1
|
Zhou W, Du Z. Oleuropein mitigates non-alcoholic fatty liver disease (NAFLD) and modulates liver metabolites in high-fat diet-induced obese mice via activating PPARα. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8634-8645. [PMID: 38952322 DOI: 10.1002/jsfa.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism of oleuropein (OLE) ameliorates non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms. RESULTS Male C57BL/6J mice were fed either a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.03% (w/w) OLE for 16 weeks. OLE supplementation decreased body weight and liver weight, improved serum lipid profiles, and ameliorated HFD-induced hepatic dysfunction. Liver metabolomics analysis revealed that OLE increased the levels of nicotinamide, tauroursodeoxycholic acid, taurine, and docosahexaenoic acid, which were beneficial for lipid homeostasis and inflammation regulation. OLE exerted its protective effects by activating peroxisome proliferator-activated receptor alpha (PPARα), a key transcription factor that regulates fibroblast growth factor 21 (FGF21) expression and modulates lipid oxidation, lipogenesis and inflammation pathways. Importantly, OLE supplementation did not significantly affect body weight or liver weight in PPARα knockout (PPARα KO) mice, indicating that PPARα is essential for OLE-mediated NAFLD prevention. CONCLUSION Our results suggest that OLE alleviates NAFLD in mice by activating PPARα and modulating liver metabolites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Du
- The First People's Hospital of Lianyungang Public Health Department, Lianyungang, China
| |
Collapse
|
2
|
Jia Y, Yu H, Liang J, Zhang Q, Sun J, Yang H, Yan H, Zhang S, Li Y, Jin Y, Yang M. Increased FGF-21 Improves Ectopic Lipid Deposition in the Liver and Skeletal Muscle. Nutrients 2024; 16:1254. [PMID: 38732501 PMCID: PMC11085859 DOI: 10.3390/nu16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.
Collapse
Affiliation(s)
- Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Huixin Yu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Qiang Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Jiawei Sun
- College of Basic Medicine, Binzhou Medical University, Yantai 264003, China; (J.S.); (H.Y.)
| | - Hongqing Yang
- College of Basic Medicine, Binzhou Medical University, Yantai 264003, China; (J.S.); (H.Y.)
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Shuping Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Yana Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, China;
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai 264003, China;
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| |
Collapse
|
3
|
Liang YC, Jia MJ, Li L, Liu DL, Chu SF, Li HL. Association of circulating inflammatory proteins with type 2 diabetes mellitus and its complications: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1358311. [PMID: 38606083 PMCID: PMC11007105 DOI: 10.3389/fendo.2024.1358311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Background Increasing evidence indicates that immune response underlies the pathology of type 2 diabetes (T2D). Nevertheless, the specific inflammatory regulators involved in this pathogenesis remain unclear. Methods We systematically explored circulating inflammatory proteins that are causally associated with T2D via a bidirectional Mendelian randomization (MR) study and further investigated them in prevalent complications of T2D. Genetic instruments for 91 circulating inflammatory proteins were derived from a genome-wide association study (GWAS) that enrolled 14,824 predominantly European participants. Regarding the summary-level GWASs of type 2 diabetes, we adopted the largest meta-analysis of European population (74,124 cases vs. 824,006 controls) and a prospective nested case-cohort study in Europe (9,978 cases vs. 12,348 controls). Summary statistics for five complications of T2D were acquired from the FinnGen R9 repository. The inverse variance-weighted method was applied as the primary method for causal inference. MR-Egger, weighted median and maximum likelihood methods were employed as supplementary analyses. Results from the two T2D studies were combined in a meta-analysis. Sensitivity analyses and phenotype-wide association studies (PheWAS) were performed to detect heterogeneity and potential horizontal pleiotropy in the study. Results Genetic evidence indicated that elevated levels of TGF-α (OR = 1.16, 95% CI = 1.15-1.17) and CX3CL1 (OR = 1.30, 95% CI = 1.04-1.63) promoted the occurrence of T2D, and increased concentrations of FGF-21 (OR = 0.87, 95% CI = 0.81-0.93) and hGDNF (OR = 0.96, 95% CI = 0.95-0.98) mitigated the risk of developing T2D, while type 2 diabetes did not exert a significant influence on said proteins. Elevated levels of TGF-α were associated with an increased risk of ketoacidosis, neurological complications, and ocular complications in patients with T2D, and increased concentrations of FGF-21 were potentially correlated with a diminished risk of T2D with neurological complications. Higher levels of hGDNF were associated with an increased risk of T2D with peripheral vascular complications, while CX3CL1 did not demonstrate a significant association with T2D complications. Sensitivity analyses and PheWAS further ensure the robustness of our findings. Conclusion This study determined four circulating inflammatory proteins that affected the occurrence of T2D, providing opportunities for the early prevention and innovative therapy of type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Ying-Chao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ming-Jie Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ling Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Stefaniuk-Szmukier M, Piórkowska K, Ropka-Molik K. Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors. Genes (Basel) 2023; 14:1544. [PMID: 37628596 PMCID: PMC10454496 DOI: 10.3390/genes14081544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Equine metabolic syndrome (EMS) has become an important issue in modern veterinary medicine and is linked to the common, extremely painful, most-of-the-time performance-terminating hoof laminitis. The growing knowledge in the field of genetic background, inducing environmental factors, diagnosis, treatment and maintenance of affected equines led us to summarise the available information to be used not only for scientific purposes but for fieldwork. In horses, the clinical presentation of EMS includes: obesity or local fat deposition, bilateral lameness or hoof rings attributed to ongoing or previous (pasted) laminitis with the key feature of the occurrence of insulin dysregulation, disturbing the homeostasis within insulin, glucose and lipid metabolism. The management of EMS is based on dietary and fitness discipline; however, intensive research is ongoing in the field of regenerative medicine to develop modern and promising therapies.
Collapse
Affiliation(s)
- Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | | | | |
Collapse
|
5
|
Hung WC, Yu TH, Wang CP, Hsu CC, Lu YC, Wei CT, Chung FM, Lee YJ, Wu CC, Tang WH. Fibroblast growth factor 21 is associated with widening QRS complex and prolonged corrected QT interval in patients with stable angina. BMC Cardiovasc Disord 2022; 22:432. [PMID: 36180826 PMCID: PMC9523937 DOI: 10.1186/s12872-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is produced by cardiac cells, may acts in an autocrine manner, and was suggested to has a cardioprotective role in atherosclerosis. Wide QRS complex and heart rate-corrected QT interval (QTc interval) prolongation are associated to dangerous ventricular arrhythmias and cardiovascular disease mortality. Yet, the role of FGF21 in cardiac arrhythmia has never been studied. The aim of the study was to investigate the relationship between plasma FGF21 and the QRS duration and QTc interval in patients with stable angina. METHODS Three hundred twenty-one consecutive stable angina patients were investigated. Plasma FGF21 was measured through ELISA, and each subject underwent 12-lead electrocardiography. RESULTS FGF21 plasma levels were positively associated with the QRS duration (β = 0.190, P = 0.001) and QTc interval (β = 0.277, P < 0.0001). With increasing FGF21 tertiles, the patients had higher frequencies of wide QRS complex and prolonged QTc interval. After adjusting for patients' anthropometric parameters, the corresponding odd ratios (ORs) for wide QRS complex of the medium and high of FGF21 versus the low of FGF21 were 1.39 (95% CI 0.51-3.90) and 4.41 (95% CI 1.84-11.59), respectively, and p for trend was 0.001. Furthermore, multiple logistic regression analysis also showed the corresponding odd ratios (ORs) for prolonged QTc interval of the medium and high of FGF21 versus the low of FGF21 were 1.02 (95% CI 0.53-1.78) and 1.93 (95% CI 1.04-3.60) respectively with the p for trend of 0.037. In addition, age- and sex-adjusted FGF21 levels were positively associated with fasting glucose, HbA1c, creatinine, and adiponectin, but negatively associated with albumin, and the estimated glomerular filtration rate. CONCLUSIONS This study indicates that plasma FGF21 is associated with wide QRS complex and prolonged corrected QT interval in stable angina patients, further study is required to investigate the role of plasma FGF21 for the underlying pathogenesis.
Collapse
Affiliation(s)
- Wei-Chin Hung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chao-Ping Wang
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chang Hsu
- grid.414686.90000 0004 1797 2180Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.414686.90000 0004 1797 2180Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan
| | - Ching-Ting Wei
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.414686.90000 0004 1797 2180Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan
| | | | - Cheng-Ching Wu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Wei-Hua Tang
- grid.278247.c0000 0004 0604 5314Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, No. 91, Xinxing St., Yuli Township, Hualien County, 981002 Taiwan ,grid.260539.b0000 0001 2059 7017Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304 Taiwan
| |
Collapse
|
6
|
Elevated Serum Fibroblast Growth Factor 21 Is Relevant to Heart Failure Patients with Reduced Ejection Fraction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7138776. [PMID: 35069790 PMCID: PMC8767358 DOI: 10.1155/2022/7138776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Objective The aim of this study was to evaluate the roles of fibroblast growth factor 21 (FGF21) in heart failure patients with reduced ejection fraction and its association with Heart Failure with reduced Ejection Fraction (HFrEF). Methods The level of FGF21 was measured by enzyme-linked immunosorbent assay (ELISA) in 199 subjects enrolled in this study, including 128 subjects with HFrEF and 71 control subjects. The mean follow-up time was 13.36 months. The left ventricular end-diastolic diameter (LVEDD) and left ventricular ejection fraction (LVEF) percentage were evaluated by the 2D echocardiography. Serum brain natriuretic peptide (BNP) was measured in the routine clinical laboratory. Results The serum FGF21 level was evidently higher in patients with HFrEF than in the control group (228.72 ± 24.04 vs. 171.60 ± 12.98, p < 0.001). After 1 year of follow-up, 61 patients (47.66%) with heart failure were readmitted to the hospital, including 8 deaths (13.11%). The AUC of the receiver operating characteristic (ROC) curve for the predictive value of FGF21 for prognosis was 0.964. Kaplan-Meier analysis results showed that there were significant differences in the 1-year mortality and heart failure readmission events between the grouped subjects. A poor prognosis was correlated with the serum level of FGF21, BNP, LVEDD, and LVEF, which was confirmed by the univariate Cox analysis. Conclusion FGF21 was independently associated with an increased risk of mortality and readmission HFrEF patients. Therefore, FGF21 has the potential to be a biomarker for the progression of HFrEF in patients.
Collapse
|
7
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
8
|
Pan Q, Lin S, Li Y, Liu L, Li X, Gao X, Yan J, Gu B, Chen X, Li W, Tang X, Chen C, Guo L. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 2021; 63:103202. [PMID: 33421947 PMCID: PMC7806870 DOI: 10.1016/j.ebiom.2020.103202] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) has become a promising therapeutic target for metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic steatohepatitis. However, the clinical application of natural FGF21 molecule is limited because of its instability in vitro and short half-life in vivo. To improve FGF21's therapeutic property, we screened high receptor binding FGF21 analogs and made FGF21-Fc-GLP-1 dual-targeted constructs to investigate their activity in a number of experiments . METHODS Utilizing phage display high-throughput screening we identified mutations that could improve β-Klotho binding property of FGF21. IgG4 Fc was fused to FGF21 variants to extend the in vivo half-life. We further explored the potential synergistic actions of FGF21 with the incretin glucagon-like peptide-1 (GLP-1) by generating GLP-1-Fc-FGF21 dual agonists. FINDINGS Two Fc-FGF21 variants showed enhanced β-Klotho binding affinity in vitro as well as improved glucose lowering effect in vivo. One of the dual agonists, GLP-1-Fc-FGF21 D1, provided potent and sustained glucose lowering effect in diabetic mice models. It also demonstrated superior weight loss effect to GLP-1 or FGF21 alone. Moreover, GLP-1-Fc-FGF21 D1 exhibited strong anti-NASH effect in the high-fat diet-induced ob/ob model as it improved liver function, serum and hepatic lipid profile and reduced NAFLD activity score with an efficacy superior to either FGF21 or GLP-1 analogs alone. INTERPRETATION This novel GLP-1/FGF21 dual agonist is worth clinical development for the treatment of T2D, obesity and NASH. FUNDING HEC Pharm R&D Co., Ltd, National natural science fund of China.
Collapse
Affiliation(s)
- Qi Pan
- Department of Endocrinology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Shushan Lin
- Biologics Institute, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Yu Li
- Department of Pharmacology, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Liang Liu
- Department of Pharmacology, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Xiaoping Li
- Department of Biologics, HEC Pharmaceutical Co., Ltd., Guangdong, China
| | - Xianglei Gao
- Department of Biologics, HEC Pharmaceutical Co., Ltd., Guangdong, China
| | - Jiangyu Yan
- Department of Biologics, HEC Pharmaceutical Co., Ltd., Guangdong, China
| | - Baohua Gu
- Biologics Institute, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Xiaofeng Chen
- Biologics Institute, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Wenjia Li
- Biologics Institute, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Xinfa Tang
- Biologics Institute, HEC Pharm R&D Co., Ltd., Guangdong, China
| | - Chao Chen
- Department of Biologics, HEC Pharmaceutical Co., Ltd., Guangdong, China.
| | - Lixin Guo
- Department of Endocrinology, National Center of Gerontology, Beijing Hospital, Beijing, China.
| |
Collapse
|
9
|
Bazhan NM, Iakovleva TV, Dubinina AD, Makarova EN. Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet. Vavilovskii Zhurnal Genet Selektsii 2020; 24:844-852. [PMID: 35087997 PMCID: PMC8763717 DOI: 10.18699/vj20.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
In rodents, the most adequate model of human diet-induced obesity is obesity caused by the consumption of a sweet-fat diet (SFD), which causes more pronounced adiposity in females than in males. The aim of this work was to determine the sex-associated effect of SFD on the expression of genes related to carbohydrate-lipid metabolism in adult mice. For 10 weeks, male and female С57Bl mice were fed a standard laboratory chow (Control group) or a diet, which consisted of laboratory chow supplemented with sweet cookies, sunflower seeds and lard (SFD group). Weights of body, liver and fat depots, blood concentrations of hormones and metabolites, liver fat, and mRNA levels of genes involved in regulation of energy metabolism in the liver, perigonadal and subcutaneous white adipose tissue (pgWAT, scWAT) and brown adipose tissue (BAT) were measured. SFD increased body weight and insulin resistance in mice of both sexes. Female mice that consumed SFD (SFD females) had a greater increase in adiposity than SFD males. SFD females showed a decreased expression of genes related to lipogenesis (Lpl) and glucose metabolism (G6pc, Pklr) in liver, as well as lipogenesis (Lpl, Slca4) and lipolysis (Lipe) in pgWAT, suggesting reduced energy expenditure. In contrast, SFD males showed increased lean mass gain, plasma insulin and FGF21 levels, expressions of Cpt1α gene in pgWAT and scWAT and Pklr gene in liver, suggesting enhanced lipid and glucose oxidation in these organs. Thus, in mice, there are sex-dependent differences in adaptation to SFD at the transcriptional level, which can help to explain higher adiposity in females under SFD consumtion.
Collapse
Affiliation(s)
- N. M. Bazhan
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences;
Novosibirsk State University
| | - T. V. Iakovleva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. D. Dubinina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. N. Makarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
10
|
Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:59-73. [PMID: 33332766 PMCID: PMC7860600 DOI: 10.1002/iid3.391] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Low‐level of chronic inflammation activation is characteristic of obesity. Nonalcoholic fatty liver disease (NAFLD) is closely linked to obesity and is an emerging health problem, it originates from abnormal accumulation of triglycerides in the liver, and sometimes causes inflammatory reactions that could contribute to cirrhosis and liver cancer, thus its pathogenesis needs to be clarified for more treatment options. Once NAFLD is established, it contributes to systemic inflammation, the low‐grade inflammation is continuously maintained during NAFLD causing impaired resolution of inflammation in obesity, which subsequently exacerbates its severity. This study focuses on the effects of obesity‐induced inflammations, which are the underlying causes of the disease progression and development of more severe inflammatory and fibrotic stages. Understanding the relationship between obesity and NAFLD could help in establishing attractive therapeutic targets or diagnostic markers in obesity‐induced inflammation response and provides new approaches for the prevention and treatment of NAFLD in obesity.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Development of a long acting FGF21 analogue-albumin fusion protein and its anti-diabetic effects. J Control Release 2020; 324:522-531. [PMID: 32450094 DOI: 10.1016/j.jconrel.2020.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like protein that improves blood glucose and lipid metabolism. However, its short half-life and instability are bottlenecks to its clinical applications. In this study, to extend its pharmacological action, we created a stabilized mutant FGF21 (mFGF21:ΔHPIP, P171G, A180E, L118C-A134C, S167A) and then genetically fused it with human albumin (HSA-mFGF21) via a polypeptide linker. Physicochemical analyses suggested that HSA-mFGF21 was formed from both intact HSA and mFGF21. Pharmacokinetic findings indicated the half-life of HSA-mFGF21 was 20 times longer than that of FGF21. In addition, HSA-mFGF21 was persistently distributed in adipose tissue as a target tissue. The in vivo hypoglycemic activity of HSA-mFGF21 using streptozotocin (STZ)-induced type I diabetes model mice, in which insulin secretion was suppressed, showed that a single intravenous administration of HSA-mFGF21 rapidly alleviated hyperglycemia. At that time, HSA-mFGF21 increased GLUT1 mRNA expression in adipose tissue without having any effect on insulin secretion. A twice weekly administration of HSA-mFGF21 continuously suppressed blood glucose levels and ameliorated the abnormalities of adipose tissue induced by STZ treatment. Interestingly, HSA-mFGF21 showed no hypoglycemic effects in healthy mice. Together, HSA-mFGF21 could be a novel biotherapeutic for the treatment of metabolic disorders including diabetes mellitus.
Collapse
|
12
|
Wang L, Mazagova M, Pan C, Yang S, Brandl K, Liu J, Reilly SM, Wang Y, Miao Z, Loomba R, Lu N, Guo Q, Liu J, Yu RT, Downes M, Evans RM, Brenner DA, Saltiel AR, Beutler B, Schnabl B. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc Natl Acad Sci U S A 2019; 116:15184-15193. [PMID: 31289229 PMCID: PMC6660779 DOI: 10.1073/pnas.1904360116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates glucose, lipid, and energy homeostasis. While gene expression of FGF21 is regulated by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha in the fasted state, little is known about the regulation of trafficking and secretion of FGF21. We show that mice with a mutation in the Yip1 domain family, member 6 gene (Klein-Zschocher [KLZ]; Yipf6KLZ/Y ) on a high-fat diet (HFD) have higher plasma levels of FGF21 than mice that do not carry this mutation (controls) and hepatocytes from Yipf6KLZ/Y mice secrete more FGF21 than hepatocytes from wild-type mice. Consequently, Yipf6KLZ/Y mice are resistant to HFD-induced features of the metabolic syndrome and have increased lipolysis, energy expenditure, and thermogenesis, with an increase in core body temperature. Yipf6KLZ/Y mice with hepatocyte-specific deletion of FGF21 were no longer protected from diet-induced obesity. We show that YIPF6 binds FGF21 in the endoplasmic reticulum to limit its secretion and specifies packaging of FGF21 into coat protein complex II (COPII) vesicles during development of obesity in mice. Levels of YIPF6 protein in human liver correlate with hepatic steatosis and correlate inversely with levels of FGF21 in serum from patients with nonalcoholic fatty liver disease (NAFLD). YIPF6 is therefore a newly identified regulator of FGF21 secretion during development of obesity and could be a target for treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China;
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161
| | - Magdalena Mazagova
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, 100015 Beijing, China
| | - Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Shannon M Reilly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Zhaorui Miao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Na Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Qinglong Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Jihua Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiang Su, China
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161
| |
Collapse
|
13
|
Gu X, Luo X, Wang Y, He Z, Li X, Wu K, Zhang Y, Yang Y, Ji J, Luo X. Ascorbic acid attenuates cell stress by activating the fibroblast growth factor 21/fibroblast growth factor receptor 2/adiponectin pathway in HepG2 cells. Mol Med Rep 2019; 20:2450-2458. [PMID: 31322211 DOI: 10.3892/mmr.2019.10457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
Increasing prevalence of obesity‑induced non‑alcoholic fatty liver disease (NAFLD) and non‑alcoholic steatohepatitis (NASH) has been reported. Ascorbic acid (AA), also known as vitamin C, an excellent antioxidant, has been shown to exert beneficial effects on NAFLD; however, the underlying mechanisms are yet to be fully elucidated. In the present study, the role of AA on cell stress in tumor necrosis factor α (TNFα)‑treated HepG2 cells was investigated. Our findings revealed that exposure to AA effectively ameliorated TNFα‑induced cell stresses, including hypoxia, inflammation and endoplasmic reticulum (ER) stress by reducing the expression of Hif1α and its target genes (glucose transporter 1), pro‑inflammatory genes (monocyte chemoattractant 1) and ER stress‑related genes (glucose‑regulated protein, 78 kDa). AA also decreased the protein level of HIF1α. Additionally, AA significantly increased the secretion of total adiponectin and high molecular weight (HMW) adiponectin. Mechanistically, AA was determined to increase the expression of fibroblast growth factor 21 (FGF21) and its receptor, fibroblast growth factor receptor 2 (FGFR2). Knockdown of FGFR2 not only decreased the levels of total adiponectin and HMW adiponectin, but almost abolished the beneficial effects of AA in ameliorating cell stress. Collectively, the findings of our study demonstrated that AA may attenuate hepatocyte stress induced by TNFα via activation of the FGF21/FGFR2/adiponectin pathway. This could a novel mechanism of action of AA, and its potential for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Xinqian Gu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanxin Wang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhangya He
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaomin Li
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kunjin Wu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yifan Zhang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yafeng Yang
- Department of Clinical Nutrition, Xian Yang Central Hospital, Xianyang, Shaanxi 712000, P.R. China
| | - Jing Ji
- Department of Obstetrics, Northwest Women and Children Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Esler WP, Bence KK. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2019; 8:247-267. [PMID: 31004828 PMCID: PMC6698700 DOI: 10.1016/j.jcmgh.2019.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
The prevalence and diagnosis of nonalcoholic fatty liver disease (NAFLD) is on the rise worldwide and currently has no FDA-approved pharmacotherapy. The increase in disease burden of NAFLD and a more severe form of this progressive liver disease, nonalcoholic steatohepatitis (NASH), largely mirrors the increase in obesity and type 2 diabetes (T2D) and reflects the hepatic manifestation of an altered metabolic state. Indeed, metabolic syndrome, defined as a constellation of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension, is the major risk factor predisposing the NAFLD and NASH. There are multiple potential pharmacologic strategies to rebalance aspects of disordered metabolism in NAFLD. These include therapies aimed at reducing hepatic steatosis by directly modulating lipid metabolism within the liver, inhibiting fructose metabolism, altering delivery of free fatty acids from the adipose to the liver by targeting insulin resistance and/or adipose metabolism, modulating glycemia, and altering pleiotropic metabolic pathways simultaneously. Emerging data from human genetics also supports a role for metabolic drivers in NAFLD and risk for progression to NASH. In this review, we highlight the prominent metabolic drivers of NAFLD pathogenesis and discuss the major metabolic targets of NASH pharmacotherapy.
Collapse
Key Words
- acc, acetyl-coa carboxylase
- alt, alanine aminotransferase
- aso, anti-sense oligonucleotide
- ast, aspartate aminotransferase
- chrebp, carbohydrate response element binding protein
- ci, confidence interval
- dgat, diacylglycerol o-acyltransferase
- dnl, de novo lipogenesis
- fas, fatty acid synthase
- ffa, free fatty acid
- fgf, fibroblast growth factor
- fxr, farnesoid x receptor
- glp-1, glucagon-like peptide-1
- hdl, high-density lipoprotein
- homa-ir, homeostatic model assessment of insulin resistance
- ldl, low-density lipoprotein
- nafld, nonalcoholic fatty liver disease
- nas, nonalcoholic fatty liver disease activity score
- nash, nonalcoholic steatohepatitis
- or, odds ratio
- pdff, proton density fat fraction
- ppar, peroxisome proliferator-activated receptor
- sglt2, sodium glucose co-transporter 2
- srebp-1c, sterol regulatory element binding protein-1c
- t2d, type 2 diabetes
- t2dm, type 2 diabetes mellitus
- tg, triglyceride
- th, thyroid hormone
- thr, thyroid hormone receptor
- treg, regulatory t cells
- tzd, thiazolidinedione
- vldl, very low-density lipoprotein
Collapse
Affiliation(s)
- William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts.
| |
Collapse
|
15
|
Therapeutic Role of Fibroblast Growth Factor 21 (FGF21) in the Amelioration of Chronic Diseases. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Cariello M, Piglionica M, Gadaleta RM, Moschetta A. The Enterokine Fibroblast Growth Factor 15/19 in Bile Acid Metabolism. Handb Exp Pharmacol 2019; 256:73-93. [PMID: 31123830 DOI: 10.1007/164_2019_235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21, and FGF23, play a key role in whole-body homeostasis. In particular, FGF19 is a postprandial hormone regulating glucose homeostasis, glycogen and protein synthesis, and primary bile acid (BA) metabolism. In the ileum, BA-dependent farnesoid X receptor (FXR) activation induces the production of FGF19, which reaches the liver through the portal system where it represses the expression of CYP7A1, the rate-limiting enzyme of hepatic de novo BAs synthesis. Dysregulation of BA levels associated with alteration in FGF19 level has been depicted in different pathological conditions of the gut-liver axis. Furthermore, FGF19 exploits strong anti-cholestatic and anti-fibrotic activities in the liver. However, native FGF19 seems to retain peculiar hepatic pro-tumorigenic actions. Recently engineered FGF19 analogues have been recently synthetized, with fully retained BA regulatory activity but without intrinsic pro-tumoral action, thus opening bona fide novel pharmacological strategy for the treatment of gut-liver axis diseases.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | | | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.
- National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
17
|
Larson CJ. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb Exp Pharmacol 2019; 251:381-424. [PMID: 30689089 DOI: 10.1007/164_2018_184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human brown adipose tissue (BAT) is experimentally modeled to better understand the biology of this important metabolic tissue, and also to enable the potential discovery and development of novel therapeutics for obesity and sequelae resulting from the persistent positive energy balance. This chapter focuses on translation into humans of findings and hypotheses generated in nonhuman models of BAT pharmacology. Given the demonstrated challenges of sustainably reducing caloric intake in modern humans, potential solutions to obesity likely lie in increasing energy expenditure. The energy-transforming activities of a single cell in any given tissue can be conceptualized as a flow of chemical energy from energy-rich substrate molecules into energy-expending, endergonic biological work processes through oxidative degradation of organic molecules ingested as nutrients. Despite the relatively tight coupling between metabolic reactions and products, some expended energy is incidentally lost as heat, and in this manner a significant fraction of the energy originally captured from the environment nonproductively transforms into heat rather than into biological work. In human and other mammalian cells, some processes are even completely uncoupled, and therefore purely energy consuming. These molecular and cellular actions sum up at the physiological level to adaptive thermogenesis, the endogenous physiology in which energy is nonproductively released as heat through uncoupling of mitochondria in brown fat and potentially skeletal muscle. Adaptive thermogenesis in mammals occurs in three forms, mostly in skeletal muscle and brown fat: shivering thermogenesis in skeletal muscle, non-shivering thermogenesis in brown fat, and diet-induced thermogenesis in brown fat. At the cellular level, the greatest energy transformations in humans and other eukaryotes occur in the mitochondria, where creating energetic inefficiency by uncoupling the conversion of energy-rich substrate molecules into ATP usable by all three major forms of biological work occurs by two primary means. Basal uncoupling occurs as a passive, general, nonspecific leak down the proton concentration gradient across the membrane in all mitochondria in the human body, a gradient driving a key step in ATP synthesis. Inducible uncoupling, which is the active conduction of protons across gradients through processes catalyzed by proteins, occurs only in select cell types including BAT. Experiments in rodents revealed UCP1 as the primary mammalian molecule accounting for the regulated, inducible uncoupling of BAT, and responsive to both cold and pharmacological stimulation. Cold stimulation of BAT has convincingly translated into humans, and older clinical observations with nonselective 2,4-DNP validate that human BAT's participation in pharmacologically mediated, though nonselective, mitochondrial membrane decoupling can provide increased energy expenditure and corresponding body weight loss. In recent times, however, neither beta-adrenergic antagonism nor unselective sympathomimetic agonism by ephedrine and sibutramine provide convincing evidence that more BAT-selective mechanisms can impact energy balance and subsequently body weight. Although BAT activity correlates with leanness, hypothesis-driven selective β3-adrenergic agonism to activate BAT in humans has only provided robust proof of pharmacologic activation of β-adrenergic receptor signaling, limited proof of the mechanism of increased adaptive thermogenesis, and no convincing evidence that body weight loss through negative energy balance upon BAT activation can be accomplished outside of rodents. None of the five demonstrably β3 selective molecules with sufficient clinical experience to merit review provided significant weight loss in clinical trials (BRL 26830A, TAK 677, L-796568, CL 316,243, and BRL 35135). Broader conclusions regarding the human BAT therapeutic hypothesis are limited by the absence of data from most studies demonstrating specific activation of BAT thermogenesis in most studies. Additionally, more limited data sets with older or less selective β3 agonists also did not provide strong evidence of body weight effects. Encouragingly, β3-adrenergic agonists, catechins, capsinoids, and nutritional extracts, even without robust negative energy balance outcomes, all demonstrated increased total energy expenditure that in some cases could be associated with concomitant activation of BAT, though the absence of body weight loss indicates that in no cases did the magnitude of negative energy balance reach sufficient levels. Glucocorticoid receptor agonists, PPARg agonists, and thyroid hormone receptor agonists all possess defined molecular and cellular pharmacology that preclinical models predicted to be efficacious for negative energy balance and body weight loss, yet their effects on human BAT thermogenesis upon translation were inconsistent with predictions and disappointing. A few new mechanisms are nearing the stage of clinical trials and may yet provide a more quantitatively robust translation from preclinical to human experience with BAT. In conclusion, translation into humans has been demonstrated with BAT molecular pharmacology and cell biology, as well as with physiological response to cold. However, despite pharmacologically mediated, statistically significant elevation in total energy expenditure, translation into biologically meaningful negative energy balance was not achieved, as indicated by the absence of measurable loss of body weight over the duration of a clinical study.
Collapse
Affiliation(s)
- Christopher J Larson
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
18
|
Wang N, Li JY, Zhao TT, Li SM, Shen CB, Li DS, Wang WF. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation 2018; 41:73-80. [PMID: 28965199 DOI: 10.1007/s10753-017-0665-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes display a gradual change in metabolism during inflammation. When activated, the increase in glucose utilization is important for monocytes to participate in immune and inflammatory responses. Further studies on the mechanism underlying this biological phenomenon may provide a new understanding of the relationship between immune response and metabolism. The THP-1 cells were used as a monocyte model. The cells were activated with lipopolysaccharide (LPS). Glucose uptake was measured using flow cytometry. The expression of fibroblast growth factor 21 (FGF-21), glucose transporter 1 (GLUT-1), and other FGF-21 signaling pathway-related factor mRNAs was determined by real-time polymerase chain reaction. Further, the relationship between FGF-21 expression in monocytes and phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling pathway was determined by Western blotting. LPS elevated FGF-21 expression in monocytic THP-1 cells in vitro. Functional assays showed that the phenomenon in which LPS and FGF-21 stimulated glucose uptake in monocytic THP-1 cells could be inhibited by FGFR inhibitor. The mechanism of elevation of FGF-21 was found to involve the PI3K/Akt signaling pathway. This study indicated that FGF-21 could regulate the immune response indirectly by influencing the glucose uptake of activated monocytes cells.
Collapse
Affiliation(s)
- Nan Wang
- Life Science and Biotechnique Research Center, A Division of Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Jun-Yan Li
- Life Science and Biotechnique Research Center, A Division of Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | | | - Si-Ming Li
- Harbin University of Commerce, Harbin, China
| | - Cheng-Bin Shen
- Life Science and Biotechnique Research Center, A Division of Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - De-Shan Li
- Life Science and Biotechnique Research Center, A Division of Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Wen-Fei Wang
- Life Science and Biotechnique Research Center, A Division of Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
19
|
Wu CH, Chou RH, Kuo CS, Huang PH, Chang CC, Leu HB, Huang CC, Chen JW, Lin SJ. Circulating Fibroblast Growth Factor 21 is Associated with Subsequent Renal Injury Events in Patients Undergoing Coronary Angiography. Sci Rep 2018; 8:12425. [PMID: 30127382 PMCID: PMC6102249 DOI: 10.1038/s41598-018-30744-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a regulator of glucose homeostasis, and is suggested to have protective effect on diabetic nephropathy. Its impact on non-diabetic kidney disease is unclear. To investigate the impact of FGF21 on contrast-induced nephropathy (CIN), 531 subjects underwent elective coronary angiography (CAG) were enrolled. Baseline creatinine and FGF21 were obtained before CAG. Patients were grouped into tertiles according to their FGF21 concentration. Creatinine was obtained 48 hours after CAG, and every 6 months in the follow-up period. Renal function decline was defined as >30% reduction of eGFR from baseline. All subjects were followed up till December 2016, or till the occurrence of major adverse cardiovascular events (MACE). Patients with higher FGF21 concentration were older, had higher incidence of hypertension, diabetes, chronic kidney disease, and heart failure. Thirty-four cases of CIN and 111 cases of renal function decline were identified during mean follow-up of 2.3 ± 1.3 years. Circulating FGF21 level was independently associated with CIN (aOR: 4.66, 95% CI: 1.29–16.86, p = 0.019) and renal function decline (aHR: 7.98, 95% CI: 4.07–15.66, p < 0.001) whether diabetes was present or not. In conclusion, circulating FGF21 level is independently associated with the incidence of CIN and subsequent kidney injury in patients undergoing CAG.
Collapse
Affiliation(s)
- Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Sung Kuo
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Bao L, Yin J, Gao W, Wang Q, Yao W, Gao X. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br J Pharmacol 2018; 175:3379-3393. [PMID: 29859019 PMCID: PMC6057909 DOI: 10.1111/bph.14383] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease and is a serious public health problem around the world. There are currently no approved treatments for NASH. FGF21 has recently emerged as a promising drug candidate for metabolic diseases. However, the disadvantages of FGF21 as a clinically useful medicine include its short plasma half-life and poor drug-like properties. Here, we have explored the effects of PsTag600-FGF21, an engineered long-acting FGF21 fusion protein, in mice with NASH and describe some of the underlying mechanisms. EXPERIMENTAL APPROACH A long-acting FGF21 was prepared by genetic fusion with a 600 residues polypeptide (PsTag600). We used a choline-deficient high-fat diet-induced model of NASH in mice. The effects on body weight, insulin sensitivity, inflammation and levels of hormones and metabolites were studied first. We further investigated whether PsTag600-FGF21 attenuated inflammation through the Th17-IL17A axis and the associated mechanisms. KEY RESULTS PsTag600-FGF21 dose-dependently reduced body weight, blood glucose, and insulin and lipid levels and reversed hepatic steatosis. PsTag600-FGF21 enhanced fatty acid activation and mitochondrial β-oxidation in the liver. The profound reduction in hepatic inflammation in NASH mice following PsTag600-FGF21 was associated with inhibition of IL17A expression in Th17 cells. Furthermore, PsTag600-FGF21 depended on adiponectin to exert its suppression of Th17 cell differentiation and IL17A expression. CONCLUSIONS AND IMPLICATIONS Our data have uncovered some of the mechanisms by which PsTag600-FGF21 suppresses hepatic inflammation and further suggest that PsTag600-FGF21 could be an effective approach in NASH treatment.
Collapse
Affiliation(s)
- Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
21
|
Zhang S, Yu D, Wang M, Huang T, Wu H, Zhang Y, Zhang T, Wang W, Yin J, Ren G, Li D. FGF21 attenuates pulmonary fibrogenesis through ameliorating oxidative stress in vivo and in vitro. Biomed Pharmacother 2018; 103:1516-1525. [DOI: 10.1016/j.biopha.2018.03.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
|
22
|
Zhang J, Weng W, Wang K, Lu X, Cai L, Sun J. The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci 2018; 14:1000-1011. [PMID: 29989062 PMCID: PMC6036735 DOI: 10.7150/ijbs.25026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Data from the International Diabetes Federation show that 347 million people worldwide have diabetes, and the incidence is still rising. Although the treatment of diabetes has been advanced, the current therapeutic options and outcomes, e.g. complications, are yet far from ideal. Therefore, an urgent need exists for the development of more effective therapies. Numerous studies have been conducted to establish and confirm whether FGF21 exerts beneficial effects on obesity and diabetes along with its complications. However, most of the studies associated with FGF21 were conducted in the patients with type 2 diabetes. Subsequently, the effect of FGF21 in the prevention or treatment of type 1 diabetes and its complications were also increasingly reported. In this review, we summarize the findings available on the function of FGF21 and the status of FGF21's treatment for type 1 diabetes. Based on the available information, we found that FGF21 exerts a hypoglycemic effect, restores the function of brown fat, and inhibits various complications in type 1 diabetes patients. Although these features are predominantly similar to those observed in the studies that showed the beneficial impact of FGF21 on type 2 diabetes and its complications, there are also certain distinct features and findings that may be of provide important and instructive for us to understand mechanistic insights and further promote the prevention and treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Wenya Weng
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Kai Wang
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- The Third Affiliated Hospital of Wenzhou Medical University, Ruian Center of Chinese-American Research Institute for Diabetic Complications, Ruian, China
| | - Lu Cai
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Jian Sun
- The Center of Cardiovascular Disorders, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Weng Y, Ishino T, Sievers A, Talukdar S, Chabot JR, Tam A, Duan W, Kerns K, Sousa E, He T, Logan A, Lee D, Li D, Zhou Y, Bernardo B, Joyce A, Kavosi M, O'Hara DM, Clark T, Guo J, Giragossian C, Stahl M, Calle RA, Kriz R, Somers W, Lin L. Glyco-engineered Long Acting FGF21 Variant with Optimal Pharmaceutical and Pharmacokinetic Properties to Enable Weekly to Twice Monthly Subcutaneous Dosing. Sci Rep 2018. [PMID: 29523796 PMCID: PMC5844872 DOI: 10.1038/s41598-018-22456-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yan Weng
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Tetsuya Ishino
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Annette Sievers
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Saswata Talukdar
- Internal Medicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Jeffrey R Chabot
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Weili Duan
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Kelvin Kerns
- BioMedicine Design, Pfizer Worldwide Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Tao He
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Alison Logan
- Internal Medicine, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Darwin Lee
- Internal Medicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Dongmei Li
- Internal Medicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Yingjiang Zhou
- Internal Medicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Barbara Bernardo
- Internal Medicine, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Alison Joyce
- BioMedicine Design, Pfizer Worldwide Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Mania Kavosi
- BioMedicine Design, Pfizer Worldwide Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Denise M O'Hara
- BioMedicine Design, Pfizer Worldwide Research and Development, 1 Burtt Road, Andover, MA, 01810, USA
| | - Tracey Clark
- BioMedicine Design, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Jie Guo
- BioMedicine Design, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Craig Giragossian
- BioMedicine Design, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, CT, 06340, USA
| | - Mark Stahl
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Roberto A Calle
- Internal Medicine, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Ron Kriz
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Will Somers
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA
| | - Laura Lin
- BioMedicine Design, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
24
|
Wang N, Xu TY, Zhang X, Li JY, Wang YX, Guo XC, Li SM, Wang WF, Li DS. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes. Int Immunopharmacol 2018; 56:301-309. [DOI: 10.1016/j.intimp.2018.01.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/12/2023]
|
25
|
Shi SY, Lu YW, Liu Z, Stevens J, Murawsky CM, Wilson V, Hu Z, Richards WG, Michaels ML, Zhang J, Yan W, Li Y. A biparatopic agonistic antibody that mimics fibroblast growth factor 21 ligand activity. J Biol Chem 2018; 293:5909-5919. [PMID: 29483191 PMCID: PMC5912448 DOI: 10.1074/jbc.ra118.001752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies have become important formats for therapeutic discovery. They allow for potential synergy by simultaneously engaging two separate targets and enable new functions that are not possible to achieve by using a combination of two monospecific antibodies. Antagonistic antibodies dominate drug discovery today, but only a limited number of agonistic antibodies (i.e. those that activate receptor signaling) have been described. For receptors formed by two components, engaging both of these components simultaneously may be required for agonistic signaling. As such, bispecific antibodies may be particularly useful in activating multicomponent receptor complexes. Here, we describe a biparatopic (i.e. targeting two different epitopes on the same target) format that can activate the endocrine fibroblast growth factor (FGF) 21 receptor (FGFR) complex containing β-Klotho and FGFR1c. This format was constructed by grafting two different antigen-specific VH domains onto the VH and VL positions of an IgG, yielding a tetravalent binder with two potential geometries, a close and a distant, between the two paratopes. Our results revealed that the biparatopic molecule provides activities that are not observed with each paratope alone. Our approach could help address the challenges with heterogeneity inherent in other bispecific formats and could provide the means to adjust intramolecular distances of the antibody domains to drive optimal activity in a bispecific format. In conclusion, this format is versatile, is easy to construct and produce, and opens a new avenue for agonistic antibody discovery and development.
Collapse
Affiliation(s)
- Sally Yu Shi
- From Amgen Inc., South San Francisco, California 94080
| | - Ya-Wen Lu
- From Amgen Inc., South San Francisco, California 94080
| | - Zhi Liu
- Amgen Inc., Thousand Oaks, California 91320, and
| | | | | | - Vicki Wilson
- Amgen British Columbia Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Zhonghua Hu
- Amgen Inc., Thousand Oaks, California 91320, and
| | | | | | - Jun Zhang
- From Amgen Inc., South San Francisco, California 94080
| | - Wei Yan
- Amgen Inc., Thousand Oaks, California 91320, and
| | - Yang Li
- From Amgen Inc., South San Francisco, California 94080,
| |
Collapse
|
26
|
Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: Systemic enhancer of longevity. Cell Signal 2017; 40:10-21. [DOI: 10.1016/j.cellsig.2017.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023]
|
27
|
Larson KR, Russo KA, Fang Y, Mohajerani N, Goodson ML, Ryan KK. Sex Differences in the Hormonal and Metabolic Response to Dietary Protein Dilution. Endocrinology 2017; 158:3477-3487. [PMID: 28938440 DOI: 10.1210/en.2017-00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
Abstract
Consumption of a low-protein, high-carbohydrate diet induces a striking increase in circulating fibroblast growth factor-21 (FGF21), which is associated with improved cardiometabolic health and increased longevity. Increased lifespan during this dietary protein "dilution" has been explained by resource-mediated trade-offs between reproduction and survival, such that fecundity is optimized at a greater relative intake of proteins/carbohydrates. The magnitude of this trade-off is thought to be sex-dependent. In this study, we tested the hypothesis that metabolic responses to dietary protein dilution are likewise dependent on sex. We maintained age-matched adult male and female C57BL/6J mice on isocaloric diets containing 22% fat and differing in the ratio of protein/carbohydrate. The normal protein (NP) control diet contained 18% protein and 60% carbohydrate by kcal. The protein diluted (PD) diet contained 4% protein and 74% carbohydrate. Consistent with previous reports, PD males gained less weight and less fat than did normal protein controls and exhibited both improved glucose tolerance and decreased plasma lipids. In contrast, these metabolic benefits were absent among age-matched females maintained on the same diets. Likewise, whereas circulating FGF21 was increased up to 66-fold among PD male mice, this was substantially blunted among female counterparts. Sex differences in energy balance, glucose control, and plasma FGF21 were reversed upon ovariectomy. Collectively, our findings support that female mice are relatively less sensitive to the metabolic improvements observed following dietary protein dilution. This is accompanied by blunted circulating levels of FGF21 and requires an intact female reproductive system.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Kimberly A Russo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Niloufar Mohajerani
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| |
Collapse
|
28
|
Dirksen A, Davis KA, Collins JT, Bhattacharya K, Finneman JI, Pepin EL, Ryczek JS, Brown PW, Wellborn WB, Mangalathillam R, Evans BP, Pozzo MJ, Finn RF. Process development of a FGF21 protein-antibody conjugate. Biopolymers 2017; 110. [PMID: 28948603 DOI: 10.1002/bip.23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Abstract
A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21A129C dimerization and stabilizing the FGF21A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21A129C dimerization through disulfide formation was eliminated. FGF21A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance (DS), while maintaining the same overall process yield based on antibody scaffold input.
Collapse
Affiliation(s)
- Anouk Dirksen
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Keith A Davis
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Joe T Collins
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Keshab Bhattacharya
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Jari I Finneman
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Erin L Pepin
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Jeffrey S Ryczek
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Paul W Brown
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - William B Wellborn
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Ratish Mangalathillam
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Brad P Evans
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Statistics, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Mark J Pozzo
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Rory F Finn
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| |
Collapse
|
29
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
30
|
Grujic O, Stevens J, Chou RYT, Weiszmann JV, Sekirov L, Thomson C, Badh A, Grauer S, Chan B, Graham K, Manchulenko K, Dillon TM, Li Y, Foltz IN. Impact of antibody subclass and disulfide isoform differences on the biological activity of CD200R and βklotho agonist antibodies. Biochem Biophys Res Commun 2017; 486:985-991. [PMID: 28363871 DOI: 10.1016/j.bbrc.2017.03.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 01/12/2023]
Abstract
Agonism of cell surface receptors by monoclonal antibodies is dependent not only on its ability to bind the target, but also to deliver a biological signal through receptors to the cell. Immunoglobulin G2 antibodies (IgG2s) are made up of a mixture of distinct isoforms (IgG2-A, -B and A/B), which differ by the disulfide connectivity at the hinge region. When evaluating panels of agonistic antibodies against CD200 receptor (CD200R) or βklotho receptor (βklotho), we noticed striking activity differences of IgG1 or IgG2 antibodies with the same variable domains. For the CD200R antibody, the IgG2 antibody demonstrated higher activity than the IgG1 or IgG4 antibody. More significantly, for βklotho, agonist antibodies with higher biological activity as either IgG2 or IgG1 were identified. In both cases, ion exchange chromatography was able to isolate the bioactivity to the IgG2-B isoform from the IgG2 parental mixture. The subclass-related increase in agonist activity was not correlated with antibody aggregation or binding affinity, but was driven by enhanced avidity for the CD200R antibody. These results add to the growing body of evidence that show that conformational differences in the antibody hinge region can have a dramatic impact on the antibody activity and must be considered when screening and engineering therapeutic antibody candidates. The results also demonstrate that the IgG1 (IgG2-A like) or the IgG2-B form may provide the most active form of agonist antibodies for different antibodies and targets.
Collapse
Affiliation(s)
- Ognjen Grujic
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Jennitte Stevens
- Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, United States
| | - Robert Y-T Chou
- Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, United States
| | | | - Laura Sekirov
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Christy Thomson
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Anita Badh
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Stephanie Grauer
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Brian Chan
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Kevin Graham
- Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, United States
| | - Kathy Manchulenko
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada
| | - Thomas M Dillon
- Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA, United States
| | - Yang Li
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA, United States
| | - Ian N Foltz
- Amgen British Columbia, 7990 Enterprise Street, Burnaby, British Columbia, Canada.
| |
Collapse
|
31
|
Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel. Colloids Surf B Biointerfaces 2017; 149:168-173. [DOI: 10.1016/j.colsurfb.2016.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
|
32
|
Chronic Over-expression of Fibroblast Growth Factor 21 Increases Bile Acid Biosynthesis by Opposing FGF15/19 Action. EBioMedicine 2016; 15:173-183. [PMID: 28041926 PMCID: PMC5233823 DOI: 10.1016/j.ebiom.2016.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Pharmacological doses of fibroblast growth factor (FGF) 21 effectively normalize glucose, lipid and energy homeostasis in multiple animal models with many benefits translating to obese humans with type 2 diabetes. However, a role for FGF21 in the regulation of bile acid metabolism has not been reported. Herein, we demonstrate AAV-mediated FGF21 overexpression in mice increases liver expression of the key bile acid producing enzyme, Cyp7a1, resulting in an increased bile acid pool. Furthermore, in cholecystectomized mice, FGF21-mediated bile acid pool increase led to increased transit of bile acids into colon. We elucidate that the mechanism of FGF21 induced bile acid changes is mainly through antagonizing FGF15/19 function on liver βKlotho/FGFR4 receptor complex; thus inhibiting FGF15/19-mediated suppression of Cyp7a1 expression. In conclusion, these data reveal a previously unidentified role for FGF21 on bile acid metabolism and may be relevant to understand the effects of FGF21 analogs in clinical studies. Chronic FGF21 overexpression in mice leads to increases in bile acid production and bile acid pool. FGF21 mediates the bile acid changes at least in part through antagonizing FGF15/19 function. Cross-talk between FGF molecules may be a regulatory mechanism for their function. Effects of FGF21 on bile acid metabolism may be relevant to understand FGF21 clinical observations.
Pharmacological doses of FGF21 effectively normalize glucose, lipid and energy homeostasis in multiple animal models, and several FGF21 analogs are being evaluated in the clinic as potential therapies for type 2 diabetes. However, a role for FGF21 in the regulation of bile acid metabolism has not been reported. In the present study, we revealed a link between chronic FGF21 overexpression to increases in bile acid synthesis in mice and uncovered a new cross-talk mechanism between FGF molecules. These findings may highlight an importance aspect of FGF21's pharmacology for future clinical study considerations.
Collapse
|
33
|
Rulifson IC, Collins P, Miao L, Nojima D, Lee KJ, Hardy M, Gupte J, Hensley K, Samayoa K, Cam C, Rottman JB, Ollmann M, Richards WG, Li Y. In Vitro and in Vivo Analyses Reveal Profound Effects of Fibroblast Growth Factor 16 as a Metabolic Regulator. J Biol Chem 2016; 292:1951-1969. [PMID: 28011645 DOI: 10.1074/jbc.m116.751404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
The discovery of brown adipose tissue (BAT) as a key regulator of energy expenditure has sparked interest in identifying novel soluble factors capable of activating inducible BAT (iBAT) to combat obesity. Using a high content cell-based screen, we identified fibroblast growth factor 16 (FGF16) as a potent inducer of several physical and transcriptional characteristics analogous to those of both "classical" BAT and iBAT. Overexpression of Fgf16 in vivo recapitulated several of our in vitro findings, specifically the significant induction of the Ucp1 gene and UCP1 protein expression in inguinal white adipose tissue (iWAT), a common site for emergent active iBAT. Despite significant UCP1 up-regulation in iWAT and dramatic weight loss, the metabolic improvements observed due to Fgf16 overexpression in vivo were not the result of increased energy expenditure, as measured by indirect calorimetric assessment. Instead, a pattern of reduced food and water intake, combined with feces replete with lipid and bile acid, indicated a phenotype more akin to that of starvation and intestinal malabsorption. Gene expression analysis of the liver and ileum indicated alterations in several steps of bile acid metabolism, including hepatic synthesis and reabsorption. Histological analysis of intestinal tissue revealed profound abnormalities in support of this conclusion. The in vivo data, together with FGF receptor binding analysis, indicate that the in vivo outcome observed is the likely result of both direct and indirect mechanisms and probably involves multiple receptors. These results highlight the complexity of FGF signaling in the regulation of various metabolic processes.
Collapse
Affiliation(s)
- Ingrid C Rulifson
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080.
| | - Patrick Collins
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Li Miao
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080
| | - Dana Nojima
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Ki Jeong Lee
- the Genome Analysis Unit, Thousand Oaks, California 91320
| | - Miki Hardy
- the Genome Analysis Unit, South San Francisco, California 94080
| | - Jamila Gupte
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080
| | - Kelly Hensley
- the Department of Pathology, South San Francisco, California 94080
| | - Kim Samayoa
- the Department of Pathology, South San Francisco, California 94080
| | - Cynthia Cam
- the Department of Comparative Animal Research, Amgen Inc., South San Francisco, California 94080
| | - James B Rottman
- the Department of Pathology, Amgen Inc., Cambridge, Massachusetts 02142
| | - Mike Ollmann
- the Genome Analysis Unit, South San Francisco, California 94080
| | - William G Richards
- the Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, California 91320
| | - Yang Li
- From the Department of Cardiometabolic Disorders, South San Francisco, California 94080.
| |
Collapse
|
34
|
Efficacy of a combination of high and low dosage of PEGylated FGF-21 in treatment of diabetes in db/db mice. Biomed Pharmacother 2016; 84:97-105. [DOI: 10.1016/j.biopha.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
|
35
|
Chou RH, Huang PH, Hsu CY, Chang CC, Leu HB, Huang CC, Chen JW, Lin SJ. Circulating Fibroblast Growth Factor 21 is Associated with Diastolic Dysfunction in Heart Failure Patients with Preserved Ejection Fraction. Sci Rep 2016; 6:33953. [PMID: 27650781 PMCID: PMC5030655 DOI: 10.1038/srep33953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/05/2016] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a polypeptide ligand promoted glucose homeostasis and lipids metabolism, was recently reported to attenuate cardiac hypertrophy. The aim of this study was to investigate the impact of FGF21 in diastolic heart failure. Subjects admitted for coronary angiogram were screened for heart failure, and those with left ventricular (LV) ejection fraction < 45% were excluded. Diastolic dysfunction was defined as functional abnormalities that exist during LV relaxation and filling by echocardiographic criteria. Plasma levels of FGF21 and N-terminal Pro-Brain Natriuretic Peptide (NT-pro-BNP) were determined. All patients were followed up for 1 year, or till the occurrence of heart failure readmission or death. Totally 95 patients with diastolic dysfunction and 143 controls were enrolled. Circulating FGF21 level was correlated with echocardiographic parameters of diastolic function and LV end-diastolic pressure (LVEDP). In multivariate logistic analysis, FGF21 was significantly associated with diastolic dysfunction, either identified by echocardiographic criteria (odds ratio: 2.97, p = 0.012) or confirmed with LVEDP level (odds ratio: 3.73, p = 0.030). Both plasma FGF21 (log rank p < 0.0001) and NT-pro-BNP levels (log rank p = 0.0057) showed good predictive power to the 1-year adverse cardiac events. This finding suggested FGF21 could be involved in the pathophysiology of diastolic heart failure.
Collapse
Affiliation(s)
- Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan
| | - Chien-Yi Hsu
- Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan.,Department of Internal Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chun-Chin Chang
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan.,Healthcare and Management Center Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Department of Medical Education Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 11217, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 11217, Taiwan.,Department of Medical Research Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Division of Clinical Research Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11217, Taiwan.,Department of Internal Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Medical Research Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| |
Collapse
|
36
|
Serum concentrations of fibroblast growth factor 21 are elevated in patients with congenital or acquired lipodystrophy. Cytokine 2016; 83:239-244. [DOI: 10.1016/j.cyto.2016.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
|
37
|
Cuevas-Ramos D, Aguilar-Salinas CA. Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0023/hmbci-2016-0023.xml. [PMID: 27318658 DOI: 10.1515/hmbci-2016-0023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/08/2016] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) are a superfamily of 22 proteins related to cell proliferation and tissue repair after injury. A subgroup of three proteins, FGF19, FGF21, and FGF23, are major endocrine mediators. These three FGFs have low affinity to heparin sulfate during receptor binding; in contrast they have a strong interaction with the cofactor Klotho/β-Klotho. FGF21 has received particular attention because of its key role in carbohydrate, lipids, and energy balance regulation. FGF21 improves glucose and lipids metabolism as well as increasing energy expenditure in animal models and humans. Conditions that induce human physical stress such as exercise, lactation, obesity, insulin resistance, and type 2 diabetes influence FGF21 circulating levels. FGF21 also has an anti-oxidant function in human metabolic diseases which contribute to understanding the FGF21 compensatory increment in obesity, the metabolic syndrome, and type 2 diabetes. Interestingly, energy expenditure and weight loss is induced by FGF21. The mechanism involved is through "browning" of white adipose tissue, increasing brown adipose tissue activity and heat production. Therefore, clinical evaluation of therapeutic action of exogenous FGF21 administration is warranted, particularly to treat diabetes and obesity.
Collapse
|
38
|
Yin J, Bao L, Tian H, Wang Q, Gao X, Yao W. Genetic fusion of human FGF21 to a synthetic polypeptide improves pharmacokinetics and pharmacodynamics in a mouse model of obesity. Br J Pharmacol 2016; 173:2208-23. [PMID: 27339749 DOI: 10.1111/bph.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemical conjugation of therapeutic proteins with polyethylene glycol (PEG) is an established strategy to extend their biological half-life (t1/2 ) to a clinically useful range. We developed a novel uncharged and unstructured recombinant polypeptide composed of five amino acids (P, S, T, A and G), named PsTag, as another approach to extend the t1/2 of human FGF21, with increased hydrodynamic radius. EXPERIMENTAL APPROACH Human FGF21 was fused with PsTag polymers of differing lengths (200 - 600 residues). Three fusion proteins and native FGF21 were produced in Escherichia coli. The biophysical characteristics, metabolic stability, immunogenicity and pharmacokinetics in were assessed in first. In lean and diet-induced obese (DIO) mice, effects on body weight, oral glucose tolerance tests and levels of relevant hormones and metabolites were studied. KEY RESULTS Fusion proteins were solubly expressed in E. coli and prolonged the t1/2 from 0.34h up to 12.9 h in mice. Fusion proteins were also biodegradable, thus avoiding vacuole formation, while lacking immunogenicity in mice. In DIO mice, administration of PsTag fused to FGF21 reduced body weight, blood glucose and lipids levels and reversed hepatic steatosis. CONCLUSIONS AND IMPLICATIONS The novel recombinant polypeptide, PsTag, should be useful in the development of biological drugs with properties comparable to those achievable by PEGylation, but with potentially less side effects. In mice, fusion of FGF21 to PsTag prolonged and potentiated pharmacological effects of native FGF21, and may offer greater therapeutic effects in treatment of obesity.
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lichen Bao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qun Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol 2016; 53:144-54. [DOI: 10.1016/j.semcdb.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
|
40
|
Samms RJ, Cheng CC, Kharitonenkov A, Gimeno RE, Adams AC. Overexpression of β-Klotho in Adipose Tissue Sensitizes Male Mice to Endogenous FGF21 and Provides Protection From Diet-Induced Obesity. Endocrinology 2016; 157:1467-80. [PMID: 26901091 DOI: 10.1210/en.2015-1722] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endocrine hormone fibroblast growth factor 21 (FGF21) is induced in the adaptive response to nutrient deprivation, where it serves to regulate the integrated response to fasting via its primary receptor complex, FGF receptor 1 coupled with the cofactor β-klotho (KLB) in target tissues. Curiously, endogenous FGF21 levels are also elevated in preclinical models of obesity and in obese/diabetic individuals. In addition to higher FGF21 levels, reduced KLB expression in liver and adipose tissue has been noted in these same individuals, suggesting that obesity may represent an FGF21 resistant state. To explore the contribution of tissue-specific KLB levels to endogenous FGF21 activity, in both fasting and high-fat diet feeding conditions, we generated animals overexpressing KLB in liver (LKLBOE) or adipose (ATKLBOE). Supportive of tissue-specific partitioning of FGF21 action, after chronic high-fat feeding, ATKLBOE mice gained significantly less weight than WT. Reduced weight gain was associated with elevated caloric expenditure, accompanied by a reduced respiratory exchange ratio and lower plasma free fatty acids levels, suggestive of augmented lipid metabolism. In contrast, LKLBOE had no effect on body weight but did reduce plasma cholesterol. The metabolic response to fasting was enhanced in LKLBOE mice, evidenced by increased ketone production, whereas no changes in this were noted in ATKLBOE mice. Taken together, these data provide further support that specific effects of FGF21 are mediated via engagement of distinct target organs. Furthermore, enhancing KLB expression in adipose may sensitize to endogenous FGF21, thus representing a novel strategy to combat metabolic disease.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Christine C Cheng
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Alexei Kharitonenkov
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Ruth E Gimeno
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Andrew C Adams
- Lilly Research Laboratories (R.J.S., C.C.C., R.E.G., A.C.A.) and formerly of Lilly Research Laboratories (A.K.), Lilly Corporate Center, Indianapolis, Indiana 46285
| |
Collapse
|
41
|
Robberecht H, Hermans N. Biomarkers of Metabolic Syndrome: Biochemical Background and Clinical Significance. Metab Syndr Relat Disord 2016; 14:47-93. [PMID: 26808223 DOI: 10.1089/met.2015.0113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biomarkers of the metabolic syndrome are divided into four subgroups. Although dividing them in groups has some limitations, it can be used to draw some conclusions. In a first part, the dyslipidemias and markers of oxidative stress are discussed, while inflammatory markers and cardiometabolic biomarkers are reviewed in a second part. For most of them, the biochemical background and clinical significance are discussed, although here also a well-cut separation cannot always be made. Altered levels cannot always be claimed as the cause, risk, or consequence of the syndrome. Several factors are interrelated to each other and act in a concerted, antagonistic, synergistic, or modulating way. Most important conclusions are summarized at the end of every reviewed subgroup. Genetic biomarkers or influences of various food components on concentration levels are not included in this review article.
Collapse
Affiliation(s)
- Harry Robberecht
- Department of Pharmaceutical Sciences, NatuRA (Natural Products and Food Research and Analysis), University of Antwerp , Wilrijk, Antwerp, Belgium
| | - Nina Hermans
- Department of Pharmaceutical Sciences, NatuRA (Natural Products and Food Research and Analysis), University of Antwerp , Wilrijk, Antwerp, Belgium
| |
Collapse
|
42
|
Nunes QM, Li Y, Sun C, Kinnunen TK, Fernig DG. Fibroblast growth factors as tissue repair and regeneration therapeutics. PeerJ 2016; 4:e1535. [PMID: 26793421 PMCID: PMC4715458 DOI: 10.7717/peerj.1535] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.
Collapse
Affiliation(s)
- Quentin M. Nunes
- Department of Molecular and Clinical Cancer Medicine, NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tarja K. Kinnunen
- Department of Biology, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
43
|
Han S, Kim JD, Lee S, Jeong AL, Park JS, Yong HJ, Boldbaatar A, Ka HI, Rhee EJ, Lee WY, Yang Y. Circulating CTRP1 Levels in Type 2 Diabetes and Their Association with FGF21. Int J Endocrinol 2016; 2016:5479627. [PMID: 27313611 PMCID: PMC4893584 DOI: 10.1155/2016/5479627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/03/2023] Open
Abstract
The goal of this study was to investigate whether circulating C1q/TNF-α-related protein 1 (CTRP1) levels are associated with diabetes. In addition, relationships between CTRP1 and other diabetes-related cytokines were elucidated, including adiponectin and fibroblast growth factor 21 (FGF21). A total of 178 subjects (78 men and 100 women) aged 29-70 years (mean age, 46.1 years) were randomly selected. The sera from a normal glucose tolerance group (n = 68) and a prediabetes/type 2 diabetes group (n = 110) were collected; then, circulating levels of CTRP1, adiponectin, and FGF21 were determined via enzyme-linked immunosorbent assay in all sera. Subjects with either prediabetes or diabetes exhibited higher circulating CTRP1 levels than healthy subjects. Sera analysis revealed that CTRP1 was positively correlated with age, body mass index, fasting blood glucose, and circulating FGF21 levels. However, CTRP1 was negatively correlated with total cholesterol and total circulating adiponectin levels in univariate analysis. In addition, multivariate analysis found that CTRP1 was independently associated with age, fasting blood glucose, and circulating FGF21 levels. CTRP1 was correlated with homeostasis model assessment-β (HOMA-β), but no correlation was observed with HOMA-insulin resistance. In conclusion, circulating CTRP1 levels are increased in subjects with type 2 diabetes and are positively associated with circulating FGF21 levels.
Collapse
Affiliation(s)
- Sora Han
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Jong Dai Kim
- Department of Internal Medicine, Konyang University Buyeo Hospital, Buyeo, Republic of Korea
| | - Sunyi Lee
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Hyo Jeong Yong
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Ariundavaa Boldbaatar
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
- *Won-Young Lee: and
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, 04310 Seoul, Republic of Korea
- *Young Yang:
| |
Collapse
|
44
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
45
|
Spitters TWGM, Mota CMD, Uzoechi SC, Slowinska B, Martens DE, Moroni L, Karperien M. Glucose gradients influence zonal matrix deposition in 3D cartilage constructs. Tissue Eng Part A 2015; 20:3270-8. [PMID: 24903611 DOI: 10.1089/ten.tea.2014.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reproducing the native collagen structure and glycosaminoglycan (GAG) distribution in tissue-engineered cartilage constructs is still a challenge. Articular cartilage has a specific nutrient supply and mechanical environment due to its location and function in the body. Efforts to simulate this native environment have been reported through the use of bioreactor systems. However, few of these devices take into account the existence of gradients over cartilage as a consequence of the nutrient supply by diffusion. We hypothesized that culturing chondrocytes in an environment, in which gradients of nutrients can be mimicked, would induce zonal differentiation. Indeed, we show that glucose gradients facilitating a concentration distribution as low as physiological glucose levels enhanced a zonal chondrogenic capacity similar to the one found in native cartilage. Furthermore, we found that the glucose consumption rates of cultured chondrocytes were higher under physiological glucose concentrations and that GAG production rates were highest in 5 mM glucose. From these findings, we concluded that this condition is better suited for matrix deposition compared to 20 mM glucose standard used in a chondrocyte culture system. Reconsidering the culture conditions in cartilage tissue engineering strategies can lead to cartilaginous constructs that have better mechanical and structural properties, thus holding the potential of further enhancing integration with the host tissue.
Collapse
Affiliation(s)
- Tim W G M Spitters
- 1 Department of Developmental BioEngineering, MIRA Institute, University of Twente , Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Comps-Agrar L, Dunshee DR, Eaton DL, Sonoda J. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J Biol Chem 2015; 290:24166-77. [PMID: 26272615 DOI: 10.1074/jbc.m115.681395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface.
Collapse
Affiliation(s)
| | | | | | - Junichiro Sonoda
- Molecular Biology, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
47
|
Wang WF, Ma L, Liu MY, Zhao TT, Zhang T, Yang YB, Cao HX, Han XH, Li DS. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation. Endocrine 2015; 49:385-95. [PMID: 25542183 DOI: 10.1007/s12020-014-0502-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/05/2014] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor 21 (FGF-21) is a major paracrine and endocrine regulator of metabolic homeostasis. Here we demonstrate that FGF-21 is also a potent mediator of innate immunity. Double-staining flow cytometry identified neutrophils and monocytes as the main sources of FGF-21 among circulating leukocytes. Functional assays showed that FGF-21 stimulates phagocytosis and production of reactive oxygen species in neutrophil-like HL-60 cells and monocytic THP-1 cells. The mechanism of action of FGF-21 was observed to involve FGF receptor activation, signal transduction through the PI3K/Akt pathway, and stimulation of NADPH oxidase activity. This study indicates that FGF-21 could be an attractive target for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Wen-fei Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW, Kharitonenkov A, Gimeno RE, Adams AC. Discrete Aspects of FGF21 In Vivo Pharmacology Do Not Require UCP1. Cell Rep 2015; 11:991-9. [PMID: 25956583 DOI: 10.1016/j.celrep.2015.04.046] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
A primary target of the pleiotropic metabolic hormone FGF21 is adipose tissue, where it initiates a gene expression program to enhance energy expenditure, an effect presumed to be centered on augmented UCP1 expression and activity. In UCP1 null (UCP1KO) mice, we show that the effect of FGF21 to increase the metabolic rate is abolished. However, in contrast to prior expectations, we found that increased UCP1-dependent thermogenesis is only partially required to achieve the beneficial effects of FGF21 treatment. In UCP1KO mice, there appears to be an underlying reduction in food intake following FGF21 administration, facilitating weight loss equal to that observed in wild-type animals. Furthermore, we show that UCP1-dependent thermogenesis is not required for FGF21 to improve glycemic control or to reduce circulating cholesterol or free fatty acids. These data indicate that several important metabolic endpoints of FGF21 are UCP1 independent; however, the contribution of UCP1-dependent thermogenesis to other discrete aspects of FGF21 biology requires further study.
Collapse
Affiliation(s)
- Ricardo J Samms
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Dennis P Smith
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Christine C Cheng
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Patrick P Antonellis
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James W Perfield
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Alexei Kharitonenkov
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Andrew C Adams
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
49
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
50
|
Zhang J, Li Y. Fibroblast Growth Factor 21 Analogs for Treating Metabolic Disorders. Front Endocrinol (Lausanne) 2015; 6:168. [PMID: 26594197 PMCID: PMC4633491 DOI: 10.3389/fendo.2015.00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor (FGF) 21 is a member of the endocrine FGF subfamily. FGF21 expression is induced under different disease conditions, such as type 2 diabetes, obesity, chronic kidney diseases, and cardiovascular diseases, and it has a broad spectrum of functions in regulating various metabolic parameters. Many different approaches have been pursued targeting FGF21 and its receptors to develop therapeutics for treating type 2 diabetes and other aspects of metabolic conditions. In this article, we summarize some of these key approaches and highlight the potential challenges in the development of these agents.
Collapse
Affiliation(s)
- Jun Zhang
- Amgen Inc., South San Francisco, CA, USA
| | - Yang Li
- Amgen Inc., South San Francisco, CA, USA
- *Correspondence: Yang Li,
| |
Collapse
|