1
|
Nakhjirgan P, Jonidi Jafari A, Kermani M, Shahsavani A, Kazemi Z, Kazemi Z, Fanaei F. Assessment of disease burden and mortality attributable to air pollutants in northwestern Iran using the AirQ+ software. Sci Rep 2025; 15:13566. [PMID: 40253421 PMCID: PMC12009317 DOI: 10.1038/s41598-025-97348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/03/2025] [Indexed: 04/21/2025] Open
Abstract
It is well known that one of the main causes of mortality and reduced life expectancy is air pollution, which carries the highest burden of diseases attributed to environmental factors. The poor air quality in Iranian cities leads to a wide range of acute and chronic health effects. This study estimates the natural deaths, ALRI, COPD, lung cancer, IHD, and strokes caused by air pollutants in Bukan, a southern city in West Azerbaijan Province, from 2011 to 2019. Population data was obtained from government organizations, and pollutant data for 2011-2019 was collected from the Bukan Environmental Protection Organization. Analyses were performed using Excel, and the data was subsequently entered into the WHO's AirQ+ model to extract the results. The study found that long-term exposure to PM10, PM2.5, NO2, and O3 resulted in an estimated 316, 241, 14, and 52 deaths, respectively. By comparing the air quality over the 8-year period, it was determined that the air quality in Bukan city is not in good condition, with particulate matter levels exceeding relevant standards. Given the increasing trend of air pollution and associated health impacts, it is essential to implement effective control policies to improve the city's air quality. This information provides a crucial step for city managers, policymakers, and health officials to mitigate the health effects caused by air pollution.
Collapse
Affiliation(s)
- Pegah Nakhjirgan
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kazemi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Kazemi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang Y, Cao X, Lin J. Implantation of web-like cellulose nanofibrils on electrospun fibrous membrane for boosting filtration performance. Int J Biol Macromol 2025; 288:138686. [PMID: 39672409 DOI: 10.1016/j.ijbiomac.2024.138686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Air pollution such as particulate matter is always a serious threat to public health, thus many disposable and degradable air filters were designed to deal with this severe challenge avoiding the secondary pollution after discarding. Herein, inspired by the natural spider web structure, a hierarchical porous composite fibrous membrane containing web-like cellulose nanofibrils (CNF) was developed. The implanted porous CNF membranes with web-like among the inter-fiber voids of electrospun poly(ethylene-co-viny alcohol) fibrous membrane were realized via a layer-by-layer (LBL) method followed by an elevated-temperature drying, which exhibit a smaller diameter with one or two orders of magnitude reduction comparing with the substrate fibers. The morphology of implanted CNF membranes can be regulated by changing the CNF dispersion concentration, PH, solution composition as well as the LBL times. The addition of a small amount of isopropyl alcohol to the CNF solution can efficiently facilitate the implantation of web-like CNF on substrate, resulting in both improvements on the mechanical properties and filtration capacity. The result shows that the implanted web-like CNF of as-prepared composite membrane can enhance the PM 0.3 capture ability (reaching 96.8 %) while not surge its pressure drop (225.7 Pa) exceeding N95 standard. This work presents a new design and fabrication of CNF-based filter materials directly without using freeze drying, which can not only provide a fully or partially biodegradable air filter but also give encouragement to explore new filters efficiently.
Collapse
Affiliation(s)
- Yuhang Yang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Xinwang Cao
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| |
Collapse
|
3
|
Ahmadian F, Rajabi S, Maleky S, Baghapour MA. Spatiotemporal analysis of airborne pollutants and health risks in Mashhad metropolis: enhanced insights through sensitivity analysis and machine learning. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:34. [PMID: 39724450 DOI: 10.1007/s10653-024-02332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
The study delved into an extensive assessment of outdoor air pollutant levels, focusing specifically on PM2.5, SO2, NO2, and CO, across the Mashhad metropolis from 2017 to 2021. In tandem, it explored their intricate correlations with meteorological conditions and the consequent health risks posed. Employing EPA health risk assessment methods, the research delved into the implications of pollutant exposure on human health. Results unveiled average annual concentrations of PM2.5, SO2, NO2, and CO, standing at 27.22 µg/m3, 72.48 µg/m3, 26.8 µg/m3, and 2.06 mg/m3, respectively. Intriguingly, PM2.5 displayed positive correlations with temperature and wind speed, while exhibiting negative associations with relative humidity and precipitation. Conversely, both SO2 and NO2 concentrations showcased negative correlations with temperature, relative humidity, wind speed, and precipitation. Furthermore, CO demonstrated negative relationships with both wind speed and precipitation. The analysis of mean hazard quotients (HQ) for PM2.5 and NO2 indicated values exceeding 1 under 8- and 12-h exposure scenarios, pointing towards concerning health risks. Spatial distribution revealed elevated CO levels in the northwest, north, and east areas, while NO2 concentrations were predominant in the north and south regions. Through Sobol sensitivity analysis, PM2.5, EF, and NO2 emerged as pivotal influencers, offering valuable insights for refining environmental models and formulating effective pollution mitigation strategies. Air pollution index (AQI) forecasting was modeled using advanced machine learning comprising Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KKN), and Naive Bayesian (NB). Results showed that the RF model with the highest accuracy (R2 = 0.99) was the best prediction model.
Collapse
Affiliation(s)
- Fahimeh Ahmadian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Rajabi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sobhan Maleky
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Naimi N, Sarkhosh M, Nabavi BF, Najafpoor A, Musa Farkhani E. Estimating the burden of diseases attributed to PM 2.5 using the AirQ + software in Mashhad during 2016-2021. Sci Rep 2024; 14:24462. [PMID: 39424839 PMCID: PMC11489694 DOI: 10.1038/s41598-024-74328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
The study used the AirQ + software developed by the World Health Organization (WHO) to evaluate the health impacts associated with long-term exposure to PM2.5 in Mashhad, Iran. For this purpose, we analyzed the daily average concentrations of PM2.5 (with a diameter of 2.5 micrometers or less) registered by the air quality monitoring stations from 2016 to 2021. The levels of PM2.5 surpassed the Air Quality Guidelines (AQG) limit value of 5 µg/m3 (annual value) established by WHO. The findings revealed that the burden of mortality (from all-natural causes) at people above 30 years old associated with PM2.5 exposures was 2093 [95% confidence interval [CI]: 1627-2314] deaths in 2016 and 2750 [95% CI: 2139-3038] deaths in 2021. In general, the attributable mortality from specific causes of deaths (e.g., COPD (chronic obstructive pulmonary diseases), IHD (ischemic heart diseases) and stroke) in people above 25 years old increased between the years, but the mortality from lung cancer was stable at 46 [95% CI: 33-59] deaths in 2016 and 48 [95% CI: 34-61] deaths in 2021. The attributable mortality from ALRI (Acute Lower Respiratory Infection) in children below 5 years old increased between the years. We also found differences in mortality cases from IHD and stroke among the age groups and between the years 2016 and 2021. It was concluded that burden of disease methodologies are suitable tools for regional and national policymakers, who must take decisions to prevent and to control air pollution and to analyze the cost-effectiveness of interventions.
Collapse
Affiliation(s)
- Nayera Naimi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Fatemeh Nabavi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliasghar Najafpoor
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Musa Farkhani
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Amini H, Yousefian F, Faridi S, Andersen ZJ, Calas E, Castro A, Cervantes-Martínez K, Cole-Hunter T, Corso M, Dragic N, Evangelopoulos D, Gapp C, Hassanvand MS, Kim I, Le Tertre A, Medina S, Miller B, Montero S, Requia WJ, Riojas-Rodriguez H, Rojas-Rueda D, Samoli E, Texcalac-Sangrador JL, Yitshak-Sade M, Schwartz J, Kuenzli N, Spadaro JV, Krzyzanowski M, Mudu P. Two Decades of Air Pollution Health Risk Assessment: Insights From the Use of WHO's AirQ and AirQ+ Tools. Public Health Rev 2024; 45:1606969. [PMID: 38957684 PMCID: PMC11217191 DOI: 10.3389/phrs.2024.1606969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Objectives We evaluated studies that used the World Health Organization's (WHO) AirQ and AirQ+ tools for air pollution (AP) health risk assessment (HRA) and provided best practice suggestions for future assessments. Methods We performed a comprehensive review of studies using WHO's AirQ and AirQ+ tools, searching several databases for relevant articles, reports, and theses from inception to Dec 31, 2022. Results We identified 286 studies that met our criteria. The studies were conducted in 69 countries, with most (57%) in Iran, followed by Italy and India (∼8% each). We found that many studies inadequately report air pollution exposure data, its quality, and validity. The decisions concerning the analysed population size, health outcomes of interest, baseline incidence, concentration-response functions, relative risk values, and counterfactual values are often not justified, sufficiently. Many studies lack an uncertainty assessment. Conclusion Our review found a number of common shortcomings in the published assessments. We suggest better practices and urge future studies to focus on the quality of input data, its reporting, and associated uncertainties.
Collapse
Affiliation(s)
- Heresh Amini
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Zorana J. Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Alberto Castro
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Karla Cervantes-Martínez
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Thomas Cole-Hunter
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Magali Corso
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Natasa Dragic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dimitris Evangelopoulos
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Christian Gapp
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ingu Kim
- European Centre for Environment and Health, World Health Organization, Regional Office for Europe, Bonn, Germany
| | - Alain Le Tertre
- Regional Office Bretagne, Santé Publique France, Rennes, France
| | - Sylvia Medina
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Brian Miller
- Institute of Occupational Medicine (IOM), Edinburgh, United Kingdom
| | | | - Weeberb J. Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Brazil
| | | | - David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, United States
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Nino Kuenzli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joseph V. Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, United States
| | | | - Pierpaolo Mudu
- European Centre for Environment and Health, World Health Organization, Regional Office for Europe, Bonn, Germany
| |
Collapse
|
6
|
Kazemi Z, Kazemi Z, Jafari AJ, Farzadkia M, Hosseini J, Amini P, Shahsavani A, Kermani M. Estimating the health impacts of exposure to Air pollutants and the evaluation of changes in their concentration using a linear model in Iran. Toxicol Rep 2024; 12:56-64. [PMID: 38261924 PMCID: PMC10797144 DOI: 10.1016/j.toxrep.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In big and industrial cities of developing countries, illness and mortality from long-term exposure to air pollutants have become a serious issue. This research was carried out in 2019-2020 to estimate the health impacts of PM10, NO2 and O3 pollutants by using AirQ+ and R statistical programming software in Arak, Isfahan, Tabriz, Shiraz, Karaj, and Mashhad. Mortality statistics, number of people in required age groups, and amount of pollutants were gathered respectively from different agencies like Statistics and Information Technology of the Ministry of Health, Statistical Center, and Department of Environment and by using Excel, the average 24-hour and 1-hour concentration and maximum 8-hour concentration for PM10, NO2 and O3 pollutants were gathered. We used linear mixed impacts model to account for the longitudinal observations and heterogeneity of the cities. The results of the study showed high number of deaths due to chronic bronchitis in adults, premature death of infants, and respiratory diseases in Mashhad. This research highlights the importance of estimation of health impacts from exposure to air pollutants on residents of the studied cities.
Collapse
Affiliation(s)
- Zahra Kazemi
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zohre Kazemi
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini
- Department of Biostatistics,School of Public Health,Hamadan University of Medical Sciences,Hamadan,Iran
| | - Payam Amini
- Department of Biostatistics, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yan D, Ji H, Fu H, Jiang J, Su B, Ye B. The effect of fine particulate matter (PM 2.5) pollution on health inequality: an intergenerational perspective. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:195. [PMID: 38696046 DOI: 10.1007/s10653-024-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
Air pollution poses a serious challenge to public health and simultaneously exacerbating regional & intergenerational health inequality. This research introduces PM2.5 pollution into the intergenerational health transmission model, and estimates its impact on health inequality in China using Ordered Logit Regression (OLR) and Multi-scale Geographically Weighted Regression (MGWR) model. The results indicate that PM2.5 pollution exacerbate the intergenerational health inequality, and its impacts show inconsistency across family income levels, parental health insurance status, and area of residence. Specifically, it is more difficult for offspring in low-income families to escape from the influence of unhealthy family to become upwardly mobile. Additionally, this health inequality is more significant in households in which at least one parent does not have health insurance. Moreover, the intergenerational solidification caused by PM2.5 pollution is higher in the east and lower in the west. Both the PM2.5 level and solidification effect are high in Beijing-Tianjin-Hebei region, Yangtze River Delta region and central areas of China, which is the focus of air pollution management. These findings suggest that more emphasis should be placed on family-based health promotion. In areas with high PM2.5 pollution levels, resources, subsidies and air pollution protection should be provided for less healthy families with lower incomes and no health insurance.
Collapse
Affiliation(s)
- Dan Yan
- School of Public Administration, Zhejiang University of Technology, Hangzhou, 310023, China
- Zhejiang Institution of Talent Development, Hangzhou, 310023, China
| | - Honglu Ji
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hong Fu
- School of Public Administration, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jingjing Jiang
- School of Economics and Management, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Bin Su
- Energy Studies Institute, National University of Singapore, Singapore, Singapore
| | - Bin Ye
- School of Environmental Science and Engineering, Southern University of Science and Technology, NO. 1088, Xueyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
8
|
Kazemi Z, Jonidi Jafari A, Farzadkia M, Amini P, Kermani M. Evaluating the mortality and health rate caused by the PM 2.5 pollutant in the air of several important Iranian cities and evaluating the effect of variables with a linear time series model. Heliyon 2024; 10:e27862. [PMID: 38560684 PMCID: PMC10979144 DOI: 10.1016/j.heliyon.2024.e27862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
All over the world, the level of special air pollutants that have the potential to cause diseases is increasing. Although the relationship between exposure to air pollutants and mortality has been proven, the health risk assessment and prediction of these pollutants have a therapeutic role in protecting public health, and need more research. The purpose of this research is to evaluate the ill-health caused by PM2.5 pollution using AirQ + software and to evaluate the different effects on PM2.5 with time series linear modeling by R software version 4.1.3 in the cities of Arak, Esfahan, Ahvaz, Tabriz, Shiraz, Karaj and Mashhad during 2019-2020. The pollutant hours, meteorology, population and mortality information were calculated by the Environmental Protection Organization, Meteorological Organization, Statistics Organization and Statistics and Information Technology Center of the Ministry of Health, Treatment and Medical Education for 24 h of PM2.5 pollution with Excel software. In addition, having 24 h of PM2.5 pollutants and meteorology is used to the effect of variables on PM2.5 concentration. The results showed that the highest and lowest number of deaths due to natural deaths, ischemic heart disease (IHD), lung cancer (LC), chronic obstructive pulmonary disease (COPD), acute lower respiratory infection (ALRI) and stroke in The effect of disease with PM2.5 pollutant in Ahvaz and Arak cities was 7.39-12.32%, 14.6-17.29%, 16.48-8.39%, 10.43-18.91%, 12.21-22.79% and 14.6-18.54 % respectively. Another result of this research was the high mortality of the disease compared to the mortality of the nose. The analysis of the results showed that by reducing the pollutants in the cities of Karaj and Shiraz, there is a significant reduction in mortality and linear modeling provides a suitable method for air management planning.
Collapse
Affiliation(s)
- Zahra Kazemi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Amini
- Department of Biostatistics, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tang Z, Guo J, Zhou J, Yu H, Wang Y, Lian X, Ye J, He X, Han R, Li J, Huang S. The impact of short-term exposures to ambient NO 2, O 3, and their combined oxidative potential on daily mortality. ENVIRONMENTAL RESEARCH 2024; 241:117634. [PMID: 37977272 DOI: 10.1016/j.envres.2023.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
It is widely recognized that air pollution exerts substantial detrimental effects in human health and the economy. The potential for harm is closely linked to the concentrations of pollutants like nitrogen dioxide (NO2) and ozone (O3), as well as their collective oxidative potential (OX). Yet, due to the challenges of directly monitoring OX as an independent factor and the influences of different substances' varying ability to contain or convey OX, uncertainties persist regarding its actual impact. To provide further evidence to the association between short-term exposures to NO2, O3, and OX and mortality, this study conducted multi-county time-series analyses with over-dispersed generalized additive models and random-effects meta-analyses to estimate the mortality data from 2014 to 2020 in Jiangsu, China. The findings reveal that short-term exposures to these pollutants are linked to increased risks of all-cause, cardiovascular, and respiratory mortality, where NO2 demonstrates 2.11% (95% confidence interval: 1.79%, 2.42%), 2.28% (1.91%, 2.66%), and 2.91% (2.13%, 3.69%) respectively per every 10 ppb increase in concentration, and the effect of O3 is 1.11% (0.98%, 1.24%), 1.39% (1.19%, 1.59%), and 1.82% (1.39%, 2.26%), and OX is 1.77% (1.58%, 1.97%), 2.19% (1.90%, 2.48%), and 2.90% (2.29%, 3.52%). Notably, women and individuals aged over 75 years exhibit higher susceptibility to these pollutants, with NO2 showing a greater impact, especially during the warm seasons. The elevated mortality rates associated with NO2, O3, and OX underscore the significance of addressing air pollution as a pressing public health issue, especially in controlling NO2 and O3 together. Further research is needed to explore the underlying mechanisms and possible influential factors of these effects.
Collapse
Affiliation(s)
- Ziqi Tang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Jianhui Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Jinyi Zhou
- Non-communicable Chronic Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, 210009, China
| | - Hao Yu
- Non-communicable Chronic Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, 210009, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Xinyao Lian
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Jin Ye
- School of Energy and Power, Jiangsu University of Science and Technology, Jiangsu, 212100, China
| | - Xueqiong He
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Renqiang Han
- Non-communicable Chronic Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu, 210009, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
10
|
Salehi M, Almasi Hashiani A, Karimi B, Mirhoseini SH. Estimation of health-related and economic impacts of PM2.5 in Arak, Iran, using BenMAP-CE. PLoS One 2023; 18:e0295676. [PMID: 38127954 PMCID: PMC10734986 DOI: 10.1371/journal.pone.0295676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Ambient air quality is one of the most critical threats to human health. In this study, the health and economic benefits of reducing PM2.5 were estimated in the city of Arak during the period of 2017-2019. The concentration data were obtained from the Environmental Protection Organization of Central Province, while the demographic data were obtained from the website of the Iran Statistics Center. The number of premature deaths from all causes, ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer, attributable to PM2.5 pollution was estimated using the Environmental Benefits Mapping and Analysis Program-Comprehensive Version (BenMAP_CE) to limit the guidelines of the World Health Organization. The results showed that improving air quality in 2017, 2018, and 2019 in Arak could prevent the deaths of 729, 654, and 460 people, respectively. The number of years of life lost (YLL) in 2017, 2018, and 2019 was 11383, 10362, and 7260 years, respectively. The total annual economic benefits of reducing the PM2.5 concentration in Arak under the proposed scenarios in 2017, 2018, and 2019 were estimated to be 309,225,507, 262,868,727, and 182,224,053 USD, respectively, using the statistical life method (VSL). Based on the results of this study, there are significant health and economic benefits to reducing PM2.5 concentrations in Arak City. Therefore, planning and adopting control policies to reduce air pollution in this city are necessary.
Collapse
Affiliation(s)
- Maryam Salehi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Hamed Mirhoseini
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
11
|
Anbari K, Sicard P, Omidi Khaniabadi Y, Raja Naqvi H, Rashidi R. Assessing the effect of COVID-19 pandemic on air quality change and human health outcomes in a capital city, southwestern Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1716-1727. [PMID: 36099327 DOI: 10.1080/09603123.2022.2120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The aimsof this study were to assess the spatial variation of PM2.5, NO2, and O3 between 2019 (before) and 2020 (during COVID-19 pandemic); and calculation the health outcomes of exposure to these pollutants. The daily PM2.5, NO2, and O3 concentrations were applied to assess health effects by relative risk, and baseline incidence. The annual PM2.5 and NO2 mean concentrations exceeded the WHO guideline values, while O3 did not exceed. The restrictive measures associated to COVID-19 led to reduction at the annual means of PM2.5 and NO2 by -25.5% and -23.1%, respectively, while the annual mean of O3 increased by +7.9%. The number of M-CVD and M-RD (-25.6%, -26.1%) related to PM2.5 exposure, and HA-COPD and HA-RD >65 years old (-21% and -3.84%) related to NO2 exposure were reduced in 2020, and O3 exposure-related M-CVD (+30.1%) and HA-RD >65 years old (+23.4%) increased compared to the previous year 2019.
Collapse
Affiliation(s)
- Khatereh Anbari
- Social Determinants of Health Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Yusef Omidi Khaniabadi
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajab Rashidi
- Department of Occupational Health, Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Roger Chen YH, Lee WC, Liu BC, Yang PC, Ho CC, Hwang JS, Huang TH, Lin HH, Lo WC. Quantifying the potential effects of air pollution reduction on population health and health expenditure in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122405. [PMID: 37597736 DOI: 10.1016/j.envpol.2023.122405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Air pollution, particularly ambient fine particulate matter (PM2.5) pollution, poses a significant risk to public health, underscoring the importance of comprehending the long-term impact on health burden and expenditure at national and subnational levels. Therefore, this study aims to quantify the disease burden and healthcare expenditure associated with PM2.5 exposure in Taiwan and assess the potential benefits of reducing pollution levels. Using a comparative risk assessment framework that integrates an auto-aggressive integrated moving average model, we evaluated the avoidable burden of cardiopulmonary diseases (including ischemic heart disease, stroke, chronic obstructive pulmonary disease, lung cancer, and diabetes mellitus) and related healthcare expenditure under different air quality target scenarios, including status quo and target scenarios of 15, 10, and 5 μg/m3 reduction in PM2.5 concentration. Our findings indicate that reducing PM2.5 exposure has the potential to significantly alleviate the burden of multiple diseases. Comparing the estimated attributable disease burden and healthcare expenditure between reference and target scenarios from 2022 to 2050, the avoidable disability-adjusted life years were 0.61, 1.83, and 3.19 million for the 15, 10, and 5 μg/m3 target scenarios, respectively. Correspondingly, avoidable healthcare expenditure ranged from US$ 0.63 to 3.67 billion. We also highlighted the unequal allocation of resources and the need for policy interventions to address health disparities due to air pollution. Notably, in the 5 μg/m3 target scenario, Kaohsiung City stands to benefit the most, with 527,368 disability-adjusted life years avoided and US$ 0.53 billion saved from 2022 to 2050. Our findings suggest that adopting stricter emission targets can effectively reduce the health burden and associated healthcare expenditure in Taiwan. Overall, this study provides policymakers in Taiwan with valuable insights for mitigating the negative effects of air pollution by establishing a comprehensive framework for evaluating the co-benefits of air pollution reduction on healthcare expenditure and disease burden.
Collapse
Affiliation(s)
- Yi-Hsuan Roger Chen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Bo-Chen Liu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Chieh Yang
- Department of Industrial Economics, Tamkang University, Taipei, Taiwan
| | - Chi-Chang Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Tzu-Hsuan Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; AbbVie Inc. North Chicago, Illinois, USA
| | - Hsien-Ho Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Cheng Lo
- Master Program in Applied Epidemiology, College of Public Health, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Lu Z, Guan Y, Shao C, Niu R. Assessing the health impacts of PM 2.5 and ozone pollution and their comprehensive correlation in Chinese cities based on extended correlation coefficient. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115125. [PMID: 37331289 DOI: 10.1016/j.ecoenv.2023.115125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
The coordinated control of PM2.5 and ozone pollution is becoming more and more important in the current and next stage of Chinese environmental pollution control. Existing studies are unable to provide sufficient quantitative assessments of the correlation of PM2.5 and ozone pollution to support the coordinated control of the two air pollutants. This study develops a systematic method to comprehensively assess the correlation between PM2.5 and ozone pollution, including the evaluation of the impact of two air pollutants on human health and the extended correlation coefficient (ECC) for assessing the bivariate correlation index of PM2.5-ozone pollution in Chinese cities. According to the latest studies on epidemiology conducted in China, we take cardiovascular and cerebrovascular diseases and respiratory diseases as the ozone pollution's health burden when evaluating the health impact of ozone pollution. The results show that the health impact of PM2.5 in China decreases by 25.9 % from 2015 to 2021, while the health impact of ozone increases by 11.8 %. The ECC of 335 cities in China shows an increasing-decreasing trend but has generally increased from 2015 to 2021. The study provides important support for an in-depth understanding of the correlation and development trend of Chinese PM2.5 and ozone pollution by classifying the comprehensive PM2.5-ozone correlation performances of Chinese cities into four types. China or other countries will get better environmental benefits by implementing different coordinated management approaches for different correlative types of regions based on the assessment method in this study.
Collapse
Affiliation(s)
- Zhirui Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Guan
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chaofeng Shao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Ren Niu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
14
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
15
|
Rashidi R, Khaniabadi YO, Sicard P, De Marco A, Anbari K. Ambient PM 2.5 and O 3 pollution and health impacts in Iranian megacity. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2023; 37:175-184. [PMID: 35965492 PMCID: PMC9358119 DOI: 10.1007/s00477-022-02286-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 05/21/2023]
Abstract
The main objectives of this study were to (i) assess variation within fine particles (PM2.5) and tropospheric ozone (O3) time series in Khorramabad (Iran) between 2019 (before) and 2020 (during COVID-19 pandemic); (ii) assess relationship between PM2.5 and O3, the PM2.5/O3 ratio, and energy consumption; and (iii) estimate the health effects of exposure to ambient PM2.5 and O3. From hourly PM2.5 and O3 concentrations, we applied both linear-log and integrated exposure-response functions, city-specific relative risk, and baseline incidence values to estimate the health effects over time. A significant correlation was found between PM2.5 and O3 (r =-0.46 in 2019, r =-0.55 in 2020, p < 0.05). The number of premature deaths for all non-accidental causes (27.5 and 24.6), ischemic heart disease (7.3 and 6.3), chronic obstructive pulmonary disease (17 and 19.2), and lung cancer (9.2 and 6.25) attributed to ambient PM2.5 exposure and for respiratory diseases (4.7 and 5.4) for exposure to O3 above 10 µg m-3 for people older than 30-year-old were obtained in 2019 and 2020. The number of years of life lost declined by 11.6% in 2020 and exposure to PM2.5 reduced the life expectancy by 0.58 and 0.45 years, respectively in 2019 and 2020. Compared to 2019, the restrictive measures associated to COVID-19 pandemic led to reduction in PM2.5 (-25.5%) and an increase of O3 concentration (+ 8.0%) in Khorramabad.
Collapse
Affiliation(s)
- Rajab Rashidi
- Department of Occupational Health, Nutritional Health Research Center, School of Health and Nutrition,
Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yusef Omidi Khaniabadi
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | | | | | - Khatereh Anbari
- Social Determinants of Health Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
16
|
Anbari K, Khaniabadi YO, Sicard P, Naqvi HR, Rashidi R. Increased tropospheric ozone levels as a public health issue during COVID-19 lockdown and estimation the related pulmonary diseases. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101600. [PMID: 36439075 PMCID: PMC9676228 DOI: 10.1016/j.apr.2022.101600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 05/05/2023]
Abstract
The aims of this study were to i) investigate the variation of tropospheric ozone (O3) levels during the COVID-19 lockdown; ii) determine the relationships between O3 concentrations with the number of COVID-19 cases; and iii) estimate the O3-related health effects in Southwestern Iran (Khorramabad) over the time period 2019-2021. The hourly O3 data were collected from ground monitoring stations, as well as retrieved from Sentinel-5 satellite data for showing the changes in O3 levels pre, during, and after lockdown period. The concentration-response function model was applied using relative risk (RR) values and baseline incidence (BI) to assess the O3-related health effects. Compared to 2019, the annual O3 mean concentrations increased by 12.2% in 2020 and declined by 3.9% in 2021. The spatiotemporal changes showed a significant O3 increase during COVID-19 lockdown, and a negative correlation between O3 levels and the number of COVID-19 cases was found (r = - 0.59, p < 0.05). In 2020, the number of hospital admissions for cardiovascular diseases increased by 4.0 per 105 cases, the mortality for respiratory diseases increased by 0.7 per 105 cases, and the long-term mortality for respiratory diseases increased by 0.9 per 105 cases. Policy decisions are now required to reduce the surface O3 concentrations and O3-related health effects in Iran.
Collapse
Affiliation(s)
- Khatereh Anbari
- Social Determinants of Health Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yusef Omidi Khaniabadi
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Pierre Sicard
- ARGANS, 260 Route Du Pin Montard, 06410, Biot, France
| | - Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajab Rashidi
- Department of Occupational Health, Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
17
|
Khaniabadi YO, Sicard P, Dehghan B, Mousavi H, Saeidimehr S, Farsani MH, Monfared SM, Maleki H, Moghadam H, Birgani PM. COVID-19 Outbreak Related to PM 10, PM 2.5, Air Temperature and Relative Humidity in Ahvaz, Iran. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9713103 DOI: 10.1007/s44229-022-00020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In this study, we assessed several points related to the incidence of COVID-19 between March 2020 and March 2021 in the Petroleum Hospital of Ahvaz (Iran) by analyzing COVID-19 data from patients referred to the hospital. We found that 57.5% of infected referrals were male, 61.7% of deaths by COVID-19 occurred in subjects over 65 years of age, and only 2.4% of deaths occurred in younger subjects (< 30 years old). Analysis showed that mean PM10 and PM2.5 concentrations were correlated to the incidence of COVID-19 (r = 0.547, P < 0.05, and r = 0.609, P < 0.05, respectively) and positive chest CT scans (r = 0.597, P < 0.05, and r = 0.541, P < 0.05 respectively). We observed that a high daily air temperature (30–51 °C) and a high relative humidity (60–97%) led to a significant reduction in the daily incidence of COVID-19. The highest number of positive chest CT scans were obtained in June 2020 and March 2021 for daily air temperature ranging from 38 °C and 49 °C and 11 °C and 15 °C, respectively. A negative correlation was detected between COVID-19 cases and air temperature (r = − 0.320, P < 0.05) and relative humidity (r = − 0.384, P < 0.05). In Ahvaz, a daily air temperature of 10–28 °C and relative humidity of 19–40% are suitable for the spread of coronavirus. The highest correlation with the number of COVID-19 cases was found at lag3 (r = 0.42) and at lag0 with a positive chest CT scan (r = 0.56). For air temperature and relative humidity, the highest correlations were found at day 0 (lag0). During lockdown (22 March to 21 April 2020), a reduction was observed for PM10 (29.6%), PM2.5 (36.9%) and the Air Quality Index (33.3%) when compared to the previous month. During the pandemic period (2020–2021), the annual mean concentrations of PM10 (27.3%) and PM2.5 (17.8%) were reduced compared to the 2015–2019 period.
Collapse
Affiliation(s)
- Yusef Omidi Khaniabadi
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | | | - Bahram Dehghan
- Family Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Hassan Mousavi
- Family Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran ,grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Saeidimehr
- Family Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Mohammad Heidari Farsani
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Sadegh Moghimi Monfared
- grid.419140.90000 0001 0690 0331Gachsaran Oil and Gas Production Company, National Iranian Oil Company, Gachsaran, Iran
| | - Heydar Maleki
- grid.411230.50000 0000 9296 6873Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojat Moghadam
- Occupational and Environmental Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Pouran Moulaei Birgani
- Family Health Research Center, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| |
Collapse
|
18
|
Lou C, Bai Y, Chai T, Yu H, Lin T, Hu G, Guan Y, Wu B. Research progress on distribution and exposure risk of microbial aerosols in animal houses. Front Vet Sci 2022; 9:1015238. [PMID: 36439349 PMCID: PMC9684608 DOI: 10.3389/fvets.2022.1015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Environmental aerosols in animal houses are closely related to the productive performance and health level of animals living in the houses. Preferable housing environments can improve animal welfare and production efficiency, so it is necessary to monitor and study these environments. In recent years, there have been many large-scale outbreaks of respiratory diseases related to biological aerosols, especially the novel coronavirus that has been sweeping the world. This has attracted much attention to the mode of aerosol transmission. With the rapid development of large-scale and intensive breeding, microbial aerosols have gradually become the main factor of environmental pollution in animal houses. They not only lead to a large-scale outbreak of infectious diseases, but they also have a certain impact on the health of animals and employees in the houses and increase the difficulty of prevention and control of animal-borne diseases. This paper reviews the distribution, harm, and control measures of microbial aerosols in animal house environments in order to improve people's understanding of them.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongjie Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Tai'an, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai'an, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tuorong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangming Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bo Wu
| |
Collapse
|
19
|
Health burden and economic loss attributable to ambient PM 2.5 in Iran based on the ground and satellite data. Sci Rep 2022; 12:14386. [PMID: 35999246 PMCID: PMC9399101 DOI: 10.1038/s41598-022-18613-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 01/02/2023] Open
Abstract
We estimated mortality and economic loss attributable to PM2·5 air pollution exposure in 429 counties of Iran in 2018. Ambient PM2.5-related deaths were estimated using the Global Exposure Mortality Model (GEMM). According to the ground-monitored and satellite-based PM2.5 data, the annual mean population-weighted PM2·5 concentrations for Iran were 30.1 and 38.6 μg m-3, respectively. We estimated that long-term exposure to ambient PM2.5 contributed to 49,303 (95% confidence interval (CI) 40,914-57,379) deaths in adults ≥ 25 yr. from all-natural causes based on ground monitored data and 58,873 (95% CI 49,024-68,287) deaths using satellite-based models for PM2.5. The crude death rate and the age-standardized death rate per 100,000 population for age group ≥ 25 year due to ground-monitored PM2.5 data versus satellite-based exposure estimates was 97 (95% CI 81-113) versus 116 (95% CI 97-135) and 125 (95% CI 104-145) versus 149 (95% CI 124-173), respectively. For ground-monitored and satellite-based PM2.5 data, the economic loss attributable to ambient PM2.5-total mortality was approximately 10,713 (95% CI 8890-12,467) and 12,792.1 (95% CI 10,652.0-14,837.6) million USD, equivalent to nearly 3.7% (95% CI 3.06-4.29) and 4.3% (95% CI 3.6-4.5.0) of the total gross domestic product in Iran in 2018.
Collapse
|
20
|
Guan Y, Xiao Y, Chu C, Zhang N, Yu L. Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113808. [PMID: 35759982 DOI: 10.1016/j.ecoenv.2022.113808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Ambient ozone pollution has been becoming severe and attributed to considerable health impacts in China. Nitrogen dioxide (NO2) is involved in atmospheric ozone production while also affecting public health directly. Joint control ozone and NO2 pollution would be of significance. This study quantitatively assessed the health impact attributed to ambient ozone and NO2 pollution in 338 Chinese cities from 2015 to 2020. The results reveal the generally opposite trends of ozone- and NO2-related health impacts in China. From 2015-2020, respiratory and chronic obstructive pulmonary disease (COPD) health impacts attributed to ozone in 338 cities increased by 65.30% and 63.98%. The NO2-attributed health impacts decreased by 24.80% and 24.62%. In 2020, the ozone- and NO2-related respiratory health impacts were 3.96 million DALYs (disability-adjusted life years) and 1.47 million DALYs. High health impacts are concentrated in big cities and city clusters. In 2020, the sum of ozone- and NO2-related respiratory health impacts in the top 20 cities was 0.98 million DALYs and 0.44 million DALYs, accounting for 24.70% and 30.24% of the 338 cities. The population attribution fraction analysis identified the increasing distributional consistency of ozone and NO2-related health impacts, emphasizing the necessity and possible efficiency of ozone-NO2 joint control. Emission source analysis based on gridded data provided a reference for understanding health impacts and developing targeted strategies.
Collapse
Affiliation(s)
- Yang Guan
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100012, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100012, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Lei Yu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100012, China.
| |
Collapse
|
21
|
Safari Z, Fouladi-Fard R, Vahedian M, Mahmoudian MH, Rahbar A, Fiore M. Health impact assessment and evaluation of economic costs attributed to PM 2.5 air pollution using BenMAP-CE. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1891-1902. [PMID: 35852660 PMCID: PMC9295116 DOI: 10.1007/s00484-022-02330-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 06/01/2023]
Abstract
Air pollution is considered the most prominent public health. Economically, air pollution imposes additional costs on governments. This study aimed to quantify health effects and associated economic values of reducing PM2.5 air pollution using BenMAP-CE in Qom in 2019. The air quality data were acquired from Qom Province Environmental Protection Agency, and the population data were collected from Qom Province Management and Planning Organization website. The number of deaths due to Stroke, Chronic Obstructive Pulmonary Disease, Lung Cancer, and Ischemic Heart Disease attributable to PM2.5 were estimated using BenMAP-CE based on two control scenarios, 2.4 and 10 μg/m3, known as scenarios I and II, respectively. The associated economic effect of premature deaths was assessed by value of a statistical life (VSL) approach. The annual average of PM2.5 concentration was found to be 16.32 μg/m3 (SD: 9.93). A total of 4694.5 and 2475.94 premature deaths in scenarios I and II were found to be attributable to PM2.5 in overall, respectively. The total associated cost was calculated to be 855.91 and 451.40 million USD in scenarios I and II, respectively. The total years of life lost due to PM2.5 exposure in 2019 was 158,657.06 and 78,351.51 in scenarios I and II, respectively. The results of both health and economic assessment indicate the importance of solving the air pollution problem in Qom, as well as other big cities in Iran. The elimination of limitations, such as insufficient local data, should be regarded in future studies.
Collapse
Affiliation(s)
- Zahra Safari
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, 3715614566 Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, 3715614566 Iran
| | - Reza Fouladi-Fard
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, 3715614566 Iran
| | - Mostafa Vahedian
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, 3715614566 Iran
| | - Mohammad Hassan Mahmoudian
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, 3715614566 Iran
| | - Ahmad Rahbar
- Department of Public Health, School of Health, Qom University of Medical Sciences, Qom, 3715614566 Iran
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 87-95123 Catania, Italy
| |
Collapse
|
22
|
Maleki H, Sorooshian A, Alam K, Fathi A, Weckwerth T, Moazed H, Jamshidi A, Babaei AA, Hamid V, Soltani F, Goudarzi G. The impact of meteorological parameters on PM 10 and visibility during the Middle Eastern dust storms. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:495-507. [PMID: 35669815 PMCID: PMC9163216 DOI: 10.1007/s40201-022-00795-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is one of the most pressing issues in populated Middle Eastern cities, in particular for the city of Ahvaz, Iran, imposing deleterious effects on the environment, public health, economy, culture, and other sectors. In this study, we investigate the relationship between meteorological parameters, PM10, AOD, air mass source origin, and visibility during severe desert dust storms (Average3h PM10 > 3200 µg m-3) between 2009 and 2012. Six of seven such events occurred between February and March. Interestingly, for the seven cases there was always an alarming PM10 mass concentration peak (137-553 µg m-3) between 12:00-18:00 (local time) that was 18-24 h before the dominant peak of the storm (3279-4899 µg m-3). The maximum wind speed over the multi-day periods examined for the dust storms is usually observed 6 h before the alarming PM10 peak. The minimum relative humidity, dew point temperature and air pressure occurred ± 3 h around the time of the alarming PM10 peak. Wind speed was the meteorological parameter that was consistently higher around the time of the first peak as compared to the second peak, with the reverse being true for sea level pressure. Based on four years of daily data in Ahvaz, PM10 was positively correlated with wind speed and air temperature and inversely correlated with sea level pressure and RH. An empirically-derived equation with R2 = 0.95 is reported to estimate the maximum PM10 concentration for severe desert dust events in the study region based on meteorological parameters. Finally, AOD is shown to correlate strongly (R2 = 0.86) with PM10 during periods with severe desert dust storms in the region.
Collapse
Affiliation(s)
- Heidar Maleki
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ USA
| | - Khan Alam
- Department of Physics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ahmad Fathi
- Department of Hydraulic Structure, Faculty of Science Water Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tammy Weckwerth
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO USA
| | - Hadi Moazed
- Department of Irrigation and Drainage Engineering, Faculty of Science Water Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arsalan Jamshidi
- Department of Environmental Health Engineering, School of Health and Nutrition Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Akbar Babaei
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vafa Hamid
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Soltani
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Maleki H, Goudarzi G, Baboli Z, Khodadadi R, Yazdani M, Babaei AA, Mohammadi MJ. Temporal profiles of ambient air pollutants and associated health outcomes in two polluted cities of the Middle East. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:347-361. [PMID: 35669839 PMCID: PMC9163235 DOI: 10.1007/s40201-021-00781-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/25/2021] [Indexed: 06/15/2023]
Abstract
Dust storms and particulate matters had been increased due to climate change in the Middle East. On the other hand, urbanization and industrialization raised levels of gaseous air pollutants in all big cities. In the current study, air pollution information collected from Environmental Protection Agency of Khuzestan and Tehran containing hourly O3, NO2, CO, SO2, PM10 and PM2.5 concentrations between 2014 and 2015. This study evaluated the air quality of these two cities by Air Quality Index (AQI). As a result, mean concentrations of O3, NO2, PM10 and PM2.5 were higher in Ahvaz than Tehran while Tehran was more pollutant in terms of CO and SO2. Diurnal variations of O3 in weekend were the only trend located above weekday variations along the daytimes. Hourly variations of all pollutants changed with a wider range of concentrations in Ahvaz. Diurnal peaks of all pollutants showed their highest level on Monday as the busiest day in mega city, Tehran with the exception of SO2. PM2.5 was the worst and limiting pollutant for both cities. Accordingly, winter was the most polluted season by 77 and 33 μg m-3 in Ahvaz and Tehran, respectively. Number of clean days was significantly lower in Ahvaz (no-day) than mega city, Tehran (<17 days). The number of unhealthy days was also presented significantly higher in Ahvaz (>186 days). Although, annual PM2.5 concentrations were more in Ahvaz, the higher at-risk population in Tehran caused more health endpoints in the capital of Iran. Consequently, both cities should have their own especial pattern to control air pollution and attributed health damages.
Collapse
Affiliation(s)
- Heidar Maleki
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeynab Baboli
- Department of Environmental Health Engineering,, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Rohollah Khodadadi
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Yazdani
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Ali Akbar Babaei
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Xu C, Zhang Z, Ling G, Wang G, Wang M. Air pollutant spatiotemporal evolution characteristics and effects on human health in North China. CHEMOSPHERE 2022; 294:133814. [PMID: 35120956 DOI: 10.1016/j.chemosphere.2022.133814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
North China, the political, economic, and cultural center of China, has been greatly harmed by frequent air pollution incidents. Therefore, it is vital to study air pollution characteristics and clarify their impact on human health. In this study, we first analyzed the spatiotemporal variations of air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) in North China from 2016 to 2019. Then, the air quality index (AQI), aggregate air quality index (AAQI), and health risk based air quality index (HAQI) were used to assess health risks. Based on these, the AirQ2.2.3 model was used to quantify health effects. The results showed that the major pollutant in the cities surrounding Beijing was PM2.5, while PM10 dominated in distant cities. Annual concentrations decreased (except for O3), which is related to governmental emission reduction policies. However, O3 concentrations increased owing to the complex precursor emissions. The AQI underestimated air pollution, while the AAQI and HAQI were accurate; the latter indicated that 55% of the study region population was exposed to polluted air. The AirQ2.2.3 model quantified the total mortality proportions attributable to PM2.5, PM10, SO2, CO, NO2, and O3, which were 1.87%, 3.12%, 1.11%, 1.40%, 4.19%, and 2.52%, respectively. In high concentrations, PM10 and PM2.5 pose significant health risks. The health effects of SO2, NO2, CO, and O3 at lower concentrations were more obvious, indicating that the expected mortality rate due to low concentrations of some pollutants was much higher than that due to high concentrations of other pollutants.
Collapse
Affiliation(s)
- Chuanqi Xu
- College of Geographical Science, Shanxi Normal University, Linfeng, 041000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhi Zhang
- School of Ecology and Environment, YuZhang Normal University, Nanchang, 330022, China
| | - Guangjiu Ling
- School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Guoqiang Wang
- College of Geographical Science, Shanxi Normal University, Linfeng, 041000, China
| | - Mingzhu Wang
- School of Geographical Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
25
|
Borsi SH, Goudarzi G, Sarizadeh G, Dastoorpoor M, Geravandi S, Shahriyari HA, Akhlagh Mohammadi Z, Mohammadi MJ. Health Endpoint of Exposure to Criteria Air Pollutants in Ambient Air of on a Populated in Ahvaz City, Iran. Front Public Health 2022; 10:869656. [PMID: 35425736 PMCID: PMC9002232 DOI: 10.3389/fpubh.2022.869656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The presence of criteria air pollutants (CAP) in the ambient air of a populated inhalation region is one of the main serious public health concerns. The present study evaluated the number of cardiovascular mortalities (CM), hospital admissions with cardiovascular disease (HACD), and hospital admissions for respiratory disease (HARD) due to CAP exposure between 2010 and 2014. The study used the Air Q model and descriptive analysis to investigate the health endpoint attributed to the ground level of ozone (O3), nitrogen dioxide (NO2), sulfide dioxide (SO2), and particle matter (PM10). Baseline incidence (BI) and relative risk (RR) are the most important factors in the evaluation of health outcomes from exposure to CAP in the ambient air of a populated area according to EPA and the World Health Organization (WHO) guidelines. Our study showed that annual cases of cardiovascular mortality during the period 2010–2014 relating to particle mater were 478, 506, 469, 427, and 371; ozone was 19, 24, 43, 56, and 49; nitrogen dioxide was 18, 20, 23, 27, and 21; and sulfide dioxide was 26, 31, 37, 43 and 11, in the years 2010 to 2014, respectively. These results indicate that the number of hospital admissions for respiratory disease attributed to PM were 2054, 2277, 2675, 2042, and 1895; O3 was 27, 35, 58, 73, and 63; NO2 was 23, 24, 15, 25, and 18; and SO2 was 23, 24, 25, 30, and 20, in the years from 2010 to 2014, respectively. The results also showed that the number of hospital admissions for cardiovascular disease related to particle mater was 560, 586, 529, 503, and 472; ozone was 22, 32, 38, 55, and 51; nitrogen dioxide was 19, 18, 13, 21, and 14; and sulfide dioxide was 12, 14, 16, 22, and 9, in the same period, respectively. Observations showed that most of the pollution was from outdoor air and in the human respiratory tract. Increased levels of sulfide dioxide, particle matter, nitrogen dioxide, and ozone can cause additional morbidity and mortality for exposed populations. According to the results, it is possible to help increase the level of public health. The use of these findings could also be of great help to health professionals and facilitators at regional and national levels.
Collapse
Affiliation(s)
- Seyed Hamid Borsi
- Department of Internal Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Environmental Health Engineering and Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Sarizadeh
- Department of Environmental Health Engineering and Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dastoorpoor
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Geravandi
- School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Allah Shahriyari
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Akhlagh Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Environmental Health Engineering and Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Zohdirad H, Montazeri Namin M, Ashrafi K, Aksoyoglu S, Prévôt ASH. Temporal variations, regional contribution, and cluster analyses of ozone and NO x in a middle eastern megacity during summertime over 2017-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16233-16249. [PMID: 34642887 DOI: 10.1007/s11356-021-14923-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter is usually regarded as the dominant pollutant in Tehran megacity in Iran. However, the number of ozone exceedance days significantly increased in recent years. This study analyzes simultaneous measurements of O3 and NOx (NO+NO2) concentrations to improve our understanding of ozone evolution during the summers of 2017 to 2019. The k-means clustering technique was used to select five representative air quality monitoring sites in Tehran to capture O3 and NOx concentrations' variability. The findings show that all of the investigated sites failed to meet the ozone non-attainment criterion. The ozone weekend effect is seen in the study of weekday/weekend differences in 2017 and 2018, but not in 2019, which can be due to the shift in the ozone production regime. The summer mean variation analysis can also be used to deduce this regime change. In 2017, the O3 and NO2 summer mean variations suggest a holdback in the NO2 upward trend and a reversal in the O3 downward trend that had been in place since 2012. Air mass back trajectory clustering reveals that east and north-east air mass clusters have the most significant impact on Tehran's O3 pollution and the highest regional contribution to OX. The study of OX against NOx shows that the regional contribution to OX increased from 2017 to 2018 and then decreased in 2019; however, the local contribution is the opposite. The diurnal analysis of the regional and local contributions to OX indicated that OX in Tehran might be primarily affected by pollutants from a short distance. The findings reveal critical changes in the behavior of O3 in recent years, indicating that decision-makers in Tehran should reconsider air pollution control measures.
Collapse
Affiliation(s)
- Hossein Zohdirad
- School of Civil Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
| | - Masoud Montazeri Namin
- School of Civil Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran.
| | - Khosro Ashrafi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sebnem Aksoyoglu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | |
Collapse
|
27
|
Choi G, Kim Y, Shin G, Bae S. Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2494. [PMID: 35270187 PMCID: PMC8909340 DOI: 10.3390/ijerph19052494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
We sought to estimate the lifetime healthcare costs and outcomes associated with the exposure to the escalated concentration of fine particulate matter (particle size < 2.5 μm, PM2.5) among adult Korean women. We adapted a previously developed Markov model, and a hypothetical cohort composed of Korean women was exposed to either a standard (15 μg/m3) or increased (25 μg/m3) concentration of PM2.5. The time horizon of the analysis was 60 years, and the cycle length was 1 year. The outcomes were presented as direct healthcare costs and quality-adjusted life years (QALYs), and costs were discounted annually at 5%. Deterministic and probabilistic sensitivity analyses were performed. The model estimated that when the exposure concentration was increased by 10 μg/m3, the lifetime healthcare cost increased by USD 9309, which is an 11.3% increase compared to the standard concentration group. Women exposed to a higher concentration of PM2.5 were predicted to live 30.64 QALYs, compared to 32.08 QALYs for women who were exposed to the standard concentration of PM2.5. The tendency of a higher cost and shorter QALYs at increased exposure was consistent across a broad range of sensitivity analyses. The negative impact of PM2.5 was higher on cost than on QALYs and accelerated as the exposure time increased, emphasizing the importance of early intervention.
Collapse
Affiliation(s)
- Gyeyoung Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| | - Yujeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
- Korean Health Insurance Review & Assessment Service, Wonju 26465, Korea
| | - Gyeongseon Shin
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| |
Collapse
|
28
|
Long-Term Change Analysis of PM2.5 and Ozone Pollution in China’s Most Polluted Region during 2015–2020. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, a time change analysis of fine particulate (PM2.5) emission in multi-resolution emission inventory in China (MEIC) from 2013 to 2016 was conducted. It was found that PM2.5 emissions showed a decreasing trend year by year, and that the annual total emission of PM2.5 decreased by 28.5% in 2016 compared with that of 2013. When comparing the observation data of PM2.5 and ozone (O3), it was found that both PM2.5 and O3 show obvious seasonal changes. The emission of PM2.5 in autumn and winter is higher than that in summer, while that of O3 is not. Our study showed that in the 2015–2020 period, annual mean concentrations of PM2.5 and O3 in Beijing varied from 80.87 to 38.31 μg m−3 and 110.75 to 106.18 μg m−3, respectively. Since 2015, the observed value of PM2.5 has shown an obvious downward trend. Compared with 2015, the average annual PM2.5 concentrations in Beijing, Shanghai, Xuzhou, Zhengzhou, and Hefei in 2020 had decreased by 52.62%, 40.35%, 22.2%, 46.84%, and 45.11%, respectively, while O3 showed an upward trend. Compared with the annual averages of 2015 and 2020, Beijing and Shanghai saw a decrease of 4.13% and 8.46%, respectively, while Xuzhou, Zhengzhou, and Hefei saw an increase of 7.08%, 19.46%, and 41.57%, respectively. The comparison shows that PM2.5 is becoming less threatening in China and that ozone is becoming more difficult to control. Air pollution is a modifiable risk factor. Appropriate sustainable control policies are recommended to protect public health.
Collapse
|
29
|
Modeling Air Pollution Health Risk for Environmental Management of an Internationally Important Site: The Salt Range (Kallar Kahar), Pakistan. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study aimed to assess the health effects of emissions released by cement industries and allied activities, such as mining and transportation, in the salt range area of district Chakwal, Pakistan. DISPER was used to estimate dispersion and contribution of source emission by cement industries and allied activities to surface accumulation of selected pollutants (PM2.5, PM10, NOx, and O3). To assess the long-term effects of pollutants on human health within the radius of 500 m to 3 km, Air Q+ software was used, which was designed by the World Health Organization (WHO). One-year average monitoring data of selected pollutants, coordinates, health data, and population data were used as input data for the model. Data was collected on lung cancer mortality among different age groups (25+ and 30+), infant post-neonatal mortality, mortality due to respiratory disease, and all-cause mortality due to PM2.5 and NO2. Results showed that PM2.5 with the year-long concentration of 27.3 µg/m3 contributes a 9.9% attributable proportion (AP) to lung cancer mortality in adults aged 25+, and 13.8% AP in adults age 30+. Baseline incidence is 44.25% per 100,000 population. PM10 with the year-long concentration of 57.4 µg/m3 contributes 16.96% AP to infant post-neonatal mortality and baseline incidence is 53.86% per 1000 live births in the country. NO2 with the year-long concentration of 14.33 µg/m3 contributes 1.73% AP to all-cause mortality. Results obtained by a simulated 10% reduction in pollutant concentration showed that proper mitigation measures for reduction of pollutants’ concentration should be applied to decrease the rate of mortalities and morbidities. Furthermore, the study showed that PM2.5 and PM10 are significantly impacting the human health in the nearby villages, even after mitigation measures were taken by the selected cement industries. The study provides a roadmap to policymakers and stakeholders for environmental and health risk management in the area.
Collapse
|
30
|
Soleimani M, Akbari N, Saffari B, Haghshenas H. Estimation of economic costs of air pollution caused by motor vehicles in Iran (Isfahan). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66535-66555. [PMID: 34235697 DOI: 10.1007/s11356-021-13504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
Since mobile sources are one of the most important sources of air pollution, this paper tries to estimate the health effects and economic burden due to fine particulate matter (PM2.5) concentrations from motor vehicles. In this regard, we calculate the economic costs of air pollution emitted by vehicles in Isfahan over the period from March 2018 to March 2020. The concentration of urban traffic pollution based on the generalized additive model (GAM) as well as spatial distribution of pollution is estimated. Health effects are evaluated using AirQ+ updated by the WHO European Centre for Environment and Health. Economic burden of mortality attributable air pollution from traffic is calculated using value of a statistical life (VOSL), and the value of life years (VOLY) approach. The results indicated that the number of deaths attributable to PM2.5 from motor vehicles in these two consecutive years was 136 (95%CI: 89-179), and 147 cases (95%CI: 96-194), respectively. The number of years of life lost due to premature death from air pollution was 2079 years annually. The economic costs imposed under VOSL approach were on average USD 51.7 (95%CI: 43-75) million per year, and according to VOLY approach USD 11.5 (95%CI: 9-13) million per year. These results help to analyze the cost-benefit and prioritize control measures to reduce air pollution. In addition, combination of these results with other externality cost of road traffic can take account for urban transportation planning.
Collapse
Affiliation(s)
| | | | - Babak Saffari
- Department of Economics, University of Isfahan, Isfahan, Iran
| | - Hosein Haghshenas
- Department of Transportation Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
31
|
Health and Economic Impacts Assessment of O 3 Exposure in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111646. [PMID: 34770158 PMCID: PMC8583463 DOI: 10.3390/ijerph182111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Health effects related to exposure to air pollution such as ozone (O3) have been documented. The World Health Organization has recommended the use of the Sum of O3 Means Over 35 ppb (SOMO35) to perform Health Impact Assessments (HIA) for long-term exposure to O3. We estimated the avoidable mortality associated with long-term exposure to tropospheric O3 in 14 cities in Mexico using information for 2015. The economic valuation of avoidable deaths related to SOMO35 exposure was performed using the willingness to pay (WTP) and human capital (HC) approaches. We estimated that 627 deaths (95% uncertainty interval (UI): 227–1051) from respiratory diseases associated with the exposure to O3 would have been avoided in people over 30 years in the study area, which confirms the public health impacts of ambient air pollution. The avoidable deaths account for almost 1400 million USD under the WTP approach, whilst the HC method yielded a lost productivity estimate of 29.7 million USD due to premature deaths. Our findings represent the first evidence of the health impacts of O3 exposure in Mexico, using SOMO35 metrics.
Collapse
|
32
|
Goudarzi G, Hopke PK, Yazdani M. Forecasting PM 2.5 concentration using artificial neural network and its health effects in Ahvaz, Iran. CHEMOSPHERE 2021; 283:131285. [PMID: 34182649 DOI: 10.1016/j.chemosphere.2021.131285] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 05/28/2023]
Abstract
The main objective of the present study was to predict the associated health endpoint of PM2.5 using an artificial neural network (ANN). The neural network used in this work contains a hidden layer with 27 neurons, an input layer with 8 parameters, and an output layer. First, the artificial neural network was implemented with 80% of data for training then with 90% of data for training. The value of R for the data validation of these two networks was 0.80 and 0.83 respectively. The World Health Organization AirQ + software was utilized for assessing Health effects of PM2.5 levels. The mean PM2.5 over the 9-year study period was 63.27(μg/m3), about six times higher than the WHO guideline. However, the PM2.5 concentration in the last year decreased by about 25% compared to the first year, which is statistically significant (P-value = 0.0048). This reduced pollutant concentration led to a decrease in the number of deaths from 1785 in 2008 to 1059 in 2016. Moreover, a positive correlation was found between PM2.5 concentration and temperature and wind speed. Considering the importance of predicting PM2.5 concentration for accurate and timely decisions as well as the accuracy of the artificial neural network used in this study, the artificial neural network can be utilized as an effective instrument to reduce health and economic effects.
Collapse
Affiliation(s)
- Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mohsen Yazdani
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
Guan Y, Xiao Y, Wang Y, Zhang N, Chu C. Assessing the health impacts attributable to PM 2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117623. [PMID: 34171728 DOI: 10.1016/j.envpol.2021.117623] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/13/2023]
Abstract
China has effectively reduced the fine particulate (PM2.5) pollution from 2015 to 2020. Ozone pollution and related health impacts have become severe contemporaneously. The coordinated control of PM2.5 and ozone is becoming a new issue for China's air pollution control. This study quantitatively assessed the health impacts attributed to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020 and estimated the possible health benefits from achieving dual concentration targets during 2021-2025. Results show PM2.5 caused a total health impact of 2.45 × 107 disability-adjusted life years (DALYs) in 2020. All-cause and respiratory ozone-related health impact in 2020 was 1.04 × 107 DALYs and 1.56 × 106 DALYs. Between 2015 and 2020, the PM2.5-related health impacts decreased by 14.97%, while those ozone-related increased by 94.61% and 96.54% for all-cause and respiratory. Cities in the North China Plain have suffered higher health impacts attributable to PM2.5 and ozone pollution, indicating that the two-pollutant coordinated control is primarily needed. By achieving aggressive concentration target (decreasing 10%) between 2020 and 2025, China will reduce the PM2.5-related health impacts in 338 cities by 1.56 × 106 DALYs (improving 6.37%). By achieving general target (decreasing 10% or within the Interim target-1 of World Health Organization), the PM2.5-related health benefit will be 7.98 × 105 DALYs (improving 3.25%). The deteriorating ozone health risks will also be improved. Controlling air pollution in large cities and regional center cities can achieve remarkable health benefits. Due to the inter-region, inter-province, and inter-city difference of health impacts, targeted and differentiated pollution prevention and control need to be implemented.
Collapse
Affiliation(s)
- Yang Guan
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Yameng Wang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing, 100012, China
| |
Collapse
|
34
|
Mousavi SS, Goudarzi G, Sabzalipour S, Rouzbahani MM, Mobarak Hassan E. An evaluation of CO, CO 2, and SO 2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56996-57008. [PMID: 34081282 DOI: 10.1007/s11356-021-14493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Air quality modeling can be considered as a useful tool to predict air quality in the future and determine the control strategies of emissions abatement. In this study, the AERMOD dispersion model has been applied as a tool for the analysis of the values of pollutant emissions from the flares of the Maroon gas refinery located in the suburb of Ahvaz, Iran. First, the values of pollutant emissions from the refinery's flares were investigated by measurement and using the emission factors during cold and warm seasons of 2018. The gas burns continuously in two flares and the other 11 flares are used in emergency situations and only their spark plugs are lit. The type of compounds and their molar, volumetric, and weight percentages were determined by gas chromatography (GC) injection. By entering data such as emission rate, flare characteristics, and topographic and meteorological data of the study area into the AERMOD model, dispersion of pollutants was predicted by using the AERMOD model in the region with an area of 2500 km2. The statistical evaluation showed that the maximum 8-h concentration of CO in the cold season was 133441 μg/m3 which was higher than the standard and reached 9755 μg/m3 in the warm season that was close to the standard. The maximum hourly concentration of SO2 was in the cold season with 215 μg/m3 that was higher than the standard value, occurred in a local scale of 50 km2. This can be attributed to the high concentration of SO2 wet deposition. According to the direction of the wind from the northwest, pollutant emissions can lead to adverse health effects on the population of refinery employees, residents around the refinery, and occupants of passing vehicles. The concentration of pollutants generated due to the high volume of heavier compounds in the gas in the winter season was higher than that of the warm season. Comparison of maximum concentrations of the predicted results with the national and international standards showed that SO2 and CO concentration is higher than standard values. In total, according to the evaluation of the predictions made, the performance of the AERMOD model was acceptable in the prediction of pollutant concentrations in the study area.
Collapse
Affiliation(s)
- Seyed Sadegh Mousavi
- Department of Environmental Sciences, Ahvaz branch, Islamic Azad University, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases (APRD) Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz branch, Islamic Azad University, Ahvaz, Iran
| | | | - Elham Mobarak Hassan
- Department of Environmental Sciences, Ahvaz branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
35
|
Effects of Air Pollutants on Airway Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189905. [PMID: 34574829 PMCID: PMC8465980 DOI: 10.3390/ijerph18189905] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.
Collapse
|
36
|
Khaniabadi YO, Sicard P. A 10-year assessment of ambient fine particles and related health endpoints in a large Mediterranean city. CHEMOSPHERE 2021; 278:130502. [PMID: 34126698 DOI: 10.1016/j.chemosphere.2021.130502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fine particles i.e., with an aerodynamic diameter lower than 2.5 μm (PM2.5) have potentially the most significant effects on human health compared to other air pollutants. The main objectives of this study were to i) investigate the temporal variations of ambient PM2.5 in Marseille (Southern France), where air pollution is again a major public health issue, and ii) estimate their short-term health effects and annual trend (Mann-Kendall test) over a 10-year period from 2010 to 2019. In Marseille, the main sources of PM2.5 could be related to road traffic, industrial complexes, and oil refineries surrounded the city. The number of premature deaths and hospital admissions attributable to ambient PM2.5 exposure for non-accidental causes, cardiovascular and respiratory diseases were estimated by using in-situ air quality data, city-specific relative risk values and baseline incidence. Despite significant reduction of PM2.5 (- 0.80 μg m-3 year-1), Marseille citizens were exposed to PM2.5 levels exceeding the World Health Organization (WHO) Air Quality Guideline for human health protection (10 μg m-3) during entire study period. Exposure to ambient PM2.5 substantially contributed to mortality and hospital admissions: 871 deaths for non-accidental causes, 515 deaths for cardiovascular diseases, 47 deaths for respiratory diseases, as well as 1034 hospital admissions for cardiovascular diseases and 834 for respiratory diseases were reported between 2010 and 2019. Compliance with WHO annual limit values can result in substantial socio-economic benefits by preventing premature deaths and hospital admissions. For instance, based on the value of a statistical life and average cost of a hospital admission, the associated benefit for healthcare would have been €131 million in 2019. Between 2010 and 2019, the number of PM2.5-related non-accidental deaths decreased by 1.15 per 105 inhabitants annually. Compared to 2010-2019, the restrictive measures associated to COVID-19 pandemic led to a reduction in PM2.5 of 11% in Marseille, with 2.6 PM2.5-related deaths averted in 2020.
Collapse
Affiliation(s)
- Yusef Omidi Khaniabadi
- Department of Environmental Health Engineering, Industrial Medial and Health, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | | |
Collapse
|
37
|
Xu M, Yao Q, Chen D, Li M, Li R, Gao B, Zhao B, Chen Z. Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117099. [PMID: 33857877 DOI: 10.1016/j.envpol.2021.117099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Ground level ozone exerts a strong impact on crop yields, yet how to properly quantify ozone induced yield losses in China remains challenging. To this end, we employed a series of O3-crop models to estimate ozone induced yield losses in China from 2014 to 2018. The outputs from all models suggested that the total Relative Yield Losses (RYL) of wheat in China from 2014 to 2018 was 18.4%-49.3% and the total RYL of rice was 6.2%-52.9%. Consequently, the total Crop Production Losses (CPL) of wheat and rice could reach 63.9-130.4 and 28.3-35.4 million tons, and the corresponding Total Economic Losses (TEL) could reach 20.5-44.7 and 11.0-15.3 billion dollars, stressing the great importance and urgency of national ozone management. Meanwhile, the estimation outputs highlighted the large variations between different regional O3-crop models when applying to large scales. Instead of applying one unified O3-crop models to all regions across China, we also explored the strategy of employing specific O3-crop models in corresponding (and neighboring) regions to estimate ozone induced yield loss in China. The comparison of two strategies suggested that the mean value from multiple models may still present an inconsistent over/underestimation trend for different crops. Therefore, it is a preferable strategy to employ corresponding O3-crop models in different regions for estimating the national crop losses caused by ozone pollution. However, the severe lack of regional O3-crop models in most regions across China makes a robust estimation of national yield losses highly challenging. Given the large variations between O3-crop interactions across regions, a systematic framework with massive regional O3-crop models should be properly designed and implemented.
Collapse
Affiliation(s)
- Miaoqing Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Qi Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Danlu Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Manchun Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Ruiyuan Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Bingbo Gao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China.
| | - Bo Zhao
- Department of Geography, University of Washington, Seattle, WA, 98195, USA.
| | - Ziyue Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| |
Collapse
|
38
|
Moradi M, Hadei M, Yazdani M, Goudarzi M, Baboli Z, Tahmasebi Birgani Y, Neisi A, Goudarzi G. Effect of long-term exposure to PM 2.5 on years of life lost in a populated Middle Eastern city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3229-3235. [PMID: 33544269 DOI: 10.1007/s10653-021-00827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
From a public health point of view, years of life lost (YLL) is a more important index than the number of deaths to evaluate the effect of risk factors. The objective of the present study was to estimate the burden of disease including years of life lost (YLL) and expected life remaining (ELR) attributed to long-term exposure to PM2.5 in Ahvaz, one of the most polluted cities of the world, during March 2014 through March 2017. AirQ + software was used for the estimation of YLL and ELR due to all natural causes of death. Hourly concentrations of PM2.5 were acquired from the Department of Environment (DoE) of Ahvaz. Several steps were performed to validate the raw air quality data. Only the monitors were included that had minimum data completeness of 75%. Two age groups were selected for this study, including 0-64 and 65 < years. The life table approach was used to estimate YLL and ELR. Annual averages of PM2.5 were 5.2-8 times higher than the air quality guideline (10 μg/m3) set by WHO for long-term exposure to PM2.5. In total, PM2.5 has caused 234,041 years of life lost due to mortality. About 84% of YLLs were attributed to people older than 65 years old. The YLLs of men were higher than those for women. The YLLs in the third year were greater than the first two years. PM2.5 has caused the average age of total population, people aged 0-64 years old, and people > 65 years old decreased by 2.5, 3, and 1.6 years, respectively. These studies indicated that people in a city that the air quality is highly affected by dust storms, industrial emissions, and urban air pollution are significantly at risk. Air pollution control strategies and actions should be designed and executed to improve the quality of ambient air.
Collapse
Affiliation(s)
- Maryam Moradi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Goudarzi
- Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | - Zeynab Baboli
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases (APRD) Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Air Pollution and Respiratory Diseases (APRD) Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
39
|
Chen X, Ying N, Chen D, Zhang Y, Lu B, Fan J, Chen X. Eigen microstates and their evolution of global ozone at different geopotential heights. CHAOS (WOODBURY, N.Y.) 2021; 31:071102. [PMID: 34340317 DOI: 10.1063/5.0058599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Studies on stratospheric ozone have attracted much attention due to its serious impacts on climate changes and its important role as a tracer of Earth's global circulation. Tropospheric ozone as a main atmospheric pollutant damages human health as well as the growth of vegetation. Yet, there is still a lack of a theoretical framework to fully describe the variation of ozone. To understand ozone's spatiotemporal variance, we introduce the eigen microstate method to analyze the global ozone mass mixing ratio between January 1, 1979 and June 30, 2020 at 37 pressure layers. We find that eigen microstates at different geopotential heights can capture different climate phenomena and modes. Without deseasonalization, the first eigen microstates capture the seasonal effect and reveal that the phase of the intra-annual cycle moves with the geopotential heights. After deseasonalization, by contrast, the collective patterns from the overall trend, El Niño-Southern Oscillation (ENSO), quasi-biennial oscillation, and tropopause pressure are identified by the first few significant eigen microstates. The theoretical framework proposed here can also be applied to other complex Earth systems.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Na Ying
- China State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dean Chen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
| | - Yongwen Zhang
- Data Science Research Center, Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Lu
- Laboratory for Climate Studies and CMA-NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Kermani M, Jonidi Jafari A, Gholami M, Arfaeinia H, Shahsavani A, Fanaei F. Characterization, possible sources and health risk assessment of PM2.5-bound Heavy Metals in the most industrial city of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:151-163. [PMID: 34150226 PMCID: PMC8172762 DOI: 10.1007/s40201-020-00589-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Air pollution associated with particulate matters results in different types of disease including allergy, lung destruction, heart failure, and related problems. This study has been designed and performed to examine the concentration of PM2.5-bound heavy metals, risk assessment, possible sources and effect of meteorological parameters on 17 sites of the air of the most industrial city of Iran (Karaj) in 2018-19. For this purpose, four samples were taken from every point of Karaj air over one year using a pump (Leland Legacy (SKC)) with flow rate of 3 L/min on PTFE filter for 24 h. Overall, 68 samples of PM2.5-bound heavy metals were collected. Note that during the sampling, atmospheric parameters including temperature, pressure, humidity, and wind speed were regularly recorded using PHB318 portable device. In examining the chemical composition of these particles, the concentration of metals (Al-Zn- Ar-Cd-Cr-Cu-Fe-Hg-Mn-Ni-Pb) was determined after digestion of the collected samples and through injection into ICP-OEC device. The results indicated that the mean annual concentration of PM2.5 particles range from 21.84 to 72.75 µg/m3. The mean concentration of heavy metals lied within the range of 25.63 to 336.27 ng/m3. Among heavy metals, the maximum concentration belonged to aluminum (277.95 ng/m3) and iron (336.27 ng/m3), which are known as elements with a ground source (sources such as car fuels, exhaust gases, decorative materials, batteries, indoor smoking, the paint used for painting walls, erosion and corrosion of rubber of cars). Meanwhile, there was a positive relationship between heavy metals and temperature(r: 0.418, p < 0.019), pressure (r: 0.184, p < 0.0.402), as well as wind speed (r: 0.38, p < 0.017), while an inverse relationship was observed with relative humidity (r: -0.219, p < 0.018). The ecological risk of the metals calculated was very notable, with the maximum environmental risk being related to cadmium in children (6.61) and manganese in adults (0.82). The largest HQ in children and adults was associated with Cr. Finally, ILCR values for cadmium in both children (1.19 E-04) and adult (4.81 E-04) groups indicated high risk of developing cancer in humans.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, the Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Shao M, Yu L, Xiao C, Deng J, Yang H, Xu W, Chen Y, Liu X, Ni J, Pan F. Short-term effects of ambient temperature and pollutants on the mortality of respiratory diseases: A time-series analysis in Hefei, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112160. [PMID: 33773152 DOI: 10.1016/j.ecoenv.2021.112160] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND The air pollution has become an important environmental health problem due to its adverse health effect. The objective of this study was to investigate the effects of ambient temperature and pollutants on mortality of respiratory diseases (RD) in Hefei, China, a typical inland city. METHODS Nonlinear exposure-response dependencies and delayed effects of urban daily mean temperature (DMT) and pollutants were evaluated by distributed lag non-linear models (DLNM). To further explore this effect, different genders and ages were also examined by stratified analysis. RESULTS A total of 12876 deaths from RD were collected from January 1, 2014 to December 31, 2018 in Hefei, China. There was a U-shaped correlation between DMT and RD mortality, and the RD mortality rised by 11.6% (95% CI: 2.2-22.0%) when the DMT was 35.8 °C (reference temperature is 20 °C). The results show that risk of death with short-term exposure to elevated concentrations of PM10 and SO2 was not significant. The maximum hysteresis and cumulative relative risk (RR) of RD mortality were 1.012 (95% CI: 1.003 ~ 1.021, lag 0 day) and 1.072 (95% CI: 1.014 ~1.133, lag 10 days) for each 10 μg/m3 augment in NO2; 1.005 (95% CI: 1.001-1.009, lag 0 day) and 1.027 (95% CI: 1.004-1.051, lag 10 days) for each 10 μg/m3 augment in O3; a negative association between CO exposure and the cumulative risk of death was observed (RR = 0.964, 95% CI: 0.935-0.993, lag 07 days). Subgroup analysis showed the effect of high temperatures, NO2, O3 and CO exposure was still statistically significant for the elderly and male. CONCLUSION The present study found that short-term exposure to high temperature, NO2, O3 and CO were significantly associated with the risk of RD mortality and male as well as elderly are more susceptible to these factors.
Collapse
Affiliation(s)
- Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, Anhui 230032, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuxiang Liu
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, Anhui 230032, China
| | - Jindong Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Xincheng Road, Dongguan, Guangdong 523808, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
42
|
Hajizadeh Y, Jafari N, Fanaei F, Ghanbari R, Mohammadi A, Behnami A, Jafari A, Aghababayi M, Abdolahnejad A. Spatial patterns and temporal variations of traffic-related air pollutants and estimating its health effects in Isfahan city, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:781-791. [PMID: 34150273 PMCID: PMC8172745 DOI: 10.1007/s40201-021-00645-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 05/13/2023]
Abstract
Isfahan as an important industrial city has faced with air pollution recently. Thus, we assessed the spatial and temporal trends of ambient PM2.5, CO, SO2, and O3 and for estimating their health effect on Isfahan citizens between March 2018 and March 2019 through the AirQ+ software. Our results showed that citizens of Isfahan in almost 240, 167, and 134 of the days in the year has exposure to PM2.5, SO2, and O3 higher than the WHO daily guideline, respectively. Daily variations of PM2.5, CO, and SO2 concentration showed the increasing trend of pollutants in the morning to evening. The maximum concentrations of O3 were observed in the noonday. Also, the concentrations of these pollutants on Friday due to the holiday effect were higher than the weekdays. Except for O3, the PM2.5, CO, and SO2 concentrations in the cold months and cold seasons was higher compared with the hot months and hot seasons. The total number of deaths because of lung cancer, natural mortality, ischemic heart disease, chronic obstructive pulmonary disease,, stroke associated with ambient PM2.5 with the attributable proportion (AP) 11.43%, 11.63%, 15.96%, 15.15%, and 13.1% (95% CI) were 683, 19, 2, 202, and 55 cases, respectively. Therefore, the present study provides additional data for the provincial managers and politicians useful in planning proper strategies of air pollution control to decrease exposure and attributable mortalities.
Collapse
Affiliation(s)
- Yaghoub Hajizadeh
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Jafari
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Department of Environmental Health Engineering, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Mohammadi
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Azin Jafari
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
43
|
Al-Hemoud A, Gasana J, Alajeel A, Alhamoud E, Al-Shatti A, Al-Khayat A. Ambient exposure of O 3 and NO 2 and associated health risk in Kuwait. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14917-14926. [PMID: 33222061 DOI: 10.1007/s11356-020-11481-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3) and nitrogen dioxide (NO2), indissoluble air pollutants in the atmosphere, have been confirmed in various parts of the world to have detrimental health effects on humans. Currently, such information is lacking in Kuwait. The objectives of this study are to investigate the spatial and temporal variations of O3 and NO2 concentrations in Kuwait during a 4-year period (2014-2017) and to quantify the associated short- and long-term health effects, including all-cause, respiratory, and cardiovascular mortalities and morbidities during the same study period. Exposure assessment showed that the annual levels (22.5-26.4 ppb), SOMO35, and the 8-hour 4-year mean (38 ppb) of O3 were very low and below the World Health Organization (WHO) (50 ppb) and Kuwaiti (70 ppb) regulatory limits. The annual mean levels of NO2 ranged from 30.3 to 43.8 ppb and were significantly higher than both WHO and Kuwait limits (21 ppb). As expected, O3 and NO2 levels showed opposing trends, with higher concentrations of NO2 recorded in early morning and mid-evening, during autumn and winter, and during Saturdays (the so-called weekend effect). Health effects indicated high respiratory diseases due to short-term exposure to NO2. Contrary to the western countries' pollution levels, Kuwait showed lower O3 and higher NO2 levels. There is potential for substantial health improvements in Kuwait by reducing NO2 pollution through stringent control measures of stationary and mobile sources.
Collapse
Affiliation(s)
- Ali Al-Hemoud
- Crisis Decision Support Program, Environment and Life Sciences Research Center, Crisis Decision Support Program, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait.
| | - Janvier Gasana
- Faculty of Public Health, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | | | - Ebrahim Alhamoud
- Faculty of Law, Kuwait University, P. O. Box 5475, 13055, Safat, Kuwait
| | | | - Ahmed Al-Khayat
- Techno-Economics Division, Kuwait Institute for Scientific Research, P. O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
44
|
Zallaghi E, Goudarzi G, Sabzalipour S, Zarasvandi A. Effects of long-term exposure to PM 2.5 on years of life lost and expected life remaining in Ahvaz city, Iran (2008-2017). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:280-286. [PMID: 32812156 DOI: 10.1007/s11356-020-10393-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution is one of the most significant environmental problems, and many individuals around the world die each year prematurely from diseases caused by this type of pollution. PM2.5 can transpire deep to the lungs and induce some dangerous health effects in humans. In this study, the health effects of long-term PM2.5 were estimated on expected life remaining (ELR) and years of life lost (YLL) indices in Ahvaz city during the years 2008-2017 using the AirQ+ software developed by WHO. Values obtained from the PM2.5 averaging, ELR, and YLL data were processed for the whole population in the age range of 0-64 and over 64. These values were entered into AirQ+ software. The mean annual concentration of PM2.5 was highly variable, with the highest concentration being 70.72 μg/m3 in 2010 and the lowest 41.97 μg/m3 in 2014. In all studied years, the concentration of PM2.5 with the variations between 4.2 to 7.07 times was higher than the WHO standard (10 μg/m3). Ahvaz city also did not experience any clean day during the 10-year period, and in 2010, there were 47 very unhealthy days and 27 dangerous days, i.e., the highest number of very unhealthy and dangerous days during the period. The results estimated that the highest and lowest YLL in the next 10 years for all ages groups would be 137,760.49 (2010) and 5035.52 (2014), respectively. Also, the ELR index was lower than the Iranian standard and EPA which was significantly correlated with the concentration of PM2.5.
Collapse
Affiliation(s)
- Elahe Zallaghi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Alireza Zarasvandi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Department of Geology, Shahid Chamran University, Ahvaz, Iran
| |
Collapse
|
45
|
Eskandari Z, Maleki H, Neisi A, Riahi A, Hamid V, Goudarzi G. Temporal fluctuations of PM 2.5 and PM 10, population exposure, and their health impacts in Dezful city, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:723-731. [PMID: 33312597 PMCID: PMC7721840 DOI: 10.1007/s40201-020-00498-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/09/2020] [Indexed: 05/28/2023]
Abstract
Morbidity and mortality impacts of particulate matter (PM) are globally important health critical parameters. In this ecological-descriptive study, the health impact of PM10 and PM2.5 associated with there temporal variations in Dezful city were assessed from 2013 to 2015. AirQ+ software handles the PM air pollutants by addressing impact evaluation and life table evaluation. We used a new method to analysis fine particles feature by using regular daily observations of PM10. In this method, relationship between PM2.5 and PM10 mass concentrations were analyzed and calculated. The annual average concentrations of PM10 were 147.1, 114.3 and 158.8 μg/m3, and the annual average concentration of PM2.5 were 57.8, 50.7 and 58.2 μg/m3 in 2013, 2014 and 2015, respectively. PM10 also had obvious diurnal variations with highest hourly concentrations in 13:00 and 22:00 but the lowest concentrations often occurred in 05:00 and 16:00. Unexpectedly, in weekends the concentration of PM pollutants appeared to have increased from 18:00 to midnight. The daily based analysis showed that there are 147 dusty days in the study period during which the most severe dusty day occurred in 2014. Over the study period, mean levels of PM10 and PM2.5 in both conditions were higher in 2015 compare to 2013 and 2014, which probably is due to higher frequency of dust storms in 2015. Hence, during 2015 and 2013 they're were higher morbidity and mortality compare to 2014 due to exposure to higher polluted air with PMs in all cases except lung cancer (LC).
Collapse
Affiliation(s)
- Zahra Eskandari
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heidar Maleki
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- MS of Environmental Engineering, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abdolkazem Neisi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Riahi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vafa Hamid
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
46
|
Faridi S, Akbari H, Faridi H, Keshmiri S, Adibzadeh A. Human, Forest and vegetation health metrics of ground-level ozone (SOMO35, AOT40f and AOT40v) in Tehran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1351-1358. [PMID: 33312647 PMCID: PMC7721827 DOI: 10.1007/s40201-020-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE We aimed to investigate the spatial O3 indices (SOMO35: annual sum of maximum daily 8-h ozone means over 35 ppb, AOT40: the accumulated exposure over an hourly threshold of 40 ppb during daylight hours between 8:00 and 20:00 in the growing seasons of plants) in Tehran (2019-2020). METHODS The data of ambient O3 concentrations, measured at twenty-three regulatory ambient air quality monitoring stations (AQMSs) in Tehran, were obtained. RESULTS The annual mean O3 concentrations were found to be 15.8-25.7 ppb; the highest and lowest annual mean concentration of ambient O3 were observed in Shahrdari 22 and Shahr-e-Rey stations, respectively. Spatial distribution of exposure to O3 across Tehran was in the range of 1.36-1.64; the highest O3 concentrations were observed in the northern, west and south-western parts of Tehran, while the central and south areas of Tehran city experienced low to moderate concentrations. The indices of SOMO35, AOT40f and AOT40v across AQMSs in Tehran was in the range of 1830-6437 ppb. Days, 10,613-39,505 ppb.h and 4979-16,804 ppb.h, respectively. For Tehran city, the indices of SOMO35 and AOT40f were 4138 ppb. days and 27,556 ppb.h respectively. Our results revealed that the value of SOMO35 across AQMSs of Tehran was higher than the recommended target value of 3000 ppb. days. CONCLUSIONS To reduce O3 pollution and its effects on both human and plants health, the governmental organizations should take appropriate sustainable control policies.
Collapse
Affiliation(s)
- Sasan Faridi
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Faridi
- Department of Public Health, School of Nursing and Midwifery Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Saeed Keshmiri
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Hajizadeh Y, Jafari N, Mohammadi A, Momtaz SM, Fanaei F, Abdolahnejad A. Concentrations and mortality due to short- and long-term exposure to PM 2.5 in a megacity of Iran (2014-2019). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38004-38014. [PMID: 32617810 DOI: 10.1007/s11356-020-09695-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to survey the spatial and temporal trends of ambient concentration of PM2.5 and to estimate mortality attributed to short- and long-term exposure to PM2.5 in Isfahan from March 2014 to March 2019 using the AirQ+ software. The hourly concentrations of PM2.5 were obtained from the Isfahan Department of Environment and Isfahan Air Quality Monitoring Center. Then, the 24-h mean concentration of PM2.5 for each station was calculated using the Excel software. According to the results, the annual mean concentration of PM2.5 in 2014-2019 was 29.9-50.9 μg/m3, approximately 3-5 times higher than the WHO guideline (10 μg/m3). The data showed that people of Isfahan in almost 58% to 96% of the days of a year were exposed to PM2.5 higher than the WHO daily guideline. The concentrations of PM2.5 in cold months such as October, November, December and January were higher than those in the other months. The zoning of the annual concentrations of PM2.5 in urban areas showed that the highest PM2.5 concentrations were related to the northern, northwestern, southern and central areas of the city. On average, from 2014 to 2019, the number of deaths due to natural mortality, lung cancer (LC), chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD) and stroke associated with ambient PM2.5 were 948, 16, 18, 281 and 60, respectively. The present study estimated that on average, 14.29% of the total mortality, 17.2% of lung cancer (LC), 15.54% of chronic obstructive pulmonary disease (COPD), 17.12% of ischemic heart disease (IHD) and 14.94% of stroke mortalities were related to long-term exposure to ambient PM2.5. So provincial managers and politicians must adopt appropriate strategies to control air pollution and reduce the attributable health effects and economic losses.
Collapse
Affiliation(s)
- Yaghoub Hajizadeh
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Jafari
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Mohammadi
- Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Seyed Mojtaba Momtaz
- Department of Environmental Health Engineering, Faculty of Health, Bam University of Medical Sciences, Bam, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Abdolahnejad
- Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
48
|
Zallaghi E, Goudarzi G, Sabzalipour S, Zarasvandi A. Estimation of PM2.5 pollutant time changes and its effect on ischemic heart disease (IHD) outcome in Ahvaz city, Iran (2008–2017). TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1790605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elahe Zallaghi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Alireza Zarasvandi
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
- Department of Geology and Dust Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
49
|
Janjani H, Nabizadeh R, Shamsipour M, Yunesian M. Association between exposure to ambient fine particulate matter and prevalence of type 2 diabetes in Iran: an ecological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26182-26190. [PMID: 32361975 DOI: 10.1007/s11356-020-08659-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological evidence for the link between long-term exposure to air particulate matter (PM2.5) and occurrence of type 2 diabetes (T2D) is limited such that little is known about the effect of PM2.5 exposure and adult T2D prevalence. Thus, the aim of this ecological study is to evaluate the contribution of ambient PM2.5 exposure to the adult T2D prevalence in the large population of Iran. The study was conducted based on Iran's large-scale cross-sectional surveilling non-communicable diseases (NCDs) risk factors (Timpka et al. 2015b). A total of 31,050 participants were enrolled in three sequential processes of study using cluster random sampling. PM2.5 data in the urban area of 31 provinces of Iran were acquired from Tehran Air Quality Control Company (AQCC) and the Department of Environment (DoE) of Iran during 2012-2016. Moreover, major and minor diabetes risk factors were considered; the Pearson correlation and a stepwise regression model were performed to estimate associations between risk factors and diabetes and prediabetes prevalence. The results showed T2D prevalence was more frequent among women (10.61%) than men (9.35%). A weak positive correlation was observed between PM2.5 level and diabetes prevalence with a correlation coefficient of 0.275, although there was no significant association between PM2.5 value and prediabetes prevalence. Moreover, none of the variables included in the regression model could predict the prevalence of diabetes and prediabetes. According to our study results, it can be suggested that investigating the association between PM2.5 exposure and T2D prevalence at individual level may provide a better understanding of PM2.5 exposure and the risk of T2D prevalence.
Collapse
Affiliation(s)
- Hosna Janjani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Liao Q, Jin W, Tao Y, Qu J, Li Y, Niu Y. Health and Economic Loss Assessment of PM 2.5 Pollution during 2015-2017 in Gansu Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3253. [PMID: 32392731 PMCID: PMC7246598 DOI: 10.3390/ijerph17093253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/07/2022]
Abstract
Many studies have reported that air pollution, especially fine particulate matter (PM2.5), has a significant impact on health and causes economic loss. Gansu Province is in the northwest of China, which is a typical economically underdeveloped area. However, few studies have evaluated the economic loss of PM2.5 related to health effects in this province. In this study, a log-linear exposure-response function was used to estimate the health impact of PM2.5 in 14 cities in Gansu Province from 2015 to 2017, and the amended human capital (AHC) and cost of illness (COI) method were used to evaluate the related economic loss caused by the health impact from PM2.5. The results show that the estimated total number of health endpoints attributed to PM2.5 pollution were 1,644,870 (95%CI: 978,484-2,215,921), 1,551,447 (95%CI: 917,025-2,099,182) and 1,531,372 (95%CI: 899,769-2,077,772) in Gansu Province from 2015 to 2017, respectively. Correspondingly, the economic losses related to health damage caused by PM2.5 pollution were 42,699 (95%CI: 32,380-50,768) million Chinese Yuan (CNY), 43,982 (95%CI: 33,305-52,386) million CNY and 44,261 (95%CI: 33,306-52,954) million CNY, which were equivalent to 6.45% (95%CI: 4.89%-7.67%), 6.28% (95%CI: 4.75%-7.48%), and 5.93% (95%CI: 4.64%-7.10%) of the region Gross Domestic Product (GDP) from 2015 to 2017, respectively. It could be seen that the proportions of health economic loss to GDP were generally high, although the proportion had a slight downward trend. The economic loss from chronic bronchitis and all-cause mortality accounted for more than 94% of the total economic loss. The health impact, economic loss and per capita economic loss in Lanzhou, the provincial capital city of Gansu, were obviously higher than other cities from the same province. The economic loss in Linxia accounted for the highest proportion of GDP. The health impacts in the Hexi region, including the cities of Jiuquan, Jiayuguan, Zhangye, Jinchang and Wuwei, were generally lower, but the economic loss and per capita economic loss were still higher. We also found that urbanization and industrialization were highly correlated with health economic loss caused by PM2.5 pollution. In conclusion, the PM2.5-related health economic burden in Gansu Province was serious. As an economically underdeveloped region, it was very important to further adopt rigid and effective pollution control policies.
Collapse
Affiliation(s)
- Qin Liao
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; (Q.L.); (Y.L.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (J.Q.); (Y.N.)
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wangqiang Jin
- Institute for Environmental Strategy, Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China;
| | - Yan Tao
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; (Q.L.); (Y.L.)
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiansheng Qu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (J.Q.); (Y.N.)
| | - Yong Li
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; (Q.L.); (Y.L.)
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yibo Niu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (J.Q.); (Y.N.)
| |
Collapse
|