1
|
Grata A, Levayer R. Epithelial cell extrusion at a glance. J Cell Sci 2025; 138:jcs263786. [PMID: 40270445 DOI: 10.1242/jcs.263786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The robustness and plasticity of epithelial tissues rely on the capacity of such tissues to eliminate cells without affecting their sealing. This is achieved by epithelial cell extrusion - a well-orchestrated series of remodelling steps involving the eliminated cell and its neighbours - which ensures the constant maintenance of mechanical and chemical barrier properties while allowing cell expulsion. In this Cell Science at a Glance and the accompanying poster, we describe the remodelling steps that take place within dying or extruding cells, as well as neighbouring cells, outlining the commonalities and variations between tissues and organisms. These steps include reorganization of the cytoskeleton and remodelling of cell-cell junctions that alters their contribution to mechanical coupling and mechanotransduction. We also discuss larger-scale coordination between cells and the contribution of cell extrusion to tissue morphogenesis, epithelial surveillance mechanisms, and pathologies such as cancer and chronic inflammation. Altogether, we outline the complexity and plasticity of this minimalist morphogenetic process.
Collapse
Affiliation(s)
- Aline Grata
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
2
|
Montemurro M, Monier B, Suzanne M. The mechanical state of pre-tumoral epithelia controls subsequent Drosophila tumor aggressiveness. Dev Cell 2025; 60:1036-1052.e7. [PMID: 39765232 DOI: 10.1016/j.devcel.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 04/10/2025]
Abstract
Tumors evolve through the acquisition of increasingly aggressive traits associated with dysplasia. This progression is accompanied by alterations in tumor mechanical properties, especially through extracellular matrix remodeling. However, the contribution of pre-tumoral tissue mechanics to tumor aggressiveness remains poorly known in vivo. Here, we show that adherens junction tension in pre-tumoral tissues dictates subsequent tumor evolution in Drosophila. Increased cell contractility, observed in aggressive tumors before any sign of tissue overgrowth, proved sufficient to trigger dysplasia in normally hyperplastic tumors. In addition, high contractility precedes any changes in cell polarity and contributes to tumor evolution through cell death induction, which favors cell-cell junction weakening. Overall, our results highlight the need to re-evaluate the roles of tumoral cell death and identify pre-tumoral cell mechanics as an unsuspected early marker and key trigger of tumor aggressiveness.
Collapse
Affiliation(s)
- Marianne Montemurro
- Molecular Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Bruno Monier
- Molecular Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Magali Suzanne
- Molecular Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| |
Collapse
|
3
|
Arnould S, Benassayag C, Merle T, Monier B, Montemurro M, Suzanne M. Epithelial apoptosis: A back-and-forth mechanical interplay between the dying cell and its surroundings. Semin Cell Dev Biol 2025; 168:1-12. [PMID: 39986249 DOI: 10.1016/j.semcdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Apoptosis is an essential cellular process corresponding to a programmed cell suicide. It has long been considered as a cell-autonomous process, supposed to have no particular impact on the surrounding tissue. However, it has become clear in the last 15 years that epithelial apoptotic cells interact mechanically and biochemically with their environment. Here, we explore recent literature on apoptotic mechanics from an individual dying cell to the back-and-forth interplay with the neighboring epithelial tissue. Finally, we discuss how caspases, key regulators of apoptosis, appear to have a dual function as a cytoskeleton regulator favoring either cytoskeleton degradation or dynamics independently of their apoptotic or non-apoptotic role.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
4
|
Karling T, Weavers H. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. EMBO Rep 2025; 26:1238-1268. [PMID: 39915297 PMCID: PMC11894099 DOI: 10.1038/s44319-025-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Cells navigating in complex 3D microenvironments frequently encounter narrow spaces that physically challenge migration. While in vitro studies identified nuclear stiffness as a key rate-limiting factor governing the movement of many cell types through artificial constraints, how cells migrating in vivo respond dynamically to confinement imposed by local tissue architecture, and whether these encounters trigger molecular adaptations, is unclear. Here, we establish an innovative in vivo model for mechanistic analysis of nuclear plasticity as Drosophila immune cells transition into increasingly confined microenvironments. Integrating live in vivo imaging with molecular genetic analyses, we demonstrate how rapid molecular adaptation upon environmental confinement (including fine-tuning of the nuclear lamina) primes leukocytes for enhanced nuclear deformation while curbing damage (including rupture and micronucleation), ultimately accelerating movement through complex tissues. We find nuclear dynamics in vivo are further impacted by large organelles (phagosomes) and the plasticity of neighbouring cells, which themselves deform during leukocyte passage. The biomechanics of cell migration in vivo are thus shaped both by factors intrinsic to individual immune cells and the malleability of the surrounding microenvironment.
Collapse
Affiliation(s)
- Tua Karling
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
5
|
Roby N, Rauzi M. Nuclear position controls the activity of cortical actomyosin networks powering simultaneous morphogenetic events. Nat Commun 2025; 16:1587. [PMID: 39939308 PMCID: PMC11822195 DOI: 10.1038/s41467-025-56880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue morphogenesis shapes epithelial sheets via cell remodelling to form functional living organisms. While the mechanisms underlying single morphogenetic events are well studied, how one tissue undergoes multiple concomitant shape changes remains largely unexplored. To tackle this, we study the process of simultaneous mesoderm folding and extension in the gastrulating Drosophila embryo. This composite transformation relies on a sharply timed reorganization of the cortical actomyosin network into two distinct subcellular tiers to drive concomitant cell apical constriction and lateral intercalation for tissue folding and convergence-extension, respectively. Here we elucidate the spatio-temporal control of the two-tiered actomyosin network. We show that, within the geometric constraints imposed by the columnar shape of mesoderm epithelial cells, the nucleus acts as a barrier shielding the lateral cortex from interactions with the microtubule network, thereby regulating the distribution of the key signalling molecule RhoGEF2. The relocation of the nucleus, driven by the contraction of the first actomyosin tier and the resulting cytoplasmic flow, unshields the lateral cortex for RhoGEF2 delivery to direct the stereotypic formation of the second tier. Thus, the nucleus and its position function as a spatio-temporal cytoskeleton compartmentalizer establishing a modular scaffold powering multiple simultaneous cell remodeling for composite morphogenesis.
Collapse
Affiliation(s)
- Nicolas Roby
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
6
|
Eldridge-Thomas BL, Bohere JG, Roubinet C, Barthelemy A, Samuels TJ, Teixeira FK, Kolahgar G. The transmembrane protein Syndecan is required for stem cell survival and maintenance of their nuclear properties. PLoS Genet 2025; 21:e1011586. [PMID: 39913561 PMCID: PMC11819509 DOI: 10.1371/journal.pgen.1011586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/12/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue maintenance is underpinned by resident stem cells whose activity is modulated by microenvironmental cues. Using Drosophila as a simple model to identify regulators of stem cell behaviour and survival in vivo, we have identified novel connections between the conserved transmembrane proteoglycan Syndecan, nuclear properties and stem cell function. In the Drosophila midgut, Syndecan depletion in intestinal stem cells results in their loss from the tissue, impairing tissue renewal. At the cellular level, Syndecan depletion alters cell and nuclear shape, and causes nuclear lamina invaginations and DNA damage. In a second tissue, the developing Drosophila brain, live imaging revealed that Syndecan depletion in neural stem cells results in nuclear envelope remodelling defects which arise upon cell division. Our findings reveal a new role for Syndecan in the maintenance of nuclear properties in diverse stem cell types.
Collapse
Affiliation(s)
- Buffy L. Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jerome G. Bohere
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chantal Roubinet
- Université de Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Alexandre Barthelemy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin J. Samuels
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Karam Teixeira
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Sadeghian F, Grooms NWF, Chung SH, Cram EJ. Tensions on the actin cytoskeleton and apical cell junctions in the C. elegans spermatheca are influenced by spermathecal anatomy, ovulation state and activation of myosin. Front Cell Dev Biol 2024; 12:1490803. [PMID: 39474353 PMCID: PMC11518831 DOI: 10.3389/fcell.2024.1490803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024] Open
Abstract
Introduction Cells generate mechanical forces mainly through myosin motor activity on the actin cytoskeleton. In C. elegans, actomyosin stress fibers drive contractility of the smooth muscle-like cells of the spermatheca, a distensible, tube-shaped tissue in the hermaphrodite reproductive system and the site of oocyte fertilization. Stretching of the spermathecal cells by oocyte entry triggers activation of the small GTPase Rho. In this study, we asked how forces are distributed in vivo, and explored how spermathecal tissue responds to alterations in myosin activity. Methods In animals expressing GFP labeled actin or apical membrane complexes, we severed these structures using femtosecond laser ablation and quantified retractions. RNA interference was used to deplete key contractility regulators. Results We show that the basal actomyosin fibers are under tension in the occupied spermatheca. Reducing actomyosin contractility by depletion of the phospholipase C-ε/PLC-1 or non-muscle myosin II/NMY-1, leads to distended spermathecae occupied by one or more embryos, but does not alter tension on the basal actomyosin fibers. However, activating myosin through depletion of the Rho GAP SPV-1 increases tension on the actomyosin fibers, consistent with earlier studies showing Rho drives spermathecal contractility. On the inner surface of the spermathecal tube, tension on the apical junctions is decreased by depletion of PLC-1 and NMY-1. Surprisingly, when basal contractility is increased through SPV-1 depletion, the tension on apical junctions also decreases, with the most significant effect on the junctions aligned in perpendicular to the axis of the spermatheca. Discussion Our results suggest that much of the tension on the basal actin fibers in the occupied spermatheca is due to the presence of the embryo. Additionally, increased tension on the outer basal surface may compress the apical side, leading to lower tensions apically. The three dimensional shape of the spermatheca plays a role in force distribution and contractility during ovulation.
Collapse
Affiliation(s)
- Fereshteh Sadeghian
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Noa W. F. Grooms
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
8
|
Sadeghian F, Grooms NWF, Chung SH, Cram EJ. Tensions on the actin cytoskeleton and apical cell junctions in the C. elegans spermatheca are influenced by spermathecal anatomy, ovulation state and activation of myosin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611016. [PMID: 39282271 PMCID: PMC11398403 DOI: 10.1101/2024.09.03.611016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cells generate mechanical forces mainly through myosin motor activity on the actin cytoskeleton. In C. elegans, actomyosin stress fibers drive contractility of the smooth muscle-like cells of the spermatheca, a distensible, tube-shaped tissue in the hermaphrodite reproductive system and the site of oocyte fertilization. Stretching of the spermathecal cells by oocyte entry triggers activation of the small GTPase Rho. In this study, we asked how forces are distributed in vivo using the spermatheca, and explored how this tissue responds to alterations in myosin activity. Using laser ablation, we show that the basal actomyosin fibers are under tension in the occupied spermatheca. Reducing actomyosin contractility by depletion of the phospholipase C-ε/PLC-1 or non-muscle myosin II/NMY-1, leads to distended spermathecae occupied by one or more embryos, but does not alter tension on the basal actomyosin fibers. This suggests that much of the tension on the basal actin fibers in the occupied spermatheca is due to the presence of the embryo. However, activating myosin through depletion of the Rho GAP SPV-1 increases tension on the actomyosin fibers, consistent with earlier studies showing Rho drives spermathecal contractility. On the inner surface of the spermathecal tube, tension on the apical junctions is decreased by depletion of PLC-1 and NMY-1. Surprisingly, when basal contractility is increased through SPV-1 depletion, the tension on apical junctions also decreases, with the most significant effect on the junctions aligned in perpendicular to the axis of the spermatheca. This suggests tension on the outer basal surface may compress the apical side, and suggests the three-dimensional shape of the spermatheca plays a role in force distribution and contractility during ovulation.
Collapse
Affiliation(s)
| | - Noa W F Grooms
- Northeastern University, Department of Bioengineering, Boston, MA 02115
| | - Samuel H Chung
- Northeastern University, Department of Bioengineering, Boston, MA 02115
| | - Erin J Cram
- Northeastern University, Department of Biology, Boston, MA 02115
| |
Collapse
|
9
|
Gillard G, Röper K. β-H-Spectrin is a key component of an apical-medial hub of proteins during cell wedging in tube morphogenesis. J Cell Sci 2024; 137:jcs261946. [PMID: 38988298 PMCID: PMC11361641 DOI: 10.1242/jcs.261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
10
|
Yin X, Liang D, He SQ, Zhang LY, Xu GK. Local Mechanical Modulation-Driven Evagination in Invaginated Epithelia. NANO LETTERS 2024; 24:7069-7076. [PMID: 38808684 DOI: 10.1021/acs.nanolett.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Local cells can actively create reverse bending (evagination) in invaginated epithelia, which plays a crucial role in the formation of elaborate organisms. However, the precise physical mechanism driving the evagination remains elusive. Here, we present a three-dimensional vertex model, incorporating the intrinsic cell polarity, to explore the complex morphogenesis induced by local mechanical modulations. We find that invaginated tissues can spontaneously generate local reverse bending due to the shift of the apicobasal polarity. Their exact shapes can be analytically determined by the local apicobasal differential tension and the internal stress. Our continuum theory exhibits three regions in a phase diagram controlled by these two parameters, showing curvature transitions from ordered to disordered states. Additionally, we delve into epithelial curvature transition induced by the nucleus repositioning, revealing its active contribution to the apicobasal force generation. The uncovered mechanical principles could potentially guide more studies on epithelial folding in diverse systems.
Collapse
Affiliation(s)
- Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dong Liang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang-Quan He
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Blanchard GB, Scarpa E, Muresan L, Sanson B. Mechanical stress combines with planar polarised patterning during metaphase to orient embryonic epithelial cell divisions. Development 2024; 151:dev202862. [PMID: 38639390 PMCID: PMC11165716 DOI: 10.1242/dev.202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
12
|
Cachoux VML, Balakireva M, Gracia M, Bosveld F, López-Gay JM, Maugarny A, Gaugué I, di Pietro F, Rigaud SU, Noiret L, Guirao B, Bellaïche Y. Epithelial apoptotic pattern emerges from global and local regulation by cell apical area. Curr Biol 2023; 33:4807-4826.e6. [PMID: 37827152 PMCID: PMC10681125 DOI: 10.1016/j.cub.2023.09.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Geometry is a fundamental attribute of biological systems, and it underlies cell and tissue dynamics. Cell geometry controls cell-cycle progression and mitosis and thus modulates tissue development and homeostasis. In sharp contrast and despite the extensive characterization of the genetic mechanisms of caspase activation, we know little about whether and how cell geometry controls apoptosis commitment in developing tissues. Here, we combined multiscale time-lapse microscopy of developing Drosophila epithelium, quantitative characterization of cell behaviors, and genetic and mechanical perturbations to determine how apoptosis is controlled during epithelial tissue development. We found that early in cell lives and well before extrusion, apoptosis commitment is linked to two distinct geometric features: a small apical area compared with other cells within the tissue and a small relative apical area with respect to the immediate neighboring cells. We showed that these global and local geometric characteristics are sufficient to recapitulate the tissue-scale apoptotic pattern. Furthermore, we established that the coupling between these two geometric features and apoptotic cells is dependent on the Hippo/YAP and Notch pathways. Overall, by exploring the links between cell geometry and apoptosis commitment, our work provides important insights into the spatial regulation of cell death in tissues and improves our understanding of the mechanisms that control cell number and tissue size.
Collapse
Affiliation(s)
- Victoire M L Cachoux
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Maria Balakireva
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mélanie Gracia
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús M López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Aude Maugarny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane U Rigaud
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Lorette Noiret
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Boris Guirao
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
13
|
Merle T, Theis S, Kamgoué A, Martin E, Sarron F, Gay G, Farge E, Suzanne M. DISSECT is a tool to segment and explore cell and tissue mechanics in highly deformed 3D epithelia. Dev Cell 2023; 58:2181-2193.e4. [PMID: 37586367 DOI: 10.1016/j.devcel.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Understanding morphogenesis strongly relies on the characterization of tissue topology and mechanical properties deduced from imaging data. The development of new imaging techniques offers the possibility to go beyond the analysis of mostly flat surfaces and image and analyze complex tissue organization in depth. An important bottleneck in this field is the need to analyze imaging datasets and extract quantifications not only of cell and tissue morphology but also of the cytoskeletal network's organization in an automatized way. Here, we describe a method, called DISSECT, for DisPerSE (Discrete Persistent Structure Extractor)-based Segmentation and Exploration of Cells and Tissues, that offers the opportunity to extract automatically, in strongly deformed epithelia, a precise characterization of the spatial organization of a given cytoskeletal network combined with morphological quantifications in highly remodeled three-dimensional (3D) epithelial tissues. We believe that this method, applied here to Drosophila tissues, will be of general interest in the expanding field of morphogenesis and tissue biomechanics.
Collapse
Affiliation(s)
- Tatiana Merle
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sophie Theis
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Kamgoué
- Image Processing Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Florian Sarron
- IRAP, Institut de Recherche en Astrophysique et Planétologie, CNRS, 14 avenue E. Belin, 31400, Toulouse, France; Université de Toulouse, CNES, UPS-OMP, 14 avenue E. Belin, 31400 Toulouse, France
| | - Guillaume Gay
- Aix Marseille Université, Mutli-Engineering Platform, CENTURI, Marseille, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic Development group, Institut Curie, PSL Research University, CNRS, UMR168, Inserm, Marie Curie UnivParis 06, Institut Curie, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
14
|
Barbaste A, Schott S, Benassayag C, Suzanne M. Dissecting morphogenetic apoptosis through a genetic screen in Drosophila. Life Sci Alliance 2023; 6:e202301967. [PMID: 37495395 PMCID: PMC10372408 DOI: 10.26508/lsa.202301967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Apoptosis is an essential cellular process both in normal development and pathological contexts. Screens performed to date have focused on the cell autonomous aspect of the process, deciphering the apoptotic cascade leading to cell destruction through the activation of caspases. However, the nonautonomous aspect of the apoptotic pathway, including signals regulating the apoptotic pattern or those sent by the apoptotic cell to its surroundings, is still poorly understood. Here, we describe an unbiased RNAi-based genetic screen whose goal is to identify elements of the "morphogenetic apoptosis pathway" in an integrated model system, the Drosophila leg. We screened about 1,400 candidates, using adult joint morphology, morphogenetic fold formation, and apoptotic pattern as readouts for the identification of potential apoptosis-related genes. We identified 41 genes potentially involved in specific aspects of morphogenetic apoptosis: (1) regulation of the apoptotic process; (2) formation, extrusion, and elimination of apoptotic bodies; and (3) contribution to morphogenesis downstream of apoptosis.
Collapse
Affiliation(s)
- Audrey Barbaste
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sonia Schott
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Corinne Benassayag
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Magali Suzanne
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
16
|
Tang YC, Ponsin K, Graham-Paquin AL, Luthold C, Homsy K, Schindler M, Tran V, Côté JF, Bordeleau F, Khadra A, Bouchard M. Coordination of non-professional efferocytosis and actomyosin contractility during epithelial tissue morphogenesis. Cell Rep 2023; 42:112202. [PMID: 36871220 DOI: 10.1016/j.celrep.2023.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
In developing embryos, specific cell populations are often removed to remodel tissue architecture for organogenesis. During urinary tract development, an epithelial duct called the common nephric duct (CND) gets shortened and eventually eliminated to remodel the entry point of the ureter into the bladder. Here we show that non-professional efferocytosis (the process in which epithelial cells engulf apoptotic bodies) is the main mechanism that contributes to CND shortening. Combining biological metrics and computational modeling, we show that efferocytosis with actomyosin contractility are essential factors that drive the CND shortening without compromising the ureter-bladder structural connection. The disruption of either apoptosis, non-professional efferocytosis, or actomyosin results in contractile tension reduction and deficient CND shortening. Actomyosin activity helps to maintain tissue architecture while non-professional efferocytosis removes cellular volume. Together our results demonstrate that non-professional efferocytosis with actomyosin contractility are important morphogenetic factors controlling CND morphogenesis.
Collapse
Affiliation(s)
- You Chi Tang
- Rosalind and Morris Goodman Cancer Research Institute and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Khoren Ponsin
- Department of Physiology and Department of Mathematics, McGill University, Montreal, QC H3A 1Y6, Canada
| | - Adda-Lee Graham-Paquin
- Rosalind and Morris Goodman Cancer Research Institute and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Magdalena Schindler
- Rosalind and Morris Goodman Cancer Research Institute and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Viviane Tran
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - François Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Anmar Khadra
- Department of Physiology and Department of Mathematics, McGill University, Montreal, QC H3A 1Y6, Canada
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Research Institute and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
17
|
Chandran L, Backer W, Schleutker R, Kong D, Beati SAH, Luschnig S, Müller HAJ. Src42A is required for E-cadherin dynamics at cell junctions during Drosophila axis elongation. Development 2023; 150:286529. [PMID: 36628974 DOI: 10.1242/dev.201119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.
Collapse
Affiliation(s)
- Lenin Chandran
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - Deqing Kong
- Developmental Genetics, Fachbereich Biologie, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Seyed A H Beati
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, Cells in Motion Interfaculty Centre, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | - H-Arno J Müller
- Developmental Genetics, Institut für Biologie, Universität Kassel, 34132 Kassel, Germany
| |
Collapse
|
18
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
19
|
Martin E, Suzanne M. mBeRFP: a versatile fluorescent tool to enhance multichannel live imaging and its applications. Development 2022; 149:276390. [DOI: 10.1242/dev.200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cell and developmental biology increasingly require live imaging of protein dynamics in cells, tissues or living organisms. Thanks to the discovery and development of a panel of fluorescent proteins over the last decades, live imaging has become a powerful and commonly used approach. However, multicolor live imaging remains challenging. The generation of long Stokes shift red fluorescent proteins offers interesting new perspectives to bypass this limitation. Here, we provide a detailed characterization of mBeRFP for in vivo live imaging and its applications in Drosophila. Briefly, we show that a single illumination source is sufficient to stimulate mBeRFP and GFP simultaneously. We demonstrate that mBeRFP can be easily combined with classical green and red fluorescent proteins without any crosstalk. We also show that the low photobleaching of mBeRFP is suitable for live imaging, and that this protein can be used for quantitative applications, such as FRAP or laser ablation. Finally, we believe that this fluorescent protein, with the set of new possibilities it offers, constitutes an important tool for cell, developmental and mechano-biologists in their current research.
Collapse
Affiliation(s)
- Emmanuel Martin
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS Molecular Cellular and Developmental Biology (MCD) , , 31000 Toulouse , France
| | - Magali Suzanne
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS Molecular Cellular and Developmental Biology (MCD) , , 31000 Toulouse , France
| |
Collapse
|
20
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
21
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
22
|
Janota CS, Pinto A, Pezzarossa A, Machado P, Costa J, Campinho P, Franco CA, Gomes ER. Shielding of actin by the endoplasmic reticulum impacts nuclear positioning. Nat Commun 2022; 13:2763. [PMID: 35589708 PMCID: PMC9120458 DOI: 10.1038/s41467-022-30388-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear position is central to cell polarization, and its disruption is associated with various pathologies. The nucleus is moved away from the leading edge of migrating cells through its connection to moving dorsal actin cables, and the absence of connections to immobile ventral stress fibers. It is unclear how these asymmetric nucleo-cytoskeleton connections are established. Here, using an in vitro wound assay, we find that remodeling of endoplasmic reticulum (ER) impacts nuclear positioning through the formation of a barrier that shields immobile ventral stress fibers. The remodeling of ER and perinuclear ER accumulation is mediated by the ER shaping protein Climp-63. Furthermore, ectopic recruitment of the ER to stress fibers restores nuclear positioning in the absence of Climp-63. Our findings suggest that the ER mediates asymmetric nucleo-cytoskeleton connections to position the nucleus.
Collapse
Affiliation(s)
- Cátia Silva Janota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Pinto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Royal Brompton Hospital and Harefield NHS Foundation Trust, London, UK
| | - Anna Pezzarossa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Machado
- Electron Microscopy Core Facility (EMCF), European Molecular Biology Laboratory, Heidelberg, Germany.,Centre for Ultrastructural Imaging, King's College London, London, UK
| | - Judite Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Campinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal. .,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
23
|
Rallis J, Pavlopoulos A. Cellular basis of limb morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100887. [PMID: 35150918 DOI: 10.1016/j.cois.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
How the size and shape of developing tissues is encoded in the genome has been a longstanding riddle for biologists. Constituent cells integrate several genetic and mechanical signals to decide whether to divide, die, change shape or position. We review here how morphogenetic cell behaviors contribute to leg formation from imaginal disc epithelia in the insect Drosophila melanogaster, as well as to direct embryonic limb outgrowths in the non-insect pancrustacean Parhyale hawaiensis. Considering the deep conservation of developmental programs for limb patterning among arthropods and other bilaterians, moving forward, it will be exciting to see how these genetic similarities reflect at the cellular and tissue mechanics level.
Collapse
Affiliation(s)
- John Rallis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
24
|
Roellig D, Theis S, Proag A, Allio G, Bénazéraf B, Gros J, Suzanne M. Force-generating apoptotic cells orchestrate avian neural tube bending. Dev Cell 2022; 57:707-718.e6. [PMID: 35303434 PMCID: PMC8967407 DOI: 10.1016/j.devcel.2022.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Apoptosis plays an important role in morphogenesis, and the notion that apoptotic cells can impact their surroundings came to light recently. However, how this applies to vertebrate morphogenesis remains unknown. Here, we use the formation of the neural tube to determine how apoptosis contributes to morphogenesis in vertebrates. Neural tube closure defects have been reported when apoptosis is impaired in vertebrates, although the cellular mechanisms involved are unknown. Using avian embryos, we found that apoptotic cells generate an apico-basal force before being extruded from the neuro-epithelium. This force, which relies on a contractile actomyosin cable that extends along the apico-basal axis of the cell, drives nuclear fragmentation and influences the neighboring tissue. Together with the morphological defects observed when apoptosis is prevented, these data strongly suggest that the neuroepithelium keeps track of the mechanical impact of apoptotic cells and that the apoptotic forces, cumulatively, contribute actively to neural tube bending. Apoptotic cells are force-generating cells in the avian neural tube Apoptotic force drives the upward movement of the nucleus and nuclear fragmentation Apoptotic cells cumulatively impact the neighboring tissue Apoptotic force mechanical impact participates in progressive bending of the neural tube
Collapse
Affiliation(s)
- Daniela Roellig
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France
| | - Sophie Theis
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France; Morphogénie Logiciels, 32110 St Martin d'Armagnac, France
| | - Amsha Proag
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France
| | - Guillaume Allio
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France
| | - Bertrand Bénazéraf
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France
| | - Jérôme Gros
- Institut Pasteur, CNRS/UMR 3738, Paris, France
| | - Magali Suzanne
- Centre de Biologie Intégrative, CNRS/UMR 5088, Université Toulouse III, Toulouse, France.
| |
Collapse
|
25
|
Nestor-Bergmann A, Blanchard GB, Hervieux N, Fletcher AG, Étienne J, Sanson B. Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model. PLoS Comput Biol 2022; 18:e1009812. [PMID: 35089922 PMCID: PMC8887740 DOI: 10.1371/journal.pcbi.1009812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 01/06/2022] [Indexed: 02/02/2023] Open
Abstract
Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.
Collapse
Affiliation(s)
- Alexander Nestor-Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B. Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nathan Hervieux
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Jocelyn Étienne
- LIPHY, CNRS, Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Bénédicte Sanson
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
di Pietro F, Herszterg S, Huang A, Bosveld F, Alexandre C, Sancéré L, Pelletier S, Joudat A, Kapoor V, Vincent JP, Bellaïche Y. Rapid and robust optogenetic control of gene expression in Drosophila. Dev Cell 2021; 56:3393-3404.e7. [PMID: 34879263 PMCID: PMC8693864 DOI: 10.1016/j.devcel.2021.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Anqi Huang
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Lucas Sancéré
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Amina Joudat
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Varun Kapoor
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
27
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
29
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
30
|
Orchestration of Force Generation and Nuclear Collapse in Apoptotic Cells. Int J Mol Sci 2021; 22:ijms221910257. [PMID: 34638598 PMCID: PMC8508646 DOI: 10.3390/ijms221910257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Apoptosis, or programmed cell death, is a form of cell suicide that is extremely important for ridding the body of cells that are no longer required, to protect the body against hazardous cells, such as cancerous ones, and to promote tissue morphogenesis during animal development. Upon reception of a death stimulus, the doomed cell activates biochemical pathways that eventually converge on the activation of dedicated enzymes, caspases. Numerous pieces of information on the biochemical control of the process have been gathered, from the successive events of caspase activation to the identification of their targets, such as lamins, which constitute the nuclear skeleton. Yet, evidence from multiple systems now shows that apoptosis is also a mechanical process, which may even ultimately impinge on the morphogenesis of the surrounding tissues. This mechanical role relies on dramatic actomyosin cytoskeleton remodelling, and on its coupling with the nucleus before nucleus fragmentation. Here, we provide an overview of apoptosis before describing how apoptotic forces could combine with selective caspase-dependent proteolysis to orchestrate nucleus destruction.
Collapse
|
31
|
Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J. Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 2021; 277:121098. [PMID: 34478931 DOI: 10.1016/j.biomaterials.2021.121098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Pathogenic bacteria evolve multiple strategies to hijack host cells for intracellular survival and persistent infections. Previous studies have revealed the intricate interactions between bacteria and host cells at genetic, biochemical and even single molecular levels. Mechanical interactions and mechanotransduction exert a crucial impact on the behaviors and functions of pathogenic bacteria and host cells, owing to the ubiquitous mechanical microenvironments like extracellular matrix (ECM) stiffness. Nevertheless, it remains unclear whether and how ECM stiffness modulates bacterial infections and the sequential outcome of antibacterial therapy. Here we show that bacteria tend to adhere to and invade epithelial cells located on the regions with relatively high traction forces. ECM stiffness regulates spatial distributions of bacteria during the invasion through arrangements of F-actin cytoskeletons in host cells. Depolymerization of cytoskeletons in the host cells induced by bacterial infection decreases intracellular accumulation of antibiotics, thus preventing the eradication of invaded bacterial pathogens. These findings not only reveal the key regulatory role of ECM stiffness, but suggest that the coordination of cytoskeletons may provide alternative approaches to improve antibiotic therapy against multidrug resistant bacteria in clinic.
Collapse
Affiliation(s)
- Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Papadakis L, Kanakousaki D, Bakopoulou A, Tsouknidas A, Michalakis K. A finite element model of an osteoblast to quantify the transduction of exogenous forces to cellular components. Med Eng Phys 2021; 94:61-69. [PMID: 34303503 DOI: 10.1016/j.medengphy.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023]
Abstract
Encouraged by recent advances of biophysical and biochemical assays we introduce a 3D finite element model of an osteoblast, seeking an analogue between exogenous forces and intracellularly activated sensory mechanisms. The cell was reverse engineered and the dimensions of the internal cellular structures were based on literature data. The model was verified and validated against atomic force microscopy experiments and four loading scenarios were considered. The stress distributions developing on the main cellular components were calculated along with their corresponding strain values. The nucleus and mitochondria exhibited similar loading trends, with the mitochondria being stressed by an order of magnitude higher than the nucleus (e.g. 1.4 vs. 0.16 MPa). Equivalent stiffness was determined to increase by almost 50%, from the apex to the cell's periphery, as was the cell's elasticity, which was lowest when the load was exerted directly above the nucleus. The assessment of how extrinsic loads are propagated to a cell's internal structures is inherently a problem of high complexity. The findings presented in this study can provide important insight into biophysical and biochemical responses elicited in cells through mechanical stimulus. This was evident in both the nuclear and mitochondrial loading and would stipulate the important contribution of even more accurate models in the interpretation of cellular events. One Sentence Summary: The results of this numerical biomechanical study demonstrated that even minor extrinsic loads irrespective of the application site, are transduced by a fraction of the cytoskeleton to its internal structure (primarily to its mitochondria and secondary to the cell's nucleus), indicating mechanical stimulus as the dominant pathway to cell expression.
Collapse
Affiliation(s)
- Labros Papadakis
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece
| | - Dimitra Kanakousaki
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece
| | - Alexander Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, GR-50132, Kozani, Greece.
| | - Konstantinos Michalakis
- School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki GR-54124, Thessaloniki, Greece; Division of Postgraduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
33
|
A release-and-capture mechanism generates an essential non-centrosomal microtubule array during tube budding. Nat Commun 2021; 12:4096. [PMID: 34215746 PMCID: PMC8253823 DOI: 10.1038/s41467-021-24332-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/27/2021] [Indexed: 11/08/2022] Open
Abstract
Non-centrosomal microtubule arrays serve crucial functions in cells, yet the mechanisms of their generation are poorly understood. During budding of the epithelial tubes of the salivary glands in the Drosophila embryo, we previously demonstrated that the activity of pulsatile apical-medial actomyosin depends on a longitudinal non-centrosomal microtubule array. Here we uncover that the exit from the last embryonic division cycle of the epidermal cells of the salivary gland placode leads to one centrosome in the cells losing all microtubule-nucleation capacity. This restriction of nucleation activity to the second, Centrobin-enriched, centrosome is key for proper morphogenesis. Furthermore, the microtubule-severing protein Katanin and the minus-end-binding protein Patronin accumulate in an apical-medial position only in placodal cells. Loss of either in the placode prevents formation of the longitudinal microtubule array and leads to loss of apical-medial actomyosin and impaired apical constriction. We thus propose a mechanism whereby Katanin-severing at the single active centrosome releases microtubule minus-ends that are then anchored by apical-medial Patronin to promote formation of the longitudinal microtubule array crucial for apical constriction and tube formation.
Collapse
|
34
|
Athilingam T, Tiwari P, Toyama Y, Saunders TE. Mechanics of epidermal morphogenesis in the Drosophila pupa. Semin Cell Dev Biol 2021; 120:171-180. [PMID: 34167884 DOI: 10.1016/j.semcdb.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Adult epidermal development in Drosophila showcases a striking balance between en masse spreading of the developing adult precursor tissues and retraction of the degenerating larval epidermis. The adult precursor tissues, driven by both intrinsic plasticity and extrinsic mechanical cues, shape the segments of the adult epidermis and appendages. Here, we review the tissue architectural changes that occur during epidermal morphogenesis in the Drosophila pupa, with a particular emphasis on the underlying mechanical principles. We highlight recent developments in our understanding of adult epidermal morphogenesis. We further discuss the forces that drive these morphogenetic events and finally outline open questions and challenges.
Collapse
Affiliation(s)
| | - Prabhat Tiwari
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Science, National University of Singapore, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Science, National University of Singapore, Singapore; Institute of Molecular Biology, A⁎Star, Singapore; Warwick Medical School, The University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
35
|
The origin and the mechanism of mechanical polarity during epithelial folding. Semin Cell Dev Biol 2021; 120:94-107. [PMID: 34059419 DOI: 10.1016/j.semcdb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.
Collapse
|
36
|
Mangeat T, Labouesse S, Allain M, Negash A, Martin E, Guénolé A, Poincloux R, Estibal C, Bouissou A, Cantaloube S, Vega E, Li T, Rouvière C, Allart S, Keller D, Debarnot V, Wang XB, Michaux G, Pinot M, Le Borgne R, Tournier S, Suzanne M, Idier J, Sentenac A. Super-resolved live-cell imaging using random illumination microscopy. CELL REPORTS METHODS 2021; 1:100009. [PMID: 35474693 PMCID: PMC9017237 DOI: 10.1016/j.crmeth.2021.100009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic S. pombe cells to the 3D motion of myosin minifilaments deep inside Drosophila tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.
Collapse
Affiliation(s)
- Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Labouesse
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Marc Allain
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Awoke Negash
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| | - Emmanuel Martin
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Aude Guénolé
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Estibal
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Elodie Vega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tong Li
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Christian Rouvière
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sophie Allart
- INSERM Université de Toulouse, UPS, CNRS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Debora Keller
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Valentin Debarnot
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Xia Bo Wang
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Mathieu Pinot
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Roland Le Borgne
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, 35000 Rennes, France
| | - Sylvie Tournier
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Jérome Idier
- LS2N, CNRS UMR 6004, 1 rue de la Noë, F44321 Nantes Cedex 3, France
| | - Anne Sentenac
- Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France
| |
Collapse
|
37
|
Martin E, Theis S, Gay G, Monier B, Rouvière C, Suzanne M. Arp2/3-dependent mechanical control of morphogenetic robustness in an inherently challenging environment. Dev Cell 2021; 56:687-701.e7. [PMID: 33535069 PMCID: PMC7955168 DOI: 10.1016/j.devcel.2021.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Epithelial sheets undergo highly reproducible remodeling to shape organs. This stereotyped morphogenesis depends on a well-defined sequence of events leading to the regionalized expression of developmental patterning genes that finally triggers downstream mechanical forces to drive tissue remodeling at a pre-defined position. However, how tissue mechanics controls morphogenetic robustness when challenged by intrinsic perturbations in close proximity has never been addressed. Using Drosophila developing leg, we show that a bias in force propagation ensures stereotyped morphogenesis despite the presence of mechanical noise in the environment. We found that knockdown of the Arp2/3 complex member Arpc5 specifically affects fold directionality while altering neither the developmental nor the force generation patterns. By combining in silico modeling, biophysical tools, and ad hoc genetic tools, our data reveal that junctional myosin II planar polarity favors long-range force channeling and ensures folding robustness, avoiding force scattering and thus isolating the fold domain from surrounding mechanical perturbations. Drosophila developing leg folding is extremely robust Fold orientation becomes variable in Arp2/3 knockdown condition Arp2/3 controls junctional myosin II planar polarity Myosin II planar polarity ensures fold robustness through force channeling
Collapse
Affiliation(s)
- Emmanuel Martin
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Sophie Theis
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France; Morphogénie Logiciels, 32110 St Martin d'Armagnac, France
| | - Guillaume Gay
- Morphogénie Logiciels, 32110 St Martin d'Armagnac, France; Turing Center For Living Systems, Aix-MarseilleUniversity, 13009, Marseille, France.
| | - Bruno Monier
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Christian Rouvière
- Image Processing Facility, Center of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
38
|
Sui L, Dahmann C. Increased lateral tension is sufficient for epithelial folding in Drosophila. Development 2020; 147:147/23/dev194316. [DOI: 10.1242/dev.194316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The folding of epithelial sheets is important for tissues, organs and embryos to attain their proper shapes. Epithelial folding requires subcellular modulations of mechanical forces in cells. Fold formation has mainly been attributed to mechanical force generation at apical cell sides, but several studies indicate a role of mechanical tension at lateral cell sides in this process. However, whether lateral tension increase is sufficient to drive epithelial folding remains unclear. Here, we have used optogenetics to locally increase mechanical force generation at apical, lateral or basal sides of epithelial Drosophila wing disc cells, an important model for studying morphogenesis. We show that optogenetic recruitment of RhoGEF2 to apical, lateral or basal cell sides leads to local accumulation of F-actin and increase in mechanical tension. Increased lateral tension, but not increased apical or basal tension, results in sizeable fold formation. Our results stress the diversification of folding mechanisms between different tissues and highlight the importance of lateral tension increase for epithelial folding.
Collapse
Affiliation(s)
- Liyuan Sui
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
39
|
Wiggan O, DeLuca JG, Stasevich TJ, Bamburg JR. Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Mol Biol Cell 2020; 31:2363-2378. [PMID: 32816614 PMCID: PMC7851964 DOI: 10.1091/mbc.e20-01-0017-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that small interfering RNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA-deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/serum response factor-regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resulting from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
40
|
Janota CS, Calero-Cuenca FJ, Gomes ER. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol 2020; 63:204-211. [PMID: 32361559 DOI: 10.1016/j.ceb.2020.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/12/2023]
Abstract
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.
Collapse
Affiliation(s)
- Cátia S Janota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Javier Calero-Cuenca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
41
|
Schwartz D, Iyengar S. Recognition of Apoptotic Cells by Viruses and Cytolytic Lymphocytes: Target Selection in the Fog of War. Viral Immunol 2020; 33:188-196. [PMID: 32286181 PMCID: PMC7185367 DOI: 10.1089/vim.2019.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses and cytolytic lymphocytes operate in an environment filled with dying and dead cells, and cell fragments. For viruses, irreversible fusion with doomed cells is suicide. For cytotoxic T lymphocyte and natural killer cells, time and limited lytic resources spent on apoptotic targets is wasteful and may result in death of the host. We make the case that the target membrane cytoskeleton is the best source of information regarding the suitability of potential targets for engagement for both viruses and lytic effector cells, and we present experimental evidence for detection of apoptotic cells by HIV, without loss of infectivity.
Collapse
Affiliation(s)
- David Schwartz
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| | - Sujatha Iyengar
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
42
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
43
|
|
44
|
Role of Notch Signaling in Leg Development in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:103-127. [PMID: 32060874 DOI: 10.1007/978-3-030-34436-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.
Collapse
|
45
|
Bayir E, Sendemir A, Missirlis YF. Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 2019; 11:721-728. [PMID: 31502190 DOI: 10.1007/s12551-019-00590-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Organoids are in vitro 3D self-organizing tissues that mimic embryogenesis. Organoid research is advancing at a tremendous pace, since it offers great opportunities for disease modeling, drug development and screening, personalized medicine, as well as understanding organogenesis. Mechanobiology of organoids is an unexplored area, which can shed light to several unexplained aspects of self-organization behavior in organogenesis. It is becoming evident that collective cell behavior is distinctly different from individual cells' conduct against certain stimulants. Inherently consisting of higher number of degrees of freedom for cell motility and more complex cell-to-cell and cell-to-extracellular matrix behavior, understanding mechanotransduction in organoids is even more challenging compared with cell communities in 2D culture conditions. Yet, deciphering mechanobiology of organoids can help us understand effects of mechanical cues in health and disease, and translate findings of basic research toward clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Ece Bayir
- Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| | - Aylin Sendemir
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Yannis F Missirlis
- Department of Mechanical Engineering & Aeronautics, University of Patras, Patras, Greece.
| |
Collapse
|
46
|
Pfeifer CR, Discher DE. Pulling the Roof Down on Anchored Nuclei. Dev Cell 2019; 50:130-131. [PMID: 31336096 DOI: 10.1016/j.devcel.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
How a smooth epithelium becomes topographically patterned in development remains incompletely understood. In this issue of Developmental Cell,Ambrosini et al. (2019) investigate how dying cells specifically indent the apical surface, finding that apical actomyosin cables contract against the apoptotic nucleus, which itself is anchored basally to the extracellular matrix.
Collapse
Affiliation(s)
- Charlotte R Pfeifer
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|