1
|
Escoda T, Jordana S, Chiche L, Penaranda G, Rebaudet S, Halfon P. Analysis of humoral and cellular responses after vaccination against SARS-CoV-2 in patients with immune-mediated diseases. Diagn Microbiol Infect Dis 2025; 112:116825. [PMID: 40215608 DOI: 10.1016/j.diagmicrobio.2025.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Patients with autoimmune disease (AID) or immunodepression (ID), particularly those treated with anti-CD20, have an increased risk of COVID-19 infection. OBJECTIVE To characterise the humoral and cellular immune responses against specific antigens of SARS-CoV-2 in immunocompromised patients, as well as their correlation and determinants. METHODS This retrospective study was conducted in outpatients with AID and/or ID for which an assessment of their humoral and cellular response was carried out and analysed in relation to demographic data, comorbidities, treatments, type of vaccine and number of doses. RESULTS Fifty patients were included. The overall serological response rate was 76%. The cellular response was positive in 54% of patients. The main factors influencing the humoral and cellular responses were age, comorbidities and treatment with anti-CD20. CONCLUSION In ID patients, vaccination against COVID-19 can generate an adequate T-cell response, the character of which is an emerging issue in the context of COVID-19 infection. The main limitations of this study and those in the literature are the heterogeneity of the patients included and the absence of a control population. These results highlight the importance of evaluating the antiviral T-cell response and the impact of immunosuppressive treatments.
Collapse
Affiliation(s)
- Thomas Escoda
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France.
| | | | - Laurent Chiche
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France
| | | | - Stanislas Rebaudet
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France; Aix Marseille Université, IRD, INSERM, SESSTIM, ISSPAM, Marseille, France
| | - Philippe Halfon
- Service de Médecine Interne et Maladie Infectieuses, Hôpital Européen, Marseille, France; Laboratoire Alphabio, Biogroup, Marseille, France
| |
Collapse
|
2
|
Davis-Porada J, Tozlu C, Aiello C, Apostolidis SA, Bar-Or A, Bove R, Espinoza DA, Ferreira Brito S, Jacobs D, Kakara M, Onomichi K, Ricci A, Sabatino JJ, Walker E, Wherry EJ, Zhang L, Zhu W, Xia Z, De Jager P, Wesley SF, Straus Farber R, Farber DL. Durable T cell immunity to COVID-19 vaccines in MS patients on B cell depletion therapy. NPJ Vaccines 2025; 10:98. [PMID: 40382362 PMCID: PMC12085558 DOI: 10.1038/s41541-025-01151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Immune-mediated protection generated to COVID-19 mRNA vaccines is associated with anti-Spike (S) protein neutralizing antibodies. However, humoral immunity is compromised in B cell depleting (BCD) therapies, used to treat autoimmune diseases such as Multiple Sclerosis (MS). To study the effect of BCD on the durability and protective efficacy of vaccine-induced immunity, we evaluated S-reactive antibodies and T cell responses 1-70 weeks post-vaccination in MS cohorts treated with BCD compared to non-BCD therapies from four centers. BCD-treated participants had significantly reduced antibody levels and enhanced frequencies of S-reactive CD4+ and CD8+ memory T cells to COVID-19 vaccination compared to the non-BCD group, with some variations among different BCD formulations. T cell memory responses persisted up to 14 months post-vaccination in both BCD and non-BCD cohorts, who experienced similar clinical protection from COVID-19. Together, our results establish a critical role for T cell-mediated immunity in anti-viral protection independent of humoral immunity.
Collapse
Affiliation(s)
- Julia Davis-Porada
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Aiello
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Sokratis A Apostolidis
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Riley Bove
- UCSF Weill Institute for Neuroscience, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sugeidy Ferreira Brito
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA
| | - Dina Jacobs
- Center for Neuroinflammation and Experimental Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mihir Kakara
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kaho Onomichi
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA
| | - Adelle Ricci
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA
| | - Joseph J Sabatino
- UCSF Weill Institute for Neuroscience, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Walker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lili Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip De Jager
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA
| | - Sarah Flanagan Wesley
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA.
| | - Rebecca Straus Farber
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, Neurology, Columbia Multiple Sclerosis Center and Center for Translational & Computational Neuroimmunology, New York, NY, USA.
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Olivieri G, Amodio D, Manno EC, Santilli V, Cotugno N, Palma P. Shielding the immunocompromised: COVID-19 prevention strategies for patients with primary and secondary immunodeficiencies. Vaccine 2025; 51:126853. [PMID: 39946827 DOI: 10.1016/j.vaccine.2025.126853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The COVID-19 pandemic has significantly impacted immunocompromised patients, particularly those with inborn errors of immunity (IEI), transplant recipients, hematologic malignancies, and those undergoing treatment with immunosuppressive biologics and medications. These patients face an elevated risk of experiencing severe or even fatal consequences following SARS-CoV-2 infections. Vaccination is the primary defense against COVID-19; however, immune responses following immunization are often suboptimal in these patients, with variable specific humoral response rates. Despite the expedited regulatory approval and the widespread implementation of COVID-19 vaccines, the efficacy and safety for immunocompromised populations require thorough investigation. In future pandemics, including vulnerable populations (VPs) in vaccine and monoclonal antibody (mAb) trials is crucial to develop safe, effective immunization strategies, address gaps in vaccine efficacy and safety data, and create tailored guidelines for at-risk groups. This review provides a comprehensive examination of the efficacy of COVID-19 vaccines and mAbs in patients with primary and secondary immunodeficiency, with a specific focus on individuals with IEI, considering previous regulatory aspects and the necessity of including VPs in vaccine trials to enhance the quality of patient care and promote equitable health outcomes in future pandemics.
Collapse
Affiliation(s)
- Giulio Olivieri
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Donato Amodio
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emma Concetta Manno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Santilli
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Centre for the Evaluation of Vaccination and Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
De Biasi S, Ciobanu AL, Santacroce E, Lo Tartaro D, Degliesposti G, D’Angerio M, Leccese M, Cardi M, Trenti T, Cuccorese M, Gibellini L, Ferraro D, Cossarizza A. SARS-CoV-2 Vaccination Responses in Anti-CD20-Treated Progressive Multiple Sclerosis Patients Show Immunosenescence in Antigen-Specific B and T Cells. Vaccines (Basel) 2024; 12:924. [PMID: 39204047 PMCID: PMC11360119 DOI: 10.3390/vaccines12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Gianluca Degliesposti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Maristella Leccese
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Martina Cardi
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Trenti
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Michela Cuccorese
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Diana Ferraro
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| |
Collapse
|
5
|
Zhou H, Leng P, Wang Y, Yang K, Li C, Ojcius DM, Wang P, Jiang S. Development of T cell antigen-based human coronavirus vaccines against nAb-escaping SARS-CoV-2 variants. Sci Bull (Beijing) 2024; 69:2456-2470. [PMID: 38942698 DOI: 10.1016/j.scib.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 06/30/2024]
Abstract
Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses; however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus, raising serious concerns about their efficacy. Additionally, while neutralizing antibodies (nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus (HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to nAbs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCoVs based on different vaccine platforms.
Collapse
Affiliation(s)
- Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94115, USA
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health/Chinese Academy of Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Gudesblatt M, Bumstead B, Buhse M, Zarif M, Morrow SA, Nicholas JA, Hancock LM, Wilken J, Weller J, Scott N, Gocke A, Lewin JB, Kaczmarek O, Mendoza JP, Golan D. De-escalation of Disease-Modifying Therapy for People with Multiple Sclerosis Due to Safety Considerations: Characterizing 1-Year Outcomes in 25 People Who Switched from Ocrelizumab to Diroximel Fumarate. Adv Ther 2024; 41:3059-3075. [PMID: 38861218 PMCID: PMC11263251 DOI: 10.1007/s12325-024-02902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Switching disease-modifying therapy (DMT) may be considered for relapsing-remitting multiple sclerosis (RRMS) if a patient's current therapy is no longer optimal. This was particularly important during the recent COVID-19 pandemic because of considerations around immune deficiency and impaired vaccine response associated with B cell-depleting DMTs. This real-world, single-center study aimed to evaluate change or decline in functional ability and overall disease stability in people with RRMS who were switched from B cell-depleting ocrelizumab (OCRE) to diroximel fumarate (DRF) because of safety concern related to the COVID-19 pandemic. METHODS Adults with RRMS were included if they had been clinically stable for ≥ 1 year on OCRE. Data collected at baseline and 1 year post switch included relapse rate, magnetic resonance imaging (MRI), blood work for assessment of peripheral immune parameters, the Cognitive Assessment Battery (CAB), optical coherence tomography (OCT), and patient-reported outcomes (PROs). RESULTS Participants (N = 25) had a mean (SD) age of 52 (9) years, and a mean (SD) duration of 26 (8) months' treatment with OCRE before the switch to DRF. Median washout duration since the last OCRE infusion was 7 months (range 4-18 months). No participants relapsed on DRF during follow-up, and all remained persistent on DRF after 1 year. There were no significant changes in peripheral immune parameters, other than an increase in the percentage of CD19+ cells 1 year after switching (p < 0.05). Similarly, there were no significant changes in CAB, OCT, and PROs. CONCLUSION These preliminary findings suggest that transition to DRF from OCRE may be an effective treatment option for people with RRMS who are clinically stable but may need to switch for reasons unrelated to effectiveness. Longer follow-up times on larger samples are needed to confirm these observations.
Collapse
Affiliation(s)
- Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA.
| | - Barbara Bumstead
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Marijean Buhse
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Myassar Zarif
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | - Sarah A Morrow
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Jacqueline A Nicholas
- OhioHealth Multiple Sclerosis Center, Riverside Methodist Hospital, Columbus, OH, USA
| | - Laura M Hancock
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Wilken
- Washington Neuropsychology Research Group, Fairfax, VA, USA
- Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA
| | - Joanna Weller
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | | | | | | | - Olivia Kaczmarek
- NYU Langone South Shore Neurologic Associates, PC, 77 Medford Ave, Patchogue, NY, 11772, USA
| | | | - Daniel Golan
- Multiple Sclerosis and Neuroimmunology Center, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Fernández Ó, Montalbán X, Agüera E, Aladro Y, Alonso A, Arroyo R, Brieva L, Calles C, Costa-Frossard L, Eichau S, García-Domínguez JM, Hernández MÁ, Landete L, Llaneza M, Llufriu S, Meca-Lallana JE, Meca-Lallana V, Moral E, Prieto JM, Ramió-Torrentà L, Téllez N, Romero-Pinel L, Vilaseca A, Rodríguez-Antigüedad A. [XVI Post-ECTRIMS Meeting: review of the new developments presented at the 2023 ECTRIMS Congress (II)]. Rev Neurol 2024; 79:51-66. [PMID: 38976584 PMCID: PMC11469095 DOI: 10.33588/rn.7902.2024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The XVI Post-ECTRIMS meeting was held in Seville on 20 and 21 October 2023, where expert neurologists in multiple sclerosis (MS) summarised the main new developments presented at the ECTRIMS 2023 congress, which took place in Milan from 11 to 13 October. The aim of this article is to summarise the content presented at the Post-ECTRIMS Meeting, in an article in two parts. This second part covers the health of women and elderly MS patients, new trends in the treatment of cognitive impairment, focusing particularly on meditation, neuroeducation and cognitive rehabilitation, and introduces the concept of fatigability, which has been used to a limited extent in MS. The key role of digitalization and artificial intelligence in the theoretically near future is subject to debate, along with the potential these technologies can offer. The most recent research on the various treatment algorithms and their efficacy and safety in the management of the disease is reviewed. Finally, the most relevant data for cladribine and evobrutinib are presented, as well as future therapeutic strategies currently being investigated.
Collapse
Affiliation(s)
- Óscar Fernández
- Departamento de Farmacología. Facultad de Medicina. Universidad de Málaga, Málaga, EspañaUniversidad de MálagaUniversidad de MálagaMálagaEspaña
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, EspañaInstituto de Investigación Biomédica de Málaga (IBIMA)Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaEspaña
- Hospital Universitario Regional de Málaga-Universidad de Málaga, Málaga, EspañaHospital Universitario Regional de Málaga-Universidad de MálagaHospital Universitario Regional de Málaga-Universidad de MálagaMálagaEspaña
| | - Xavier Montalbán
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Eduardo Agüera
- Servicio de Neurología. Hospital Reina Sofía. Córdoba, EspañaHospital Reina SofíaHospital Reina SofíaCórdobaEspaña
| | - Yolanda Aladro
- Servicio de Neurología. Hospital Universitario de Getafe. Getafe, EspañaHospital Universitario de GetafeHospital Universitario de GetafeGetafeEspaña
| | - Ana Alonso
- Unidad de Esclerosis Múltiple. Servicio de Neurología, Málaga, EspañaServicio de NeurologíaServicio de NeurologíaMálagaEspaña
| | - Rafael Arroyo
- Servicio de Neurología. Hospital Universitario Quirónsalud. Madrid, EspañaHospital Universitario QuirónsaludHospital Universitario QuirónsaludMadridEspaña
| | - Luis Brieva
- Hospital Universitari Arnau de Vilanova-Universitat de Lleida. Lleida, EspañaHospital Universitari Arnau de Vilanova-Universitat de LleidaHospital Universitari Arnau de Vilanova-Universitat de LleidaLleidaEspaña
| | - Carmen Calles
- Servicio de Neurología. Hospital Universitario Son Espases. Palma de Mallorca, EspañaHospital Universitario Son EspasesHospital Universitario Son EspasesPalma de MallorcaEspaña
| | - Lucienne Costa-Frossard
- CSUR de Esclerosis Múltiple. Hospital Universitario Ramón y Cajal. Madrid, EspañaHospital Universitario Ramón y CajalHospital Universitario Ramón y CajalMadridEspaña
| | - Sara Eichau
- Servicio de Neurología. Hospital Universitario Virgen Macarena. Sevilla, EspañaHospital Universitario Virgen MacarenaHospital Universitario Virgen MacarenaSevillaEspaña
| | - José M. García-Domínguez
- Hospital Universitario Gregorio Marañón. Madrid, EspañaHospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónMadridEspaña
| | - Miguel Á. Hernández
- Servicio de Neurología. Hospital Nuestra Señora de Candelaria. Santa Cruz de Tenerife, EspañaHospital Nuestra Señora de CandelariaHospital Nuestra Señora de CandelariaSanta Cruz de TenerifeEspaña
| | - Lamberto Landete
- Servicio de Neurología. Hospital Universitario Doctor Peset. Valencia, EspañaHospital Universitario Doctor PesetHospital Universitario Doctor PesetValenciaEspaña
| | - Miguel Llaneza
- Servicio de Neurología. Hospital Universitario Central de Asturias. Oviedo, EspañaHospital Universitario Central de AsturiasHospital Universitario Central de AsturiasOviedoEspaña
| | - Sara Llufriu
- Unidad de Neuroinmunología y Esclerosis Múltiple. Hospital Clínic de Barcelona e IDIBAPS. Barcelona, EspañaHospital Clínic de Barcelona e IDIBAPSHospital Clínic de Barcelona e IDIBAPSBarcelonaEspaña
| | - José E. Meca-Lallana
- Unidad de Neuroinmunología Clínica y CSUR Esclerosis Múltiple. Servicio de Neurología. Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca). Murcia, EspañaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaMurciaEspaña
- Cátedra de Neuroinmunología Clínica y Esclerosis Múltiple. Universidad Católica San Antonio (UCAM). Murcia, EspañaUniversidad Católica San Antonio (UCAM)Universidad Católica San Antonio (UCAM)MurciaEspaña
| | - Virginia Meca-Lallana
- Servicio de Neurología. Hospital Universitario de La Princesa. Madrid, EspañaHospital Universitario de La PrincesaHospital Universitario de La PrincesaMadridEspaña
| | - Ester Moral
- Servicio de Neurología. Complejo Hospitalario Universitario Moisès Broggi. Sant Joan Despí, EspañaComplejo Hospitalario Universitario Moisès BroggiComplejo Hospitalario Universitario Moisès BroggiSant Joan DespíEspaña
| | - José M. Prieto
- Servicio de Neurología. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela, EspañaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Santiago de CompostelaEspaña
| | - Lluís Ramió-Torrentà
- Unitat de Neuroimmunologia i Esclerosi Múltiple Territorial de Girona (UNIEMTG). Hospital Universitari Dr. Josep Trueta. Girona, EspañaHospital Universitari Dr. Josep TruetaHospital Universitari Dr. Josep TruetaGironaEspaña
- Hospital Santa Caterina. IDIBGI. Girona, EspañaHospital Santa CaterinaHospital Santa CaterinaGironaEspaña
- Grup Neurodegeneració i Neuroinflamació. IDIBGI. Girona, EspañaIDIBGIIDIBGIGironaEspaña
- Departamento de Ciencias Médicas. Universitat de Girona. Girona, EspañaUniversitat de GironaUniversitat de GironaGironaEspaña
| | - Nieves Téllez
- Hospital Clínico Universitario de Valladolid. Valladolid, EspañaHospital Clínico Universitario de ValladolidHospital Clínico Universitario de ValladolidValladolidEspaña
| | - Lucía Romero-Pinel
- Hospital Universitari de Bellvitge-IDIBELL. L’Hospitalet de Llobregat. Barakaldo, EspañaHospital Universitari de Bellvitge-IDIBELLHospital Universitari de Bellvitge-IDIBELLBarakaldoEspaña
| | - Andreu Vilaseca
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Alfredo Rodríguez-Antigüedad
- Servicio de Neurología. Hospital Universitario Cruces. Barakaldo, EspañaHospital Universitario CrucesHospital Universitario CrucesBarakaldoEspaña
| |
Collapse
|
8
|
Carvajal R, Zabalza A, Carbonell-Mirabent P, Martínez-Gómez X, Esperalba J, Pappolla A, Rando A, Cobo-Calvo A, Tur C, Rodriguez M, Río J, Comabella M, Castilló J, Rodrigo-Pendás JÁ, Braga N, Mongay-Ochoa N, Guío-Sánchez C, Vidal-Jordana Á, Arrambide G, Rodríguez-Acevedo B, Midaglia L, Borras-Bermejo B, Galán I, Sastre-Garriga J, Montalban X, Otero-Romero S, Tintoré M. Vaccine Safety and Immunogenicity in Patients With Multiple Sclerosis Treated With Natalizumab. JAMA Netw Open 2024; 7:e246345. [PMID: 38607624 PMCID: PMC11015356 DOI: 10.1001/jamanetworkopen.2024.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
Importance Vaccination in patients with highly active multiple sclerosis (MS) requiring prompt treatment initiation may result in impaired vaccine responses and/or treatment delay. Objective To assess the immunogenicity and safety of inactivated vaccines administered during natalizumab treatment. Design, Setting, and Participants This self-controlled, prospective cohort study followed adult patients with MS from 1 study center in Spain from September 2016 to February 2022. Eligible participants included adults with MS who completed immunization for hepatitis B virus (HBV), hepatitis A virus (HAV), and COVID-19 during natalizumab therapy. Data analysis was conducted from November 2022 to February 2023. Exposures Patients were categorized according to their time receiving natalizumab treatment at the time of vaccine administration as short-term (≤1 year) or long-term (>1 year). Main Outcomes and Measures Demographic, clinical, and radiological characteristics were collected during the year before vaccination (prevaccination period) and the year after vaccination (postvaccination period). Seroprotection rates and postvaccination immunoglobulin G titers were determined for each vaccine within both periods. Additionally, differences in annualized relapse rate (ARR), new T2 lesions (NT2L), Expanded Disability Status Scale (EDSS) scores, and John Cunningham virus (JCV) serostatus between the 2 periods were assessed. Results Sixty patients with MS (mean [SD] age, 43.2 [9.4] years; 44 female [73.3%]; 16 male [26.7%]; mean [SD] disease duration, 17.0 [8.7] years) completed HBV, HAV, and mRNA COVID-19 immunization during natalizumab treatment, with 12 patients in the short-term group and 48 patients in the long-term group. The global seroprotection rate was 93% (95% CI, 86%-98%), with individual vaccine rates of 92% for HAV (95% CI, 73%-99%), 93% for HBV (95% CI, 76%-99%), and 100% for the COVID-19 messenger RNA vaccine (95% CI, 84%-100%). Between the prevaccination and postvaccination periods there was a significant reduction in the mean (SD) ARR (0.28 [0.66] vs 0.01 [0.12]; P = .004) and median (IQR) NT2L (5.00 [2.00-10.00] vs 0.81 [0.00-0.50]; P = .01). No changes in disability accumulation were detected (median [IQR] EDSS score 3.5 [2.0-6.0] vs 3.5 [2.0-6.0]; P = .62). No differences in safety and immunogenicity were observed for all vaccines concerning the duration of natalizumab treatment. Conclusions and Relevance The findings of this cohort study suggest that immunization with inactivated vaccines during natalizumab therapy was both safe and immunogenic, regardless of the treatment duration. Natalizumab may be a valuable option for proper immunization, averting treatment delays in patients with highly active MS; however, this strategy needs to be formally evaluated.
Collapse
Affiliation(s)
- René Carvajal
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Zabalza
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Carbonell-Mirabent
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Martínez-Gómez
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Pappolla
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Rando
- Department of Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alvaro Cobo-Calvo
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Rodriguez
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Río
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquín Castilló
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Ángel Rodrigo-Pendás
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nathane Braga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Neus Mongay-Ochoa
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Guío-Sánchez
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ángela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Georgina Arrambide
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Breogán Rodríguez-Acevedo
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Blanca Borras-Bermejo
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ingrid Galán
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC)
| | - Susana Otero-Romero
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC)
| |
Collapse
|
9
|
De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, Santacroce E, Paolini A, Gibellini L, Ciobanu AL, Cuccorese M, Trenti T, Rubio I, Vitetta F, Cardi M, Argüello RJ, Ferraro D, Cossarizza A. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun 2024; 15:2752. [PMID: 38553477 PMCID: PMC10980723 DOI: 10.1038/s41467-024-47013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Moritz Rau
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Cardi
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
10
|
Baxter RM, Cabrera-Martinez B, Ghosh T, Rester C, Moreno MG, Borko TL, Selva S, Fleischer CL, Haakonsen N, Mayher A, Bowhay E, Evans C, Miller TM, Huey L, McWilliams J, van Bokhoven A, Deane KD, Knight V, Jordan KR, Ghosh D, Klarquist J, Kedl RM, Piquet AL, Hsieh EWY. SARS-CoV-2 Vaccine-Elicited Immunity after B Cell Depletion in Multiple Sclerosis. Immunohorizons 2024; 8:254-268. [PMID: 38483384 PMCID: PMC10985059 DOI: 10.4049/immunohorizons.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
The impact of B cell deficiency on the humoral and cellular responses to SARS-CoV2 mRNA vaccination remains a challenging and significant clinical management question. We evaluated vaccine-elicited serological and cellular responses in 1) healthy individuals who were pre-exposed to SARS-CoV-2 (n = 21), 2) healthy individuals who received a homologous booster (mRNA, n = 19; or Novavax, n = 19), and 3) persons with multiple sclerosis on B cell depletion therapy (MS-αCD20) receiving mRNA homologous boosting (n = 36). Pre-exposure increased humoral and CD4 T cellular responses in immunocompetent individuals. Novavax homologous boosting induced a significantly more robust serological response than mRNA boosting. MS-α CD20 had an intact IgA mucosal response and an enhanced CD8 T cell response to mRNA boosting compared with immunocompetent individuals. This enhanced cellular response was characterized by the expansion of only effector, not memory, T cells. The enhancement of CD8 T cells in the setting of B cell depletion suggests a regulatory mechanism between B and CD8 T cell vaccine responses.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | | | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Miguel Guerrero Moreno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Tyler L. Borko
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Sean Selva
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Chelsie L. Fleischer
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Nicola Haakonsen
- Department of Medicine, Division of Infectious Diseases, University of Colorado, School of Medicine, Aurora, CO
| | - Ariana Mayher
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Emily Bowhay
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Courtney Evans
- Allergy and Immunology Research, Research Institute, Children’s Hospital Colorado, Aurora, CO
| | - Todd M. Miller
- Analytics Resource Center, Children’s Hospital Colorado, Aurora, CO
| | - Leah Huey
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Jennifer McWilliams
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Adrie van Bokhoven
- Department of Pathology, Section of Pathology Shared Resource, University of Colorado, Aurora, CO
| | - Kevin D. Deane
- Department of Medicine, Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Amanda L. Piquet
- Department of Neurology, Sections of Neuroimmunology, Neuroinfectious Disease, and Neurohospitalist, University of Colorado School of Medicine, Aurora, CO
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO
| |
Collapse
|
11
|
Bou Rjeily N, Fitzgerald KC, Mowry EM. Extended interval dosing of ocrelizumab in patients with multiple sclerosis is not associated with meaningful differences in disease activity. Mult Scler 2024; 30:257-260. [PMID: 37942884 DOI: 10.1177/13524585231208311] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Risk concerns related to ocrelizumab treatment for multiple sclerosis (MS) during the COVID-19 pandemic caused infusion delays with extended interval dosing (EID). We reviewed medical records of patients on ocrelizumab to determine whether EID maintains its effectiveness compared to standard interval dosing (SID). Among 361 patients, 231 (64%) and 123 (34%) had at least one infusion with infusion intervals of ⩾8 months and ⩾12 months, respectively. There were no differences in demographics or clinical profiles between the SID and EID groups. No significant differences between rates of breakthrough activity among relapsing-remitting patients were observed between SID (three patients) and EID (seven patients).
Collapse
Affiliation(s)
- Nicole Bou Rjeily
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Krett JD, Salter A, Newsome SD. Era of COVID-19 in Multiple Sclerosis Care. Neurol Clin 2024; 42:319-340. [PMID: 37980121 PMCID: PMC10288315 DOI: 10.1016/j.ncl.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The unprecedented scope of the coronavirus disease 2019 (COVID-19) pandemic resulted in numerous disruptions to daily life, including for people with multiple sclerosis (PwMS). This article reviews how disruptions in multiple sclerosis (MS) care prompted innovations in delivery of care (eg, via telemedicine) and mobilized the global MS community to rapidly adopt safe and effective practices. We discuss how our understanding of the risks of COVID-19 in PwMS has evolved along with recommendations pertaining to disease-modifying therapies and vaccines. With lessons learned during the COVID-19 pandemic, we examine potential questions for future research in this new era of MS care.
Collapse
Affiliation(s)
- Jonathan D Krett
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA
| | - Amber Salter
- Section on Statistical Planning & Analysis, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Scott D Newsome
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 627, Baltimore, MD 21287, USA.
| |
Collapse
|
13
|
Marantos T, Kyriazopoulou E, Lekakis V, Voumvourakis KI, Tsiodras S. Immunogenicity and safety of vaccines in multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci 2024; 456:122852. [PMID: 38142541 DOI: 10.1016/j.jns.2023.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Seroconversion rate of vaccines varies and requires further elucidation in patients with multiple sclerosis (MS) under treatment with disease-modifying therapies (DMTs). We aimed to investigate this in a systematic review and meta-analysis. METHODS MEDLINE(PubMed) and Cochrane databases were searched based on a pre-specified protocol (PROSPERO: CRD42020202018). Studies reporting on patients with MS, diagnosed with McDonald criteria getting vaccinated with any type of vaccine were included in the analysis. The primary endpoint was the incidence of patients being seropositive and experience adverse events after vaccination. Outcomes were expressed as proportions with respective 95% confidence interval (CI). Two reviewers independently screened and reviewed existing literature and assessed study quality with the Methodological index for non-randomized studies. RESULTS Of 295 articles, 45 studies were analyzed. Seroconversion after COVID-19 vaccines was 76% (95% CI, 70-80; I2 = 95%; 20 studies including 5601 patients. Protection was lower in patients treated with anti-CD20 antibodies and sphingosine-1-phosphate receptor (S1PR) modulators compared to untreated patients or treatment with other DMTs. Relapse occurred in 2% (95% CI, 1-3; I2 = 86%; 16 studies including 7235 patients). Seroconversion after seasonal influenza vaccines was 82% (95% CI, 65-91; I2 = 90%; 6 studies including 490 patients). Relapse rate was similar to this after COVID-19 vaccination. CONCLUSION The majority of MS patients vaccinated for COVID-19 or seasonal influenza mount an adequate immune response without safety concerns. Data on other vaccines are limited.
Collapse
Affiliation(s)
- Theodoros Marantos
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Evdoxia Kyriazopoulou
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Vasileios Lekakis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Sotirios Tsiodras
- 4(th) Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
14
|
Meca-Lallana V, Esparcia-Pinedo L, Aguirre C, Díaz-Pérez C, Gutierrez-Cobos A, Sobrado M, Carabajal E, Río BD, Ropero N, Villagrasa R, Vivancos J, Sanchez-Madrid F, Alfranca A. Analysis of humoral and cellular immunity after SARS-CoV-2 vaccination in patients with multiple sclerosis treated with immunomodulatory drugs. CLINICAL IMMUNOLOGY COMMUNICATIONS 2023; 3:6-13. [PMID: 38014396 PMCID: PMC9898989 DOI: 10.1016/j.clicom.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 09/29/2023]
Abstract
We analyzed immune response to SARS-CoV-2 vaccination by measuring specific IgG titers and T-cell reactivity to different SARS-CoV-2 peptides in multiple sclerosis patients taking different disease-modifying treatments. Of the 88 patients included, 72 developed any kind of immune response after vaccination. Although DMTs such as fingolimod and anti-CD20+ treatments prevented patients from developing a robust humoral response to the vaccine, most of them were still able to develop a cellular response, which could be crucial for long-term immunity. It is probably advisable that all MS patients take additional/booster doses to increase their humoral and/or cellular immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Virginia Meca-Lallana
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Laura Esparcia-Pinedo
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Clara Aguirre
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Carolina Díaz-Pérez
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ainhoa Gutierrez-Cobos
- Microbiology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Mónica Sobrado
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Estefanía Carabajal
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Beatriz Del Río
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Noelia Ropero
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Ramón Villagrasa
- Preventive Medicine Unit. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - José Vivancos
- Demyelinating Diseases Unit, Neurology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Francisco Sanchez-Madrid
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department. Hospital Universitario de la Princesa, Calle de Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
15
|
Bar-Or A, Aburashed R, Chinea AR, Hendin BA, Lucassen E, Meng X, Stankiewicz J, Tullman MJ, Cross AH. Humoral immune response to COVID-19 mRNA vaccines in patients with relapsing multiple sclerosis treated with ofatumumab. Mult Scler Relat Disord 2023; 79:104967. [PMID: 37769429 DOI: 10.1016/j.msard.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND There are limited data available regarding the impact of ofatumumab, an anti-CD20 B-cell-depleting monoclonal antibody for relapsing multiple sclerosis (RMS), on vaccination response. The study objective was to assess humoral immune response (HIR) to non-live coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccination in patients with RMS treated with ofatumumab. METHODS This was an open-label, single-arm, multicenter, prospective pilot study of patients with RMS aged 18-55 years who received 2 or 3 doses of a COVID-19 mRNA vaccine after ≥1 month of subcutaneous ofatumumab (20 mg/month) treatment. The primary endpoint was the proportion of patients achieving HIR, as defined by local laboratory severe acute respiratory syndrome coronavirus-2 qualitative immunoglobulin G assays. Assay No. 1 was ≥14 days after the second or third vaccine dose. Assay No. 2 was 90 days thereafter. RESULTS Of the 26 patients enrolled (median [range] age: 42 [27-54] years; median [range] ofatumumab treatment duration: 237 [50-364] days), HIR was achieved by 53.9% (14/26; 95% CI: 33.4 - 73.4%) at Assay No. 1 and 50.0% (13/26; 95% CI: 29.9 - 70.1%) at Assay No. 2. Patients who received 3 vaccine doses had higher HIR rates (Assay No. 1: 70.0% [7/10]; Assay No. 2: 77.8% [7/9]) than those who received 2 doses (Assay No. 1: 46.7% [7/15]; Assay No. 2: 42.9% [6/14]). Of patients aged <40 years without previous anti-CD20 therapy, HIR was achieved by 90.0% (9/10) at Assay No. 1 and 75.0% (6/8) at Assay No. 2. No serious adverse events were reported. CONCLUSION Patients with RMS treated with ofatumumab can mount HIRs following COVID-19 vaccination. A plain language summary, infographic and a short video summarizing the key results are provided in supplementary material. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04847596 (https://clinicaltrials.gov/ct2/show/NCT04847596).
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology, and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rany Aburashed
- Insight Chicago Hospital and Medical Center, Chicago, IL, United States
| | | | - Barry A Hendin
- Center for Neurology and Spine, Phoenix, AZ, United States
| | | | - Xiangyi Meng
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | | | - Anne H Cross
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
O'Leary S, Brugger HT, Wallentine D, Sershon L, Goff E, Saldana-King T, Beavin J, Avila RL, Rutledge D, Moore M. Practical Clinical Guidelines for Natalizumab Treatment in Patients With Relapsing Multiple Sclerosis. JOURNAL OF INFUSION NURSING 2023; 46:347-359. [PMID: 37920108 PMCID: PMC10635346 DOI: 10.1097/nan.0000000000000519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Natalizumab (TYSABRI®) was the first high-efficacy monoclonal antibody disease-modifying therapy (DMT) approved as a monotherapy for the treatment of adults with relapsing forms of multiple sclerosis (MS), including clinically isolated syndrome, relapsing-remitting MS, and active secondary progressive MS. Because natalizumab is administered by intravenous infusion, infusion nurses play a key role in the care of natalizumab-treated patients. In the 16 years since approval, substantial data have been gathered on the long-term, real-world effectiveness and safety of natalizumab. This article provides a synopsis of this data, as well as practical information for optimizing patient care. This includes information on strategies to mitigate the risk of progressive multifocal leukoencephalopathy in natalizumab-treated patients, natalizumab use during pregnancy, and use with vaccines. It also includes guidance on the preparation and administration of natalizumab and monitoring of natalizumab-treated patients.
Collapse
Affiliation(s)
- Shirley O'Leary
- Corresponding Author: Shirley O'Leary, MS, APN-C, MSCN, Dallas VA Medical Center, MS Center, 4500 S Lancaster Road, Dallas, TX 75216 ()
| | - Helen T. Brugger
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Dale Wallentine
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Lisa Sershon
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Erica Goff
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Toni Saldana-King
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Jill Beavin
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Robin L. Avila
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Danette Rutledge
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| | - Marie Moore
- Dallas VA Medical Center MS Center, Dallas, Texas (Ms O'Leary); Long Ridge Medical Center, Neurology, Greenwich Hospital, Stamford, Connecticut (Ms Brugger); Rocky Mountain MS Clinic, Salt Lake City, Utah (Mr Wallentine); The Regional MS Center & The Center for Neurological Disorders, Milwaukee, Wisconsin (Ms Sershon); University of Alabama at Birmingham, Birmingham, Alabama (Ms Goff); Biogen, Cambridge, Massachusetts (Mss Saldana-King and Beavin; Drs Avila and Rutledge); Novant MS Care Center, Charlotte, North Carolina (Ms Moore)
- Shirley O'Leary, MS, APN-C, MSCN, has practiced as a provider, subinvestigator/researcher, and neurology infusion manager for 7 years at the MS Center of Excellence at the Dallas VA Medical Center. She has 27 years of experience in the area of multiple sclerosis (MS) and has authored articles, given numerous invited talks, and is a longstanding member of the International Organization of MS Nurses
- Helen T. Brugger, DNP, MSN, RN, Coordinator of Long Ridge Infusion Center at Long Ridge Medical Center, Greenwich Hospital, has worked on 2 intravenous teams and currently treats a population of neurological patients at an outpatient infusion center. She is a member of the Eastern Nursing Research Society and Sigma Theta Tau International
- Dale Wallentine, BSN, RN, MSCN, is an infusion nurse and the infusion department operation manager at the Rocky Mountain Multiple Sclerosis Clinic in Salt Lake City. He has more than 13 years of multiple sclerosis infusion experience and is certified in multiple sclerosis nursing
- Lisa Sershon, PA-C, MMS, MSCS,* practiced for 11 years as a physician's assistant specializing in neuroimmunology, at the Center for Neurological Disorders at Ascension St. Francis in Milwaukee, Wisconsin. She participated in the management and protocol development for infusion therapies as a multiple sclerosis–certified specialist
- Erica Goff, PharmD, BCPS, MSCS, is a specialty pharmacist covering the multiple sclerosis population at the outpatient neurology division at University of Alabama at Birmingham Health System. Her professional responsibilities include clinical guidance, oversight, and patient education for pharmacotherapy prescribed in her ambulatory clinic, as well as facilitating access to medication, providing side-effect mitigation strategies and reductions in patient financial burden
- Toni Saldana-King, RN, BSN, MSCN, was a senior medical science liaison at Biogen at the time of submission. Prior to Biogen, she was a practicing nurse at the Maxine Mesinger MS Comprehensive Care Center at Baylor College of Medicine in Houston, Texas, the first Comprehensive Care Center to be recognized by the National MS Society
- Jill Beavin, BSN, RN, MSCN, is a principle medical science liaison at Biogen. Prior to Biogen, she worked as an MS nurse and clinical director in a private neurology practice, where she developed and maintained a 22-chair infusion suite and MS Center
- Robin L. Avila, PhD, is a medical director at Biogen and has been involved in MS clinical research for the last 6 years. Prior to Biogen, she conducted preclinical MS research in the areas of myelin biology, myelin repair, and the development of novel models of MS
- Danette Rutledge, BSP, PhD, is an associate medical director at Biogen, where she has been involved in MS clinical research for the last 3 years. Prior to joining industry, she conducted basic science research in multiple sclerosis for over 10 years
- Marie Moore, FNP-C, MSCN, President of the International Organization of Multiple Sclerosis Nurses, is a nurse practitioner at the Novant Health Multiple Sclerosis Care center in Charlotte, North Carolina, where she participates in research and oversight of the infusion center. She has specialized in the care of multiple sclerosis patients since 2011
| |
Collapse
|
17
|
Spierer R, Lavi I, Bloch S, Mazar M, Golan D. Risk of breakthrough COVID-19 after vaccination among people with multiple sclerosis on disease-modifying therapies. J Neurol 2023; 270:4632-4639. [PMID: 37589743 DOI: 10.1007/s00415-023-11935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Disease-modifying therapies (DMTs) for people with multiple sclerosis (pwMS) may decrease vaccine effectiveness. We aimed to explore the association between various DMTs and the risk for breakthrough COVID-19. METHODS Population-based data from Clalit Health Services, Israel's largest healthcare organization, were used. PwMS treated with DMTs without prior COVID-19 were followed from the commencement of the mass vaccination campaign in December 2020. The end of follow-up was at the time of COVID-19 infection, the receipt of a third vaccine dose or until the end of August 2021. Time-dependent multivariate Cox proportional hazard models were used to estimate hazard ratios for COVID-19 according to vaccination, DMT, age, gender, disability and comorbidities. RESULTS 2511 PwMS treated with DMTs were included (Age: 46.2 ± 14.6, 70% Female, EDSS: 3.0 ± 2.1). Of whom, 2123 (84.5%) received 2 vaccine doses. On multivariate models that included all pwMS, vaccination was protective (HR = 0.41, P < 0.001). On multivariate models that included only fully vaccinated pwMS cladribine, ocrelizumab, S1P receptor modulators and natalizumab were associated with breakthrough COVID-19 (HR = 6.1, 4.7, 3.7 and 3.3; P = 0.004, 0.008, 0.02 and 0.05, respectively). On multivariate models that included unvaccinated and fully vaccinated pwMS on each DMT separately, a protective trend was noted for vaccination on all DMTs (0.09 < HR < 0.65), except for cladribine (HR = 1.1). This protective trend was not statistically significant on ocrelizumab, S1P receptor modulators and natalizumab. COVID-19 among pwMS was generally mild. Only 2 vaccinated pwMS had a severe infection with eventual recovery. CONCLUSIONS Vaccination effectively protects pwMS from COVID-19. An increased risk of breakthrough infection was noted on high-efficacy DMTs, however COVID-19 after vaccination was usually mild.
Collapse
Affiliation(s)
- Ronen Spierer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | - Idit Lavi
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Sivan Bloch
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel
| | | | - Daniel Golan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neurology, Lady Davis Carmel Medical Center, 7 Mikhal St, 3436212, Haifa, Israel.
- Multiple Sclerosis and Neuroimmunology Center, Clalit Health Services, Nazareth, Israel.
| |
Collapse
|
18
|
Hauser SL, Zielman R, Das Gupta A, Xi J, Stoneman D, Karlsson G, Robertson D, Cohen JA, Kappos L. Efficacy and safety of four-year ofatumumab treatment in relapsing multiple sclerosis: The ALITHIOS open-label extension. Mult Scler 2023; 29:1452-1464. [PMID: 37691530 PMCID: PMC10580679 DOI: 10.1177/13524585231195346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Ofatumumab has demonstrated superior efficacy and favorable safety for up to 2.5 years versus teriflunomide in relapsing multiple sclerosis (RMS). OBJECTIVE Further characterize efficacy and safety of ofatumumab in RMS. METHODS Efficacy set: patients randomized to ofatumumab/teriflunomide in ASCLEPIOS I/II (core). Safety set: patients who received ⩾ 1 dose of ofatumumab in ASCLEPIOS I/II, APLIOS, APOLITOS (all core), or ALITHIOS (umbrella open-label extension). Patients received continuous ofatumumab or were newly switched from teriflunomide. Data cut-off: 25 September 2021. RESULTS In the efficacy set (n = 1882), the continuous ofatumumab group had a low annualized relapse rate (ARR 0.05 (95% confidence interval: 0.04-0.07)), low numbers of gadolinium-enhancing (Gd+) T1 lesions (0.01 lesions/scan) and fewer new/enlarging T2 lesions (annualized rate 0.08). Overall, 78.8% met three-parameter "no evidence of disease activity" criteria through 4 years. Switching from teriflunomide led to reduced ARR, risk of confirmed disability worsening (CDW), new/enlarging T2 lesions, Gd+ T1 lesions, and serum neurofilament light chain. In the continuous and newly switched ofatumumab groups, cumulative 3- and 6-month CDW rates remained low. In the safety set (n = 1969), the most frequently reported adverse events were infections and infestations (58.35%). No new safety signals were identified. CONCLUSION Ofatumumab has a favorable longer-term benefit-risk profile in RMS. TRIAL REGISTRY ALITHIOS (NCT03650114): https://clinicaltrials.gov/ct2/show/NCT03650114.
Collapse
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco (UCSF), 1651 4th Street, Box 3126, San Francisco, CA 94143, USA
| | - Ronald Zielman
- Clinical Development, Novartis Pharma B.V., Amsterdam, The Netherlands
| | - Ayan Das Gupta
- Analytics, Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Jing Xi
- China Novartis Institutes for Biomedical Research Co. Ltd., Novartis, Shanghai, People’s Republic of China
| | - Dee Stoneman
- Global Medical, Novartis Pharma AG, Basel, Switzerland
| | | | - Derrick Robertson
- Department of Neurology, Multiple Sclerosis Division, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jeffrey A Cohen
- Department of Neurology, Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ludwig Kappos
- MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Department of Head, Spine and Neuromedicine, Biomedical and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Woopen C, Dunsche M, Al Rahbani GK, Dillenseger A, Atta Y, Haase R, Raposo C, Pedotti R, Ziemssen T, Akgün K. Long-Term Immune Response Profiles to SARS-CoV-2 Vaccination and Infection in People with Multiple Sclerosis on Anti-CD20 Therapy. Vaccines (Basel) 2023; 11:1464. [PMID: 37766140 PMCID: PMC10537223 DOI: 10.3390/vaccines11091464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Our objective was to analyze longitudinal cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in people with multiple sclerosis (pwMS) on B-cell depleting treatment (BCDT) compared to pwMS without immunotherapy. We further evaluated the impact of COVID-19 infection and vaccination timing. PwMS (n = 439) on BCDT (ocrelizumab, rituximab, ofatumumab) or without immunotherapy were recruited for this prospective cohort study between June 2021 and June 2022. SARS-CoV-2 spike-specific antibodies and interferon-γ release of CD4 and CD8 T-cells upon stimulation with spike protein peptide pools were analyzed at different timepoints (after primary vaccination, 3 and 6 months after primary vaccination, after booster vaccination, 3 months after booster). Humoral response to SARS-CoV-2 was consistently lower whereas T-cell response was higher in patients with BCDT compared to controls. Cellular and humoral responses decreased over time after primary vaccination and increased again upon booster vaccination, with significantly higher antibody titers after booster than after primary vaccination in both untreated and B-cell-depleted pwMS. COVID-19 infection further led to a significant increase in SARS-CoV-2-specific responses. Despite attenuated B-cell responses, a third vaccination for patients with BCDT seems recommendable, since at least partial protection can be expected from the strong T-cell response. Moreover, our data show that an assessment of T-cell responses may be helpful in B-cell-depleted patients to evaluate the efficacy of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Christina Woopen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Marie Dunsche
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Georges Katoul Al Rahbani
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Anja Dillenseger
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Yassin Atta
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
20
|
Bakirtzis C, Konstantinidou N, Stavropoulou De Lorenzo S, Moysiadis T, Boziki MK, Grigoriadou E, Kesidou E, Theotokis P, Thireos E, Mitrou P, Grigoriadis N. COVID-19 Vaccination and Disease Course in People with Multiple Sclerosis in Greece. J Clin Med 2023; 12:5460. [PMID: 37685528 PMCID: PMC10488265 DOI: 10.3390/jcm12175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past three years, humanity faced the abrupt spread of COVID-19, responsible for a worldwide health crisis. Initially, it was believed that individuals with chronic disorders, including multiple sclerosis, were more likely to be infected and suffer a worse degree of COVID-19 disease. Therefore, data with regard to COVID-19 disease outcomes in these populations may provide additional insight with regard to the management of chronic diseases during viral pandemics. The objective of this study is to evaluate COVID-19 disease course in people with multiple sclerosis (PwMS) during the COVID-19 pandemic in Greece and explore the impact of vaccination in the outcome of SARS-CoV-2 infection in this population. Anonymized data, extracted from nationwide administrative records between February 2020 and December 2021, were retrospectively analyzed in order to identify PwMS with SARS-CoV-2 infection. Demographic data, as well as data regarding COVID-19 infection and vaccination, were additionally collected. The study sample included 2351 PwMS (65.1% females, 51.2% unvaccinated at the time of infection). A total of 260 PwMS were hospitalized, while 25 PwMS died from COVID-19 disease and its complications. Older age, male sex and the presence of comorbidities were independently associated with a higher probability of hospitalization. The risk of hospitalization was decreased in PwMS receiving some disease-modifying treatments. Anti-CD20s demonstrated high odds ratios without reaching statistical significance. Regarding fatal outcome, only age reached statistical significance. Vaccination provided a significant protective effect against hospitalization but did not exhibit a statistically significant effect on mortality.
Collapse
Affiliation(s)
- Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Theodoros Moysiadis
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleni Grigoriadou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| | - Eleftherios Thireos
- Primary Health Center of Vari, National Health System of Greece, 16672 Athens, Greece;
| | - Panagiota Mitrou
- Independent Department of Therapeutic Protocols and Patient Registers, Hellenic Ministry of Health, 10433 Athens, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (N.K.); (S.S.D.L.); (M.-K.B.); (E.G.); (E.K.); (P.T.); (N.G.)
| |
Collapse
|
21
|
Asashima H, Kim D, Wang K, Lele N, Buitrago-Pocasangre NC, Lutz R, Cruz I, Raddassi K, Ruff WE, Racke MK, Wilson JE, Givens TS, Grifoni A, Weiskopf D, Sette A, Kleinstein SH, Montgomery RR, Shaw AC, Li F, Fan R, Hafler DA, Tomayko MM, Longbrake EE. Prior cycles of anti-CD20 antibodies affect antibody responses after repeated SARS-CoV-2 mRNA vaccination. JCI Insight 2023; 8:e168102. [PMID: 37606046 PMCID: PMC10543713 DOI: 10.1172/jci.insight.168102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nikhil Lele
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Lutz
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Isabella Cruz
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Khadir Raddassi
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William E. Ruff
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Repertoire Immune Medicines, Cambridge, Massachusetts, USA
| | | | | | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, California, USA
| | - Steven H. Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, and
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - David A. Hafler
- Department of Neurology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mary M. Tomayko
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
22
|
Mueller-Enz M, Woopen C, Katoul Al Rahbani G, Haase R, Dunsche M, Ziemssen T, Akgün K. NVX-CoV2373-induced T- and B-cellular immunity in immunosuppressed people with multiple sclerosis that failed to respond to mRNA and viral vector SARS-CoV-2 vaccines. Front Immunol 2023; 14:1081933. [PMID: 37545513 PMCID: PMC10399811 DOI: 10.3389/fimmu.2023.1081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Importance Immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is important, especially in people with multiple sclerosis (pwMS) on immunosuppressive therapies. Objective This study aims to determine whether adjuvanted protein-based vaccine NVX-CoV2373 is able to induce an immune response to SARS-CoV-2 in pwMS with inadequate responses to prior triple mRNA/viral vector vaccination. Design setting and participants We conducted a single-center, prospective longitudinal cohort study at the MS Center in Dresden, Germany. In total, 65 participants were included in the study in accordance with the following eligibility criteria: age > 18 years, immunomodulatory treatment, and insufficient T-cellular and humoral response to prior vaccination with at least two doses of SARS-CoV-2 mRNA (BNT162b2, mRNA-1273) or viral vector vaccines (AZD1222, Ad26.COV2.S). Interventions Intramuscular vaccination with two doses of NVX-CoV2373 at baseline and 3 weeks of follow-up. Main outcomes and measures The development of SARS-CoV-2-specific antibodies and T-cell responses was evaluated. Results For the final analysis, data from 47 patients on stable treatment with sphingosine-1-phosphate receptor (S1PR) modulators and 17 on ocrelizumab were available. The tolerability of the NVX-CoV2373 vaccination was overall good and comparable to the one reported for the general population. After the second NVX-CoV2373 vaccination, 59% of S1PR-modulated patients developed antispike IgG antibodies above the predefined cutoff of 200 binding antibody units (BAU)/ml (mean, 1,204.37 [95% CI, 693.15, 2,092.65] BAU/ml), whereas no clinically significant T-cell response was found. In the subgroup of the patients on ocrelizumab treatment, 23.5% developed antispike IgG > 200 BAU/ml (mean, 116.3 [95% CI, 47.04, 287.51] BAU/ml) and 53% showed positive spike-specific T-cellular responses (IFN-gamma release to antigen 1: mean, 0.2 [95% CI, 0.11, 0.31] IU/ml; antigen 2: mean, 0.24 [95% CI, 0.14, 0.37]) after the second vaccination. Conclusions Vaccination with two doses of NVX-CoV2373 was able to elicit a SARS-CoV-2-specific immune response in pwMS lacking adequate immune responses to previous mRNA/viral vector vaccination. For patients receiving S1PR modulators, an increase in anti-SARS-CoV-2 IgG antibodies was detected after NVX-CoV2373 vaccination, whereas in ocrelizumab-treated patients, the increase of antiviral T-cell responses was more pronounced. Our data may impact clinical decision-making by influencing the preference for NVX-CoV2373 vaccination in pwMS receiving treatment with S1PR modulation or anti-CD20 treatment.
Collapse
|
23
|
Otero-Romero S, Lebrun-Frénay C, Reyes S, Amato MP, Campins M, Farez M, Filippi M, Hacohen Y, Hemmer B, Juuti R, Magyari M, Oreja-Guevara C, Siva A, Vukusic S, Tintoré M. ECTRIMS/EAN consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs. Mult Scler 2023; 29:904-925. [PMID: 37293841 PMCID: PMC10338708 DOI: 10.1177/13524585231168043] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 03/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the new highly active drugs available for people with multiple sclerosis (pwMS), vaccination becomes an essential part of the risk management strategy. OBJECTIVE To develop a European evidence-based consensus for the vaccination strategy of pwMS who are candidates for disease-modifying therapies (DMTs). METHODS This work was conducted by a multidisciplinary working group using formal consensus methodology. Clinical questions (defined as population, interventions, and outcomes) considered all authorized DMTs and vaccines. A systematic literature search was conducted and quality of evidence was defined according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence. The recommendations were formulated based on the quality of evidence and the risk-benefit balance. RESULTS Seven questions, encompassing vaccine safety, vaccine effectiveness, global vaccination strategy and vaccination in sub-populations (pediatric, pregnant women, elderly and international travelers) were considered. A narrative description of the evidence considering published studies, guidelines, and position statements is presented. A total of 53 recommendations were agreed by the working group after three rounds of consensus. CONCLUSION This first European consensus on vaccination in pwMS proposes the best vaccination strategy according to current evidence and expert knowledge, with the goal of homogenizing the immunization practices in pwMS.
Collapse
Affiliation(s)
- Susana Otero-Romero
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | | | - Saúl Reyes
- Fundación Santa Fe de Bogotá, Bogotá, Colombia School of Medicine, Universidad de los Andes, Bogotá, Colombia Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence, Italy IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Mauricio Farez
- Centro para la Investigación de Enfermedades Neuroinmunológicas (CIEN), FLENI, Buenos Aires, Argentina
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rosa Juuti
- Multiple Sclerosis International Federation, London, UK
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Center and the Danish Multiple Sclerosis Registry, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Aksel Siva
- Department of Neurology, School of Medicine, Istanbul University Cerrahpasa, Cerrahpasa, Istanbul, Turkey
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| |
Collapse
|
24
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
25
|
Tütüncü M, Demir S, Arslan G, Dinç Ö, Şen S, Gündüz T, Uzunköprü C, Gümüş H, Tütüncü M, Akçin R, Özakbaş S, Köseoğlu M, Bünül SD, Gezen O, Tezer DÇ, Baba C, Özen PA, Koç R, Elverdi T, Uygunoğlu U, Kürtüncü M, Beckmann Y, Doğan İG, Turan ÖF, Boz C, Terzi M, Tuncer A, Saip S, Karabudak R, Kocazeybek B, Efendi H, Bilge U, Siva A. mRNA versus inactivated virus COVID-19 vaccines in multiple sclerosis: Humoral responses and protectivity-Does it matter? Mult Scler Relat Disord 2023; 75:104761. [PMID: 37247488 DOI: 10.1016/j.msard.2023.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND COVID-19 vaccines are recommended for people with multiple sclerosis (pwMS). Adequate humoral responses are obtained in pwMS receiving disease-modifying therapies (DMTs) after vaccination, with the exception of those receiving B-cell-depleting therapies and non-selective S1P modulators. However, most of the reported studies on the immunity of COVID-19 vaccinations have included mRNA vaccines, and information on inactivated virus vaccine responses, long-term protectivity, and comparative studies with mRNA vaccines are very limited. Here, we aimed to investigate the association between humoral vaccine responses and COVID-19 infection outcomes following mRNA and inactivated virus vaccines in a large national cohort of pwMS receiving DMTs. METHODS This is a cross-sectional and prospective multicenter study on COVID-19-vaccinated pwMS. Blood samples of pwMS with or without DMTs and healthy controls were collected after two doses of inactivated virus (Sinovac) or mRNA (Pfizer-BioNTech) vaccines. PwMS were sub-grouped according to the mode of action of the DMTs that they were receiving. SARS-CoV-2 IgG titers were evaluated by chemiluminescent microparticle immunoassay. A representative sample of this study cohort was followed up for a year. COVID-19 infection status and clinical outcomes were compared between the mRNA and inactivated virus groups as well as among pwMS subgroups. RESULTS A total of 1484 pwMS (1387 treated, 97 untreated) and 185 healthy controls were included in the analyses (male/female: 544/1125). Of those, 852 (51.05%) received BioNTech, and 817 (48.95%) received Sinovac. mRNA and inactivated virus vaccines result in similar seropositivity; however, the BioNTech vaccination group had significantly higher antibody titers (7.175±10.074) compared with the Sinovac vaccination group (823±1.774) (p<0.001). PwMS under ocrelizumab, fingolimod, and cladribine treatments had lower humoral responses compared with the healthy controls in both vaccine types. After a mean of 327±16 days, 246/704 (34.9%) of pwMS who were contacted had COVID-19 infection, among whom 83% had asymptomatic or mild disease. There was no significant difference in infection rates of COVID-19 between participants vaccinated with BioNTech or Sinovac vaccines. Furthermore, regression analyses show that no association was found regarding age, sex, Expanded Disability Status Scale score (EDSS), the number of vaccination, DMT type, or humoral antibody responses with COVID-19 infection rate and disease severity, except BMI Body mass index (BMI). CONCLUSION mRNA and inactivated virus vaccines had similar seropositivity; however, mRNA vaccines appeared to be more effective in producing SARS-CoV-2 IgG antibodies. B-cell-depleting therapies fingolimod and cladribine were associated with attenuated antibody titer. mRNA and inactive virus vaccines had equal long-term protectivity against COVID-19 infection regardless of the antibody status.
Collapse
Affiliation(s)
- Melih Tütüncü
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Serkan Demir
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Gökhan Arslan
- Faculty of Medicine, Department of Physiology, Ondokuz Mayıs University, Samsun, Turkey
| | - Öykü Dinç
- Faculty Of Pharmacy, Department Of Pharmaceutical Microbiology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Sedat Şen
- Faculty of Medicine, Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Tuncay Gündüz
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Cihat Uzunköprü
- Faculty of Medicine, Department of Neurology, Katip Celebi University, Izmir, Turkey
| | - Haluk Gümüş
- Faculty of Medicine, Department of Neurology, Selçuk University, Konya, Turkey
| | - Mesude Tütüncü
- Department of Neurology, Istanbul Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Rüveyda Akçin
- Cerrahpaşa Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Serkan Özakbaş
- Faculty of Medicine, Department of Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Mesrure Köseoğlu
- Department of Neurology, Istanbul Bakırköy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Sena Destan Bünül
- Faculty of Medicine, Department of Neurology, Kocaeli University, İzmit/Kocaeli, Turkey
| | - Ozan Gezen
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Damla Çetinkaya Tezer
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Cavid Baba
- Department of Neurosciences, Dokuz Eylül University, Institute of Health Sciences, Izmir, Turkey
| | - Pınar Acar Özen
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Rabia Koç
- Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| | - Tuğrul Elverdi
- Cerrahpaşa Faculty of Medicine, Department of Hematology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Uğur Uygunoğlu
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Murat Kürtüncü
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Yeşim Beckmann
- Faculty of Medicine, Department of Neurology, Katip Celebi University, Izmir, Turkey
| | - İpek Güngör Doğan
- Neurology Department, Sancaktepe Şehit Prof. Dr. Ilhan Varank Research and Training Hospital, Istanbul, Turkey
| | - Ömer Faruk Turan
- Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| | - Cavit Boz
- Faculty of Medicine, Department of Neurology, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Terzi
- Faculty of Medicine, Department of Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Asli Tuncer
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Sabahattin Saip
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Rana Karabudak
- Faculty of Medicine, Department of Neurology, Haccettepe University, Ankara, Turkey
| | - Bekir Kocazeybek
- Cerrahpaşa Faculty of Medicine, Department of Microbiology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hüsnü Efendi
- Faculty of Medicine, Department of Neurology, Kocaeli University, İzmit/Kocaeli, Turkey
| | - Uğur Bilge
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Akdeniz University, Antalya, Turkey
| | - Aksel Siva
- Cerrahpaşa Faculty of Medicine, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey; Faculty of Medicine, Department of Neurology, Uludag University, Bursa, Turkey
| |
Collapse
|
26
|
Reder AT, Stuve O, Tankou SK, Leist TP. T cell responses to COVID-19 infection and vaccination in patients with multiple sclerosis receiving disease-modifying therapy. Mult Scler 2023; 29:648-656. [PMID: 36440826 PMCID: PMC9708532 DOI: 10.1177/13524585221134216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurological disorder marked by accumulating immune-mediated damage to the central nervous system. The dysregulated immune system in MS combined with immune effects of disease-modifying therapies (DMTs) used in MS treatment could alter responses to infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). Most of the literature on immune response to SARS-CoV-2 infection and COVID-19 vaccination, in both the general population and patients with MS on DMTs, has focused on humoral immunity. However, immune response to COVID-19 involves multiple lines of defense, including T cells. OBJECTIVE AND METHODS We review innate and adaptive immunity to COVID-19 and expand on the role of T cells in mediating protective immunity against SARS-CoV-2 infection and in responses to COVID-19 vaccination in MS. RESULTS Innate, humoral, and T cell immune responses combat COVID-19 and generate protective immunity. Assays detecting cytokine expression by T cells show an association between SARS-CoV-2-specific T cell responses and milder/asymptomatic COVID-19 and protective immune memory. CONCLUSION Studies of COVID-19 immunity in people with MS on DMTs should ideally include comprehensive assessment of innate, humoral, and T cell responses.
Collapse
Affiliation(s)
- Anthony T Reder
- Department of Neurology, University of Chicago Medicine,
Chicago, IL, USA
| | - Olaf Stuve
- Peter O’Donnell Jr. Brain Institute, UT Southwestern
Medical Center, Dallas, TX, USA; VA North Texas Health Care System, Dallas VA Medical
Center, Dallas, TX, USA
| | | | - Thomas P Leist
- Department of Neurology, Thomas Jefferson University,
Philadelphia, PA, USA
| |
Collapse
|
27
|
Fernández-Moreno R, Valle-Arroyo J, Páez-Vega A, Salinas A, Cano A, Pérez AB, Torre-Cisneros J, Cantisán S. Memory SARS-CoV-2 T-cell response in convalescent COVID-19 patients with undetectable specific IgG antibodies: a comparative study. Front Immunol 2023; 14:1142918. [PMID: 37180143 PMCID: PMC10169638 DOI: 10.3389/fimmu.2023.1142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Background During the COVID-19 pandemic, a variable percentage of patients with SARS-CoV-2 infection failed to elicit humoral response. This study investigates whether patients with undetectable SARS-CoV-2 IgG are able to generate SARS-CoV-2 memory T cells with proliferative capacity upon stimulation. Methods This cross-sectional study was conducted with convalescent COVID-19 patients, diagnosed with a positive real-time PCR (RT-PCR) from nasal and pharyngeal swab specimens. COVID-19 patients were enrolled ≥3 months after the last PCR positive. Proliferative T-cell response after whole blood stimulation was assessed using the FASCIA assay. Results A total of 119 participants (86 PCR-confirmed COVID-19 patients and 33 healthy controls) were randomly filtered from an initial cohort. Of these 86 patients, 59 had detectable (seropositive) and 27 had undetectable (seronegative) SARS-CoV-2 IgG. Seropositive patients were subclassified as asymptomatic/mild or severe according to the oxygen supplementation requirement. SARS-CoV-2 CD3+ and CD4+ T cells showed significantly lower proliferative response in seronegative than in seropositive patients. The ROC curve analysis indicated that ≥ 5 CD4+ blasts/μL of blood defined a "positive SARS-CoV-2 T cell response". According to this cut-off, 93.2% of seropositive patients had a positive T-cell response compared to 50% of seronegative patients and 20% of negative controls (chi-square; p < 0.001). Conclusions This proliferative assay is useful not only to discriminate convalescent patients from negative controls, but also to distinguish seropositive patients from those with undetectable SARS-CoV-2 IgG antibodies. Memory T cells in seronegative patients are able to respond to SARSCoV-2 peptides, although at a lower magnitude than seropositive patients.
Collapse
Affiliation(s)
- Raquel Fernández-Moreno
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Jorge Valle-Arroyo
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Aurora Páez-Vega
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana Salinas
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Angela Cano
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Ana B Pérez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Microbiology Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Julián Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| | - Sara Cantisán
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
- Infectious Diseases Unit, Reina Sofía University Hospital, Cordoba, Spain
| |
Collapse
|
28
|
Fong CC, Spencer J, Howlett-Prieto Q, Feng X, Reder AT. Adaptive and innate immune responses in multiple sclerosis with anti-CD20 therapy: Gene expression and protein profiles. Front Neurol 2023; 14:1158487. [PMID: 37168665 PMCID: PMC10166068 DOI: 10.3389/fneur.2023.1158487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Background Anti-CD20 is a highly effective therapy for multiple sclerosis (MS), a disease with multiple abnormalities in function of B and T cells and innate immune cells. Anti-CD20 therapy depletes B cells, which alters antibody production and has diverse effects on B cell immunity. These changes potentially affect immunity beyond B cells in MS. Objective Determine if anti-CD20 therapy effects non-B cell, as well as B cell, gene expression, and serum protein levels. Methods Samples were collected from 10 healthy controls and from clinically stable relapsing-remitting MS - 10 untreated, 9 interferon-β-treated, and 15 ocrelizumab-treated patients were studied before, and 2 weeks and 6 months after, the first anti-CD20 infusion. Peripheral blood mononuclear cells (PBMC) were analyzed with sensitive, 135,000-transcript RNA expression microarrays, using stringent criteria. Gene expression was compared to 43 MS-relevant serum immune and neurotrophic proteins, using multiplex protein assays. Results Anti-CD20 therapy reduced expression of 413 total genes and 185 B-cell-regulated genes at 2 weeks vs. pre-therapy. Expression of 19 (15%) of these B cell genes returned toward baseline by 6 months, including genes for the B cell activation protein, CD79A, and for immunoglobulin A, D, and G heavy chains. Expression pathways for Th17 and CD4 regulatory T-cell (Treg) development, differentiation, and proliferation also quieted. In contrast, expression increased in Th1 and myeloid cell antiviral, pro-inflammatory, and toll-like receptor (TLR) gene pathways. Conclusion These findings have clinical implications. B cell gene expression diminishes 2 weeks after anti-CD20 antibody infusion, but begins to rebound by 6 months. This suggests that the optimum time for vaccination is soon before reinfusion of anti-CD20 therapy. In addition, at 6 months, there is enhanced Th1 cell gene expression and induction of innate immune response genes and TLR expression, which can enhance anti-viral and anti-tumor immunity. This may compensate for diminished B cell gene expression after therapy. These data suggest that anti-CD20 therapy has dynamic effect on B cells and causes a compensatory rise in Th1 and myeloid immunity.
Collapse
Affiliation(s)
| | | | | | - Xuan Feng
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
29
|
Scarsi E, Massucco S, Ferraro PM, Cella A, Grisanti SG, Assini A, Beronio A, Della Cava F, Gemelli C, Bandini F, Serrati C, Del Sette M, Schenone A, Benedetti L, Prada V, Grandis M. Comparing the Impact of COVID-19 on Vaccinated and Unvaccinated Patients Affected by Myasthenia Gravis. Life (Basel) 2023; 13:life13041064. [PMID: 37109594 PMCID: PMC10146687 DOI: 10.3390/life13041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
We evaluated 13 patients affected by myasthenia gravis (MG) who had coronavirus disease 2019 (COVID-19) before vaccination and 14 myasthenic patients who contracted severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection after vaccination to evaluate factors related to different COVID-19 outcomes. We compared the two groups' previous stability of MG and the severity of SARS-CoV-2 infection. Vaccinated and non-vaccinated patients were comparable in terms of severity of the previous MG course (mean maximum myasthenia gravis Foundation of America-MGFA-Class III) and during SARS-CoV-2 infection (mean MGFA Class II). In non-vaccinated patients, the hospitalization and severe course percentages were 61.5%, while the mortality reached 30.8%. The hospitalization, severe course, and mortality percentages in vaccinated patients were 7.1%. In deceased, non-vaccinated patients, greater myasthenia severity in the past clinical history, but not at the time of infection, was observed. Similarly, older age at MG onset and at the time of infection correlated with a more severe COVID-19 course in non-vaccinated patients (p = 0.03 and p = 0.04), but not in the group of vaccinated patients. In summary, our data support a protective role of vaccination in myasthenic patients, even if anti-CD20 therapy might be associated with a poor immune response to vaccines.
Collapse
Affiliation(s)
- Elena Scarsi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Pilar M Ferraro
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Arianna Cella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Stefano G Grisanti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Andrea Assini
- Neurology Unit, Galliera Hospital, Via Mura Delle Cappuccine 14, 16128 Genova, Italy
| | - Alessandro Beronio
- Department of Neurology, Sant'Andrea Civic Hospital, Via V. Veneto 197, 19121 La Spezia, Italy
| | - Fabio Della Cava
- Department of Neurology, Imperia Hospital, Via Sant'Agata 57, 18100 Imperia, Italy
| | - Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Fabio Bandini
- Department of Neurology, Villa Scassi Hospital, ASL 3 Genovese, Corso O. Scassi 1, 16149 Genova, Italy
| | - Carlo Serrati
- Department of Neurology, Imperia Hospital, Via Sant'Agata 57, 18100 Imperia, Italy
| | - Massimo Del Sette
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luana Benedetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
30
|
Breu M, Lechner C, Schneider L, Tobudic S, Winkler S, Siegert S, Baumann M, Seidl R, Berger T, Kornek B. Humoral immune response following SARS-CoV-2 mRNA vaccination and infection in pediatric-onset multiple sclerosis. Pediatr Neurol 2023; 143:19-25. [PMID: 36966598 PMCID: PMC9979636 DOI: 10.1016/j.pediatrneurol.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Objective Currently, there is no data available on SARS-CoV-2 vaccine responses in pediatric-onset multiple sclerosis (POMS) and little is known about the course of SARS-CoV-2 infection in this age group. We therefore investigated humoral immune responses after Covid-19 vaccination and/or infection in POMS. Methods We retrospectively analyzed seroconversion rates and SARS-CoV-2 specific antibody levels in 30 POMS and 1 pediatric CIS patient treated with either no disease-modifying therapy (no DMT), immunomodulatory DMT (IM-DMT), or immunosuppressive DMT (IS-DMT) from two Austrian MS centers. Results Median age at MS onset was 15.39 years (IQR 1.97). Median age at first COVID-19 vaccination was 17.43 years (IQR 2.76). After two vaccine doses, seroconversion (≥0.8 BAU/ml) was reached in 25/28 patients (89.3%). All patients with no DMT or IM-DMT generated robust immune responses to vaccination (seroconversion: no DMT: 6/6, IM-DMT: 7/7 (100%); median titers: no DMT: 2075 BAU (IQR 1268.50), IM-DMT: 2500 BAU (IQR 0)). In the IS-DMT group seroconversion was achieved in 12/14 patients (80%), median titers were 50.8 BAU (IQR 254.63). Titers were significantly higher in no DMT versus IS-DMT (p=0.012) and in IM-DMT versus IS-DMT (p=0.001). Infection with SARS-CoV-2 occurred in 11 of 31 patients and symptoms were mild in all cases. One relapse occurred after infection, but no relapses were documented after vaccination. Conclusions Generally, mRNA vaccinations were well tolerated in POMS patients with and without DMT. Immune response was significantly reduced in patients treated with IS-DMT. No unexpected adverse events or relapses related to vaccinations were observed.
Collapse
Affiliation(s)
- Markus Breu
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria,Correspondence to: Markus Breu, MD, PhD, Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria, Währinger Gürtel 18-20, A-1090 Vienna, Austria. Tel: +431 40400 32580. Fax: +431 40400 74710
| | - Christian Lechner
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Schneider
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Selma Tobudic
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Winkler
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sandy Siegert
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Baumann
- Division of Pediatric Neurology, Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Seidl
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Looney CM, Strauli N, Cascino MD, Garma H, Schroeder AV, Takahashi C, O'Gorman W, Green C, Herman AE. Development of a novel, highly sensitive assay for quantification of minimal residual B cells in autoimmune disease and comparison to traditional methods across B-cell-depleting agents. Clin Immunol 2023; 248:109265. [PMID: 36796471 DOI: 10.1016/j.clim.2023.109265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Targeted B-cell depletion is a useful therapy for many diseases, including autoimmune disorders and certain cancers. We developed a sensitive blood B-cell depletion assay, MRB 1.1, compared its performance with the T-cell/B-cell/NK-cell (TBNK) assay, and assessed B-cell depletion with different therapies. The empirically defined lower limit of quantification (LLOQ) for CD19+ cells in the TBNK assay was 10 cells/μL, and 0.441 cells/μL for the MRB 1.1 assay. The TBNK LLOQ was used to compare differences between B-cell depletion in similar lupus nephritis patient populations who received rituximab (LUNAR), ocrelizumab (BELONG), or obinutuzumab (NOBILITY). After 4 weeks, 10% of patients treated with rituximab retained detectable B cells vs 1.8% with ocrelizumab and 1.7% for obinutuzumab; at 24 weeks 93% of patients who received obinutuzumab remained below LLOQ vs 63% for rituximab. More-sensitive measurements of B cells may reveal differences in potency among anti-CD20 agents, which may associate with clinical outcomes.
Collapse
|
32
|
Katz Sand I, Gnjatic S, Krammer F, Tuballes K, Carreño JM, Satyanarayan S, Filomena S, Staker E, Tcheou J, Miller A, Fabian M, Safi N, Nichols J, Patel J, Krieger S, Tankou S, Horng S, Klineova S, Beck E, Merad M, Lublin F. Evaluation of immunological responses to third COVID-19 vaccine among people treated with sphingosine receptor-1 modulators and anti-CD20 therapy. Mult Scler Relat Disord 2023; 70:104486. [PMID: 36628884 PMCID: PMC9794520 DOI: 10.1016/j.msard.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND People living with multiple sclerosis (MS) and other disorders treated with immunomodulatory therapies remain concerned about suboptimal responses to coronavirus disease 2019 (COVID-19) vaccines. Important questions persist regarding immunological response to third vaccines, particularly with respect to newer virus variants. The objective of this study is to evaluate humoral and cellular immune responses to a third COVID-19 vaccine dose in people on anti-CD20 therapy and sphingosine 1-phosphate receptor (S1PR) modulators, including Omicron-specific assays. METHODS This is an observational study evaluating immunological responses to third COVID-19 vaccine dose in participants treated with anti-CD20 agents, S1PR modulators, and healthy controls. Neutralizing antibodies against USA-WA1/2020 (WA1) and B.1.1.529 (BA.1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured before and after third vaccine. Groups were compared by one-way ANOVA with Tukey multiple comparisons. Cellular responses to spike peptide pools generated from WA1 and BA.1 were evaluated. Pre-post comparisons were made by Wilcoxon paired t-tests, inter-cohort comparisons by Mann-Whitney t-test. RESULTS This cohort includes 25 participants on anti-CD20 therapy, 12 on S1PR modulators, and 14 healthy controls. Among those on anti-CD20 therapy, neutralizing antibodies to WA1 were significantly reduced compared to healthy controls (ID50% GM post-vaccination of 8.1 ± 2.8 in anti-CD20 therapy group vs 452.6 ± 8.442 healthy controls, P < 0.0001) and neutralizing antibodies to BA.1 were below the threshold of detection nearly universally. However, cellular responses, including to Omicron-specific peptides, were not significantly different from controls. Among those on S1PR modulators, neutralizing antibodies to WA1 were detected in a minority, and only 3/12 had neutralizing antibodies just at the limit of detection to BA.1. Cellular responses to Spike antigen in those on S1PR modulators were reduced by a factor of 100 compared to controls (median 0.0008% vs. 0.08%, p < 0.001) and were not significantly "boosted" by a third injection. CONCLUSIONS Participants on anti-CD20 and S1PR modulator therapies had impaired antibody neutralization capacity, particularly to BA.1, even after a third vaccine. T cell responses were not affected by anti-CD20 therapies, but were nearly abrogated by S1PR modulators. These results have clinical implications warranting further study.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Sacha Gnjatic
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sammita Satyanarayan
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Filomena
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Staker
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron Miller
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Fabian
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neha Safi
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jamie Nichols
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jasmin Patel
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen Krieger
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephanie Tankou
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sam Horng
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sylvia Klineova
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Beck
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fred Lublin
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
33
|
Azzi L, Dalla Gasperina D, Veronesi G, Shallak M, Maurino V, Baj A, Gianfagna F, Cavallo P, Dentali F, Tettamanti L, Maggi F, Maffioli LS, Tagliabue A, Accolla RS, Forlani G. Mucosal immune response after the booster dose of the BNT162b2 COVID-19 vaccine. EBioMedicine 2023; 88:104435. [PMID: 36628844 PMCID: PMC9828819 DOI: 10.1016/j.ebiom.2022.104435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To date, only a few studies reported data regarding the development of mucosal immune response after the BNT162b2-booster vaccination. METHODS Samples of both serum and saliva of 50 healthcare workers were collected at the day of the booster dose (T3) and after two weeks (T4). Anti-S1-protein IgG and IgA antibody titres and the neutralizing antibodies against the Wuhan wild-type Receptor-Binding Domain in both serum and saliva were measured by quantitative and competitive ELISA, respectively. Data were compared with those recorded after the primary vaccination cycle (T2). Neutralizing antibodies against the variants of concern were measured in those individuals with anti-Wuhan neutralizing antibodies in their saliva. FINDINGS After eight months from the second dose, IgG decreased in both serum (T2GMC: 23,838.5 ng/ml; T3GMC: 1473.8 ng/ml) and saliva (T2GMC: 12.9 ng/ml; T3GMC: 0.3 ng/ml). Consistently, serum IgA decreased (T2GMC: 48.6 ng/ml; T3GMC: 6.4 ng/ml); however, salivary IgA showed a different behaviour and increased (T2GMC: 0.06 ng/ml; T3GMC: 0.41 ng/ml), indicating a delayed activation of mucosal immunity. The booster elicited higher titres of both IgG and IgA when compared with the primary cycle, in both serum (IgG T4GMC: 98,493.9 ng/ml; IgA T4GMC: 187.5 ng/ml) and saliva (IgG T4GMC: 21.9 ng/ml; IgA T4GMC: 0.65 ng/ml). Moreover, the booster re-established the neutralizing activity in the serum of all individuals, not only against the Wuhan wild-type antigen (N = 50; INH: 91.6%) but also against the variants (Delta INH: 91.3%; Delta Plus INH: 89.8%; Omicron BA.1 INH: 85.1%). By contrast, the salivary neutralizing activity was high against the Wuhan antigen in 72% of individuals (N = 36, INH: 62.2%), but decreased against the variants, especially against the Omicron BA.1 variant (Delta N = 27, INH: 43.1%; Delta Plus N = 24, INH: 35.2%; Omicron BA.1 N = 4; INH: 4.7%). This was suggestive for a different behaviour of systemic immunity observed in serum with respect to mucosal immunity described in saliva (Wald chi-square test, 3 df of interaction between variants and sample type = 308.2, p < 0.0001). INTERPRETATION The BNT162b2-booster vaccination elicits a strong systemic immune response but fails in activating an effective mucosal immunity against the Omicron BA.1 variant. FUNDING This work was funded by the Department of Medicine and Surgery, University of Insubria, and supported by Fondazione Umberto Veronesi (COVID-19 Insieme per la ricerca di tutti, 2020), Italy.
Collapse
Affiliation(s)
- Lorenzo Azzi
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Dalla Gasperina
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Veronesi
- Research Centre in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Vittorio Maurino
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Andreina Baj
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Gianfagna
- Research Centre in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy,Mediterranea Cardiocentro, Naples, Italy
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano (SA), Italy,Institute for Complex Systems, National Research Council, Rome, Italy
| | - Francesco Dentali
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Lucia Tettamanti
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Fabrizio Maggi
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Angelo Tagliabue
- Azienda Socio-Sanitaria Territoriale dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Greta Forlani
- Laboratory of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
34
|
Egri N, Calderón H, Martinez R, Vazquez M, Gómez-Caverzaschi V, Pascal M, Araújo O, Juan M, González-Navarro EA, Hernández-Rodríguez J. Cellular and humoral responses after second and third SARS-CoV-2 vaccinations in patients with autoimmune diseases treated with rituximab: specific T cell immunity remains longer and plays a protective role against SARS-CoV-2 reinfections. Front Immunol 2023; 14:1146841. [PMID: 37180097 PMCID: PMC10174323 DOI: 10.3389/fimmu.2023.1146841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Background Humoral and cellular immune responses are known to be crucial for patients to recover from COVID-19 and to protect them against SARS-CoV-2 reinfection once infected or vaccinated. Objectives This study aimed to investigate humoral and T cell responses to SARS-CoV-2 vaccination in patients with autoimmune diseases after the second and third vaccine doses while on rituximab and their potential protective role against reinfection. Methods Ten COVID-19-naïve patients were included. Three time points were used for monitoring cellular and humoral responses: pre-vaccine to exclude virus exposure (time point 1) and post-second and post-third vaccine (time points 2 and 3). Specific IgG antibodies were monitored by Luminex and T cells against SARS-CoV-2 spike-protein by ELISpot and CoVITEST. All episodes of symptomatic COVID-19 were recorded. Results Nine patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and one with an undifferentiated autoimmune disease were included. Nine patients received mRNA vaccines. The last rituximab infusion was administered for a mean (SD) of 15 (10) weeks before the first vaccine and six patients were CD19-B cell-depleted. After a mean (SD) of 19 (10) and 16 (2) days from the second and third vaccine dose, IgG anti-SARS-CoV-2 antibodies were detected in six (60%) and eight (80%) patients, respectively. All patients developed specific T cell responses by ELISpot and CoVITEST in time points 2 and 3. Previous B cell depletion correlated with anti-SARS-CoV-2 IgG levels. Nine (90%) patients developed mild COVID-19 after a median of 7 months of the third dose. Conclusion Rituximab in patients with autoimmune diseases reduces humoral responses but does not avoid the development of T cell responses to SARS-CoV-2 vaccination, which remain present after a booster dose. A steady cellular immunity appears to be protective against subsequent reinfections.
Collapse
Affiliation(s)
- Natalia Egri
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Hugo Calderón
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Robert Martinez
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Mario Vazquez
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Verónica Gómez-Caverzaschi
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Mariona Pascal
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Olga Araújo
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET); Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
| | - José Hernández-Rodríguez
- Clinical Unit of Autoinflammatory Diseases and Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Center of the European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) and ERN on Connective Tissue and Musculoskeletal Diseases (ReCONNET), Spanish Center of the Centros, Servicios y Unidades de Referencia (CSUR) and Catalan Center of the Xarxa d’Unitats d’Expertesa Clínica (XUEC) for Autoinflammatory Diseases, Autoimmune Diseases and Primary Immunodeficiencies, Barcelona, Spain
- *Correspondence: José Hernández-Rodríguez,
| |
Collapse
|
35
|
Faissner S, Heitmann N, Rohling R, Ceylan U, Bongert M, Plaza-Sirvent C, Marheinecke C, Pedreiturria X, Ayzenberg I, Hellwig K, Schmitz I, Pfaender S, Gold R. Preserved T-cell response in anti-CD20-treated multiple sclerosis patients following SARS-CoV-2 vaccination. Ther Adv Neurol Disord 2022; 15:17562864221141505. [PMCID: PMC9742512 DOI: 10.1177/17562864221141505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tremendous implications for the management of patients with autoimmune conditions such as multiple sclerosis (MS) under immune therapies targeting CD20+ B cells (aCD20). Objectives: Here, we investigated humoral and cellular immune responses, including anti-spike titers, neutralization against SARS-CoV-2 wild-type (WT), delta, and omicron variant and T cell responses of aCD20-treated relapsing–remitting MS patients following SARS-CoV-2 vaccination compared with healthy controls. Methods: Blood samples were collected within 4–8 weeks following the second vaccination against SARS-CoV-2. Sera were analyzed for anti-SARS-CoV-2 spike antibodies and neutralization capacity against pseudovirus for wild-type (WT), delta, and omicron variant. Peripheral blood mononuclear cells (PBMCs) were stimulated with a SARS-CoV-2 peptide pool and analyzed via flow cytometry. Results: The aCD20-treated MS patients had lower anti-SARS-CoV-2-spike titers, which correlated with B cell repopulation. Sera of aCD20-treated patients had reduced capacity to neutralize WT, delta, and omicron pseudoviruses in vitro. On the contrary, PBMCs of aCD20-treated patients elicited higher frequencies of CD3+ T cells and CD4+ T cells and comparable response of cytotoxic T cells, while Th1 response was reduced following restimulation with SARS-CoV-2. Conclusion: In summary, aCD20-treated patients have a reduced humoral immune response, depending on B cell repopulation, in accordance with preserved cellular immune response, suggesting partial cellular protection against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Neele Heitmann
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ricarda Rohling
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ulas Ceylan
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Corinna Marheinecke
- Department of Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Ilya Ayzenberg
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Kerstin Hellwig
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular & Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Bazzi SA, Maguire C, Holay N, Geltman J, Hurley K, DiPasquale C, Abigania M, Olson E, Ehrlich LIR, Triplett TA, Melamed E. Longitudinal COVID-19 immune trajectories in patients with neurological autoimmunity on anti-CD20 therapy. Mult Scler Relat Disord 2022; 68:104195. [PMID: 36223705 PMCID: PMC9511881 DOI: 10.1016/j.msard.2022.104195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES During the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination. METHODS CD20 B cell depleted autoimmune patients and age/sex-matched controls positive for SARS-CoV-2 were recruited at Dell Medical School, UT Austin between 2020 and 2021, followed prospectively for 12 months and evaluated at multiple time points for spike S1 receptor binding domain (RBD) antibody titers, B and T cell composition, and frequency of T cells specific for SARS-CoV-2 antigens. RESULTS Immune responses post-SARS-CoV-2 infection and vaccination were evaluated in a cohort of COVID-19 B cell depleted neuroimmune patients (n = 5), COVID-19 non-B cell depleted autoimmune patients (n = 15), COVID-19 immunocompetent patients (n = 117), and healthy controls (n = 6) for a total of 259 samples in 137 participants. 4/5 B cell-depleted patients developed detectable anti-spike RBD antibodies, which were boosted by vaccination in 2 patients. While spike RBD antibodies were associated with presence of CD20+ B cells, very few B cells were required. In contrast, patients whose B cell compartment primarily consisted of CD19+CD20- Bcells during acute COVID-19 disease or vaccination did not seroconvert. Interestingly, circulating Bcells in B cell depleted patients were significantly CD38high with co-expression of CD24 and CD27, indicating that B cell depletion may impact B cell activation patterns. Additionally, all B cell depleted patients mounted a sustained T cell response to SARS-CoV-2 antigens, regardless of seroconversion. Specifically, all patients developed naïve, central memory, effector memory, and effector memory RA+ T cells, suggesting intact T cell memory conversion in B cell depleted patients compared to controls. DISCUSSION We present the longest COVID-19 immune profiling analysis to date in B cell depleted patients, demonstrating that both humoral and cellular immune responses can be generated and sustained up to 12 months post SARS-CoV-2 infection and vaccination. Notably, failure to establish humoral immunity did not result in severe disease. We also highlight specific T and B cell signatures that could be used as clinical biomarkers to advise patients on timing of SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Sam A Bazzi
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Cole Maguire
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Nisha Holay
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Janelle Geltman
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Kerin Hurley
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | | - Eric Olson
- Babson Diagnostics, Austin, TX, United States
| | - Lauren I R Ehrlich
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Todd A Triplett
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
37
|
Hosseini SSJ, Dudakova A, Kummer K, Zschüntzsch J. [SARS-CoV-2 antibody response to the second COVID-19 vaccination in neuromuscular disease patients under immune modulating treatment]. DER NERVENARZT 2022; 93:1219-1227. [PMID: 35997783 PMCID: PMC9395911 DOI: 10.1007/s00115-022-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/04/2022]
Abstract
Successful vaccination (adequate elevation of anti-spike protein antibodies) is attributed with sufficient protection against a severe course of coronavirus disease 2019 (COVID-19). For patients with chronic inflammatory diseases (CID) and immunosuppression the success of vaccination is an ongoing scientific discourse. Therefore, we evaluated the antibody titer against the S1 antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 2 weeks after complete immunization in patients with an underlying neuromuscular disease (NMD), who presented to our neurological day clinic and outpatient department for regular infusions of immunoglobulins. The data show that patients with chronic autoimmune NMD and simultaneous immunosuppressive or immune modulating treatment show an antibody response after vaccination with both mRNA and vector vaccines. In comparison to healthy subjects there is a comparable number of seroconversions due to the vaccination. A correlation between immunoglobulin dose and vaccination response could not be found; however, in contrast, there was a significant reduction of specific antibody synthesis, especially for the combination of mycophenolate mofetil (MMF) and prednisolone.
Collapse
Affiliation(s)
- S S Justus Hosseini
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Anna Dudakova
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Karsten Kummer
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland
| | - Jana Zschüntzsch
- Neuromuskuläres Zentrum Göttingen, Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Deutschland.
| |
Collapse
|
38
|
Barreras P, Vasileiou ES, Filippatou AG, Fitzgerald KC, Levy M, Pardo CA, Newsome SD, Mowry EM, Calabresi PA, Sotirchos ES. Long-term Effectiveness and Safety of Rituximab in Neuromyelitis Optica Spectrum Disorder and MOG Antibody Disease. Neurology 2022; 99:e2504-e2516. [PMID: 36240094 PMCID: PMC9728038 DOI: 10.1212/wnl.0000000000201260] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Rituximab is used widely for relapse prevention in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD); however, data regarding the effectiveness and safety of long-term rituximab use in these conditions are limited. In this study, we sought to evaluate long-term clinical outcomes in patients with aquaporin-4 IgG-seropositive (AQP4-IgG+) NMOSD and MOGAD treated with rituximab. METHODS We performed a retrospective chart review of patients with AQP4-IgG+ NMOSD or MOGAD followed at the Johns Hopkins Neuromyelitis Optica Clinic and included patients who had received at least 1 dose of rituximab. RESULTS We identified 111 patients with NMOSD and 23 patients with MOGAD who fulfilled the inclusion criteria. The median duration of rituximab treatment for the patients with NMOSD was 3.7 years (range: 0.5-13.2 years) and for the patients with MOGAD was 2.1 years (range: 0.5-7.0 years). The annualized relapse rate (ARR) decreased after rituximab initiation in both NMOSD (median ARR: pretreatment 1.1, posttreatment 0; p < 0.001) and MOGAD (median ARR: pretreatment 1.9, posttreatment 0.3; p = 0.002). Relapses on rituximab occurred in 31 patients with NMOSD (28%) and 14 patients with MOGAD (61%). The majority of NMOSD treatment failures (37/48 relapses; 77%) occurred either within the initial 6 months after starting rituximab (n = 13 relapses) or in the setting of delayed/missed rituximab doses and/or peripheral B-cell reconstitution (n = 24 relapses), whereas in MOGAD, these circumstances were present in a smaller proportion of treatment failures (19/35 relapses; 54%). The risk of relapse on rituximab was greater for patients with MOGAD compared with patients with NMOSD (hazard ratio: 2.8, 95% CI: 1.5-5.2, p = 0.001). Infections requiring hospitalization occurred in 13% and immunoglobulin G (IgG) hypogammaglobulinemia in 17% of patients. The median rituximab treatment duration before IgG hypogammaglobulinemia onset was 5.4 years (interquartile range: 3.8-7.7 years). DISCUSSION Rituximab treatment is associated with the reduced annualized relapse rate in AQP4-IgG-seropositive NMOSD, especially in the absence of gaps in treatment and/or B-cell reconstitution. In MOGAD, although a reduction in relapses was observed after initiation of rituximab, this association appeared to be less robust than in AQP4-IgG-seropositive NMOSD. Severe infections and hypogammaglobulinemia occurred in a significant proportion of patients, highlighting the need for close monitoring of infectious complications. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that rituximab decreases the annualized relapse rate in AQP4-IgG-seropositive NMOSD and MOGAD.
Collapse
Affiliation(s)
- Paula Barreras
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Eleni S Vasileiou
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Angeliki G Filippatou
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Kathryn C Fitzgerald
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Michael Levy
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Carlos A Pardo
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Scott D Newsome
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Ellen M Mowry
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Peter A Calabresi
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Elias S Sotirchos
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA.
| |
Collapse
|
39
|
Barreras P, Vasileiou ES, Filippatou AG, Fitzgerald KC, Levy M, Pardo CA, Newsome SD, Mowry EM, Calabresi PA, Sotirchos ES. Long-term Effectiveness and Safety of Rituximab in Neuromyelitis Optica Spectrum Disorder and MOG Antibody Disease. Neurology 2022; 99:e2504-e2516. [PMID: 36240094 PMCID: PMC9728038 DOI: 10.1212/wnl.0000000000201260 10.1212/wnl.0000000000201260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Rituximab is used widely for relapse prevention in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD); however, data regarding the effectiveness and safety of long-term rituximab use in these conditions are limited. In this study, we sought to evaluate long-term clinical outcomes in patients with aquaporin-4 IgG-seropositive (AQP4-IgG+) NMOSD and MOGAD treated with rituximab. METHODS We performed a retrospective chart review of patients with AQP4-IgG+ NMOSD or MOGAD followed at the Johns Hopkins Neuromyelitis Optica Clinic and included patients who had received at least 1 dose of rituximab. RESULTS We identified 111 patients with NMOSD and 23 patients with MOGAD who fulfilled the inclusion criteria. The median duration of rituximab treatment for the patients with NMOSD was 3.7 years (range: 0.5-13.2 years) and for the patients with MOGAD was 2.1 years (range: 0.5-7.0 years). The annualized relapse rate (ARR) decreased after rituximab initiation in both NMOSD (median ARR: pretreatment 1.1, posttreatment 0; p < 0.001) and MOGAD (median ARR: pretreatment 1.9, posttreatment 0.3; p = 0.002). Relapses on rituximab occurred in 31 patients with NMOSD (28%) and 14 patients with MOGAD (61%). The majority of NMOSD treatment failures (37/48 relapses; 77%) occurred either within the initial 6 months after starting rituximab (n = 13 relapses) or in the setting of delayed/missed rituximab doses and/or peripheral B-cell reconstitution (n = 24 relapses), whereas in MOGAD, these circumstances were present in a smaller proportion of treatment failures (19/35 relapses; 54%). The risk of relapse on rituximab was greater for patients with MOGAD compared with patients with NMOSD (hazard ratio: 2.8, 95% CI: 1.5-5.2, p = 0.001). Infections requiring hospitalization occurred in 13% and immunoglobulin G (IgG) hypogammaglobulinemia in 17% of patients. The median rituximab treatment duration before IgG hypogammaglobulinemia onset was 5.4 years (interquartile range: 3.8-7.7 years). DISCUSSION Rituximab treatment is associated with the reduced annualized relapse rate in AQP4-IgG-seropositive NMOSD, especially in the absence of gaps in treatment and/or B-cell reconstitution. In MOGAD, although a reduction in relapses was observed after initiation of rituximab, this association appeared to be less robust than in AQP4-IgG-seropositive NMOSD. Severe infections and hypogammaglobulinemia occurred in a significant proportion of patients, highlighting the need for close monitoring of infectious complications. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that rituximab decreases the annualized relapse rate in AQP4-IgG-seropositive NMOSD and MOGAD.
Collapse
Affiliation(s)
- Paula Barreras
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Eleni S Vasileiou
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Angeliki G Filippatou
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Kathryn C Fitzgerald
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Michael Levy
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Carlos A Pardo
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Scott D Newsome
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Ellen M Mowry
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Peter A Calabresi
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA
| | - Elias S Sotirchos
- From the Department of Neurology (P.B., E.S.V., A.G.F., K.C.F., C.A.P., S.D.N., E.M.M.C.R., P.A.C., E.S.S.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (M.L.), Harvard University, Boston, MA.
| |
Collapse
|
40
|
Mazziotti V, Crescenzo F, Tamanti A, Dapor C, Ziccardi S, Guandalini M, Colombi A, Camera V, Peloso A, Pezzini F, Turano E, Marastoni D, Calabrese M. Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Biomedicines 2022; 10:biomedicines10123034. [PMID: 36551795 PMCID: PMC9775192 DOI: 10.3390/biomedicines10123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
The impact of disease-modifying therapies (DMTs) on the immune response to coronavirus disease-2019 (COVID-19) vaccines in persons with multiple sclerosis (pwMS) needs further elucidation. We investigated BNT162b2 mRNA COVID-19 vaccine effects concerning antibody seroconversion, inflammatory mediators' level and immunophenotype assessment in pwMS treated with cladribine (c-pwMS, n = 29), fingolimod (f-pwMS, n = 15) and ocrelizumab (o-pwMS, n = 54). Anti-spike immunoglobulin (Ig)-G detection was performed by an enzyme immunoassay; molecular mediators (GrB, IFN-γ and TNF-α) were quantified using the ELLA platform, and immunophenotype was assessed by flow cytometry. ANCOVA, Student's t-test and Pearson correlation analyses were applied. Only one o-pwMS showed a mild COVID-19 infection despite most o-pwMS lacking seroconversion and showing lower anti-spike IgG titers than c-pwMS and f-pwMS. No significant difference in cytokine production and lymphocyte count was observed in c-pwMS and f-pwMS. In contrast, in o-pwMS, a significant increase in GrB levels was detected after vaccination. Considering non-seroconverted o-pwMS, a significant increase in GrB serum levels and CD4+ T lymphocyte count was found after vaccination, and a negative correlation was observed between anti-spike IgG production and CD4+ T cells count. Differences in inflammatory mediators' production after BNT162b2 vaccination in o-pwMS, specifically in those lacking anti-spike IgG, suggest a protective cellular immune response.
Collapse
Affiliation(s)
- Valentina Mazziotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Francesco Crescenzo
- Neurology Unit, “Mater Salutis” Hospital, ULSS 9 Scaligera, 37045 Legnago, Italy
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Caterina Dapor
- Department of General Psychology, University of Padova, 35131 Padua, Italy
| | - Stefano Ziccardi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maddalena Guandalini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Annalisa Colombi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Valentina Camera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Angela Peloso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37134 Verona, Italy
| | - Ermanna Turano
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
41
|
Pugliatti M, Hartung HP, Oreja-Guevara C, Pozzilli C, Airas L, Alkhawajah M, Grigoriadis N, Magyari M, Van Wijmeersch B, Zakaria M, Linker R, Chan A, Vermersch P, Berger T. Anti-SARS-CoV-2 vaccination in people with multiple sclerosis: Lessons learnt a year in. Front Immunol 2022; 13:1045101. [PMID: 36325318 PMCID: PMC9620960 DOI: 10.3389/fimmu.2022.1045101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
It has been over a year since people with multiple sclerosis (pwMS) have been receiving vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With a negligible number of cases in which vaccination led to a relapse or new onset MS, experts around the world agree that the potential consequences of COVID-19 in pwMS by far outweigh the risks of vaccination. This article reviews the currently available types of anti-SARS-CoV-2 vaccines and the immune responses they elicit in pwMS treated with different DMTs. Findings to date highlight the importance of vaccine timing in relation to DMT dosing to maximize protection, and of encouraging pwMS to get booster doses when offered.
Collapse
Affiliation(s)
- Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Interdepartmental Center of Research for Multiple Sclerosis and Neuro-inflammatory and Degenerative Diseases, University of Ferrara, Ferrara, Italy
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
- *Correspondence: Hans-Peter Hartung,
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Carlo Pozzilli
- Multiple Sclerosis Center, S. Andrea Hospital, Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter of Turku University Hospital, Turku, Finland
| | - Mona Alkhawajah
- Section of Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bart Van Wijmeersch
- Universitair Multiple Sclerosis (MS) Centrum, Hasselt-Pelt, Belgium
- Revalidatie & Multiple Sclerosis (MS), Noorderhart, Pelt, Belgium
- Rehabilitation Research Center (REVAL) & Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Magd Zakaria
- Department of Neurology, Ain Shams University, Cairo, Egypt
| | - Ralf Linker
- Clinic and Polyclinic for Neurology, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Vermersch
- University of Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Woopen C, Dunsche M, Haase R, Raposo C, Pedotti R, Akgün K, Ziemssen T. Timing of SARS-CoV-2 Vaccination Matters in People With Multiple Sclerosis on Pulsed Anti-CD20 Treatment. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200031. [PMID: 36224045 PMCID: PMC9558629 DOI: 10.1212/nxi.0000000000200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Our objective was to investigate cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in a cohort of people with multiple sclerosis (pwMS) on pulsed B-cell-depleting treatment (BCDT). In particular, we intended to evaluate a possible association between immune responses and the timing of vaccination under BCDT. METHODS We conducted a cross-sectional study among pwMS on pulsed BCDT or without disease-modifying treatment after completed SARS-CoV-2 vaccination. Samples were collected during routine clinical visits at the Multiple Sclerosis Center Dresden, Germany, between June 2021 and September 2021. Blood was analyzed for SARS-CoV-2 spike protein-specific antibodies and interferon-γ release of CD4 and CD8 T cells on stimulation with spike protein peptide pools. Lymphocyte subpopulations and total immunoglobulin levels in the blood were measured as part of clinical routine. RESULTS We included 160 pwMS in our analysis, comprising 133 pwMS on BCDT (n = 132 on ocrelizumab and n = 1 on rituximab) and 27 without disease-modifying treatment. Humoral and cellular anti-SARS-CoV-2 responses were reciprocally regulated by the time between the last BCDT cycle and vaccination. Although antibody responses increased with prolonged intervals between the last BCDT cycle and vaccination, CD4 and CD8 T-cell responses were higher in pwMS vaccinated at early time points after the last BCDT cycle compared with untreated pwMS. T-cellular vaccination responses correlated with total, CD3 CD4, and partly with CD3 CD8 lymphocyte counts. Humoral responses correlated with CD19 lymphocyte counts. Status post coronavirus disease 2019 infection led to significantly increased SARS-CoV-2-specific T-cell and antibody responses. DISCUSSION Delaying BCDT is currently discussed as a strategy to optimize humoral responses to SARS-CoV-2 vaccination. However, T cells represent an important line of defense against SARS-CoV-2 infection as well, especially in light of emerging variants of concern. We observed enhanced CD4 and CD8 T-cellular responses in pwMS receiving vaccination at early time points after their last BCDT cycle. These data may influence clinical decision making with respect to vaccination strategies in patients receiving BCDT.
Collapse
|
43
|
Kister I, Curtin R, Pei J, Perdomo K, Bacon TE, Voloshyna I, Kim J, Tardio E, Velmurugu Y, Nyovanie S, Valeria Calderon A, Dibba F, Stanzin I, Samanovic MI, Raut P, Raposo C, Priest J, Cabatingan M, Winger RC, Mulligan MJ, Patskovsky Y, Silverman GJ, Krogsgaard M. Hybrid and vaccine-induced immunity against SAR-CoV-2 in MS patients on different disease-modifying therapies. Ann Clin Transl Neurol 2022; 9:1643-1659. [PMID: 36165097 PMCID: PMC9538694 DOI: 10.1002/acn3.51664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To compare "hybrid immunity" (prior COVID-19 infection plus vaccination) and post-vaccination immunity to SARS CoV-2 in MS patients on different disease-modifying therapies (DMTs) and to assess the impact of vaccine product and race/ethnicity on post-vaccination immune responses. METHODS Consecutive MS patients from NYU MS Care Center (New York, NY), aged 18-60, who completed primary COVID-19 vaccination series ≥6 weeks previously were evaluated for SARS CoV-2-specific antibody responses with electro-chemiluminescence and multiepitope bead-based immunoassays and, in a subset, live virus immunofluorescence-based microneutralization assay. SARS CoV-2-specific cellular responses were assessed with cellular stimulation TruCulture IFNγ and IL-2 assay and, in a subset, with IFNγ and IL-2 ELISpot assays. Multivariate analyses examined associations between immunologic responses and prior COVID-19 infection while controlling for age, sex, DMT at vaccination, time-to-vaccine, and vaccine product. RESULTS Between 6/01/2021 and 11/11/2021, 370 MS patients were recruited (mean age 40.6 years; 76% female; 53% non-White; 22% with prior infection; common DMT classes: ocrelizumab 40%; natalizumab 15%, sphingosine-1-phosphate receptor modulators 13%; and no DMT 8%). Vaccine-to-collection time was 18.7 (±7.7) weeks and 95% of patients received mRNA vaccines. In multivariate analyses, patients with laboratory-confirmed prior COVID-19 infection had significantly increased antibody and cellular post-vaccination responses compared to those without prior infection. Vaccine product and DMT class were independent predictors of antibody and cellular responses, while race/ethnicity was not. INTERPRETATION Prior COVID-19 infection is associated with enhanced antibody and cellular post-vaccine responses independent of DMT class and vaccine type. There were no differences in immune responses across race/ethnic groups.
Collapse
Affiliation(s)
- Ilya Kister
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ryan Curtin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Jinglan Pei
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Katherine Perdomo
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Tamar E. Bacon
- NYU Multiple Sclerosis Comprehensive Care Center, Department of NeurologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Iryna Voloshyna
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Joseph Kim
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Ethan Tardio
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Samantha Nyovanie
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Andrea Valeria Calderon
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Fatoumatta Dibba
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Igda Stanzin
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Marie I. Samanovic
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Pranil Raut
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | - Mark J. Mulligan
- NYU Langone Vaccine Center, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Yury Patskovsky
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Gregg J. Silverman
- Division of Rheumatology, Department of MedicineNew York University Grossman School of MedicineNew YorkNew York10016USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of PathologyNew York University Grossman School of MedicineNew YorkNew York10016USA
| |
Collapse
|
44
|
Etemadifar M, Nouri H, Pitzalis M, Idda ML, Salari M, Baratian M, Mahdavi S, Abhari AP, Sedaghat N. Multiple sclerosis disease-modifying therapies and COVID-19 vaccines: a practical review and meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:986-994. [PMID: 35688629 DOI: 10.1136/jnnp-2022-329123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
Abstract
Studies among people with multiple sclerosis (pwMS) receiving disease-modifying therapies (DMTs) have provided adequate evidence for an appraisal of COVID-19 vaccination policies among them. To synthesise the available evidence addressing the effect of MS DMTs on COVID-19 vaccines' immunogenicity and effectiveness, following the Cochrane guidelines, we systematically reviewed all observational studies available in MEDLINE, Scopus, Web of Science, MedRxiv and Google Scholar from January 2021 to January 2022 and extracted their relevant data. Immunogenicity data were then synthesised in a quantitative, and other data in a qualitative manner. Evidence from 28 studies suggests extensively lower B-cell responses in sphingosine-1-phosphate receptor modulator (S1PRM) treated and anti-CD20 (aCD20) treated, and lower T-cell responses in interferon-treated, S1PRM-treated and cladribine-treated pwMS-although most T cell evidence currently comprises of low or very low certainty. With every 10-week increase in aCD20-to-vaccine period, a 1.94-fold (95% CI 1.57 to 2.41, p<0.00001) increase in the odds of seroconversion was observed. Furthermore, the evidence points out that B-cell-depleting therapies may accelerate postvaccination humoral waning, and boosters' immunogenicity is predictable with the same factors affecting the initial vaccination cycle. Four real-world studies further indicate that the comparative incidence/severity of breakthrough COVID-19 has been higher among the pwMS treated with S1PRM and aCD20-unlike the ones treated with other DMTs. S1PRM and aCD20 therapies were the only DMTs reducing the real-world effectiveness of COVID-19 vaccination among pwMS. Hence, it could be concluded that optimisation of humoral immunogenicity and ensuring its durability are the necessities of an effective COVID-19 vaccination policy among pwMS who receive DMTs.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hosein Nouri
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Maria Laura Idda
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council (CNR), Cagliari, Italy
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Baratian
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepide Mahdavi
- Clinical Research Developement Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amir Parsa Abhari
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - Nahad Sedaghat
- Neurosurgery Research Department, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran .,Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| |
Collapse
|
45
|
Alfonso-Dunn R, Lin J, Kirschner V, Lei J, Feuer G, Malin M, Liu J, Roche M, Sadiq SA. Strong T-cell activation in response to COVID-19 vaccination in multiple sclerosis patients receiving B-cell depleting therapies. Front Immunol 2022; 13:926318. [PMID: 35990701 PMCID: PMC9388928 DOI: 10.3389/fimmu.2022.926318] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Immunocompromised individuals, including multiple sclerosis (MS) patients on certain immunotherapy treatments, are considered susceptible to complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and specific vaccination regimens have been recommended for suitable protection. MS patients receiving anti-CD20 therapy (aCD20-MS) are considered especially vulnerable due to acquired B-cell depletion and impaired antibody production in response to virus infection and COVID-19 vaccination. Here, the humoral and cellular responses are analyzed in a group of aCD20-MS patients (n=43) compared to a healthy control cohort (n=34) during the first 6 months after a 2-dose cycle mRNA-based COVID-19 vaccination. Both IgG antibodies recognizing receptor binding domain (RBD) from CoV-2 spike protein and their blocking activity against RBD-hACE2 binding were significantly reduced in aCD20-MS patients, with a seroconversion rate of only 23.8%. Interestingly, even under conditions of severe B-cell depletion and failed seroconversion, a significantly higher polyfunctional IFNγ+ and IL-2+ T-cell response and strong T-cell proliferation capacity were detected compared to controls. Moreover, no difference in T-cell response was observed between forms of disease (relapsing remitting- vs progressive-MS), anti-CD20 therapy (Rituximab vs Ocrelizumab) and type of mRNA-based vaccine received (mRNA-1273 vs BNT162b2). These results suggest the generation of a partial adaptive immune response to COVID-19 vaccination in B-cell depleted MS individuals driven by a functionally competent T-cell arm. Investigation into the role of the cellular immune response is important to identifying the level of protection against SARS-CoV-2 in aCD20-MS patients and could have potential implications for future vaccine design and application.
Collapse
|
46
|
Response to COVID-19 booster vaccinations in seronegative people with multiple sclerosis. Mult Scler Relat Disord 2022; 64:103937. [PMID: 35700625 PMCID: PMC9166227 DOI: 10.1016/j.msard.2022.103937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND People with MS treated with anti-CD20 therapies and fingolimod often have attenuated responses to initial COVID-19 vaccination. However, uncertainties remain about the benefit of a 3rd (booster) COVID-19 vaccine in this group. METHODS PwMS without a detectable IgG response following COVID-19 vaccines 1&2 were invited to participate. Participants provided a dried blood spot +/- venous blood sample 2-12 weeks following COVID-19 vaccine 3. Humoral and T cell responses to SARS-CoV-2 spike protein and nucleocapsid antigen were measured. RESULTS Of 81 participants, 79 provided a dried blood spot sample, of whom 38 also provided a whole blood sample; 2 provided only whole blood. Anti-SARS-CoV-2-spike IgG seroconversion post-COVID-19 vaccine 3 occurred in 26/79 (33%) participants; 26/40 (65%) had positive T-cell responses. Overall, 31/40 (78%) demonstrated either humoral or cellular immune response post-COVID-19 vaccine 3. There was no association between laboratory evidence of prior COVID-19 and seroconversion following vaccine 3. CONCLUSIONS Approximately one third of pwMS who were seronegative after initial COVID-19 vaccination seroconverted after booster (third) vaccination, supporting the use of boosters in this group. Almost 8 out of 10 had a measurable immune response following 3rd COVID-19 vaccine.
Collapse
|
47
|
Giannoccaro MP, Vacchiano V, Leone M, Camilli F, Zenesini C, Panzera I, Balboni A, Tappatà M, Borghi A, Salvi F, Lugaresi A, Rinaldi R, Di Felice G, Lodi V, Lazzarotto T, Liguori R. Difference in safety and humoral response to mRNA SARS-CoV-2 vaccines in patients with autoimmune neurological disorders: the ANCOVAX study. J Neurol 2022; 269:4000-4012. [PMID: 35503375 PMCID: PMC9063626 DOI: 10.1007/s00415-022-11142-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Assessing the safety of SARS-CoV-2 mRNA vaccines and the effect of immunotherapies on the seroconversion rate in patients with autoimmune neurological conditions (ANC) is relevant to clinical practice. Our aim was to assess the antibody response to and safety of SARS-CoV-2 mRNA vaccines in ANC. METHODS This longitudinal study included ANC patients vaccinated with two doses of BNT162b2 or mRNA-1273 between March and August 2021. Side effects were assessed 2-10 days after each dose. Neurological status and anti-spike receptor binding domain antibody levels were evaluated before vaccination and 4 weeks after the second dose. Healthcare-workers served as controls for antibody levels. RESULTS We included 300 ANC patients (median age 52, IQR 40-65), and 347 healthcare-workers (median age 45, IQR 34-54). mRNA-1273 vaccine was associated with an increased risk of both local (OR 2.52 95% CI 1.45-4.39, p = 0.001) and systemic reactions (OR 2.51% CI 1.49-4.23, p = 0.001). The incidence of relapse was not different before and after vaccine (Incidence rate ratio 0.72, 95% CI 0.29-1.83). Anti-SARS-CoV-2 IgG were detected in 268 (89.9%) patients and in all controls (p < 0.0001). BNT162b2 vaccine (OR 8.84 95% CI 2.32-33.65, p = 0.001), anti-CD20 mAb (OR 0.004 95% CI 0.0007-0.026, p < 0.0001) and fingolimod (OR 0.036 95% CI 0.002-0.628, p = 0·023) were associated with an increased risk of not developing anti-SARS-CoV-2 IgG. CONCLUSION SARS-CoV-2 mRNA vaccines were safe in a large group of ANC patients. Anti-CD20 and fingolimod treatment, as well as vaccination with the BNT162b2 vaccine, led to a reduced humoral response. These findings could inform vaccine policies in ANC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy.
| | - Veria Vacchiano
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Marta Leone
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Federico Camilli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Ivan Panzera
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alice Balboni
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Tappatà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Annamaria Borghi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurology and Metropolitan Stroke Center, "C.A. Pizzardi" Maggiore Hospital, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Giulia Di Felice
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Occupational Health Unit, Istituto di Ricovero e Cura a Carattere Scientifico St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Vittorio Lodi
- Occupational Health Unit, Istituto di Ricovero e Cura a Carattere Scientifico St. Orsola Polyclinic, University of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy
| |
Collapse
|
48
|
Cauchi M, Willis M, Andrews A, Backx M, Brownlee W, Ford HL, Gran B, Jolles S, Price S, Rashid W, Schmierer K, Tallantyre EC. Multiple sclerosis and the risk of infection: Association of British Neurologists consensus guideline. Pract Neurol 2022; 22:practneurol-2022-003370. [PMID: 35863879 DOI: 10.1136/practneurol-2022-003370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Infection in people with multiple sclerosis (MS) is of major concern, particularly for those receiving disease-modifying therapies. This article explores the risk of infection in people with MS and provides guidance-developed by Delphi consensus by specialists involved in their management-on how to screen for, prevent and manage infection in this population.
Collapse
Affiliation(s)
- Marija Cauchi
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Mark Willis
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| | - Angela Andrews
- Pharmacy Neurosciences Directorate, University Hospital of Wales, Cardiff, UK
| | - Matthijs Backx
- Infectious Diseases, University Hospital of Wales and Department of Microbiology, Public Health Wales, Cardiff, UK
| | - Wallace Brownlee
- Queen Square MS Centre, University College London Institute of Neurology, Queen Square Multiple Sclerosis Centre, London, UK
| | - Helen L Ford
- Centre for Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK, Leeds, UK
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Mental Health and Clinical Neuroscience Academic Unit, University of Nottingham School of Medicine, Nottingham, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Sian Price
- Department of Neuroscience, University of Sheffield, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Waqar Rashid
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Klaus Schmierer
- The Blizard Institute (Neuroscience, Surgery & Trauma), Queen Mary University of London Faculty of Medicine and Dentistry, London, UK
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
49
|
Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C, Ashhurst T, Kummer LYL, Steenhuis M, Duurland M, de Jongh R, de Jong N, van der Schoot CE, Bos AV, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, van Kempen ZLE, Wieske L, Kuijpers TW, Eftimov F, Rispens T, van Ham SM, ten Brinke A, van de Sandt CE. Immune dynamics in SARS-CoV-2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA-1273. eLife 2022; 11:e77969. [PMID: 35838348 PMCID: PMC9337853 DOI: 10.7554/elife.77969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).
Collapse
Affiliation(s)
- Niels JM Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and Health, The University of SydneySydneyAustralia
| | - Laura YL Kummer
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Mariel Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Nina de Jong
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Erik Mul
- Department of Research Facilities, Sanquin ResearchAmsterdamNetherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido UniversitySapporoJapan
| | - Koos PJ van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Sander W Tas
- Amsterdam Rheumatology and immunology Center, Department of Rheumatology and Clinical Immunology, University of AmsterdamAmsterdamNetherlands
| | - Joep Killestein
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Zoé LE van Kempen
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
- Department of Clinical Neurophysiology, St Antonius HospitalNieuwegeinNetherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of AmsterdamAmsterdamNetherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
50
|
Lyudovyk O, Kim JY, Qualls D, Hwee MA, Lin YH, Boutemine SR, Elhanati Y, Solovyov A, Douglas M, Chen E, Babady NE, Ramanathan L, Vedantam P, Bandlamudi C, Gouma S, Wong P, Hensley SE, Greenbaum B, Huang AC, Vardhana SA. Impaired humoral immunity is associated with prolonged COVID-19 despite robust CD8 T cell responses. Cancer Cell 2022; 40:738-753.e5. [PMID: 35679859 PMCID: PMC9149241 DOI: 10.1016/j.ccell.2022.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
How immune dysregulation affects recovery from COVID-19 infection in patients with cancer remains unclear. We analyzed cellular and humoral immune responses in 103 patients with prior COVID-19 infection, more than 20% of whom had delayed viral clearance. Delayed clearance was associated with loss of antibodies to nucleocapsid and spike proteins with a compensatory increase in functional T cell responses. High-dimensional analysis of peripheral blood samples demonstrated increased CD8+ effector T cell differentiation and a broad but poorly converged COVID-specific T cell receptor (TCR) repertoire in patients with prolonged disease. Conversely, patients with a CD4+ dominant immunophenotype had a lower incidence of prolonged disease and exhibited a deep and highly select COVID-associated TCR repertoire, consistent with effective viral clearance and development of T cell memory. These results highlight the importance of B cells and CD4+ T cells in promoting durable SARS-CoV-2 clearance and the significance of coordinated cellular and humoral immunity for long-term disease control.
Collapse
Affiliation(s)
- Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Y Kim
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Qualls
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madeline A Hwee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ya-Hui Lin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sawsan R Boutemine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melanie Douglas
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunise Chen
- University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - N Esther Babady
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Clinical Microbiology Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lakshmi Ramanathan
- Clinical Chemistry Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott E Hensley
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Alexander C Huang
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Santosha A Vardhana
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|