1
|
Okamura T, Hasegawa Y, Ohno Y, Saijo Y, Nakanishi N, Honda A, Hamaguchi M, Takano H, Fukui M. Oral exposure to nanoplastics and food allergy in mice fed a normal or high-fat diet. CHEMOSPHERE 2025; 379:144401. [PMID: 40252413 DOI: 10.1016/j.chemosphere.2025.144401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
The global prevalence of food allergies, particularly IgE-mediated responses, is increasing at an alarming rate. This trend is likely driven by environmental factors such as nanoplastics (NPs) ingestion and the westernization of dietary and lifestyle habits. This study examines the impact of polystyrene nanoplastics (PS-NPs) on ovalbumin (OVA)-induced food allergies in mice subjected to either a normal diet (ND) or a high-fat diet (HFD). BALB/c mice were stratified into eight groups based on dietary regimen, NP exposure, and OVA sensitization. Food allergy was induced via OVA administration, and multiple physiological and immunological parameters were evaluated, including body weight, intestinal permeability, cytokine profiles, gut microbiota composition, and small intestinal gene expression. Mice in the HFD + OVA + NP group exhibited significant increases in intestinal permeability, diarrhea severity, and serum OVA-specific IgE levels compared to other groups. Flow cytometric analysis revealed an expansion of innate lymphoid cells (ILC2 and ILC1) within the lamina propria of the small intestine. Shotgun metagenomic sequencing demonstrated gut microbiota dysbiosis, characterized by a reduction in beneficial bacterial populations in the HFD + OVA + NP cohort. Weighted Gene Co-Expression Network Analysis (WGCNA) identified a negative correlation between NPs exposure or OVA sensitization and the expression of Slc1a1, Slc5a8, and Mep1a, while a positive correlation was observed with Aa467197 expression. These findings indicate that oral exposure to PS-NPs exacerbates OVA-induced food allergies, particularly in the context of an HFD, through mechanisms involving increased intestinal permeability, gut microbial dysbiosis, and gene expression modulation. This study highlights the potential health hazards posed by environmental microplastic contamination and its possible contribution to the escalating incidence of food allergies.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuriko Ohno
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yuto Saijo
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Akiko Honda
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan.
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| |
Collapse
|
2
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
3
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2025; 31:259-271. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Yang X, Huang J, Peng J, Wang P, Wong FS, Wang R, Wang D, Wen L. Gut microbiota from B-cell-specific TLR9-deficient NOD mice promote IL-10 + Breg cells and protect against T1D. Front Immunol 2024; 15:1413177. [PMID: 38903498 PMCID: PMC11187306 DOI: 10.3389/fimmu.2024.1413177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β cells. Toll-like receptor 9 (TLR9) plays a role in autoimmune diseases, and B cell-specific TLR9 deficiency delays T1D development. Gut microbiota are implicated in T1D, although the relationship is complex. However, the impact of B cell-specific deficiency of TLR9 on intestinal microbiota and the impact of altered intestinal microbiota on the development of T1D are unclear. Objectives This study investigated how gut microbiota and the intestinal barrier contribute to T1D development in B cell-specific TLR9-deficient NOD mice. Additionally, this study explored the role of microbiota in immune regulation and T1D onset. Methods The study assessed gut permeability, gene expression related to gut barrier integrity, and gut microbiota composition. Antibiotics depleted gut microbiota, and fecal samples were transferred to germ-free mice. The study also examined IL-10 production, Breg cell differentiation, and their impact on T1D development. Results B cell-specific TLR9-deficient NOD mice exhibited increased gut permeability and downregulated gut barrier-related gene expression. Antibiotics restored gut permeability, suggesting microbiota influence. Altered microbiota were enriched in Lachnospiraceae, known for mucin degradation. Transferring this microbiota to germ-free mice increased gut permeability and promoted IL-10-expressing Breg cells. Rag-/- mice transplanted with fecal samples from Tlr9 fl/fl Cd19-Cre+ mice showed delayed diabetes onset, indicating microbiota's impact. Conclusion B cell-specific TLR9 deficiency alters gut microbiota, increasing gut permeability and promoting IL-10-expressing Breg cells, which delay T1D. This study uncovers a link between TLR9, gut microbiota, and immune regulation in T1D, with implications for microbiota-targeted T1D therapies.
Collapse
Affiliation(s)
- Xin Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - F. Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine (TCM) Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Neiva LP, Lopez LC, Pasiani RO, Serra MJR, Rullo VEV. Use of probiotics and similar in pediatric patients with Type 1 Diabetes Mellitus: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 42:e2023097. [PMID: 38359319 PMCID: PMC10868513 DOI: 10.1590/1984-0462/2024/42/2023097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To perform a systematic review of randomized controlled trials, evaluating the effect of probiotics, prebiotics or symbiotics supplementation on glycemic and inflammatory control in children with Type 1 Diabetes Mellitus (T1DM). DATA SOURCE The Medical Literature Analysis and Retrieval System Online (MEDLINE/PubMed), Clinical Trials, Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO) databases were searched. Randomized clinical trials of pediatric patients with DM1 using probiotics, prebiotics or symbiotics were included, regardless of year or language of publication. Studies that did not evaluate glycated hemoglobin (HbA1c) were excluded. Metabolic results (HbA1c, total insulin dose and C-peptide) and inflammatory control [interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ)] during probiotic supplementation or similar, related to modification of the intestinal microbiota, were analyzed. PROSPERO ID: CRD42022384485. DATA SYNTHESIS Five studies were selected for a systematic review. Regarding metabolic markers, only one of the articles that analyzed HbA1c showed a significant decrease (p=0.03) in the intervention group. One study identified a reduction in the total dose of insulin and increased C-peptide levels. Regarding the evaluation of inflammatory parameters (IL-10, TNF-α, INF-γ), there were no statistical relevant modifications. CONCLUSIONS Current data from the literature were not conclusive in identifying an improvement in glycemic control and did not observe changes in inflammatory parameters with the use of probiotics, prebiotics or symbiotics in pediatric patients with T1DM.
Collapse
|
7
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
8
|
Poto R, Fusco W, Rinninella E, Cintoni M, Kaitsas F, Raoul P, Caruso C, Mele MC, Varricchi G, Gasbarrini A, Cammarota G, Ianiro G. The Role of Gut Microbiota and Leaky Gut in the Pathogenesis of Food Allergy. Nutrients 2023; 16:92. [PMID: 38201921 PMCID: PMC10780391 DOI: 10.3390/nu16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
| | - Pauline Raoul
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Kharrazian D, Herbert M, Lambert J. The Relationships between Intestinal Permeability and Target Antibodies for a Spectrum of Autoimmune Diseases. Int J Mol Sci 2023; 24:16352. [PMID: 38003542 PMCID: PMC10671756 DOI: 10.3390/ijms242216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The worldwide prevalence of autoimmune diseases that have limited treatment options and preventive strategies is rapidly rising. There is growing evidence that the microbiota and the integrity of the intestinal barrier play a role in autoimmune diseases. The potential to evaluate intestinal barrier integrity for susceptible individuals and to determine whether restoring intestinal junction integrity impacts autoimmune diseases is an important area of research that requires further attention. In the intestinal permeability model of autoimmune diseases, the breakdown of the intestinal tight junction proteins (zonulin/occludin) allows bacteria, toxins, undigested dietary proteins, and other antigens to pass into the lumen, thereby increasing the number of inflammatory reactions and the activation of immune cells throughout the body. In this study, we investigate the relationship between zonulin/occludin antibodies, which are used to determine intestinal permeability, with autoantibodies used to diagnose autoimmunity. Our investigation may identify significant levels of circulating autoantibodies in human subjects with intestinal permeability compared to those without intestinal permeability. Furthermore, we identified that significant positive linear correlations between serum occludin/zonulin antibodies and circulating autoantibodies could be used to determine autoimmune diseases.
Collapse
Affiliation(s)
- Datis Kharrazian
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Martha Herbert
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Higher Synthesis Foundation, Cambridge, MA 02138, USA
| | - Jama Lambert
- Independent Researcher, Puerto Vallarta 48300, Jalisco, Mexico;
| |
Collapse
|
10
|
La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: What is the evidence? Neurobiol Stress 2023; 27:100579. [PMID: 37842017 PMCID: PMC10569989 DOI: 10.1016/j.ynstr.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
An impaired intestinal barrier function can be detrimental to the host as it may allow the translocation of luminal antigens and toxins into the subepithelial tissue and bloodstream. In turn, this may cause local and systemic immune responses and lead to the development of pathologies. In vitro and animal studies strongly suggest that psychosocial stress is one of the factors that can increase intestinal permeability via mast-cell dependent mechanisms. Remarkably, studies have not been able to yield unequivocal evidence that such relation between stress and intestinal permeability also exists in (healthy) humans. In the current Review, we discuss the mechanisms that are involved in stress-induced intestinal permeability changes and postulate factors that influence these alterations and that may explain the translational difficulties from in vitro and animal to human studies. As human research differs highly from animal research in the extent to which stress can be applied and intestinal permeability can be measured, it remains difficult to draw conclusions about the presence of a relation between stress and intestinal permeability in (healthy) humans. Future studies should bear in mind these difficulties, and more research into in vivo methods to assess intestinal permeability are warranted.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Tim Vanuytsel
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Lo Conte M, Cosorich I, Ferrarese R, Antonini Cencicchio M, Nobili A, Palmieri V, Massimino L, Lamparelli LA, Liang W, Riba M, Devecchi E, Bolla AM, Pedone E, Scavini M, Bosi E, Fasano A, Ungaro F, Diana J, Mancini N, Falcone M. Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes. EBioMedicine 2023; 91:104567. [PMID: 37062177 PMCID: PMC10139895 DOI: 10.1016/j.ebiom.2023.104567] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).
Collapse
Affiliation(s)
- Marta Lo Conte
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Cosorich
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Ferrarese
- Virology and Microbiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Antonini Cencicchio
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Nobili
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vittoria Palmieri
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Massimino
- Experimental Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Michela Riba
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Devecchi
- Clinical Nutrition Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Mario Bolla
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erika Pedone
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; San Raffaele Vita Salute University, Milan, Italy
| | - Alessio Fasano
- Department of Pediatrics, Harvard Medical School, MA, USA
| | - Federica Ungaro
- Experimental Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nicasio Mancini
- Virology and Microbiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; San Raffaele Vita Salute University, Milan, Italy
| | - Marika Falcone
- Autoimmune Pathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. Int J Mol Sci 2022; 23:ijms232314650. [PMID: 36498975 PMCID: PMC9737253 DOI: 10.3390/ijms232314650] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease driven by T-cells against the insulin-producing islet β-cells, resulting in a marked loss of β-cell mass and function. Although a genetic predisposal increases susceptibility, the role of epigenetic and environmental factors seems to be much more significant. A dysbiotic gut microbial profile has been associated with T1D patients. Moreover, new evidence propose that perturbation in gut microbiota may influence the T1D onset and progression. One of the prominent features in clinically silent phase before the onset of T1D is the presence of a microbiota characterized by low numbers of commensals butyrate producers, thus negatively influencing the gut permeability. The loss of gut permeability leads to the translocation of microbes and microbial metabolites and could lead to the activation of immune cells. Moreover, microbiota-based therapies to slow down disease progression or reverse T1D have shown promising results. Starting from this evidence, the correction of dysbiosis in early life of genetically susceptible individuals could help in promoting immune tolerance and thus in reducing the autoantibodies production. This review summarizes the associations between gut microbiota and T1D for future therapeutic perspectives and other exciting areas of research.
Collapse
Affiliation(s)
- Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Novella Rapini
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Annalisa Deodati
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Cristina Matteoli
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Cianfarani
- Diabetes & Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children Health, Karolisnska Institute and University Hospital, 17177 Stockholm, Sweden
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-0668592980
| |
Collapse
|
13
|
Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol 2022; 13:906258. [PMID: 36341463 PMCID: PMC9632986 DOI: 10.3389/fimmu.2022.906258] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Trillions of microbes survive and thrive inside the human body. These tiny creatures are crucial to the development and maturation of our immune system and to maintain gut immune homeostasis. Microbial dysbiosis is the main driver of local inflammatory and autoimmune diseases such as colitis and inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple sclerosis. Gut microbes directly interact with the immune system by multiple mechanisms including modulation of the host microRNAs affecting gene expression at the post-transcriptional level or production of microbial metabolites that interact with cellular receptors such as TLRs and GPCRs. This interaction modulates crucial immune functions such as differentiation of lymphocytes, production of interleukins, or controlling the leakage of inflammatory molecules from the gut to the systemic circulation. In this review, we compile and analyze data to gain insights into the underpinning mechanisms mediating systemic autoimmune diseases. Understanding how gut microbes can trigger or protect from systemic autoimmune diseases is crucial to (1) tackle these diseases through diet or lifestyle modification, (2) develop new microbiome-based therapeutics such as prebiotics or probiotics, (3) identify diagnostic biomarkers to predict disease risk, and (4) observe and intervene with microbial population change with the flare-up of autoimmune responses. Considering the microbiome signature as a crucial player in systemic autoimmune diseases might hold a promise to turn these untreatable diseases into manageable or preventable ones.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Biology Department, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Biology Department, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
14
|
Hoffmanová I, Sánchez D, Szczepanková A, Hábová V, Tlaskalová-Hogenová H. Serological markers of intestinal barrier impairment do not correlate with duration of diabetes and glycated hemoglobin in adult patients with type 1 and type 2 diabetes mellitus. Physiol Res 2022; 71:357-368. [PMID: 35616045 DOI: 10.33549/physiolres.934874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus is associated with impairment of the intestinal barrier. However, it is not clear so far if the impairment of the intestinal barrier is a consequence of prolonged hyperglycemia or the consequence of external factors influencing the gut microbiota and intestinal mucosa integrity. Aim of the study was to perform an estimation of relationship between serological markers of impairment of the intestinal barrier: intestinal fatty acid-binding protein (I-FABP), cytokeratin 18 caspase-cleaved fragment (cCK-18), and soluble CD14 (sCD14) and markers of prolonged hyperglycemia, such as the duration of diabetes mellitus and glycated hemoglobin (HbA1c) via a correlation analysis in patients with diabetes mellitus. In 40 adult patients with type 1 diabetes mellitus and 30 adult patients with type 2 diabetes mellitus the estimation has been performed. Statistically significant positive correlation was found between cCK-18 and HbA1c (r=0.5047, p=0.0275) in patients with type 1 diabetes mellitus with fading insulitis (T1D). In patients with type 1 diabetes mellitus with ongoing insulitis (T1D/INS) and in patients with type 2 diabetes mellitus (T2D), no statistically significant positive correlations were found between serological markers of intestinal barrier impairment (I-FABP, cCK-18, sCD14) and duration of diabetes or levels of HbA1c. Similarly, in cumulative cohort of patients with T1D/INS and patients with T1D we revealed statistically positive correlation only between HbA1c and cCK-18 (r=0.3414, p=0.0311). Surprisingly, we found statistically significant negative correlation between the duration of diabetes mellitus and cCK-18 (r=-0.3050, p=0.0313) only in cumulative group of diabetic patients (T1D, T1D/INS, and T2D). Based on our results, we hypothesize that the actual condition of the intestinal barrier in diabetic patients is much more dependent on variable interactions between host genetic factors, gut microbiota, and environmental factors rather than effects of long-standing hyperglycemia (assessed by duration of diabetes mellitus or HbA1c).
Collapse
Affiliation(s)
- I Hoffmanová
- Department of Internal Medicine, Second Faculty of Medicine, Charles University Prague, and Motol University Hospital, Prague, Czech Republic; Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences., Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
Shaheen WA, Quraishi MN, Iqbal TH. Gut microbiome and autoimmune disorders. Clin Exp Immunol 2022; 209:161-174. [PMID: 35652460 DOI: 10.1093/cei/uxac057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases have long been known to share a common pathogenesis involving a dysregulated immune system with failure to recognize self from non-self antigens. This immune dysregulation is now increasingly understood to be induced by environmental triggers in genetically predisposed individuals. Although several external environmental triggers have been defined in different autoimmune diseases, much attention is being paid to the role of the internal micro-environment occupied by the microbiome which was once termed "the forgotten organ". In this regard, the gut microbiome, serving as an intermediary between some of those external environmental effectors and the immune system helps programming of the immune system to be tolerant to innocent external and self antigens. However, in the presence of perturbed gut microbiota (dysbiosis), the immune system could be erroneously directed in favor of pro-inflammatory pathways to instigate different autoimmune processes. An accumulating body of evidence, including both experimental and human studies (observational and interventional) points to a role of gut microbiome in different autoimmune diseases. Such evidence could provide a rationale for gut microbiome manipulation with therapeutic and even preventative intents in patients with established or predisposed to autoimmune diseases respectively. Perturbations of the gut microbiome have been delineated in some immune mediated diseases, IBD in particular. However, such patterns of disturbance (microbiome signatures) and related pathogenetic roles of the gut microbiome are context dependent and cannot be generalized in the same exact way to other autoimmune disorders and the contribution of gut microbiome to different disease phenotypes has to be precisely defined. In this review, we revise the evidence for a role of gut microbiome in various autoimmune diseases and possible mechanisms mediating such a role.
Collapse
Affiliation(s)
- Walaa Abdelaty Shaheen
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,Gastroenterology Department, Menoufia University, Egypt
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Center, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, UK.,University Hospitals of Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
16
|
Jaworska K, Kopacz W, Koper M, Szudzik M, Gawryś-Kopczyńska M, Konop M, Hutsch T, Chabowski D, Ufnal M. Enalapril Diminishes the Diabetes-Induced Changes in Intestinal Morphology, Intestinal RAS and Blood SCFA Concentration in Rats. Int J Mol Sci 2022; 23:ijms23116060. [PMID: 35682739 PMCID: PMC9181110 DOI: 10.3390/ijms23116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin–angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.
Collapse
|
17
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
18
|
Shilo S, Godneva A, Rachmiel M, Korem T, Bussi Y, Kolobkov D, Karady T, Bar N, Wolf BC, Glantz-Gashai Y, Cohen M, Zuckerman-Levin N, Shehadeh N, Gruber N, Levran N, Koren S, Weinberger A, Pinhas-Hamiel O, Segal E. The Gut Microbiome of Adults With Type 1 Diabetes and Its Association With the Host Glycemic Control. Diabetes Care 2022; 45:555-563. [PMID: 35045174 DOI: 10.2337/dc21-1656] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Previous studies have demonstrated an association between gut microbiota composition and type 1 diabetes (T1D) pathogenesis. However, little is known about the composition and function of the gut microbiome in adults with longstanding T1D or its association with host glycemic control. RESEARCH DESIGN AND METHODS We performed a metagenomic analysis of the gut microbiome obtained from fecal samples of 74 adults with T1D, 14.6 ± 9.6 years following diagnosis, and compared their microbial composition and function to 296 age-matched healthy control subjects (1:4 ratio). We further analyzed the association between microbial taxa and indices of glycemic control derived from continuous glucose monitoring measurements and blood tests and constructed a prediction model that solely takes microbiome features as input to evaluate the discriminative power of microbial composition for distinguishing individuals with T1D from control subjects. RESULTS Adults with T1D had a distinct microbial signature that separated them from control subjects when using prediction algorithms on held-out subjects (area under the receiver operating characteristic curve = 0.89 ± 0.03). Linear discriminant analysis showed several bacterial species with significantly higher scores in T1D, including Prevotella copri and Eubacterium siraeum, and species with higher scores in control subjects, including Firmicutes bacterium and Faecalibacterium prausnitzii (P < 0.05, false discovery rate corrected for all). On the functional level, several metabolic pathways were significantly lower in adults with T1D. Several bacterial taxa and metabolic pathways were associated with the host's glycemic control. CONCLUSIONS We identified a distinct gut microbial signature in adults with longstanding T1D and associations between microbial taxa, metabolic pathways, and glycemic control indices. Additional mechanistic studies are needed to identify the role of these bacteria for potential therapeutic strategies.
Collapse
Affiliation(s)
- Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Haifa, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marianna Rachmiel
- Pediatric Endocrinology Unit, Shamir Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tal Korem
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Systems Biology, Columbia University, New York, NY
| | - Yuval Bussi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dmitry Kolobkov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Karady
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bat Chen Wolf
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yitav Glantz-Gashai
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Haifa, Israel
| | - Michal Cohen
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Nehama Zuckerman-Levin
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Naim Shehadeh
- Pediatric Diabetes Clinic, Institute of Diabetes, Endocrinology and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Noah Gruber
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Neriya Levran
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shlomit Koren
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Diabetes Unit, Shamir Medical Center, Zerifin, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Pinhas-Hamiel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Bell KJ, Saad S, Tillett BJ, McGuire HM, Bordbar S, Yap YA, Nguyen LT, Wilkins MR, Corley S, Brodie S, Duong S, Wright CJ, Twigg S, de St Groth BF, Harrison LC, Mackay CR, Gurzov EN, Hamilton-Williams EE, Mariño E. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. MICROBIOME 2022; 10:9. [PMID: 35045871 PMCID: PMC8772108 DOI: 10.1186/s40168-021-01193-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.
Collapse
Affiliation(s)
- Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Bree J Tillett
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Helen M McGuire
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sara Bordbar
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Yu Anne Yap
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Long T Nguyen
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Susan Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Shannon Brodie
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Sussan Duong
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Courtney J Wright
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Twigg
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Fazekas de St Groth
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, 1070, Brussels, Belgium
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
20
|
Hoshiko H, Zeinstra GG, Lenaerts K, Oosterink E, Ariens RMC, Mes JJ, de Wit NJW. An Observational Study to Evaluate the Association between Intestinal Permeability, Leaky Gut Related Markers, and Metabolic Health in Healthy Adults. Healthcare (Basel) 2021; 9:healthcare9111583. [PMID: 34828628 PMCID: PMC8623210 DOI: 10.3390/healthcare9111583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
We explored whether metabolic health is linked to intestinal permeability, using a multi-sugar (MS) permeability test, and whether intestinal permeability is correlated with the leaky gut-related markers (LGM) zonulin, LBP, and sCD14. Metabolically healthy (n = 15) and unhealthy subjects (n = 15) were recruited based on waist circumference, fasting glucose, and high-density lipoprotein cholesterol levels. Participants underwent an MS permeability test that assessed site-specific permeabilities of the gastroduodenum and small and large intestines. The test was performed with/without an acetylsalicylic acid challenge to measure and correlate the gut permeability, LGM, and metabolic health. At baseline, metabolic health showed no correlation with gut permeability. Significant correlations were found between the metabolic health parameters and LGM. In the acetylsalicylic acid challenged MS permeability test, low-density lipoprotein cholesterol was correlated with the sucralose/erythritol ratio, reflecting the whole intestinal permeability. Correlations between most metabolic health parameters and LGM during the acetylsalicylic acid challenge were less pronounced than at baseline. In both MS permeability tests, no significant correlations were found between LGM (plasma and serum) and gut permeability. Thus, correlations between LGM and metabolic health might not be linked with paracellular gut permeability. Transcellular translocation and/or lipoprotein-related transportation is a more likely mechanism underlying the association between LGM and metabolic health.
Collapse
Affiliation(s)
- Hiroyuki Hoshiko
- HE Center, Suntory MONOZUKURI Expert Limited, Kyoto 619-0284, Japan
- Correspondence:
| | - Gertrude G. Zeinstra
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Els Oosterink
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Renata M. C. Ariens
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Nicole J. W. de Wit
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| |
Collapse
|
21
|
Ilchmann-Diounou H, Buleon M, Bacquie V, Theodorou V, Denis C, Menard S. Revisiting definition and assessment of intestinal trans-epithelial passage. Cell Mol Life Sci 2021; 78:8157-8164. [PMID: 34731253 PMCID: PMC8629865 DOI: 10.1007/s00018-021-04000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
This study aims to remind that Intestinal Passage (IP) measurement is a complex task that cannot be achieved by a unique measure of an orally given exogenous marker in blood or urine. This will be illustrated in the case of NOD mice. Indeed, various methods have been proposed to measure IP. Among them ex vivo measurement in Ussing chambers of luminal to serosal fluxes of exogenous markers and in vivo measurement of exogenous markers in blood or urine after oral gavage are the more commonly used. Even though they are commonly used indifferently, they do not give the same information and can provide contradictory results. Published data showed that diabetic status in female Non Obese Diabetic (NOD) mice increased FD4 concentration in blood after gavage but did not modify FD4 fluxes in Ussing chamber. We observed the same results in our experimental conditions and tracked FD4 concentrations in blood over a kinetic study (Area Under the Curve-AUC). In vivo measurements are a dynamic process and address not only absorption (IP and intestinal surface) but also distribution, metabolism and excretion (ADME). Diabetic status in NOD mice was associated with an increase of intestinal length (absorptive surface), itself positively correlated with AUC of FD4 in blood. We concluded that increased intestinal length induced by diabetic status will extend the absorptive surface and increase FD4 concentration in plasma (in vivo measurement) despite no modification on IP of FD4 (ex vivo measurement). In addition, this study characterized intestinal function in diabetic NOD mice. Diabetic status in NOD female mice increases intestinal length and decreases paracellular IP (FSS) without affecting transcellular IP (HRP, FD4). Histological studies of small and large intestine did not show any modification of intestinal circumference nor villi and crypt size. Finally, diabetic status was not associated with intestinal inflammation (ELISA).
Collapse
Affiliation(s)
- Hanna Ilchmann-Diounou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Buleon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Valérie Bacquie
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sandrine Menard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France. .,IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse, France.
| |
Collapse
|
22
|
Liu W, Luo X, Tang J, Mo Q, Zhong H, Zhang H, Feng F. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr 2021; 60:2317-2330. [PMID: 33180143 DOI: 10.1007/s00394-020-02431-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE In previous studies, short-chain fatty acids (SCFAs) have been found to regulate gut microbiota and change gut barrier status, and the potential positive effects of SCFAs on inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1D), and non-alcoholic fatty liver disease (NAFLD) have also been found, but the role of SCFAs in these three diseases is not clear. This review aims to summarize existing evidence on the effects of SCFAs on IBD, T1D, and NHFLD, and correlates them with gut barrier and gut microbiota (gut microbiota barrier). METHODS A literature search in PubMed, Web of Science, Springer, and Wiley Online Library up to October 2020 was conducted for all relevant studies published. RESULTS This is a retrospective review of 150 applied research articles or reviews. The destruction of gut barrier may promote the development of IBD, T1D, and NAFLD. SCFAs seem to maintain the gut barrier by promoting the growth of intestinal epithelial cells, strengthening the intestinal tight connection, and regulating the activities of gut microbiota and immune cells, which might result possible beneficial effects on the above three diseases at a certain dose. CONCLUSIONS Influencing gut barrier health may be a bridge for SCFAs (especially butyrate) to have positive effects on IBD, T1D, and NAFLD. It is expected that this article can provide new ideas for the subsequent research on the treatment of diseases by SCFAs and help SCFAs be better applied to precise and personalized treatment.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Jun Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Qiufen Mo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Hao Zhong
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
24
|
Mønsted MØ, Falck ND, Pedersen K, Buschard K, Holm LJ, Haupt-Jorgensen M. Intestinal permeability in type 1 diabetes: An updated comprehensive overview. J Autoimmun 2021; 122:102674. [PMID: 34182210 DOI: 10.1016/j.jaut.2021.102674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of the autoimmune disease type 1 diabetes (T1D) is still largely unknown, however, both genetic and environmental factors contribute to the development of the disease. A major contact surface for environmental factors is the gastrointestinal (GI) tract, where barrier defects in T1D likely cause diabetogenic antigens to enter the body tissues, contributing to beta-cell autoimmunity. Human and animal research imply that increased intestinal permeability is an important disease determinant, although the underlying methodologies, interpretations and conclusions are diverse. In this review, an updated comprehensive overview on intestinal permeability in patients with T1D and animal models of T1D is provided in the categories: in vivo permeability, ex vivo permeability, zonulin, molecular permeability and blood markers. Across categories, there is consistency pointing towards increased intestinal permeability in T1D. In animal models of T1D, the intestinal permeability varies with age and strains implying a need for careful selection of method and experimental setup. Furthermore, dietary interventions that affect diabetes incidence in animal models does also impact the intestinal permeability, suggesting an association between increased intestinal permeability and T1D development.
Collapse
Affiliation(s)
- Mia Øgaard Mønsted
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark.
| | - Nora Dakini Falck
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Kristina Pedersen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Laurits Juulskov Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | | |
Collapse
|
25
|
Stojanović I, Saksida T, Miljković Đ, Pejnović N. Modulation of Intestinal ILC3 for the Treatment of Type 1 Diabetes. Front Immunol 2021; 12:653560. [PMID: 34149694 PMCID: PMC8209467 DOI: 10.3389/fimmu.2021.653560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Gut-associated lymphoid tissue (GALT) is crucial for the maintenance of the intestinal homeostasis, but it is also the potential site of the activation of autoreactive cells and initiation/propagation of autoimmune diseases in the gut and in the distant organs. Type 3 innate lymphoid cells (ILC3) residing in the GALT integrate signals from food ingredients and gut microbiota metabolites in order to control local immunoreactivity. Notably, ILC3 secrete IL-17 and GM-CSF that activate immune cells in combating potentially pathogenic microorganisms. ILC3 also produce IL-22 that potentiates the strength and integrity of epithelial tight junctions, production of mucus and antimicrobial peptides thus enabling the proper function of the intestinal barrier. The newly discovered function of small intestine ILC3 is the secretion of IL-2 and the promotion of regulatory T cell (Treg) generation and function. Since the intestinal barrier dysfunction, together with the reduction in small intestine ILC3 and Treg numbers are associated with the pathogenesis of type 1 diabetes (T1D), the focus of this article is intestinal ILC3 modulation for the therapy of T1D. Of particular interest is free fatty acids receptor 2 (FFAR2), predominantly expressed on intestinal ILC3, that can be stimulated by available selective synthetic agonists. Thus, we propose that FFAR2-based interventions by boosting ILC3 beneficial functions may attenuate autoimmune response against pancreatic β cells during T1D. Also, it is our opinion that treatments based on ILC3 stimulation by functional foods can be used as prophylaxis in individuals that are genetically predisposed to develop T1D.
Collapse
Affiliation(s)
- Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A Triple Threat? The Role of Diet, Nutrition, and the Microbiota in T1D Pathogenesis. Front Nutr 2021; 8:600756. [PMID: 33869260 PMCID: PMC8046917 DOI: 10.3389/fnut.2021.600756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years the role of the intestinal microbiota in health and disease has come to the forefront of medical research. Alterations in the intestinal microbiota and several of its features have been linked to numerous diseases, including type 1 diabetes (T1D). To date, studies in animal models of T1D, as well as studies in human subjects, have linked several intestinal microbiota alterations with T1D pathogenesis. Features that are most often linked with T1D pathogenesis include decreased microbial diversity, the relative abundance of specific strains of individual microbes, and altered metabolite production. Alterations in these features as well as others have provided insight into T1D pathogenesis and shed light on the potential mechanism by which the microbiota plays a role in T1D pathogenesis, yet the underlying factors leading to these alterations remains unknown. One potential mechanism for alteration of the microbiota is through diet and nutrition. Previous studies have shown associations of diet with islet autoimmunity, but a direct contributing factor has yet to be identified. Diet, through introduction of antigens and alteration of the composition and function of the microbiota, may elicit the immune system to produce autoreactive responses that result in the destruction of the beta cells. Here, we review the evidence associating diet induced changes in the intestinal microbiota and their contribution to T1D pathogenesis. We further provide a roadmap for determining the effect of diet and other modifiable factors on the entire microbiota ecosystem, including its impact on both immune and beta cell function, as it relates to T1D. A greater understanding of the complex interactions between the intestinal microbiota and several interacting systems in the body (immune, intestinal integrity and function, metabolism, beta cell function, etc.) may provide scientifically rational approaches to prevent development of T1D and other childhood immune and allergic diseases and biomarkers to evaluate the efficacy of interventions.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
27
|
Leaky Gut and Autoimmunity: An Intricate Balance in Individuals Health and the Diseased State. Int J Mol Sci 2020; 21:ijms21249770. [PMID: 33371435 PMCID: PMC7767453 DOI: 10.3390/ijms21249770] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the tissue and the ruining of functions characterize autoimmune syndromes. This review centers around leaky gut syndromes and how they stimulate autoimmune pathogenesis. Lymphoid tissue commonly associated with the gut, together with the neuroendocrine network, collaborates with the intestinal epithelial wall, with its paracellular tight junctions, to maintain the balance, tolerance, and resistance to foreign/neo-antigens. The physiological regulator of paracellular tight junctions plays a vital role in transferring macromolecules across the intestinal barrier and thereby maintains immune response equilibrium. A new paradigm has explained the intricacies of disease development and proposed that the processes can be prevented if the interaction between the genetic factor and environmental causes is barred by re-instituting the intestinal wall function. The latest clinical evidence and animal models reinforce this current thought and offer the basis for innovative methodologies to thwart and treat autoimmune syndromes.
Collapse
|
28
|
Li X, Tan CP, Liu YF, Xu YJ. Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14728-14738. [PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
29
|
Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1. Cell Mol Gastroenterol Hepatol 2020; 11:503-524. [PMID: 32896624 PMCID: PMC7797379 DOI: 10.1016/j.jcmgh.2020.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown. METHODS Mice modified genetically to amplify Nrf2 in the intestinal epithelium (Keap1f/f::VilCre) were generated as well as pharmacological activation of Nrf2 and subjected to phenotypic and cell lineage analyses. Cell lines were used for reporter gene assays together with Nrf2 overexpression to study transcriptional regulation of the Notch downstream effector. RESULTS Constitutive activation of Nrf2 signaling caused increased intestinal length along with expanded cell number and thickness of enterocytes without any alterations of secretory lineage, outcomes abrogated by concomitant disruption of Nrf2. The Nrf2 and Notch pathways in epithelium showed inverse spatial profiles, where Nrf2 activity in crypts was lower than villi. In progenitor cells of Keap1f/f::VilCre mice, Notch downstream effector Math1, which regulates a differentiation balance of cell lineage through lateral inhibition, showed suppressed expression. In vitro results demonstrated Nrf2 negatively regulated Math1, where 6 antioxidant response elements located in the regulatory regions contributed to this repression. CONCLUSIONS Activation of Nrf2 perturbed the dialog of the Notch cascade though negative regulation of Math1 in progenitor cells, leading to enhanced enterogenesis. The crosstalk between the Nrf2 and Notch pathways could be critical for fine-tuning intestinal homeostasis and point to new approaches for the pharmacological management of absorptive deficiencies.
Collapse
|
30
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
31
|
Sun T, Liang H, Xue M, Liu Y, Gong A, Jiang Y, Qin Y, Yang J, Meng D. Protective effect and mechanism of fucoidan on intestinal mucosal barrier function in NOD mice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1789071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Ying Liu
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Yimin Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, People’s Republic of China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Danyang Meng
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| |
Collapse
|
32
|
Microbiota derived factors as drivers of type 1 diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:215-235. [PMID: 32475523 DOI: 10.1016/bs.pmbts.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by complex interactions between host genetics and environmental factors, culminating in the T-cell mediated destruction of the insulin producing cells in the pancreas. The rapid increase in disease frequency over the past 50 years or more has been too rapid to attribute to genetics. Dysbiosis of the gut microbiota is currently being widely investigated as a major contributor to environmental change driving increased T1D onset. In this chapter, we discuss the major changes in gut microbiota composition and function linked to T1D risk as well as the potential origin of these changes including infant diet, antibiotic use and host genetics. We examine the interaction between inflammation and gut barrier function and the dysbiotic gut microbiota that have been linked to T1D.
Collapse
|
33
|
Vangoitsenhoven R, Cresci GAM. Role of Microbiome and Antibiotics in Autoimmune Diseases. Nutr Clin Pract 2020; 35:406-416. [DOI: 10.1002/ncp.10489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Roman Vangoitsenhoven
- Bariatric and Metabolic Institute Cleveland Clinic Cleveland Ohio USA
- Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Gail A. M. Cresci
- Department of Pediatric Gastroenterology Cleveland Clinic Children's Hospital Cleveland Ohio USA
- Department of Inflammation and Immunity Cleveland Clinic Cleveland Ohio USA
| |
Collapse
|
34
|
Paun A, Yau C, Meshkibaf S, Daigneault MC, Marandi L, Mortin-Toth S, Bar-Or A, Allen-Vercoe E, Poussier P, Danska JS. Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Sci Immunol 2020; 4:4/32/eaau8125. [PMID: 30709843 DOI: 10.1126/sciimmunol.aau8125] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Microbiome sequence analyses have suggested that changes in gut bacterial composition are associated with autoimmune disease in humans and animal models. However, little is known of the mechanisms through which the gut microbiota influences autoimmune responses to distant tissues. Here, we evaluated systemic antibody responses against cultured human gut bacterial strains to determine whether observed patterns of anticommensal antibody (ACAb) responses are associated with type 1 diabetes (T1D) in two cohorts of pediatric study participants. In the first cohort, ACAb responses in sera collected from participants within 6 months of T1D diagnosis were compared with age-matched healthy controls and also with patients with recent onset Crohn's disease. ACAb responses against multiple bacterial species discriminated among these three groups. In the second cohort, we asked whether ACAb responses present before diagnosis were associated with later T1D development and with HLA genotype in participants who were discordant for subsequent progression to diabetes. Serum IgG2 antibodies against Roseburia faecis and against a bacterial consortium were associated with future T1D diagnosis in an HLA DR3/DR4 haplotype-dependent manner. These analyses reveal associations between antibody responses to intestinal microbes and HLA-DR genotype and islet autoantibody specificity and with a future diagnosis of T1D. Further, we present a platform to investigate antibacterial antibodies in biological fluids that is applicable to studies of autoimmune diseases and responses to therapeutic interventions.
Collapse
Affiliation(s)
- Alexandra Paun
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| | - Christopher Yau
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| | | | - Michelle C Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - Amit Bar-Or
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology, Perelman Center for Advanced Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, U.S.A
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philippe Poussier
- Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON Canada
| | - Jayne S Danska
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
35
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
36
|
Liu Y, Lou X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics (Sao Paulo) 2020; 75:e1277. [PMID: 31939557 PMCID: PMC6945290 DOI: 10.6061/clinics/2020/e1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/04/2019] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota is a group of over 38 trillion bacterial cells in the human microbiota that plays an important role in the regulation of human metabolism through its symbiotic relationship with the host. Changes in the gut microbial ecosystem are associated with increased susceptibility to metabolic disease in humans. However, the composition of the gut microbiota in those with type 2 diabetes mellitus and in the pathogenesis of metabolic diseases is not well understood. This article reviews the relationship between environmental factors and the gut microbiota in individuals with type 2 diabetes mellitus. Finally, we discuss the goal of treating type 2 diabetes mellitus by modifying the gut microbiota and the challenges that remain in this area.
Collapse
Affiliation(s)
- Yanfen Liu
- Jinhua Municipal Central Hospital, Department of Endocrinology Jinhua, 321000, China
| | - Xueyong Lou
- Jinhua Municipal Central Hospital, Department of Endocrinology Jinhua, 321000, China
- *Corresponding author. E-mail:
| |
Collapse
|
37
|
de Oliveira RB, Matheus VA, Canuto LP, De Sant'ana A, Collares-Buzato CB. Time-dependent alteration to the tight junction structure of distal intestinal epithelia in type 2 prediabetic mice. Life Sci 2019; 238:116971. [PMID: 31634462 DOI: 10.1016/j.lfs.2019.116971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
AIM High-fat diet (HFD) intake has been associated with changes in intestinal microbiota composition, increased intestinal permeability, and onset of type 2 diabetes mellitus (T2DM). The aim of this work was twofold: 1) to investigate the structural and functional alterations of the tight junction (TJ)-mediated intestinal epithelial barrier of ileum and colon, that concentrate most of the microbiota, after exposure to a HFD for 15, 30 and 60 days, and 2) to assess the effect of in vitro exposure to free fatty acids (FFAs), one of the components of HFD, on paracellular barrier of colon-derived Caco-2 cells. METHODS/KEY FINDINGS HFD exposure induced progressive metabolic changes in male mice that culminated in prediabetes after 60d. Morphological analysis of ileum and colon mucosa showed no signs of epithelial rupture or local inflammation but changes in the junctional content/distribution and/or cellular content of TJ-associated proteins (claudins-1, -2, -3, and occludin) in intestinal epithelia were seen mainly after a prediabetes state has been established. This impairment in TJ structure was not associated with significant changes in intestinal permeability to FITC-dextran. Exposure of Caco-2 monolayers to palmitic or linoleic acids seems to induce a reinforcement of TJ structure while treatment with oleic acid had a more diverse effect on TJ protein distribution. SIGNIFICANCE TJ structure in distal intestinal epithelia can be specifically impaired by HFD intake at early stage of T2DM, but not by FFAs in vitro. Since the TJ change in ileum/colon was marginal, probably it does not contribute to the disease onset.
Collapse
Affiliation(s)
- Ricardo Beltrame de Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valquiria Aparecida Matheus
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leandro Pereira Canuto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariane De Sant'ana
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carla Beatriz Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
38
|
Tulyeu J, Kumagai H, Jimbo E, Watanabe S, Yokoyama K, Cui L, Osaka H, Mieno M, Yamagata T. Probiotics Prevents Sensitization to Oral Antigen and Subsequent Increases in Intestinal Tight Junction Permeability in Juvenile-Young Adult Rats. Microorganisms 2019; 7:microorganisms7100463. [PMID: 31623229 PMCID: PMC6843414 DOI: 10.3390/microorganisms7100463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Increased intestinal permeability is thought to underlie the pathogenesis of food allergy. We explore the mechanism responsible for changes in the morphology and function of the intestinal barrier using a rat model of food allergy, focusing on the contribution of intestinal microbiota. Juvenile–young adult rats were sensitized with ovalbumin and treated with antibiotics or probiotics (Clostridium butyricum and Lactobacillus reuteri), respectively. The serum ovalbumin-IgE levels, intestinal permeability, histopathological features, tight junction (TJ)-associated proteins, Th2 cytokines, and gut microbiota in feces were analyzed in each group. Sensitized rats showed an increase in ovalbumin-IgE levels and intestinal permeability with gut mucosal inflammation, whereas rats that received probiotics were only mildly affected. Rats given ovalbumin, but not those given probiotics, showed a reduction in both TJ-related protein expression and localization. Th2 cytokine levels were increased in the sensitized rats, but not in those given probiotics. TJs in rats treated with ovalbumin and antibiotics were disrupted, but those in rats administered probiotics were undamaged. Clostridiaceae were increased in the probiotics groups, especially Alkaliphilus, relative to the ovalbumin-sensitized group. Gut microbiota appears to play a role in regulating epithelial barrier function, and probiotics may help to prevent food sensitization through the up-regulation of TJ proteins.
Collapse
Affiliation(s)
- Janyerkye Tulyeu
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
- Department of Immunology and Laboratory, School of Biomedicine, Mongolian National University of Medical Sciences, Jamyan St 3, Ulaanbaatar 14210, Mongolia.
| | - Hideki Kumagai
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Eriko Jimbo
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 3290498, Japan.
| | - Koji Yokoyama
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 3290498, Japan.
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Makiko Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan.
| |
Collapse
|
39
|
Ho J, Nicolucci AC, Virtanen H, Schick A, Meddings J, Reimer RA, Huang C. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:4427-4440. [PMID: 31188437 DOI: 10.1210/jc.2019-00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Patients with type 1 diabetes (T1D) have lower microbiota diversity and distinct gut microbial profiles that have been linked to changes in intestinal permeability. Prebiotics are nondigestible carbohydrates that alter gut microbiota and could potentially improve glycemic control and reduce intestinal permeability and thereby insulin sensitivity. OBJECTIVE To determine the effect of prebiotics on glycemic control, gut microbiota, and intestinal permeability in children with T1D. DESIGN A randomized, placebo-controlled trial in children 8 to 17 years of age with T1D using placebo or prebiotic oligofructose-enriched inulin for 12 weeks. Baseline, 3-month, and 6-month assessments included HbA1c, C-peptide, gut microbiota, intestinal permeability, frequency of diabetic ketoacidosis (DKA), and severe hypoglycemia. RESULTS Forty-three subjects were randomized and 38 completed the study. The groups were similar at baseline: prebiotic (N = 17), age 12.5 years (SD of 2.8), HbA1c 8.02% (SD of 0.82); placebo (N = 21), age 12.0 years (SD of 2.6), HbA1c 8.08% (SD of 0.91). No significant differences were found in the frequency of DKA or severe hypoglycemia. At 3-months, C-peptide was significantly higher (P = 0.029) in the group who received prebiotics, which was accompanied by a modest improvement in intestinal permeability (P = 0.076). There was a significant increase in the relative abundance of Bifidobacterium within the prebiotic group at 3 months that was no longer present after the 3-month washout. The placebo group had significantly higher relative abundance of Streptococcus, Roseburia inulinivorans, Terrisporobacter, and Faecalitalea compared with the prebiotic group at 3 months. CONCLUSION Prebiotics are a potentially novel, inexpensive, low-risk treatment addition for T1D that may improve glycemic control. Further larger-scale trials are needed.
Collapse
Affiliation(s)
- Josephine Ho
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alissa C Nicolucci
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heidi Virtanen
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jon Meddings
- Department of Internal Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carol Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Harbison JE, Roth-Schulze AJ, Giles LC, Tran CD, Ngui KM, Penno MA, Thomson RL, Wentworth JM, Colman PG, Craig ME, Morahan G, Papenfuss AT, Barry SC, Harrison LC, Couper JJ. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatr Diabetes 2019; 20:574-583. [PMID: 31081243 DOI: 10.1111/pedi.12865] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS/HYPOTHESIS To investigate the longitudinal relationship between the gut microbiome, circulating short chain fatty acids (SCFAs) and intestinal permeability in children with islet autoimmunity or type 1 diabetes and controls. METHODS We analyzed the gut bacterial microbiome, plasma SCFAs, small intestinal permeability and dietary intake in 47 children with islet autoimmunity or recent-onset type 1 diabetes and in 41 unrelated or sibling controls over a median (range) of 13 (2-34) months follow-up. RESULTS Children with multiple islet autoantibodies (≥2 IA) or type 1 diabetes had gut microbiome dysbiosis. Anti-inflammatory Prevotella and Butyricimonas genera were less abundant and these changes were not explained by differences in diet. Small intestinal permeability measured by blood lactulose:rhamnose ratio was higher in type 1 diabetes. Children with ≥2 IA who progressed to type 1 diabetes (progressors), compared to those who did not progress, had higher intestinal permeability (mean [SE] difference +5.14 [2.0], 95% confidence interval [CI] 1.21, 9.07, P = .006), lower within-sample (alpha) microbial diversity (31.3 [11.2], 95% CI 9.3, 53.3, P = .005), and lower abundance of SCFA-producing bacteria. Alpha diversity (observed richness) correlated with plasma acetate levels in all groups combined (regression coefficient [SE] 0.57 [0.21], 95% CI 0.15, 0.99 P = .008). CONCLUSIONS/INTERPRETATION Children with ≥2 IA who progress to diabetes, like those with recent-onset diabetes, have gut microbiome dysbiosis associated with increased intestinal permeability. Interventions that expand gut microbial diversity, in particular SCFA-producing bacteria, may have a role to decrease progression to diabetes in children at-risk.
Collapse
Affiliation(s)
- Jessica E Harbison
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Lynne C Giles
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Cuong D Tran
- CSIRO, Health and Biosecurity, North Adelaide, South Australia, Australia
| | - Katrina M Ngui
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Megan A Penno
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Thomson
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - John M Wentworth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Colman
- Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Maria E Craig
- The Children's Hospital at Westmead and University of Sydney, Sydney, New South Wales, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Simon C Barry
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Jennifer J Couper
- Department of Diabetes and Endocrinology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A 2019; 116:15140-15149. [PMID: 31182588 PMCID: PMC6660755 DOI: 10.1073/pnas.1814558116] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence. Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Collapse
|
42
|
Lopez M, Nowak G. Platelet number in different anticoagulants as a diagnostic biomarker for increased intestinal permeability. Platelets 2019; 31:242-247. [PMID: 31043103 DOI: 10.1080/09537104.2019.1609662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The main pathological process associated to increased intestinal permeability is the translocation of toxic products, predominantly endotoxins/lipopolysaccharide (LPS), from the intestinal tract into the microcirculation. In blood, LPS binds to surface receptors on immune cells initiating an inflammatory response. LPS can also bind to platelets leading to preactivated platelets that have a lower threshold to be aggregated in presence heparin. The aim of this study was to validate a simple, fast and reliable test for screening LPS-loaded platelets. This test named PANDA (acronym for Platelet Number in Different Anticoagulants) consists in the measurement of the mean platelet number in blood samples collected into EDTA and heparin. We analyzed blood samples from 92 patients with gastrointestinal diseases and 23 healthy volunteers and found a markedly low number of platelets in heparinized blood compared to EDTA-anticoagulated blood in patients but not in healthy volunteers. Furthermore, ex vivo addition of endotoxin to blood samples induced a remarkable decrease in platelet count in heparinized blood of the volunteers but not in the patient's group, where platelets could be previously saturated by endotoxin circulating in blood. Platelet should be counted during the first hour after blood collection, in order to avoid false results due to a progressive platelet aggregation in heparinized blood in function of the time. Our results demonstrated that PANDA test can be used for screening LPS-loaded platelets as an indirect diagnostic biomarker for increased intestinal permeability and also for monitoring the gut barrier function during the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Mercedes Lopez
- Löwen Apotheke, Giessen, Germany.,Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Goetz Nowak
- Friedrich Schiller University Jena, University Hospital Jena, Jena, Germany
| |
Collapse
|
43
|
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci 2019; 20:283. [PMID: 30642013 PMCID: PMC6359510 DOI: 10.3390/ijms20020283] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autoimmune disorders derive from genetic, stochastic, and environmental factors that all together interact in genetically predisposed individuals. The impact of an imbalanced gut microbiome in the pathogenesis of autoimmunity has been suggested by an increasing amount of experimental evidence, both in animal models and humans. Several physiological mechanisms, including the establishment of immune homeostasis, are influenced by commensal microbiota in the gut. An altered microbiota composition produces effects in the gut immune system, including defective tolerance to food antigens, intestinal inflammation, and enhanced gut permeability. In particular, early findings reported differences in the intestinal microbiome of subjects affected by several autoimmune conditions, including prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence its composition, and putative involvement in the development of autoimmune disorders. In the light of the existing literature, future studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced gut permeability and molecular mechanisms responsible for autoimmunity onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
- VisMederi s.r.l., Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
44
|
Gürsoy S, Koçkar T, Atik SU, Önal Z, Önal H, Adal E. Autoimmunity and intestinal colonization by Candida albicans in patients with type 1 diabetes at the time of the diagnosis. KOREAN JOURNAL OF PEDIATRICS 2018; 61:217-220. [PMID: 30032588 PMCID: PMC6106689 DOI: 10.3345/kjp.2018.61.7.217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 03/05/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Type 1 diabetes mellitus (T1DM) is a chronic and immune-mediated disease, which is characterized by the progressive destruction of pancreatic beta cells. T1DM precipitates in genetically susceptible individuals through environmental factors. In this study, we aimed to evaluate the impact of autoimmunity and intestinal colonization of Candida albicans on the development of T1DM. METHODS Forty-two patients newly diagnosed with T1DM and 42 healthy subjects were included in this monocentric study. The basic and clinical characteristics of the patients were recorded. T1DM-, thyroid-, and celiac-associated antibodies were evaluated. Stool cultures for C. albicans were performed to assess whether or not gut integrity was impaired in patients with T1DM. RESULTS The evaluation of T1DM- and thyroid-associated antibodies showed that the prevalences of islet cell antibodies and antithyroperoxidase positivity were higher in the study patients than in the patients in the control group. Furthermore, the direct examination and culture of fresh stool samples revealed that 50% of the patients with T1DM and 23.8% of the control subjects had fungi (C. albicans). CONCLUSION Through this study, we suggest that the presence of intestinal C. albicans colonization at the time of the diagnosis of T1DM may indicate impairment of normal intestinal microbiota. We also suggest that there may be a tendency of T1DM in patients with a high prevalence of intestinal C. albicans.
Collapse
Affiliation(s)
- Semra Gürsoy
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Tuba Koçkar
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Sezen Ugan Atik
- Department of Pediatrics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Zerrin Önal
- Department of Pediatric Gastroenterology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Metabolic Disease, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Erdal Adal
- Department of Pediatric Endocrinology and Metabolism, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
45
|
Koffert J, Ståhle M, Karlsson H, Iozzo P, Salminen P, Roivainen A, Nuutila P. Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes Obes Metab 2018; 20:1384-1390. [PMID: 29352513 PMCID: PMC5969261 DOI: 10.1111/dom.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/31/2017] [Accepted: 01/06/2018] [Indexed: 12/01/2022]
Abstract
AIMS Bariatric surgery is the most effective treatment to tackle morbid obesity and type 2 diabetes, but the mechanisms of action are still unclear. The objective of this study was to investigate the effects of bariatric surgery on intestinal fatty acid (FA) uptake and blood flow. MATERIALS AND METHODS We recruited 27 morbidly obese subjects, of whom 10 had type 2 diabetes and 15 were healthy age-matched controls. Intestinal blood flow and fatty acid uptake from circulation were measured during fasting state using positron emission tomography (PET). Obese subjects were re-studied 6 months after bariatric surgery. The mucosal location of intestinal FA retention was verified in insulin resistant mice with autoradiography. RESULTS Compared to lean subjects, morbidly obese subjects had higher duodenal and jejunal FA uptake (P < .001) but similar intestinal blood flow (NS). Within 6 months after bariatric surgery, obese subjects had lost 24% of their weight and 7/10 diabetic subjects were in remission. Jejunal FA uptake was further increased (P < .03). Conversely, bariatric surgery provoked a decrease in jejunal blood flow (P < .05) while duodenal blood flow was preserved. Animal studies showed that FAs were taken up into enterocytes, for the most part, but were also transferred, in part, into the lumen. CONCLUSIONS In the obese, the small intestine actively takes up FAs from circulation and FA uptake remains higher than in controls post-operatively. Intestinal blood flow was not enhanced before or after bariatric surgery, suggesting that enhanced intestinal FA metabolism is not driven by intestinal perfusion.
Collapse
MESH Headings
- Absorption, Physiological
- Adult
- Animals
- Bariatric Surgery
- Body Mass Index
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Dietary Fats/metabolism
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Female
- Fluorine Radioisotopes
- Glucose Intolerance/blood
- Glucose Intolerance/complications
- Glucose Intolerance/metabolism
- Glucose Intolerance/therapy
- Humans
- Insulin Resistance
- Intestinal Absorption
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/diagnostic imaging
- Intestinal Mucosa/metabolism
- Intestine, Small/blood supply
- Intestine, Small/diagnostic imaging
- Intestine, Small/metabolism
- Mice
- Mice, Knockout
- Middle Aged
- Obesity, Morbid/complications
- Obesity, Morbid/metabolism
- Obesity, Morbid/surgery
- Obesity, Morbid/therapy
- Positron-Emission Tomography
- Regional Blood Flow
- Weight Loss
- Weight Reduction Programs
Collapse
Affiliation(s)
- Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Gastroenterology, Turku University Hospital, Turku, Finland
| | - Mia Ståhle
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
46
|
Neyazi N, Motevaseli E, Khorramizadeh MR, Mohammadi Farsani T, Nouri Z, Nasli Esfahani E, Ghahremani MH. Inhibition of Insulin Degrading Enzyme and Insulin Degradation by UV-Killed Lactobacillus acidophilus. ACTA ACUST UNITED AC 2018; 6:medsci6020036. [PMID: 29751685 PMCID: PMC6024763 DOI: 10.3390/medsci6020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/21/2018] [Accepted: 05/08/2018] [Indexed: 11/26/2022]
Abstract
Probiotics have beneficial effects on management of type 2 diabetes (T2D). The major hallmarks of T2D are insulin deficiency and insulin resistance which emphasize insulin therapy in onset of disease. Lactobacilli such as Lactobacillus acidophilus (L. acidophilus) have well known properties on prevention of T2D and insulin resistance but not on insulin degradation. Insulin-degrading enzyme (IDE) degrades insulin in the human body. We studied the effects of cell-free supernatant (CFS) and ultraviolet (UV)-killed L. acidophilus (ATCC 314) on IDE activity and insulin degradation in vitro. Cell growth inhibition by CFS and UV-killed L. acidophilus (ATCC 314) was studied and Western blotting and a fluoregenic assay was performed to determine IDE expression and its activity, respectively. Insulin degradation was evaluated by sandwich enzyme-linked immunosorbent assay(ELISA). IDE expression and activity was reduced by CFS and UV-killed L. acidophilus (ATCC 314). Although, decreased enzyme expression and activity was not significant for CFS in contrast to MRL (MRS with same pH as CFS). Also, reduction in IDE activity was not statistically considerable when compared to IDE expression. Insulin degradation was increased by CFS but decreased by UV-killed L. acidophilus (ATCC 314).
Collapse
Affiliation(s)
- Nadia Neyazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran 1416753955, Iran.
| | - Mohammad Reza Khorramizadeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| | - Taiebeh Mohammadi Farsani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| | - Ensieh Nasli Esfahani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| | - Mohammad Hossein Ghahremani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| |
Collapse
|
47
|
Rios-Arce ND, Collins FL, Schepper JD, Steury MD, Raehtz S, Mallin H, Schoenherr DT, Parameswaran N, McCabe LR. Epithelial Barrier Function in Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:151-183. [PMID: 29101655 DOI: 10.1007/978-3-319-66653-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Danny T Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Narayanan Parameswaran
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
48
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
49
|
Henschel AM, Cabrera SM, Kaldunski ML, Jia S, Geoffrey R, Roethle MF, Lam V, Chen YG, Wang X, Salzman NH, Hessner MJ. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One 2018; 13:e0190351. [PMID: 29293587 PMCID: PMC5749787 DOI: 10.1371/journal.pone.0190351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.
Collapse
Affiliation(s)
- Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark F. Roethle
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vy Lam
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nita H. Salzman
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
50
|
Xiao L, Van't Land B, van de Worp WRPH, Stahl B, Folkerts G, Garssen J. Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Front Immunol 2017; 8:1219. [PMID: 29033938 PMCID: PMC5626949 DOI: 10.3389/fimmu.2017.01219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an immune-mediated disease with a strong genetic basis but might be influenced by non-genetic factors such as microbiome development that “programs” the immune system during early life as well. Factors influencing pathogenesis, including a leaky intestinal mucosal barrier, an aberrant gut microbiota composition, and altered immune responsiveness, offer potential targets for prevention and/or treatment of T1D through nutritional or pharmacologic means. In this review, nutritional approaches during early life in order to protect against T1D development have been discussed. The critical role of tolerogenic dendritic cells in central and peripheral tolerance has been emphasized. In addition, since the gut microbiota affects the development of T1D through short-chain fatty acid (SCFA)-dependent mechanisms, we hypothesize that nutritional intervention boosting SCFA production may be used as a novel prevention strategy. Current retrospective evidence has suggested that exclusive and prolonged breastfeeding might play a protective role against the development of T1D. The beneficial properties of human milk are possibly attributed to its bioactive components such as unique immune-modulatory components human milk oligosaccharides and metabolites derived thereof, including SCFAs. These components might play a key role in healthy immune development and creating a fit and resilient immune system in early and later life.
Collapse
Affiliation(s)
- Ling Xiao
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda Van't Land
- Nutricia Research, Utrecht, Netherlands.,Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Wouter R P H van de Worp
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| |
Collapse
|