correct nuclear positioning is ensured by the adaptability of the cytoskeleton to cell and tissue shape. This in turn leads to robust epithelial maturation across geometries. The conclusion that different nuclear positioning mechanisms are favored in tissues of different morphology highlights the importance of developmental context for the execution of intracellular processes.
Collapse
Affiliation(s)
- Iskra Yanakieva
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anna Erzberger
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marija Matejčić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Center for Systems Biology, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
37
|
You MS, Wang WP, Wang JY, Jiang YJ, Chi YH. Sun1 Mediates Interkinetic Nuclear Migration and Notch Signaling in the Neurogenesis of Zebrafish. Stem Cells Dev 2019; 28:1116-1127. [PMID: 31140357 DOI: 10.1089/scd.2019.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interkinetic nuclear migration (INM) is a process by which nuclei oscillate between the basal and apical surfaces of epithelial cells in coordination with the cell cycle. The cytoskeletal machinery including microtubules and actin has been reported to drive apical INM; however, the role of nuclear proteins in this process has yet to be fully elucidated. Here, we investigated the function of a SUN-domain protein, Sun1, in zebrafish. We found that zebrafish sun1 is highly expressed in the ventricular zone of the brain. Knocking down sun1 with antisense morpholino oligonucleotides reduced the abundance of nestin- and gfap-expressing neural stem cells and progenitor cells. The live-cell imaging results showed that sun1 morphant cells migrated toward the basal side during the S phase but failed to migrate apically during the G2 phase. On the contrary, the passive stochastic movement during the G2 phase was unaffected. Furthermore, down regulation of sun1 was shown to reduce the expression of genes associated with the Notch pathway, whereas the expression of genes in the Wnt pathway was less perturbed. Findings from this research suggest that the Sun1-mediated nucleo-cytoskeletal interaction contributes to apical nuclear migration, and may thus affect exposure to Notch signal, thereby altering the composition of the progenitor pool in the embryonic neurogenesis of zebrafish.
Collapse
Affiliation(s)
- May-Su You
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ping Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Ya Wang
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yun-Jin Jiang
- 1Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ya-Hui Chi
- 2Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.,3Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Fousse J, Gautier E, Patti D, Dehay C. Developmental changes in interkinetic nuclear migration dynamics with respect to cell‐cycle progression in the mouse cerebral cortex ventricular zone. J Comp Neurol 2019; 527:1545-1557. [DOI: 10.1002/cne.24641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Julie Fousse
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Elodie Gautier
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Dorothée Patti
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1Inserm, Stem Cell and Brain Research Institute U1208 Bron France
| |
Collapse
|
39
|
Choosing the right microscope to image mitosis in zebrafish embryos: A practical guide. Methods Cell Biol 2018. [PMID: 29957200 DOI: 10.1016/bs.mcb.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue growth and organismal development require orchestrated cell proliferation. To understand how cell division guides development, it is important to explore mitosis at the tissue-wide, cellular, and subcellular scale. At the tissue level this includes determining a tissue's mitotic index, at the cellular level the tracing of cell lineages, and at the subcellular level the characterization of intracellular components. These different tasks can be addressed by different imaging approaches (e.g., laser-scanning confocal, spinning disk confocal, and light-sheet fluorescence microscopy). Here, we summarize three protocols for exploring different facets of mitosis in developing zebrafish embryos. Zebrafish embryos are transparent and their rapid external development greatly facilitates the study of cellular processes and developmental dynamics using microscopy. A critical step in all imaging studies of mitosis in development is to choose the most suitable microscope for each scientific question. This choice is important in order to ensure a balance between the required temporal and spatial resolution and minimal phototoxicity that could otherwise perturb the process of interest. The use of different microscopy techniques, best suited for the purpose of each experiment, thus permits to generate a comprehensive and unbiased view on how mitosis influences development.
Collapse
|
40
|
Saade M, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Martí E. A centrosomal view of CNS growth. Development 2018; 145:145/21/dev170613. [DOI: 10.1242/dev.170613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Jose Blanco-Ameijeiras
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
41
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018. [PMID: 30219109 DOI: 10.1186/s13064-018-0120-y.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. RESULTS Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. CONCLUSIONS We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018; 13:23. [PMID: 30219109 PMCID: PMC6139133 DOI: 10.1186/s13064-018-0120-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Background Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. Results Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. Conclusions We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation. Electronic supplementary material The online version of this article (10.1186/s13064-018-0120-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biol 2018. [PMID: 30096143 DOI: 10.1371/journal.pbio.2006018.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
Collapse
|
44
|
Matejčić M, Salbreux G, Norden C. A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biol 2018; 16:e2006018. [PMID: 30096143 PMCID: PMC6117063 DOI: 10.1371/journal.pbio.2006018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/30/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
Collapse
Affiliation(s)
- Marija Matejčić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
45
|
Hiscock TW, Miesfeld JB, Mosaliganti KR, Link BA, Megason SG. Feedback between tissue packing and neurogenesis in the zebrafish neural tube. Development 2018; 145:dev.157040. [PMID: 29678815 DOI: 10.1242/dev.157040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Balancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube. Specifically, progenitors that are displaced away from the apical surface due to crowding, tend to differentiate in a Notch-dependent manner. Using simulations we show that interplay between progenitor density, cell shape and changes in differentiation rate could naturally result in negative-feedback control on progenitor cell number. Given these results, we suggest a model whereby differentiation rate is regulated by density dependent effects on cell geometry to: (1) correct variability in cell number; and (2) balance the rates of proliferation and differentiation over development to 'fill' the available space.
Collapse
Affiliation(s)
- Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, Kohrman AQ, Medwig TN, Dambournet D, Forster R, Cunniff B, Ruan Y, Yashiro H, Scholpp S, Meyerowitz EM, Hockemeyer D, Drubin DG, Martin BL, Matus DQ, Koyama M, Megason SG, Kirchhausen T, Betzig E. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 2018; 360:eaaq1392. [PMID: 29674564 PMCID: PMC6040645 DOI: 10.1126/science.aaq1392] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/19/2018] [Indexed: 01/10/2023]
Abstract
True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.
Collapse
Affiliation(s)
- Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Srigokul Upadhyayula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ved Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kai Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ian A Swinburne
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kishore R Mosaliganti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Zach M Collins
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Taylor N Medwig
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Daphne Dambournet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan Forster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian Cunniff
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yuan Ruan
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hanako Yashiro
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steffen Scholpp
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Elliot M Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
47
|
Abstract
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
48
|
Merfeld E, Ben‐Avi L, Kennon M, Cerveny KL. Potential mechanisms of Zika-linked microcephaly. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:e273. [PMID: 28383800 PMCID: PMC5516183 DOI: 10.1002/wdev.273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023]
Abstract
A recent outbreak of Zika virus (ZIKV) in Brazil is associated with microcephaly in infants born of infected mothers. As this pandemic spreads, rapid scientific investigation is shedding new light on how prenatal infection with ZIKV causes microcephaly. In this analysis we provide an overview of both microcephaly and ZIKV, explore the connection between prenatal ZIKV infection and microcephaly, and highlight recent insights into how prenatal ZIKV infection depletes the pool of neural progenitors in the developing brain. WIREs Dev Biol 2017, 6:e273. doi: 10.1002/wdev.273 For further resources related to this article, please visit the WIREs website.
Collapse
|
49
|
Icha J, Kunath C, Rocha-Martins M, Norden C. Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. J Cell Biol 2017; 215:259-275. [PMID: 27810916 PMCID: PMC5084647 DOI: 10.1083/jcb.201604095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Icha et al. show that retinal ganglion cells (RGCs) can move by two different modes across the embryonic zebrafish retina and that correct RGC translocation is crucial for neuronal lamination and retinal development. The arrangement of neurons into distinct layers is critical for neuronal connectivity and function. During development, most neurons move from their birthplace to the appropriate layer, where they polarize. However, kinetics and modes of many neuronal translocation events still await exploration. In this study, we investigate retinal ganglion cell (RGC) translocation across the embryonic zebrafish retina. After completing their translocation, RGCs establish the most basal retinal layer where they form the optic nerve. Using in toto light sheet microscopy, we show that somal translocation of RGCs is a fast and directed event. It depends on basal process attachment and stabilized microtubules. Interestingly, interference with somal translocation induces a switch to multipolar migration. This multipolar mode is less efficient but still leads to successful RGC layer formation. When both modes are inhibited though, RGCs fail to translocate and induce lamination defects. This indicates that correct RGC translocation is crucial for subsequent retinal lamination.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christiane Kunath
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Mauricio Rocha-Martins
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
50
|
Norden C. Pseudostratified epithelia - cell biology, diversity and roles in organ formation at a glance. J Cell Sci 2017; 130:1859-1863. [PMID: 28455413 DOI: 10.1242/jcs.192997] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudostratified epithelia (PSE) are widespread and diverse tissue arrangements, and many PSE are organ precursors in a variety of organisms. While cells in PSE, like other epithelial cells, feature apico-basal polarity, they generally are more elongated and their nuclei are more densely packed within the tissue. In addition, nuclei in PSE undergo interkinetic nuclear migration (IKNM, also referred to as INM), whereby all mitotic events occur at the apical surface of the elongated epithelium. Previous reviews have focused on the links between IKNM and the cell cycle, as well as the relationship between IKNM and neurogenesis, which will not be elaborated on here. Instead, in this Cell Science at a Glance article and the accompanying poster, I will discuss the cell biology of PSEs, highlighting how differences in PSE architecture could influence cellular behaviour, especially IKNM. Furthermore, I will summarize what we know about the links between apical mitosis in PSE and tissue integrity and maturation.
Collapse
Affiliation(s)
- Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|