1
|
Huang Y, Huang W, Ma X, Zhao G, Kang J, Li H, Li J, Sheng S, Qian F. Nomogram for predicting mild cognitive impairment in Chinese elder CSVD patients based on Boruta algorithm. Front Aging Neurosci 2025; 17:1431421. [PMID: 39963470 PMCID: PMC11830805 DOI: 10.3389/fnagi.2025.1431421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background The number of patients with cerebral small vessel disease is increasing, especially among the elderly population. With the continuous improvement of detection techniques, the positivity rate keeps increasing. Our goal is to develop a nomogram for early identification of PSCI and PSCID in stroke patients. Methods In a retrospective cohort, chained data imputation was performed to ensure no statistical differences from the original dataset. Subsequently, Boruta algorithm was utilized for variable selection based on their importance, followed by logistic regression employing backward stepwise regression. Finally, the regression results were visualized as a Nomogram. Results The nomogram chart in this study achieves clinical utility in a concise and user-friendly manner, passing the Hosmer-Lemeshow goodness-of-fit test. ROC and calibration curves indicate its high discriminative ability. Conclusion While CSVD is prevalent among middle-aged and older individuals, cognitive decline trajectories differ. Endocrine metabolic indicators like IGF-1 offer early predictive value. This study has produced a succinct nomogram integrating demographic and clinical indicators for medical application.
Collapse
Affiliation(s)
- Yanzi Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wendie Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoming Ma
- Department of Neurology of Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Guoyin Zhao
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingwen Kang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Huajie Li
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingwei Li
- Department of Neurology of Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Shiying Sheng
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fengjuan Qian
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Jilo DD, Abebe BK, Wang J, Guo J, Li A, Zan L. Long non-coding RNA (LncRNA) and epigenetic factors: their role in regulating the adipocytes in bovine. Front Genet 2024; 15:1405588. [PMID: 39421300 PMCID: PMC11484070 DOI: 10.3389/fgene.2024.1405588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the involvement of long non-coding RNAs (lncRNAs) and epigenetic processes in bovine adipocytes can provide valuable new insights into controlling adipogenesis in livestock. Long non-coding RNAs have been associated with forming chromatin loops that facilitate enhancer-promoter interactions during adipogenesis, as well as regulating important adipogenic transcription factors like C/EBPα and PPARγ. They significantly influence gene expression regulation at the post-transcriptional level and are extensively researched for their diverse roles in cellular functions. Epigenetic modifications such as chromatin reorganization, histone alterations, and DNA methylation subsequently affect the activation of genes related to adipogenesis and the progression of adipocyte differentiation. By investigating how fat deposition is epigenetically regulated in beef cattle, scientists aim to unravel molecular mechanisms, identify key regulatory genes and pathways, and develop targeted strategies for modifying fat deposition to enhance desirable traits such as marbling and meat tenderness. This review paper delves into lncRNAs and epigenetic factors and their role in regulating bovine adipocytes while focusing on their potential as targets for genetic improvement to increase production efficiency. Recent genomics advancements, including molecular markers and genetic variations, can boost animal productivity, meeting global demands for high-quality meat products. This review establishes a foundation for future research on understanding regulatory networks linked to lncRNAs and epigenetic changes, contributing to both scholarly knowledge advancement and practical applications within animal agriculture.
Collapse
Affiliation(s)
- Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Bule Hora University, Bule Hora, Ethiopia
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wang T, Zhu C, Zhang K, Gao J, Xu Y, Duan C, Wu S, Peng C, Guan J, Wang Y. Targeting IGF1/IGF1r signaling relieve pain and autophagic dysfunction in NTG-induced chronic migraine model of mice. J Headache Pain 2024; 25:156. [PMID: 39304806 PMCID: PMC11414239 DOI: 10.1186/s10194-024-01864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Chronic migraine is a severe and common neurological disorder, yet its precise physiological mechanisms remain unclear. The IGF1/IGF1r signaling pathway plays a crucial role in pain modulation. Studies have shown that IGF1, by binding to its receptor IGF1r, activates a series of downstream signaling cascades involved in neuronal survival, proliferation, autophagy and functional regulation. The activation of these pathways can influence nociceptive transmission. Furthermore, alterations in IGF1/IGF1r signaling are closely associated with the development of various chronic pain conditions. Therefore, understanding the specific mechanisms by which this pathway contributes to pain is of significant importance for the development of novel pain treatment strategies. In this study, we investigated the role of IGF1/IGF1r and its potential mechanisms in a mouse model of chronic migraine. METHODS Chronic migraine was induced in mice by repeated intraperitoneal injections of nitroglycerin. Mechanical and thermal hypersensitivity responses were assessed using Von Frey filaments and radiant heat, respectively. To determine the role of IGF1/IGF1r in chronic migraine (CM), we examined the effects of the IGF1 receptor antagonist ppp (Picropodophyllin) on pain behaviors and the expression of calcitonin gene-related peptide (CGRP) and c-Fos. RESULT In the nitroglycerin-induced chronic migraine model in mice, neuronal secretion of IGF1 is elevated within the trigeminal nucleus caudalis (TNC). Increased phosphorylation of the IGF1 receptor occurs, predominantly co-localizing with neurons. Treatment with ppp alleviated basal mechanical hypersensitivity and acute mechanical allodynia. Furthermore, ppp ameliorated autophagic dysfunction and reduced the expression of CGRP and c-Fos. CONCLUSION Our findings demonstrate that in the chronic migraine (CM) model in mice, there is a significant increase in IGF1 expression in the TNC region. This upregulation of IGF1 leads to enhanced phosphorylation of IGF1 receptors on neurons. Targeting and inhibiting this signaling pathway may offer potential preventive strategies for mitigating the progression of chronic migraine.
Collapse
Affiliation(s)
- Tianxiao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunhao Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chenyang Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shouyi Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Cheng Peng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jisong Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Yonggang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
4
|
Barrea L, Verde L, Annunziata G, Camajani E, Caprio M, Sojat AS, Marina LV, Guarnotta V, Colao A, Muscogiuri G. Role of Mediterranean diet in endocrine diseases: a joint overview by the endocrinologist and the nutritionist. J Endocrinol Invest 2024; 47:17-33. [PMID: 37697017 PMCID: PMC10776748 DOI: 10.1007/s40618-023-02169-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE The purpose of this review is to examine the current evidence on the potential role of Mediterranean diet (MD) in the prevention and management of endocrine disorders and to highlight the importance of interdisciplinary collaboration between endocrinologists and nutritionists. METHODS A literature search was conducted using PubMed and Google Scholar databases to identify relevant studies published in English. Studies were selected based on their relevance to the role of MD in the prevention and management of endocrine disorders. The search terms included "Mediterranean diet," "endocrine disorders," "thyroid disorders," "gonadal disorders," and "neuroendocrine tumors". RESULTS The studies reviewed suggest that MD may have a beneficial effect in the prevention and management of various endocrine disorders, including thyroid disorders, gonadal disorders, and neuroendocrine tumors. MD has been associated with decreased risk of nodular thyroid disease and thyroid cancer, improved male and female reproductive health, and a potential role in the management of neuroendocrine tumors. MD's anti-inflammatory and antioxidant properties, as well as its high levels of phytochemicals, may play a role in its beneficial effects. CONCLUSION Interdisciplinary collaboration between endocrinologists and nutritionists is essential for the optimal management of endocrine disorders, including the potential role of MD in their prevention and management. While further research is needed, the current evidence suggests that MD may have a protective effect against endocrine disorders, and its incorporation into dietary recommendations may be beneficial.
Collapse
Affiliation(s)
- L Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - L Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - G Annunziata
- Department of Pharmacy, Federico II University, 80131, Naples, Italy
| | - E Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - M Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, San Raffaele Research Institute, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - A S Sojat
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - L V Marina
- National Centre for Infertility and Endocrinology of Gender, Clinic for Endocrinology Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - V Guarnotta
- Section of Endocrinology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - A Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - G Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy.
| |
Collapse
|
5
|
Höybye C. Comparing treatment with daily and long-acting growth hormone formulations in adults with growth hormone deficiency: Challenging issues, benefits, and risks. Best Pract Res Clin Endocrinol Metab 2023; 37:101788. [PMID: 37308376 DOI: 10.1016/j.beem.2023.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Daily administration of growth hormone (GH) treatment has been in clinical use for treatment for GH deficiency (GHD) in adults for more than 30 years. Numerous studies have demonstrated evidence that GH treatment improves body composition, cardiovascular risk factors and quality of life with few side effects. Less frequent GH injections are hypothesized to improve adherence and several long-acting GH (LAGH) formulations have been developed and a few have been approved and marketed. Different pharmacological modifications have been applied and the pharmacokinetics and pharmacodynamics of LAGH are different to each other and to those of daily injections and require different dosing and monitoring specific for each LAGH. Studies have shown improved adherence with LAGH, and short-term efficacy and side effects are comparable between daily GH injections and LAGHs. Long-term treatment with daily GH injections is effective and safe, while long-term studies for LAGHs are awaited. In this review challenges, benefits, and risks of treatment with daily and long-acting GH preparations will be compared.
Collapse
Affiliation(s)
- Charlotte Höybye
- Department of Endocrinology and Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Yeh CY, Chien LY, Hwang FM, Huang JP, Lee CF, Chang CW. Evidence-based trends and association between symptom disturbance and physical activity among pregnant women: A longitudinal study. Worldviews Evid Based Nurs 2023; 20:465-475. [PMID: 37140131 DOI: 10.1111/wvn.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Women usually decrease their physical activity (PA) after becoming pregnant. The change in PA may influence their symptom distress (SD). The changes and correlations between SD and PA throughout pregnancy remain unclear. AIMS The aims of this study were to describe PA and SD trajectories across all three trimesters and examine their correlations during pregnancy. METHODS A repeated-measure longitudinal study with convenience sampling at a hospital in Northern Taiwan was performed. Participants were recruited at 8-16 weeks of gestation, and two follow-up visits were performed at 24-28 weeks of gestation (second trimester) and after 36 weeks of gestation (third trimester). A total of 225 participants completed the study. The participants completed the Pregnancy Physical Activity Questionnaire (PPAQ) and Pregnancy-related Symptom Disturbance Scale (PSD), and sociodemographic and prenatal variables were recorded. RESULTS Throughout pregnancy, SD decreased then increased, showing an overall upward trend, whereas PA showed the opposite pattern, increasing then decreasing, with an overall downward trend. Sedentary activity was positively correlated with both physical and psychological SD during the second and third trimesters. Exceeding the Institute of Medicine's recommendations for gestational weight gain, having childcare support, sport/exercise-type, and light-intensity PA were negatively associated with the physical and psychological SD, while a history of miscarriage and sedentary-intensity PA were positively associated with the physical and psychological SD. LINKING EVIDENCE TO ACTION While several factors, including light-intensity PA, were found negatively associated with the physical and psychological SD, sedentary-intensity PA were positively associated with the physical and psychological SD, our findings shed light on future intervention strategies to relieve SD and decrease sedentary behavior among pregnant women.
Collapse
Affiliation(s)
- Chen-Yu Yeh
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Yin Chien
- Institute of Community Health Care, College of Nursing, National Yang Ming Chiao Tung University, Yang Ming Campus, Taipei, Taiwan
| | - Fang-Ming Hwang
- Department of Education, National Chiayi University, Chiayi, Taiwan
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Fang Lee
- Department of Nursing, Mackay Medical College, New Taipei City, Taiwan
| | - Chun-Wei Chang
- Department of Psychiatry, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
7
|
Bloomfield SA, Swift SN, Metzger CE, Baek K, De Souza MJ, Lenfest S, Shirazi-Fard Y, Hogan HA. Exercise training modifies the bone and endocrine response to graded reductions in energy availability in skeletally mature female rodents. Front Endocrinol (Lausanne) 2023; 14:1141906. [PMID: 37455901 PMCID: PMC10338226 DOI: 10.3389/fendo.2023.1141906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Reductions in energy availability leading to weight loss can induce loss of bone and impact important endocrine regulators of bone integrity. We sought to elucidate whether endurance exercise (EX) can mitigate bone loss observed in sedentary (SED) skeletally mature rodents subjected to graded energy deficits. Methods Female virgin rats (n=84, 5-mo-old; 12/group) were randomized to baseline controls and either sedentary (SED) or exercise (EX) conditions, and within each exercise status to adlib-fed (ADLIB), or moderate (MOD) or severe (SEV) energy restriction diets for 12 weeks. Rats assigned to EX groups performed treadmill running to increase weekly energy expenditure by 10%. MOD-ER-SED, SEV-ER-SED, MOD-ER-EX and SEV-ER-EX were fed modified AIN93M diets with 20%, 40% 10%, and 30% less energy content, respectively, with 100% of all other nutrients provided. Results Energy availability (EA) was effectively reduced by ~14% and ~30% in the MOD-ER and SEV-ER groups, respectively. MOD-ER for 12 weeks resulted in few negative impacts on bone and, except for serum leptin in MOD-ER-SED rats, no significant changes in endocrine factors. By contrast, SEV-ER in SED rats resulted in significantly lower total body and femoral neck bone mass, and reduced serum estradiol, IGF-1 and leptin. EX rats experiencing the same reduction in energy availability as SEV-ER-SED exhibited higher total body mass, lean mass, total BMC, and higher serum IGF-1 at the end of 12 weeks. Bone mechanical properties at 3 bone sites (mid-femur, distal femur, femoral neck) were minimally impacted by ER but positively affected by EX. Discussion These findings indicate that combining increased EX energy expenditure with smaller reductions in energy intake to achieve a targeted reduction in EA provides some protection against loss of bone mass and lean mass in skeletally mature female rats, likely due to better preservation of circulating IGF-1, and that bone mechanical integrity is not significantly degraded with either moderate or severe reduced EA.
Collapse
Affiliation(s)
- Susan A. Bloomfield
- Bone Biology Laboratory, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
- Bone Biology Laboratory, Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sibyl N. Swift
- Bone Biology Laboratory, Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Corinne E. Metzger
- Bone Biology Laboratory, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States
| | - Kyunghwa Baek
- Bone Biology Laboratory, Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Mary Jane De Souza
- Women’s Health and Exercise Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Women’s Health and Exercise Laboratory, Department of Physiology, The Pennsylvania State University, University Park, PA, United States
| | - Scott Lenfest
- Bone Mechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Yasaman Shirazi-Fard
- Bone Mechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Harry A. Hogan
- Bone Mechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
9
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Wang XB, Wu QJ, Guo RH, Leng X, Du Q, Zhao YH, Pan BC. Dairy Product Consumption and Oligo-Astheno-Teratozoospermia Risk: A Hospital-Based Case-Control Study in China. Front Nutr 2022; 8:742375. [PMID: 34993218 PMCID: PMC8724031 DOI: 10.3389/fnut.2021.742375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Researches on the association of dairy products consumption with Oligo-astheno-teratozoospermia (OAT) risk has been limited and controversial. Therefore, we aim to explore the aforementioned association among Chinese men. Methods: A hospital-based case-control study was conducted in men consisting of 106 cases of OAT and 581 controls. Intakes of dairy products and their related nutrients were collected using a semi-quantitative food frequency questionnaire and semen quality was analyzed according to the World Health Organization guidelines. The daily intake of dairy products and their related nutrients was categorized into three groups with the lowest tertile serving as the reference category. Odds ratios (ORs) and 95% confidence intervals (CIs) of association between dairy intake and OTA risk were calculated by the multivariable logistic regression models. Results: No significant association was found between total dairy (OR T3vs.T1 =1.53, 95% CI: 0.85–2.78), protein (OR T3vs.T1 =1.51, 95% CI: 0.84–2.75), or calcium (OR T3vs.T1 = 1.46, 95% CI: 0.81–2.66) and the OAT risk in the main findings. However, we observed a statistically significant positive association of dairy fat intake with OAT risk (OR T3vs.T1 =1.93, 95% CI: 1.06–3.58). The findings were consistent with the main results when we carried out subgroup analysis stratified by body mass index. Conclusion: A significant positive association was found between dairy fat intake and the risk of OAT. Further large-scale prospective studies are required to confirm this finding.
Collapse
Affiliation(s)
- Xiao-Bin Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ren-Hao Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Leng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo-Chen Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
MicroRNA 132-3p Is Upregulated in Laron Syndrome Patients and Controls Longevity Gene Expression. Int J Mol Sci 2021; 22:ijms222111861. [PMID: 34769292 PMCID: PMC8584665 DOI: 10.3390/ijms222111861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
The growth hormone (GH)–insulin-like growth factor-1 (IGF1) endocrine axis is a central player in normal growth and metabolism as well as in a number of pathologies, including cancer. The GH–IGF1 hormonal system, in addition, has emerged as a major determinant of lifespan and healthspan. Laron syndrome (LS), the best characterized entity under the spectrum of the congenital IGF1 deficiencies, results from mutation of the GH receptor (GHR) gene, leading to dwarfism, obesity and other defects. Consistent with the key role of IGF1 in cellular proliferation, epidemiological studies have shown that LS patients are protected from cancer development. While reduced expression of components of the GH-IGF1 axis is associated with enhanced longevity in animal models, it is still unknown whether LS is associated with an increased lifespan. MicroRNAs (miRs) are endogenous short non-coding RNAs that regulate the expression of complementary mRNAs. While a number of miRs involved in the regulation of IGF components have been identified, no previous studies have investigated the differential expression of miRs in congenital IGF1 deficiencies. The present study was aimed at identifying miRs that are differentially expressed in LS and that might account for the phenotypic features of LS patients, including longevity. Our genomic analyses provide evidence that miR-132-3p was highly expressed in LS. In addition, we identified SIRT1, a member of the sirtuin family of histone deacetylases, as a target for negative regulation by miR-132-3p. The data was consistent with the notion that low concentrations of IGF1 in LS lead to elevated miR-132-3p levels, with ensuing reduction in SIRT1 gene expression. The impact of the IGF1-miR-132-3p-SIRT1 loop on aging merits further investigation.
Collapse
|
12
|
Brierley GV, Semple RK. Insulin at 100 years - is rebalancing its action key to fighting obesity-related disease? Dis Model Mech 2021; 14:273551. [PMID: 34841432 PMCID: PMC8649170 DOI: 10.1242/dmm.049340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One hundred years ago, insulin was purified and administered to people with diabetes to lower blood glucose, suppress ketogenesis and save lives. A century later, insulin resistance (IR) lies at the heart of the obesity-related disease pandemic. Multiple observations attest that IR syndrome is an amalgamation of gain and loss of insulin action, suggesting that IR is a misnomer. This misapprehension is reinforced by shortcomings in common model systems and is particularly pronounced for the tissue growth disorders associated with IR. It is necessary to move away from conceptualisation of IR as a pure state of impaired insulin action and to appreciate that, in the long term, insulin can harm as well as cure. The mixed state of gain and loss of insulin action, and its relationship to perturbed insulin-like growth factor (IGF) action, should be interrogated more fully in models recapitulating human disease. Only then may the potential of rebalancing insulin action, rather than simply increasing global insulin signalling, finally be appreciated.
Collapse
Affiliation(s)
- Gemma V Brierley
- Biomedical Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK.,The University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
13
|
Shibel R, Sarfstein R, Nagaraj K, Lapkina-Gendler L, Laron Z, Dixit M, Yakar S, Werner H. The Olfactory Receptor Gene Product, OR5H2, Modulates Endometrial Cancer Cells Proliferation via Interaction with the IGF1 Signaling Pathway. Cells 2021; 10:cells10061483. [PMID: 34204736 PMCID: PMC8231575 DOI: 10.3390/cells10061483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in Western countries. The insulin-like growth factor-1 (IGF1) axis has an important role in endometrial cancer biology and emerged as a promising therapeutic target in oncology. However, there is an urgent need to identify biomarkers that may help in patient stratification and prognosis. Laron syndrome (LS) is a type of dwarfism that results from the mutation of the growth hormone receptor (GHR) gene, leading to congenital IGF1 deficiency. While high circulating IGF1 is regarded as a risk factor in cancer, epidemiological studies have shown that LS patients are protected from cancer development. Recent genome-wide profilings conducted on LS-derived lymphoblastoid cells led to the identification of a series of genes whose over- or under-representation in this condition might be mechanistically linked to cancer protection. The olfactory receptor 5 subfamily H member 2 (OR5H2) was the top downregulated gene in LS, its expression level being 5.8-fold lower than in the control cells. In addition to their typical role in the olfactory epithelium, olfactory receptors (ORs) are expressed in multiple tissues and play non-classical roles in various pathologies, including cancer. The aim of our study was to investigate the regulation of OR5H2 gene expression by IGF1 in endometrial cancer. Data showed that IGF1 and insulin stimulate OR5H2 mRNA and the protein levels in uterine cancer cell lines expressing either a wild-type or a mutant p53. OR5H2 silencing led to IGF1R downregulation, with ensuing reductions in the downstream cytoplasmic mediators. In addition, OR5H2 knockdown reduced the proliferation rate and cell cycle progression. Analyses of olfr196 (the mouse orthologue of OR5H2) mRNA expression in animal models of GHR deficiency or GH overexpression corroborated the human data. In summary, OR5H2 emerged as a novel target for positive regulation by IGF1, with potential relevance in endometrial cancer.
Collapse
Affiliation(s)
- Rand Shibel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Lena Lapkina-Gendler
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel;
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA; (M.D.); (S.Y.)
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA; (M.D.); (S.Y.)
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (R.S.); (K.N.); (L.L.-G.)
- Correspondence:
| |
Collapse
|
14
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
15
|
Stankovic S, R. Day F, Zhao Y, Langenberg C, J. Wareham N, R. B. Perry J, K. Ong K. Elucidating the genetic architecture underlying IGF1 levels and its impact on genomic instability and cancer risk. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16417.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Insulin-like growth factor-1 (IGF1) has been implicated in mitogenic and anti-apoptotic mechanisms that promote susceptibility to cancer development and growth. Previous epidemiological studies have described phenotypic associations between higher circulating levels of IGF1 in adults with higher risks for breast, prostate, ovarian, colorectal, melanoma and lung cancers. However, such evidence is prone to confounding and reverse causality. Furthermore, it is unclear whether IGF1 promotes only the survival and proliferation of cancerous cells, or also the malignant transformation of healthy cells. Methods: We perform a genome-wide association study in 428,525 white European ancestry individuals in the UK Biobank study (UKBB) and identify 831 independent genetic determinants of circulating IGF1 levels, double the number previously reported. Results: Collectively these signals explain ~7.5% of the variance in circulating IGF1 levels in EPIC-Norfolk, with individuals in the highest 10% of genetic risk exhibiting ~1 SD higher levels than those in the lowest 10%. Using a Mendelian randomization approach, we demonstrate that genetically higher circulating IGF1 levels are associated with greater likelihood of mosaic loss of chromosome Y in leukocytes in men in UKBB (OR per +1 SD = 1.038 (95% CI: 1.010-1.067), P=0.008) and 23andMe, Inc. (P=6.8×10-05), a biomarker of genomic instability involved in early tumorigenesis. Genetically higher IGF1 is also associated with higher risks for colorectal (OR = 1.126 (1.048-1.210), P=1.3×10-03) and breast cancer (OR= 1.075 (1.048-1.103), P=3.9×10-08), with similar effects on estrogen positive (ER+) (OR = 1.069 (1.037-1.102), P=2.3×10-05) and estrogen negative (ER-) (OR = 1.074 (1.025-1.125), P=3.9×10-08) subtypes. Conclusions: These findings give an insight into the genetic regulation of circulating IGF1 levels and support a causal role for IGF1 in early tumorigenesis and risks for breast and colorectal cancers.
Collapse
|
16
|
Höybye C, Beck-Peccoz P, Simsek S, Zabransky M, Zouater H, Stalla G, Murray RD. Safety of current recombinant human growth hormone treatments for adults with growth hormone deficiency and unmet needs. Expert Opin Drug Saf 2020; 19:1539-1548. [PMID: 33089723 DOI: 10.1080/14740338.2020.1839410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Growth hormone (GH) deficiency (GHD) in adults is characterized by abnormal body composition, unfavorable cardiovascular risk factors, and poor quality of life. The diagnosis is made within appropriate clinical settings and according to established guidelines. Numerous studies have shown that GH treatment improves body composition, cardiovascular risk factors, physical capacity, and quality of life while issues on safety, in particular long-term safety, remain. AREAS COVERED Short- and long-term safety of GH replacement in adults with GHD. EXPERT OPINION Adults with GHD are an inhomogeneous group of patients and GH replacement requires individual considerations. Most adverse effects are mild and transient and related to fluid retention and GH dose. In patients without comorbidities long-term GH treatment is safe and development of diabetes, cardiovascular disease, or tumors are not increased. Furthermore, mortality is not increased. Patients with risk factors should be identified before GH treatment is initiated and an optimal balance between benefit and risk established. Studies with sufficient duration and power to identify the development of cardiovascular diseases and cancers are still awaited. Effective management of comorbidities can be expected to decrease morbidity and mortality and improve quality of life. Studies with long-acting GH formulations are ongoing and available data indicate similar effects and short-time safety.
Collapse
Affiliation(s)
- Charlotte Höybye
- Department Molecular Medicine and Surgery, Karolinska institute and Department of Endocrinology, Karolinska University Hospital , Stockholm, Sweden
| | - Paolo Beck-Peccoz
- Clinical Sciences and Community Health, Fondazione Istituto Di Ricovero E Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico , Milano, Italy
| | - Suat Simsek
- Internal medicine, Northwest Clinics , Netherlands
| | | | | | - Günter Stalla
- Medicover Neuroendokrinologie , Munich, Germany.,Planck Institute of psychiatry, Medizinische Klinik Und Poliklinik IV Der Ludwig-Maximilians-Universität , Munich, Germany
| | - Robert D Murray
- Leeds Centre for Diabetes & Endocrinology, St James's University Hospital , Leeds, UK
| |
Collapse
|
17
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
18
|
Sarfstein R, Werner H. Tumor suppressor p53 regulates insulin receptor ( INSR) gene expression via direct binding to the INSR promoter. Oncotarget 2020; 11:2424-2437. [PMID: 32637033 PMCID: PMC7321701 DOI: 10.18632/oncotarget.27645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
A significant volume of clinical and epidemiological data provides support to the concept that insulin and the insulin receptor (INSR) have an important role in breast cancer. Tumor suppressor p53 is the most frequently mutated molecule in human cancer. The present study was aimed at evaluating the hypothesis that p53 governs the expression and activation of the INSR gene in breast cancer cells. In addition, the study was designed to investigate the mechanism of action of p53 in the context of INSR gene regulation. The availability of MCF7 breast cancer-derived cell lines with specific disruption of either the insulin-like growth factor-1 receptor (IGF1R) or INSR allowed us to address the impact of the IGF1R and INSR pathways on p53 expression. Data indicate that the INSR gene constitutes a target for p53 action. Wild-type p53 stimulated INSR promoter activity in control cells while disruption of endogenous IGF1R or INSR led to inhibition of promoter activity by p53. Mutant p53 strongly stimulated INSR promoter. Furthermore, p53 directly binds to the INSR promoter in cells with a disrupted IGF1R. Combined, our results identified complex functional and physical interactions between p53 and the INSR pathway. The implications of the p53-INSR interplay in breast cancer needs to be further investigated.
Collapse
Affiliation(s)
- Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
20
|
Tang Z, Gillatt D, Rowe E, Koupparis A, Holly JM, Perks CM. IGFBP-2 acts as a tumour suppressor and plays a role in determining chemosensitivity in bladder cancer cells. Oncotarget 2019; 10:7043-7057. [PMID: 31903164 PMCID: PMC6925026 DOI: 10.18632/oncotarget.27355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
There are mixed reports on the role that IGFBP-2 plays in cancer progression, with some indicating a tumour suppressive role and others showing that IGFBP-2 may act as an oncogene. These apparent contradictions may be context and tissue specific. In this study we determined the role that IGFBP-2 played on the phenotype and chemosensitivity of a selection of bladder cancer cell lines and investigated how the abundance of IGFBP-2 was regulated. We found that IGFBP-2 was more abundant in the epithelial bladder cancer cells, RT4 and UMUC3 and absent in the more mesenchymal T24 and TCCSUP cells. Silencing IGFBP-2 using siRNA in epithelial RT4 cells promoted cell proliferation, invasion, colony formation, resulted in a reduction in epithelial (E-cadherin) and an increase in mesenchymal (N-cadherin) markers and increased sensitivity to cisplatin-induced cell death. Conversely, we observed the opposite effects when adding exogenous IGFBP-2 to the mesenchymal T24 cells. We determined that IGFBP-2 was epigenetically silenced via DNA methylation as the cells adopted a mesenchymal phenotype. Collectively these data suggest that IGFBP-2 acts as a tumour suppressor and marker of chemosensitivity in epithelial bladder cancer cells and that IGFBP-2 is epigenetically silenced by methylation to promote bladder cancer progression.
Collapse
Affiliation(s)
- Zhen Tang
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
| | - David Gillatt
- Department of Surgery, Macquarie University Hospital, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward Rowe
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol BS10 5NB, England
| | - Anthony Koupparis
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol BS10 5NB, England
| | - Jeff M.P. Holly
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
- Co-senior authors
| | - Claire M. Perks
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS10 5N, England
| |
Collapse
|
21
|
Watts EL, Perez‐Cornago A, Appleby PN, Albanes D, Ardanaz E, Black A, Bueno‐de‐Mesquita HB, Chan JM, Chen C, Chubb SP, Cook MB, Deschasaux M, Donovan JL, English DR, Flicker L, Freedman ND, Galan P, Giles GG, Giovannucci EL, Gunter MJ, Habel LA, Häggström C, Haiman C, Hamdy FC, Hercberg S, Holly JM, Huang J, Huang W, Johansson M, Kaaks R, Kubo T, Lane JA, Layne TM, Le Marchand L, Martin RM, Metter EJ, Mikami K, Milne RL, Morris HA, Mucci LA, Neal DE, Neuhouser ML, Oliver SE, Overvad K, Ozasa K, Pala V, Pernar CH, Pollak M, Rowlands M, Schaefer CA, Schenk JM, Stattin P, Tamakoshi A, Thysell E, Touvier M, Trichopoulou A, Tsilidis KK, Van Den Eeden SK, Weinstein SJ, Wilkens L, Yeap BB, Key TJ, Allen NE, Travis RC. The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies. Int J Cancer 2019; 145:3244-3256. [PMID: 30873591 PMCID: PMC6745281 DOI: 10.1002/ijc.32276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) have been implicated in the aetiology of several cancers. To better understand whether anthropometric, behavioural and sociodemographic factors may play a role in cancer risk via IGF signalling, we examined the cross-sectional associations of these exposures with circulating concentrations of IGFs (IGF-I and IGF-II) and IGFBPs (IGFBP-1, IGFBP-2 and IGFBP-3). The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset includes individual participant data from 16,024 male controls (i.e. without prostate cancer) aged 22-89 years from 22 prospective studies. Geometric means of protein concentrations were estimated using analysis of variance, adjusted for relevant covariates. Older age was associated with higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGF-I, IGF-II and IGFBP-3. Higher body mass index was associated with lower concentrations of IGFBP-1 and IGFBP-2. Taller height was associated with higher concentrations of IGF-I and IGFBP-3 and lower concentrations of IGFBP-1. Smokers had higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGFBP-3 than nonsmokers. Higher alcohol consumption was associated with higher concentrations of IGF-II and lower concentrations of IGF-I and IGFBP-2. African Americans had lower concentrations of IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 and Hispanics had lower IGF-I, IGF-II and IGFBP-3 than non-Hispanic whites. These findings indicate that a range of anthropometric, behavioural and sociodemographic factors are associated with circulating concentrations of IGFs and IGFBPs in men, which will lead to a greater understanding of the mechanisms through which these factors influence cancer risk.
Collapse
Affiliation(s)
- Eleanor L. Watts
- Cancer Epidemiology UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Aurora Perez‐Cornago
- Cancer Epidemiology UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Paul N. Appleby
- Cancer Epidemiology UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Eva Ardanaz
- Navarra Public Health InstitutePamplonaSpain
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - H. Bas Bueno‐de‐Mesquita
- Department for Determinants of Chronic DiseasesNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
- Department of Gastroenterology and HepatologyUniversity Medical CentreUtrechtThe Netherlands
- Department of Epidemiology and BiostatisticsImperial College LondonLondonUnited Kingdom
- Department of Social & Preventive MedicineUniversity of MalayaKuala LumpurMalaysia
| | - June M. Chan
- Department of Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCA
- Department UrologyUniversity of California‐San FranciscoSan FranciscoCA
| | - Chu Chen
- Public Health Sciences Division, Program in EpidemiologyFred Hutchinson Cancer Research CenterSeattleWA
| | - S.A. Paul Chubb
- PathWest Laboratory MedicineFiona Stanley HospitalPerthWAAustralia
- Medical SchoolUniversity of Western AustraliaPerthWAAustralia
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Mélanie Deschasaux
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS)Nutritional Epidemiology Research Team (EREN), Inserm U1153/Inra U1125/Cnam/Paris 13 UniversityParisFrance
| | - Jenny L. Donovan
- Department of Population Health SciencesBristol Medical School, University of BristolBristolUnited Kingdom
| | - Dallas R. English
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVICAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global Health, The University of MelbourneMelbourneVICAustralia
| | - Leon Flicker
- Medical SchoolUniversity of Western AustraliaPerthWAAustralia
- WA Centre for Health & Ageing, Centre for Medical ResearchHarry Perkins Institute of Medical ResearchPerthWAAustralia
- Department of Geriatric MedicineRoyal Perth HospitalPerthWAAustralia
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS)Nutritional Epidemiology Research Team (EREN), Inserm U1153/Inra U1125/Cnam/Paris 13 UniversityParisFrance
| | - Graham G. Giles
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVICAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global Health, The University of MelbourneMelbourneVICAustralia
| | - Edward L. Giovannucci
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMA
| | - Marc J. Gunter
- Section of Nutrition and MetabolismInternational Agency for Research on CancerLyonFrance
| | - Laurel A. Habel
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCA
| | | | | | - Freddie C. Hamdy
- Nuffield Department of SurgeryUniversity of OxfordOxfordUnited Kingdom
| | - Serge Hercberg
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS)Nutritional Epidemiology Research Team (EREN), Inserm U1153/Inra U1125/Cnam/Paris 13 UniversityParisFrance
| | - Jeff M. Holly
- IGFs & Metabolic Endocrinology Group, Translational Health SciencesBristol Medical School, Faculty of Health Sciences, University of BristolBristolUnited Kingdom
| | - Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Wen‐Yi Huang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | - Mattias Johansson
- Genetic Epidemiology GroupInternational Agency for Research on CancerLyonFrance
| | - Rudolf Kaaks
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tatsuhiko Kubo
- Department of Environmental EpidemiologyUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - J. Athene Lane
- Department of Population Health SciencesBristol Medical School, University of BristolBristolUnited Kingdom
- National Institute for Health Research Bristol Biomedical Research Unit in NutritionBristolUnited Kingdom
| | | | | | - Richard M. Martin
- Department of Population Health SciencesBristol Medical School, University of BristolBristolUnited Kingdom
- National Institute for Health Research Bristol Biomedical Research Unit in NutritionBristolUnited Kingdom
- Medical Research Council/University of Bristol Integrative Epidemiology Unit, University of BristolBristolUnited Kingdom
| | - E. Jeffrey Metter
- Department of NeurologyUniversity of Tennessee Health Science CenterMemphisTN
| | | | - Roger L. Milne
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVICAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global Health, The University of MelbourneMelbourneVICAustralia
| | | | - Lorelei A. Mucci
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - David E. Neal
- Nuffield Department of SurgeryUniversity of OxfordOxfordUnited Kingdom
| | - Marian L. Neuhouser
- Cancer Prevention Program, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWA
| | - Steven E. Oliver
- Department of Health SciencesUniversity of York and the Hull York Medical SchoolYorkUK
| | - Kim Overvad
- Department of Public HealthSection for Epidemiology, Aarhus UniversityAarhusDenmark
| | - Kotaro Ozasa
- Radiation Effects Research FoundationHiroshimaJapan
| | - Valeria Pala
- Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Claire H. Pernar
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMA
| | - Michael Pollak
- Department of Medicine and OncologyMcGill UniversityMontrealQCCanada
- Segal Cancer CentreJewish General HospitalMontrealQCCanada
| | - Mari‐Anne Rowlands
- Department of Population Health SciencesBristol Medical School, University of BristolBristolUnited Kingdom
| | | | - Jeannette M. Schenk
- Cancer Prevention Program, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWA
| | - Pär Stattin
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | | | - Elin Thysell
- Department of Medical Biosciences and PathologyUmea UniversityUmeaSweden
| | - Mathilde Touvier
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS)Nutritional Epidemiology Research Team (EREN), Inserm U1153/Inra U1125/Cnam/Paris 13 UniversityParisFrance
| | | | - Konstantinos K. Tsilidis
- Department of Epidemiology and BiostatisticsImperial College LondonLondonUnited Kingdom
- Department of Hygiene and Epidemiology, School of MedicineUniversity of IoanninaIoanninaGreece
| | | | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaMD
| | | | - Bu B. Yeap
- Medical SchoolUniversity of Western AustraliaPerthWAAustralia
- Department of Endocrinology and DiabetesFiona Stanley HospitalPerthWAAustralia
| | - Timothy J. Key
- Cancer Epidemiology UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Naomi E. Allen
- Clinical Trial Service Unit and Epidemiological Studies UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Ruth C. Travis
- Cancer Epidemiology UnitNuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
22
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
23
|
Holly JMP, Biernacka K, Perks CM. Systemic Metabolism, Its Regulators, and Cancer: Past Mistakes and Future Potential. Front Endocrinol (Lausanne) 2019; 10:65. [PMID: 30809194 PMCID: PMC6380210 DOI: 10.3389/fendo.2019.00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
There has been a resurgence of interest in cancer metabolism; primarily in the resetting of metabolism within malignant cells. Metabolism within cells has always been a tightly regulated process; initially in protozoans due to metabolic enzymes, and the intracellular signaling pathways that regulate these, being directly sensitive to the availability of nutrients. With the evolution of metazoans many of these controls had been overlaid by extra-cellular regulators that ensured coordinated regulation of metabolism within the community of cells that comprised the organism. Central to these systemic regulators is the insulin/insulin-like growth factor (IGF) system that throughout evolution has integrated the control of tissue growth with metabolic status. Oncological interest in the main systemic metabolic regulators greatly subsided when pharmaceutical strategies designed to treat cancers failed in the clinic. During the same period, however the explosion of new information from genetics has revealed the complexity and heterogeneity of advanced cancers and helped explain the problems of managing cancer when it reaches such a stage. Evidence has also accumulated implying that the setting of the internal environment determines whether cancers progress to advanced disease and metabolic status is clearly an important component of this local ecology. We are in the midst of an epidemic of metabolic disorders and there is considerable research into strategies for controlling metabolism. Integrating these new streams of information suggests new possibilities for cancer prevention; both primary and secondary.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | |
Collapse
|
24
|
Gogola J, Hoffmann M, Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate the proliferation of granulosa tumor spheroids via GPR30 and IGF1R but not via the classic estrogen receptors. CHEMOSPHERE 2019; 217:100-110. [PMID: 30414542 DOI: 10.1016/j.chemosphere.2018.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies have found that women have detectable levels of organic pollutants such as hexachlorobenzene (HCB), 2,2-dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyl 153 (PCB153), perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) in their follicular fluid. Thus, these compounds may directly affect the function of granulosa cells within the ovary and may promote granulosa cell tumor (GCT) progression. Two human GCT cell lines, COV434 and KGN, have been used as in vitro model systems to represent juvenile (JGCT) and adult (AGCT) GCT subtypes, respectively. In this study, we found that basal expression of estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), and insulin-like growth factor 1 receptor (IGF1R) was higher in the AGCT subtype than in the JGCT subtype. All of the compounds acted as mitogenic factors at low nanomolar concentrations in the JGCT and AGCT forms of GCT. Interestingly, PFOA, PFOS, and HCB stimulated cell proliferation through IGF1R, whereas p,p'-DDE acted through GPR30. Moreover, a mixture of the five compounds also significantly stimulated granulosa cell proliferation; however, the observed effect was lower than predicted. Interestingly, the proliferative effect of a mixture of these compounds was dependent on IGF1R and GPR30 but independent of the classic estrogen receptors. Taken together, our results demonstrate for the first time that mixtures of persistent organic pollutants present in follicular fluids may induce granulosa tumor progression through IGF1R and GPR30 by acting as mitogenic factors in granulosa cells.
Collapse
Affiliation(s)
- Justyna Gogola
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Marta Hoffmann
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
25
|
Alfares MN, Perks CM, Hamilton-Shield JP, Holly JMP. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab 2018; 315:E1098-E1107. [PMID: 30040480 PMCID: PMC6336950 DOI: 10.1152/ajpendo.00409.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The IGF system has an important role in growth and development. IGF-II is a recognized fetal growth promoter. However, its physiological postnatal role remains uncertain, although it is maintained in the circulation at a substantially high level throughout life. IGF-II has been strongly linked to obesity in genetic studies, and more recent evidence suggests a metabolic role. We examined fat depot differences in IGF-II's action on differentiation and metabolism. We speculate a specific effect on visceral adipocytes in relation to the differential distribution of insulin receptors between visceral and subcutaneous fat depots. We used a previously established adipocyte, cell culture system of matched pairs of visceral and subcutaneous fat biopsies from 20 normal weight children undergoing routine surgery for nonmalignant, nonseptic conditions. Preadipocytes were differentiated for 14 days in the presence or absence of IGF-II. Oil Red O staining, Western blotting, and reverse transcription polymerase chain reaction techniques were employed to assess levels of adipogenesis markers and levels of the insulin receptor and insulin receptor isoforms. Our data indicate that IGF-II promotes preadipocyte differentiation in subcutaneous preadipocytes but showed a protective, opposing effect restricting visceral preadipocyte differentiation, confirmed by reductions in the differentiation markers peroxisome proliferator-activated receptor gamma and adiponectin and in triglyceride staining. Additionally, IGF-II reduced mRNA expression of the insulin receptor in adipocytes and downregulated insulin receptor isoform A and glucose transporter 4 abundance and corresponding glucose uptake in visceral adipocytes. In conclusion, IGF-II is a regulator of preadipocyte differentiation and metabolism by acting as a differential modulator of fat accumulation favoring less visceral fat deposition in children.
Collapse
Affiliation(s)
- Maiadah N Alfares
- Insulin-like Growth Factors and Metabolic Endocrinology Group, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Learning and Research Building, Southmead Hospital , Bristol , United Kingdom
| | - Claire M Perks
- Insulin-like Growth Factors and Metabolic Endocrinology Group, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Learning and Research Building, Southmead Hospital , Bristol , United Kingdom
| | - Julian P Hamilton-Shield
- Nutrition Theme, National Institute of Health Research Bristol Biomedical Research Centre, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Bristol , United Kingdom
| | - Jeffrey M P Holly
- Insulin-like Growth Factors and Metabolic Endocrinology Group, Bristol Medical School, Department of Translational Health Sciences, University of Bristol, Learning and Research Building, Southmead Hospital , Bristol , United Kingdom
| |
Collapse
|
26
|
Abstract
BACKGROUND AND OBJECTIVE Insulin-like growth factor 1 (IGF1) gene three prime untranslated region (3'-UTR) polymorphisms have been reported to be associated with cancer risk. However, the conclusions of the relevant studies are not consistent. The present meta-analysis evaluates the relationship between IGF1 gene 3'-UTR polymorphisms (rs5742714, rs6214, and rs6220) and cancer risk. METHODS Articles regarding the relationship between IGF1 rs5742714, rs6214, and rs6220 polymorphisms and cancer risk were selected by searching the PubMed, Embase, and Web of Science databases before April 30, 2018. Altogether, we obtained 34 case-controlled studies from 20 articles, including 21,568 cases and 31,199 controls. The strength of associations was quantified using odds ratios (ORs) and the corresponding 95% confidence intervals (CIs). RESULTS In the present meta-analysis, no significant associations were detected between rs5742714, rs6214, and rs6220 and overall cancer risk. Thus, in stratified analyses, we found that rs6214 was associated with a significantly reduced risk of breast cancer under the allele, heterozygote, and dominant models (A vs G: OR, 0.94, 95% CI,0.88-1.00, P = .044; GA vs GG: OR, 0.88, 95% CI, 0.80-0.97, P = .012; AA + GA vs GG: OR, 0.89, 95% CI, 0.81-0.97, P = .011), as well as pancreatic cancer under the recessive model (AA vs GA + GG: OR, 0.68, 95% CI,0.53-0.87, P = .003). Also, rs6220 was associated with a significantly increased risk of breast cancer under the homozygote model (GG vs AA: OR, 1.23, 95% CI, 1.02-1.48, P = .031). In addition, rs6220 was found to increase overall cancer risk among Caucasians under the allele model (G vs A: OR, 1.06, 95% CI, 1.00-1.13, P = .043). CONCLUSIONS In this meta-analysis, we investigated and reviewed the relationship between IGF1 gene 3'-UTR polymorphisms (rs5742714, rs6214, and rs6220) and cancer risk based on present epidemiological studies. Further studies are needed to draw more precise conclusions in the future.
Collapse
Affiliation(s)
| | | | - Wen-Yue Xie
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
27
|
Casabonne D, Benavente Y, Costas L, Robles C, Gonzalez-Barca E, de la Banda E, Alonso E, Aymerich M, Campo E, Marcos-Gragera R, Tardón A, Olmedo-Requena R, Gimeno E, Martínez-López A, Casanovas O, Castaño-Vinyals G, Aragonés N, Pollán M, Kogevinas M, de Sanjosé S. Insulin-like growth factor levels and chronic lymphocytic leukaemia: results from the MCC-Spain and EpiLymph-Spain studies. Br J Haematol 2018; 185:608-612. [PMID: 30450673 DOI: 10.1111/bjh.15583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Delphine Casabonne
- Unit of Infections and Cancer. Cancer Epidemiology Research Programme. IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Yolanda Benavente
- Unit of Infections and Cancer. Cancer Epidemiology Research Programme. IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Laura Costas
- Unit of Infections and Cancer. Cancer Epidemiology Research Programme. IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - Claudia Robles
- Unit of Infections and Cancer. Cancer Epidemiology Research Programme. IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - Eva Gonzalez-Barca
- Haematology, IDIBELL, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - Esmeralda de la Banda
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Esther Alonso
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Marta Aymerich
- Haematopathology Unit, Pathology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elías Campo
- Haematopathology Unit, Pathology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael Marcos-Gragera
- Unitat d'Epidemiologia i Registre de Càncer de Girona (UERCG), Pla Director d'Oncologia, Institut Català d'Oncologia. Institut d'Investigació Biomèdica de Girona (IdIBGi), Universitat de Girona, Girona, Spain
| | | | - Rocío Olmedo-Requena
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Granada, Spain
| | - Eva Gimeno
- Department of Clinical Haematology, Hospital del Mar, Barcelona, Spain
| | - Alba Martínez-López
- Tumuor Angiogenesis Group, Catalan Institute of Oncology (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Tumuor Angiogenesis Group, Catalan Institute of Oncology (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nuria Aragonés
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Epidemiology Section, Public Health Division, Department of Health of Madrid, Madrid, Spain
| | - Marina Pollán
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Cancer Epidemiology Research Group, Oncology and Haematology Area, IIS Puerta de Hierro (IDIPHIM), Madrid, Spain
| | - Manolis Kogevinas
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia de Sanjosé
- Unit of Infections and Cancer. Cancer Epidemiology Research Programme. IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Reproductive Health, Foundation for Appropriate Technologies in Health (PATH), Seattle, US
| |
Collapse
|
28
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
29
|
Macháčková K, Chrudinová M, Radosavljević J, Potalitsyn P, Křížková K, Fábry M, Selicharová I, Collinsová M, Brzozowski AM, Žáková L, Jiráček J. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation. Biochemistry 2018; 57:2373-2382. [DOI: 10.1021/acs.biochem.7b01260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Květoslava Křížková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, The Czech Academy of Sciences, Flemingovo n. 2, 166 37 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
30
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
31
|
Werner H, Meisel-Sharon S, Bruchim I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer 2018; 17:28. [PMID: 29455671 PMCID: PMC5817802 DOI: 10.1186/s12943-018-0807-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
The insulin-like growth factor-1 receptor (IGF1R) has been identified as a potent anti-apoptotic, pro-survival tyrosine kinase-containing receptor. Overexpression of the IGF1R gene constitutes a typical feature of most human cancers. Consistent with these biological roles, cells expressing high levels of IGF1R are expected not to die, a quintessential feature of cancer cells. Tumor specific chromosomal translocations that disrupt the architecture of transcription factors are a common theme in carcinogenesis. Increasing evidence gathered over the past fifteen years demonstrate that this type of genomic rearrangements is common not only among pediatric and hematological malignancies, as classically thought, but may also provide a molecular and cytogenetic foundation for an ever-increasing portion of adult epithelial tumors. In this review article we provide evidence that the mechanism of action of oncogenic fusion proteins associated with both pediatric and adult malignancies involves transactivation of the IGF1R gene, with ensuing increases in IGF1R levels and ligand-mediated receptor phosphorylation. Disrupted transcription factors adopt the IGF1R signaling pathway and elicit their oncogenic activities via activation of this critical regulatory network. Combined targeting of oncogenic fusion proteins along with the IGF1R may constitute a promising therapeutic approach.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel. .,Yoran Institute for Human Genome Research, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Shilhav Meisel-Sharon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Bruchim
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera 38100, affiliated with the Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
The significate of IGF-1 and IGF-1R in reducing PTSD cognitive function symptoms. ANNALES MEDICO-PSYCHOLOGIQUES 2017. [DOI: 10.1016/j.amp.2016.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
34
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
35
|
Espelund US, Bjerre M, Hjortebjerg R, Rasmussen TR, Lundby A, Hoeflich A, Folkersen BH, Oxvig C, Frystyk J. Insulin-Like Growth Factor Bioactivity, Stanniocalcin-2, Pregnancy-Associated Plasma Protein-A, and IGF-Binding Protein-4 in Pleural Fluid and Serum From Patients With Pulmonary Disease. J Clin Endocrinol Metab 2017; 102:3526-3534. [PMID: 28911149 DOI: 10.1210/jc.2017-00033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023]
Abstract
CONTEXT Members of the insulin-like growth factor (IGF) system are primarily produced in the liver and secreted into the circulation, but they are also produced, recruited, and activated locally in tissues. OBJECTIVE To compare activity and concentrations of IGF system components in pleural fluid and blood. DESIGN Pathological pleural fluid, secondary to lung cancer or nonmalignant disease, and matching blood samples were collected from 24 patients ages 66.7 to 81.9 years. METHODS IGF-related proteins and cytokine levels were measured by immunoassays or immunoblotting. Bioactive IGF was measured by an IGF-1 receptor phosphorylation assay. RESULTS Total IGF-1 concentration did not differ between the compartments, but concentrations of free IGF-1 and bioactive IGF were more than threefold higher in pleural fluid than in corresponding serum samples (P = 0.0004), regardless of etiology. Median pregnancy-associated plasma protein-A (PAPP-A) and interleukin (IL)-6 levels were increased 47-fold and 143-fold, respectively, in pleural fluid compared with plasma (P < 0.0001). PAPP-A and IL-6 concentrations correlated positively (r = 0.46; P = 0.02). In pleural fluid, levels of PAPP-A-generated IGF binding protein-4 fragments correlated inversely with that of stanniocalcin-2 (r ≤ -0.42; P ≤ 0.05), a PAPP-A inhibitor; such correlations were absent in plasma. CONCLUSION Pathological pleural fluid is characterized by increased in vitro IGF bioactivity and elevated concentrations of PAPP-A, an IGF-activating proteinase. Thus, the tissue activity of the IGF system may differ substantially from that of the circulating IGF system. The correlation between IL-6 and PAPP-A indicates that inflammation plays a role in promoting local tissue IGF activity.
Collapse
Affiliation(s)
- Ulrick Skipper Espelund
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
- Danish Diabetes Academy, DK-5000 Odense C, Denmark
| | - Torben Riis Rasmussen
- Department of Pulmonary Medicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Anders Lundby
- Safety and GI Biology, Novo Nordisk A/S, Novo Nordisk Park, G9.S.17, DK-2760 Måløv, Denmark
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology, D-18196 Dummerstorf, Germany
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Frystyk
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Erlandson KM, Fiorillo SP, Cardoso SW, Riviere C, Sanchez J, Hakim J, Kumarasamy N, Badal-Faesen S, Lalloo U, Kumwenda J, Campbell TB, Brown TT. Insulin-Like Growth Factor Is Associated with Changes in Body Composition with Antiretroviral Therapy Initiation. AIDS Res Hum Retroviruses 2017; 33:929-934. [PMID: 28403619 PMCID: PMC5576217 DOI: 10.1089/aid.2016.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth hormone (GH)/insulin-like growth factor (IGF)-1 axis abnormalities have been associated with body composition changes among HIV-infected persons with wasting or lipodystrophy. Little is known of GH/IGF-1 axis alterations with antiretroviral therapy (ART) initiation or differing ART therapies. The AIDS Clinical Trials Group Prospective Evaluation of Antiretrovirals in Resource-Limited Settings (PEARLS) study was a prospective, randomized clinical trial of ART initiation with emtricitabine/tenofovir + efavirenz (FTC/TDF+EFV) versus lamivudine/zidovudine + efavirenz (3TC/ZDV+EFV) in HIV-1-infected individuals from resource-diverse settings. IGF-1 was measured from baseline, week 48, and week 96 stored serum samples. Multivariate models were constructed. 415 participants were included: 170 (41%) were randomized to FTC/TDF+EFV and 245 (59%) to 3TC/ZDV+EFV. The mean age was 35 years, 60% were black, 42% women. The mean IGF-1 level did not change significantly from baseline to week 96 (-0.65 ng/ml; 95% confidence interval (CI) -5.18-3.87), p = .78 and there were no differences by treatment arm at week 96, p = .74. Lower baseline IGF-1 was associated with age, non-white race, greater waist-hip ratio (WHR), low CD4 count, and lower baseline albumin (all p < .01) but not plasma HIV-1 RNA, body mass index, or treatment arm. Greater change in IGF-1 from baseline to 96 weeks was associated with female sex, smaller WHR change, lower baseline albumin, and higher baseline HIV-1 RNA (all p < .01). ART initiation with either ZDV or TDF did not significantly impact overall IGF-1 levels. Baseline and on-treatment changes in IGF-1 with ART initiation may be related to the body composition changes that occur after ART initiation.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educación, Lima, Peru
- Department of Global Health, University of Washington, Seattle, Washington
| | - James Hakim
- Department of Medicine, University of Zimbabwe-College of Health Sciences, Harare, Zimbabwe
| | | | - Sharlaa Badal-Faesen
- Clinical HIV Research Unit, Department of Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Umesh Lalloo
- Durban International Clinical Research Site, Durban, South Africa
| | | | | | - Todd T. Brown
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Serrat MA, Ion G. Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy. J Appl Physiol (1985) 2017; 123:1101-1109. [PMID: 28798204 DOI: 10.1152/japplphysiol.00645.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Bones elongate through endochondral ossification in cartilaginous growth plates located at ends of primary long bones. Linear growth ensues from a cascade of biochemical signals initiated by actions of systemic and local regulators on growth plate chondrocytes. Although cellular processes are well defined, there is a fundamental gap in understanding how growth regulators are physically transported from surrounding blood vessels into and through dense, avascular cartilage matrix. Intravital imaging using in vivo multiphoton microscopy is one promising strategy to overcome this barrier by quantitatively tracking molecular delivery to cartilage from the vasculature in real time. We previously used in vivo multiphoton imaging to show that hindlimb heating increases vascular access of large molecules to growth plates using 10-, 40-, and 70-kDa dextran tracers. To comparatively evaluate transport of similarly sized physiological regulators, we developed and validated methods for measuring uptake of biologically active IGF-I into proximal tibial growth plates of live 5-wk-old mice. We demonstrate that fluorescently labeled IGF-I (8.2 kDa) is readily taken up in the growth plate and localizes to chondrocytes. Bioactivity tests performed on cultured metatarsal bones confirmed that the labeled protein is functional, assessed by phosphorylation of its signaling kinase, Akt. This methodology, which can be broadly applied to many different proteins and tissues, is relevant for understanding factors that affect delivery of biologically relevant molecules to the skeleton in real time. Results may lead to the development of drug-targeting strategies to treat a wide range of bone and cartilage pathologies.NEW & NOTEWORTHY This paper describes and validates a novel method for imaging transport of biologically active, fluorescently labeled IGF-I into skeletal growth plates of live mice using multiphoton microscopy. Cellular patterns of fluorescence in the growth plate were completely distinct from our prior publications using biologically inert probes, demonstrating for the first time in vivo localization of IGF-I in chondrocytes and perichondrium. These results form important groundwork for future studies aimed at targeting therapeutics into growth plates.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Gabriela Ion
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
38
|
Southmayd EA, Mallinson RJ, Williams NI, Mallinson DJ, De Souza MJ. Unique effects of energy versus estrogen deficiency on multiple components of bone strength in exercising women. Osteoporos Int 2017; 28:1365-1376. [PMID: 28032184 DOI: 10.1007/s00198-016-3887-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. INTRODUCTION The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E2R: n = 33) vs. estrogen deficient (E2D: n = 27)), resulting in four distinct groups: EnR + E2R (n = 17), EnR + E2D (n = 13), EnD + E2R (n = 16), EnD + E2D (n = 14). METHODS Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E2R, amenorrheic women were E2D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). RESULTS EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E2D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E2R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). CONCLUSIONS Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.
Collapse
Affiliation(s)
- E A Southmayd
- Women's Health and Exercise Lab, Department of Kinesiology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - R J Mallinson
- Women's Health and Exercise Lab, Department of Kinesiology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - N I Williams
- Women's Health and Exercise Lab, Department of Kinesiology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - D J Mallinson
- School of Social and Behavioral Sciences, Stockton University, 101 Vera King Farris Drive, Galloway, NJ, 08205, USA
| | - M J De Souza
- Women's Health and Exercise Lab, Department of Kinesiology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| |
Collapse
|
39
|
Qiao L, Wattez JS, Lee S, Guo Z, Schaack J, Hay WW, Zita MM, Parast M, Shao J. Knockout maternal adiponectin increases fetal growth in mice: potential role for trophoblast IGFBP-1. Diabetologia 2016; 59:2417-2425. [PMID: 27495989 PMCID: PMC5042853 DOI: 10.1007/s00125-016-4061-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
AIMS/HYPOTHESIS The main objective of this study was to investigate whether maternal adiponectin regulates fetal growth through the endocrine system in the fetal compartment. METHODS Adiponectin knockout (Adipoq (-/-) ) mice and in vivo adenovirus-mediated reconstitution were used to study the regulatory effect of maternal adiponectin on fetal growth. Primary human trophoblast cells were treated with adiponectin and a specific peroxisome proliferator-activated receptor α (PPARα) agonist or antagonist to study the underlying mechanism through which adiponectin regulates fetal growth. RESULTS The body weight of fetuses from Adipoq (-/-) dams was significantly greater than that of wild-type dams at both embryonic day (E)14.5 and E18.5. Adenoviral vector-mediated maternal adiponectin reconstitution attenuated the increased fetal body weight induced by maternal adiponectin deficiency. Significantly increased blood glucose, triacylglycerol and NEFA levels were observed in Adipoq (-/-) dams, suggesting that nutrient supply contributes to maternal adiponectin-regulated fetal growth. Although fetal blood IGF-1 concentrations were comparable in fetuses from Adipoq (-/-) and wild-type dams, remarkably low levels of IGF-binding protein 1 (IGFBP-1) were observed in the serum of fetuses from Adipoq (-/-) dams. IGFBP-1 was identified in the trophoblast cells of human and mouse placentas. Maternal fasting robustly increased IGFBP-1 levels in mouse placentas, while reducing fetal weight. Significantly low IGFBP-1 levels were found in placentas of Adipoq (-/-) dams. Adiponectin treatment increased IGFBP-1 levels in primary cultured human trophoblast cells, while the PPARα antagonist, MK886, abolished this stimulatory effect. CONCLUSIONS/INTERPRETATION These results indicate that, in addition to nutrient supply, maternal adiponectin inhibits fetal growth by increasing IGFBP-1 expression in trophoblast cells.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093, USA
| | - Jean-Sebastien Wattez
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093, USA
| | - Samuel Lee
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093, USA
| | - Zhuyu Guo
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093, USA
| | - Jerome Schaack
- Department of Microbiology, University of Colorado at Denver and Anschutz Medical Center, Aurora, CO, 80045, USA
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Matteo Moretto Zita
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mana Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093, USA.
| |
Collapse
|
40
|
Bonilla C, Lewis SJ, Rowlands MA, Gaunt TR, Davey Smith G, Gunnell D, Palmer T, Donovan JL, Hamdy FC, Neal DE, Eeles R, Easton D, Kote-Jarai Z, Al Olama AA, Benlloch S, Muir K, Giles GG, Wiklund F, Grönberg H, Haiman CA, Schleutker J, Nordestgaard BG, Travis RC, Pashayan N, Khaw KT, Stanford JL, Blot WJ, Thibodeau S, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park J, Kaneva R, Batra J, Teixeira MR, Pandha H, Lathrop M, Martin RM, Holly JMP. Assessing the role of insulin-like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. Int J Cancer 2016; 139:1520-33. [PMID: 27225428 PMCID: PMC4957617 DOI: 10.1002/ijc.30206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 02/02/2023]
Abstract
Circulating insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are associated with prostate cancer. Using genetic variants as instruments for IGF peptides, we investigated whether these associations are likely to be causal. We identified from the literature 56 single nucleotide polymorphisms (SNPs) in the IGF axis previously associated with biomarker levels (8 from a genome-wide association study [GWAS] and 48 in reported candidate genes). In ∼700 men without prostate cancer and two replication cohorts (N ∼ 900 and ∼9,000), we examined the properties of these SNPS as instrumental variables (IVs) for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Those confirmed as strong IVs were tested for association with prostate cancer risk, low (< 7) vs. high (≥ 7) Gleason grade, localised vs. advanced stage, and mortality, in 22,936 controls and 22,992 cases. IV analysis was used in an attempt to estimate the causal effect of circulating IGF peptides on prostate cancer. Published SNPs in the IGFBP1/IGFBP3 gene region, particularly rs11977526, were strong instruments for IGF-II and IGFBP-3, less so for IGF-I. Rs11977526 was associated with high (vs. low) Gleason grade (OR per IGF-II/IGFBP-3 level-raising allele 1.05; 95% CI: 1.00, 1.10). Using rs11977526 as an IV we estimated the causal effect of a one SD increase in IGF-II (∼265 ng/mL) on risk of high vs. low grade disease as 1.14 (95% CI: 1.00, 1.31). Because of the potential for pleiotropy of the genetic instruments, these findings can only causally implicate the IGF pathway in general, not any one specific biomarker.
Collapse
Affiliation(s)
- Carolina Bonilla
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Sarah J Lewis
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Mari-Anne Rowlands
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Tom R Gaunt
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - David Gunnell
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Tom Palmer
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Jenny L Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
| | - David E Neal
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Rosalind Eeles
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, United Kingdom
| | - Doug Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, United Kingdom
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, United Kingdom
| | - Sara Benlloch
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, United Kingdom
| | - Kenneth Muir
- University of Warwick, Coventry, United Kingdom
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Graham G Giles
- The Cancer Council Victoria, 615 St. Kilda Road, Melbourne, Victoria, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, the University of Melbourne, Victoria, 3010, Australia
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
- Institute of Biomedical Technology/BioMediTech, University of Tampere and FimLab Laboratories, Tampere, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev, DK, 2730, Denmark
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Kay-Tee Khaw
- Forvie Site, Cambridge Institute of Public Health, University of Cambridge, Robinson Way, Cambridge, CB2 0SR, United Kingdom
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - William J Blot
- International Epidemiology Institute, 1455 Research Blvd, Suite 550, Rockville, Maryland
| | | | - Christiane Maier
- Department of Urology, University Hospital Ulm, Germany
- Institute of Human Genetics, University Hospital Ulm, Germany
| | - Adam S Kibel
- Brigham and Women's Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB II-3, Boston, Massachussets
- Washington University, St Louis, Missouri
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jong Park
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, Florida
| | - Radka Kaneva
- Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University - Sofia, 2 Zdrave St, Sofia, 1431, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Hardev Pandha
- The University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Mark Lathrop
- Commissariat à L'Energie Atomique, Center National De Génotypage, Evry, France
- McGill University-Génome Québec Innovation Centre, Montreal, Canada
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC/University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Unit in Nutrition, Bristol, United Kingdom
| | - Jeff M P Holly
- NIHR Bristol Biomedical Research Unit in Nutrition, Bristol, United Kingdom
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences North Bristol, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
41
|
Reding DM, Addis EA, Palacios MG, Schwartz TS, Bronikowski AM. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories. Gen Comp Endocrinol 2016; 233:88-99. [PMID: 27181752 DOI: 10.1016/j.ygcen.2016.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs.
Collapse
Affiliation(s)
- Dawn M Reding
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | - Elizabeth A Addis
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
42
|
Milman S, Huffman DM, Barzilai N. The Somatotropic Axis in Human Aging: Framework for the Current State of Knowledge and Future Research. Cell Metab 2016; 23:980-989. [PMID: 27304500 PMCID: PMC4919980 DOI: 10.1016/j.cmet.2016.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
Mutations resulting in reduced signaling of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis are associated with increased life- and healthspan across model organisms. Similar findings have been noted in human cohorts with functional mutations in the somatotropic axis, suggesting that this pathway may also be relevant to human aging and protection from age-related diseases. While epidemiological data indicate that low circulating IGF-1 level may protect aging populations from cancer, results remain inconclusive regarding most other diseases. We propose that studies in humans and animals need to consider differences in sex, pathway function, organs, and time-specific effects of GH/IGF-1 signaling in order to better define the role of the somatotropic axis in aging. Agents that modulate signaling of the GH/IGF-1 pathway are available for human use, but before they can be implemented in clinical studies that target aging and age-related diseases, researchers need to address the challenges discussed in this Review.
Collapse
Affiliation(s)
- Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Derek M Huffman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
43
|
Giahi L, Mohammadmoradi S, Javidan A, Sadeghi MR. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev 2016; 74:118-30. [PMID: 26705308 PMCID: PMC4892303 DOI: 10.1093/nutrit/nuv059] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 07/09/2015] [Accepted: 08/01/2015] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Studies suggest that appropriate nutritional modifications can improve the natural conception rate of infertile couples. OBJECTIVES The purpose of this study was to review the human trials that investigated the relation between nutrition and male infertility. DATA SOURCES A comprehensive systematic review of published human studies was carried out by searching scientific databases. Article selection was carried out in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The American Dietetic Association Research Design and Implementation Checklist was also used for quality assessment. DATA EXTRACTION A total of 502 articles were identified, of which 23 studies met the inclusion criteria. DATA SYNTHESIS Results indicated that a healthy diet improves at least one measure of semen quality, while diets high in lipophilic foods, soy isoflavones, and sweets lower semen quality. CONCLUSION The role of daily nutrient exposure and dietary quality needs to be highlighted in male infertility. Mechanistic studies addressing the responsible underlying mechanisms of action of dietary modifications are highly warranted. SYSTEMATIC REVIEW REGISTRATION PROSPERO 2013: CRD42013005953. Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013005953.
Collapse
Affiliation(s)
- Ladan Giahi
- L. Giahi is with the Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran. S. Mohammadmoradi and A. Javidan are with the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA. M.R. Sadeghi is with the Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran.
| | - Shayan Mohammadmoradi
- L. Giahi is with the Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran. S. Mohammadmoradi and A. Javidan are with the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA. M.R. Sadeghi is with the Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Aida Javidan
- L. Giahi is with the Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran. S. Mohammadmoradi and A. Javidan are with the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA. M.R. Sadeghi is with the Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Mohammad Reza Sadeghi
- L. Giahi is with the Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran. S. Mohammadmoradi and A. Javidan are with the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA. M.R. Sadeghi is with the Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| |
Collapse
|
44
|
Dong Y, Zhang G. Does Increased IGF-1 Concentration Have a Clear Positive Significance in Reducing Depression and Posttraumatic Arousal Symptoms? J Clin Sleep Med 2015; 11:1243. [PMID: 26414981 DOI: 10.5664/jcsm.5106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022]
Affiliation(s)
- Yuanjun Dong
- Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Guiqing Zhang
- Psychological Rehabilitation Department, the First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
45
|
Rusch HL, Gill JM. Effect of Acute Sleep Disturbance and Recovery on Insulin-Like Growth Factor-1 (IGF-1): Possible Connections and Clinical Implications. J Clin Sleep Med 2015; 11:1245-6. [PMID: 26414987 DOI: 10.5664/jcsm.5108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022]
Affiliation(s)
- Heather L Rusch
- National Institutes of Health, National Institute of Nursing Research.,Henry M. Jackson for the Advancement of Military Medicine
| | - Jessica M Gill
- National Institutes of Health, National Institute of Nursing Research
| |
Collapse
|
46
|
Høybye C, Cohen P, Hoffman AR, Ross R, Biller BMK, Christiansen JS. Status of long-acting-growth hormone preparations--2015. Growth Horm IGF Res 2015; 25:201-206. [PMID: 26187188 DOI: 10.1016/j.ghir.2015.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) treatment has been an established therapy for GH deficiency (GHD) in children and adults for more than three decades. Numerous studies have shown that GH treatment improves height, body composition, bone density, cardiovascular risk factors, physical fitness and quality of life and that the treatment has few side effects. Initially GH was given as intramuscular injections three times per week, but daily subcutaneous injections were shown to be more effective and less inconvenient and the daily administration has been used since its introduction in the 1980s. However, despite ongoing improvements in injection device design, daily subcutaneous injections remain inconvenient, painful and distressing for many patients, leading to noncompliance, reduced efficacy and increased health care costs. To address these issues a variety of long-acting formulations of GH have been developed. In this review we present the current status of long-acting GH preparations and discuss the specific issues related to their development.
Collapse
Affiliation(s)
- Charlotte Høybye
- Department of endocrinology, metabolism and diabetology, Karolinska University Hospital, Stockholm, Sweden; Department of molecular medicine and surgery, Karolinska Institute, Stockholm, Sweden.
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, CA, USA
| | - Andrew R Hoffman
- Department of Medicine, VA Palo Alto Health Care System and Stanford University, Palo Alto, CA, USA
| | - Richard Ross
- Department of Human Metabolism, University of Sheffield, UK
| | | | | |
Collapse
|
47
|
Teng RJ, Wu TJ, Hsieh FJ. Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins. J Formos Med Assoc 2015; 114:359-362. [PMID: 25839770 DOI: 10.1016/j.jfma.2012.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/27/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND/PURPOSE Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are known to modulate fetal growth but their role in intrauterine growth of monochorionic twins (MCT) has not been studied. METHODS Cord venous blood was collected directly after birth. IGF-1 and IGFBP-3 in the cord venous blood were quantified by radioimmunoassay. Birth weights (BWs) were obtained electronically. Placentas were examined for chorionicity. RESULTS Cord blood was collected in 37 pairs of MCT (15 pairs were males). BWs ranged from 564 to 3240 g, and gestational ages (GAs) were between 24 weeks and 39 weeks. There was a correlation between BW and cord venous blood IGFBP-3 concentration (r = 0.28, p = 0.015), but not between BW and cord venous blood IGF-1 level. There was no difference in IGF-1 between the heavier twins (30.8 ± 61.8 ng/mL) and lighter twins (33.2 ± 63.7 ng/mL), but a trend (p = 0.096) of higher IGFBP-3 level was demonstrated in heavier twins (3.14 ± 1.23 μg/mL) than in lighter twins (2.71 ± 1.19 μg/mL). The IGFBP-3 levels were higher (p = 0.042) in female twins (3.20 ± 1.33 μg/mL) than in male twins (2.64 ± 1.04 μg/mL). The IGF-1 level of the heavier twins correlated significantly to their lighter co-twin (r = 0.73, p < 0.001). CONCLUSION Our data showed that cord venous blood IGF-1 level might be controlled mainly by genetic factors. IGFBP-3 might play an important role in fetal growth.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tzong-Jin Wu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fon-Jou Hsieh
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Bann D, Holly JM, Lashen H, Hardy R, Adams J, Kuh D, Ong KK, Ben‐Shlomo Y. Changes in insulin-like growth factor-I and -II associated with fat but not lean mass in early old age. Obesity (Silver Spring) 2015; 23:692-8. [PMID: 25645314 PMCID: PMC4737231 DOI: 10.1002/oby.21002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To test the hypothesis that insulin-like growth factors-I and II (IGF-I and II) decline during late midlife and that greater declines are related to higher fat mass and lower lean mass. METHODS A total of 1,542 men and women in a British birth cohort study had IGF-I and II measured by immunoassay of blood samples at age 53 and/or 60-64 years. Fat mass, android:gynoid fat ratio, and appendicular lean mass were measured at 60-64 years using dual-energy X-ray absorptiometry (DXA). Associations between changes in IGF-I or II and body composition outcomes were examined using conditional change linear regression models. RESULTS Mean IGF-I and IGF-II concentrations were lower at 60-64 than at 53 years, by 12.8% for IGF-I and by 12.5% for IGF-II. Larger declines in either IGF-I or II were associated with higher fat mass at 60-64 years. Although higher IGF-I at 53 years was associated with higher lean mass, there was little evidence linking changes in IGF-I or II to lean mass. CONCLUSIONS The findings suggest that IGF-I and II concentrations decline with age, and greater declines are associated with higher fat mass levels. These results provide some evidence for the suggested roles of IGF-I and II in regulating fat mass but not lean mass in older age.
Collapse
Affiliation(s)
- David Bann
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Jeff M.P. Holly
- IGFs and Metabolic EndocrinologySchool of Clinical Sciences, Bristol UniversityBristolUK
| | - Hany Lashen
- Department of Human MetabolismThe University of SheffieldSheffieldUK
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Judith Adams
- Department of RadiologyCentral Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science CentreOxford RoadManchesterUK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Ken K. Ong
- MRC Epidemiology UnitUniversity of CambridgeCambridgeUK
| | - Yoav Ben‐Shlomo
- School of Social and Community MedicineBristol UniversityBristolUK
| |
Collapse
|
49
|
Zielinska HA, Bahl A, Holly JM, Perks CM. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? BREAST CANCER-TARGETS AND THERAPY 2015; 7:9-19. [PMID: 25632238 PMCID: PMC4304531 DOI: 10.2147/bctt.s43932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evidence indicates that for most human cancers the problem is not that gene mutations occur but is more dependent upon how the body deals with damaged cells. It has been estimated that only about 1% of human cancers can be accounted for by unmistakable hereditary cancer syndromes, only up to 5% can be accounted for due to high-penetrance, single-gene mutations, and in total only 5%-15% of all cancers may have a major genetic component. The predominant contribution to the causation of most sporadic cancers is considered to be environmental factors contributing between 58% and 82% toward different cancers. A nutritionally poor lifestyle is associated with increased risk of many cancers, including those of the breast. As nutrition, energy balance, macronutrient composition of the diet, and physical activity levels are major determinants of insulin-like growth factor (IGF-I) bioactivity, it has been proposed that, at least in part, these increases in cancer risk and progression may be mediated by alterations in the IGF axis, related to nutritional lifestyle. Localized breast cancer is a manageable disease, and death from breast cancer predominantly occurs due to the development of metastatic disease as treatment becomes more complicated with poorer outcomes. In recent years, epithelial-to-mesenchymal transition has emerged as an important contributor to breast cancer progression and malignant transformation resulting in tumor cells with increased potential for migration and invasion. Furthermore, accumulating evidence suggests a strong link between components of the IGF pathway, epithelial-to-mesenchymal transition, and breast cancer mortality. Here, we highlight some recent studies highlighting the relationship between IGFs, IGF-binding protein 3, and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Hanna A Zielinska
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Amit Bahl
- Department of Clinical Oncology, Bristol Haematology and Oncology Centre, University Hospitals Bristol, Bristol, UK
| | - Jeff Mp Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol, UK
| |
Collapse
|
50
|
Desgagné V, Hivert MF, St-Pierre J, Guay SP, Baillargeon JP, Perron P, Gaudet D, Brisson D, Bouchard L. Epigenetic dysregulation of the IGF system in placenta of newborns exposed to maternal impaired glucose tolerance. Epigenomics 2015; 6:193-207. [PMID: 24811788 DOI: 10.2217/epi.14.3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS To determine whether placental IGF1R, IGFBP3, INSR and IGF1 DNA methylation and mRNA levels were dysregulated when exposed to maternal impaired glucose tolerance (IGT) and investigate whether the epigenetic profile is associated with feto-placental developmental markers. PATIENTS & METHODS The IGT diagnosis was made according to the WHO criteria (IGT: n = 34; normal glucose tolerance [NGT]: n = 106). DNA methylation and mRNA levels were quantified using bisulfite pyrosequencing and qRT-PCR, respectively. RESULTS IGF1R and IGFBP3 DNA methylation levels were lower in placentas exposed to IGT compared with NGT (-4.3%; p = 0.021 and -2.5%; p = 0.006 respectively) and correlated with 2-h post-oral glucose tolerance test (OGTT) glycemia (r = -0.23; p = 0.010 and r = -0.20; p = 0.028, respectively). IGF1R mRNA levels were associated with newborns' growth markers (e.g., birth weight; r = 0.20; p = 0.032). CONCLUSION These results support the growth-promoting role of the IGF system in placental/fetal development and suggest that the IGF1R and IGFBP3 DNA methylation profiles are dysregulated in IGT, potentially affecting the fetal metabolic programming.
Collapse
Affiliation(s)
- Véronique Desgagné
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|