1
|
Morsi AA, Mersal EA, Abdel All MO, Abdelmenem AM, Dawood AF, Alanazi A, Mahdi N, Salim MS. ADAM17/ACE2 interaction mediates cadmium-induced brain damage and neuroinflammation in Wistar rats. Cytokine 2025; 190:156936. [PMID: 40199064 DOI: 10.1016/j.cyto.2025.156936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a critical component in the renin-angiotensin system. A Disintegrin And Metalloprotease 17 (ADAM17) is the first identified sheddase for common inflammatory cytokines. Changes in ACE2 expression and its biological activity facilitated by ADAM17 are involved in several diseases including neurodegenerative disorders. Herein, the study investigated an innovative viewpoint on cadmium (Cd)-induced neurotoxicity and explored whether ADAM17/ACE2 interplay mediated the Cd-induced brain injury and neuroinflammation. For this aim, 32 adult male Wistar rats were included and randomly grouped. Eight rats served as a control group and the remaining 24 experimental rats were exposed to Cd (5 mg/kg/day, orally, 21 days); assigned as either Cd-alone (Cd group), received ADAM17 inhibitor [TAPI-1, 10 mg/kg, intraperitoneal] (Cd/TAPI-1 group), or received vitamin E, 100 mg/kg/d, orally (Cd/vit E group). Ultimately, the brains were harvested and exposed to biochemical, histological, and immunohistochemical (IHC) studies for measuring oxidative stress and inflammatory markers, histopathological examination, and for IHC identification of ADAM17, ACE2, and glial fibrillary acidic protein (GFAP). Cd resulted in biochemical disturbances in the inflammatory and oxidative stress markers, degenerative histopathological changes in the cerebral cortex and hippocampus, and enhanced ADAM17 and GFAP expression, meanwhile downregulated ACE2 expression. Vitamin E showed a superior effect in maintaining the oxidative/antioxidant-balanced defense system. However, the biochemical and histological changes in the brain were more effectively alleviated by TAPI-1 administration than by the partial improvement made by vitamin E therapy. These observations suggested that oxidative stress was involved in Cd-mediated upregulation of ADAM17 and ACE2 shedding. It was concluded that oxidative stress, at least in part, resulted in ADAM17-mediated ACE2 cleavage in the current Cd-induced brain damage.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | | | - Marwa Omar Abdel All
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Alshaymaa M Abdelmenem
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Mohamed S Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
2
|
Li Y, Wang S, Feng R. Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway. Poult Sci 2025; 104:104990. [PMID: 40081173 PMCID: PMC11951179 DOI: 10.1016/j.psj.2025.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
Cadmium (Cd) is a non-essential heavy metal that is highly toxic to testicle. Selenium (Se) is known to possess antagonistic effects against Cd toxicity, yet the precise mechanisms through which Se counteracts Cd-induced testicular damage in chickens through Nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling pathway, oxidative stress (OS), apoptosis, and inflammation remained unclear. In the present study, the experimental model of chicken testis was established by incorporating CdCl2 and Na2SeO3 into the dietary intake. After 60 days, chickens from each group were euthanized, and testicular and serum samples were subsequently collected. Ultrastructural assessment revealed that Se supplementation significantly mitigated the testicular damage induced by Cd. Se effectively suppressed the Cd-induced elevation in ROS, MDA, and H2O2 levels, while also preventing the downregulation of CAT, GSH, and T-AOC levels. Furthermore, Se administration ameliorated the reduction in the expression levels of Nrf2, HO-1, and Bcl-2 induced by Cd, and counteracted the overexpression of Caspase-3, Bax, Cyt-c, and Caspase-9, TNF-α, IL-2, IL-6, and IL-1β. Meanwhile, immunofluorescence data demonstrated that Se attenuated the Cd-induced decrease in Nrf2 and HO-1 expression and the upregulation of IL-6 expression. In conclusion, this study elucidated that Se might mitigate Cd-induced oxidative stress in chicken testicles through the stimulation of the Nrf2/HO-1 signaling pathway, thereby inhibiting apoptosis and inflammation, and was beneficial in reducing Cd-induced testicular injury.
Collapse
Affiliation(s)
- Yulong Li
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shu Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
3
|
Zhang D, Liu J, Liu J, Fatima M, Yang L, Qin Y, Li W, Sun Z, Yang B. Exercise antagonizes cadmium-caused liver and intestinal injury in mice via Nrf2 and TLR2/NF-κB signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118100. [PMID: 40164036 DOI: 10.1016/j.ecoenv.2025.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Cadmium (Cd) causes a health risk to humans and animals. Exercise can prevent and treat a variety of diseases, but the effect and mechanism of exercise on cadmium poisoning are still unclear. The present research aims to investigate the antagonistic impacts of exercise on enterotoxicity and hepatotoxicity caused by Cd. The results indicated that exercise, both before and during Cd exposure, can reduce Cd caused pathological damages in the liver and duodenum of mice, suppressing the expression levels of the IL-1β, IL-6 and TNF-α genes. In mice exposed to Cd, exercise significantly decreased blood ALT and AST levels, alleviating oxidative stress in the liver by reducing MDA synthesis and enhancing SOD and GSH-PX activities. Exercise inhibited nuclear damage and hepatocyte apoptosis caused by Cd by increasing Bcl-2 protein expression and preventing the release of pro-apoptotic proteins such as caspase-3, Cytc, Bax, caspase-8and cleaved-caspase-3. Exercise before or during Cd exposure can increase the protein and gene expression of HO-1, NQO-1 and Nrf2 in the liver of mice exposed to Cd. These findings suggested that the Nrf2 signaling pathway may have contributed to the exercise-induced partial attenuation of Cd-induced hepatic injury. Exercise also promoted the expression of the occludin gene in the duodenum of Cd-exposed mice, decreasing the structural damage and inflammatory cell infiltration induced by Cd. NF-κB and TLR2 protein expression levels were elevated in mice exposed to Cd. However, exercise mitigated the increase in NF-κB and TLR2 expression in the duodenum of Cd-intoxicated mice, suggesting that the protective effects of exercise on the intestinal tract in Cd-exposed mice may be mediated through modulation of the NF-κB/TLR2 signaling pathway. In conclusion, this study elucidated the protective effects of exercise against Cd-induced hepatotoxicity and intestinal injury in mice. The protective mechanisms of exercise on Cd-exposed liver and intestinal tract were partially realized through the regulation of Nrf2 and NF-κB/TLR2 signaling pathways.
Collapse
Affiliation(s)
- Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiayi Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jingru Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Maryam Fatima
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Lu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yingze Qin
- Second hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Wei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
4
|
Chen C, Han X, Xu N, Shen W, Wang G, Jiao J, Kong W, Yu J, Fu J, Pi J. Nrf2 deficiency aggravates hepatic cadmium accumulation, inflammatory response and subsequent injury induced by chronic cadmium exposure in mice. Toxicol Appl Pharmacol 2025; 497:117263. [PMID: 39938575 DOI: 10.1016/j.taap.2025.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/08/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Prolonged cadmium (Cd) exposure leads to Cd accumulation and oxidative damage in the liver. Nuclear factor erythroid-derived 2-like 2 (NRF2) plays a vital role in preventing acute hepatic toxicity of Cd. However, the participation of NRF2 in chronic liver injury, especially in the context of chronic Cd exposure, has rarely been investigated. Here, we explored the involvement of NRF2 in Cd-induced liver injury using Nrf2 knockout (Nrf2-KO) mice chronically exposed to Cd in drinking water (100 or 200 ppm) for up to 24 weeks. We found that absence of Nrf2 exacerbated the Cd-induced liver fibrosis, as evaluated by Masson's trichrome staining and increased expression of fibrosis-associated proteins. Mechanistic investigations using the liver tissues from the animals with 100 ppm Cd exposure for 16 weeks, in which no obvious hepatic fibrosis was observed in both genotypes, revealed that there were diminished expressions of antioxidant and detoxification genes and elevated Cd levels in the blood and liver of Nrf2-KO mice compared with those in wild-type (Nrf2-WT) under basal and/or Cd-exposed conditions. Notably, a bulk RNA-seq of the liver tissues showed lowered mRNA levels of genes related to xenobiotic and glutathione metabolic processes, but elevated mRNA expression of leukocyte migration pathway and adaptive immune pathway in Nrf2-KO mice relative to Nrf2-WT controls, either under basal or Cd-exposed conditions. Our findings demonstrated that Nrf2-KO mice are vulnerable to chronic Cd exposure-induced liver fibrosis, which is partially attributed to a compromised NRF2-mediated antioxidant response, lowered metallothionein expression and subsequent Cd accumulation and inflammatory response in the tissues.
Collapse
Affiliation(s)
- Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Xue Han
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Hangtou Hesha Community Health Service Center, Pudong New Area, Shanghai 201317, PR China
| | - Ning Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Wei Shen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Gang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Experimental and Teaching Center, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Junying Jiao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Weiwei Kong
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaxin Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
5
|
Huang X, Wu Y, Lu Y. Single and mixed effects of seven heavy metals on stroke risk: 11,803 adults from National Health and Nutrition Examination Survey (NHANES). Front Nutr 2025; 12:1524099. [PMID: 40144574 PMCID: PMC11937853 DOI: 10.3389/fnut.2025.1524099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background The accumulation of heavy metals in soil and plants poses risks to food safety. Human exposure to heavy metals has been linked to stroke risk, though research on this connection is limited and findings are inconsistent. Methods We estimated the associations of 7 blood metals [cadmium (Cd), lead (Pb), mercury (Hg), manganese (Mn), copper (Cu), selenium (Se), and zinc (Zn)] with the risk of stroke among 11,803 U.S. adults. Logistic regression account for the intricate sampling design and restricted cubic spline (RCS) was used to explore the associations between single heavy metal and stroke risk. The weighted quantile sum (WQS) and quantile g-computation (qgcomp) were employed to explore the joint effects of seven metals on stroke. Potential confounders were adjusted. Results After adjusting for the potential confounders, the logistic regression analysis showed the log-transformed Cd and Zn level was associated with stroke (All p < 0.05). After adjusting for the potential confounders, the logistic regression analysis showed the log-transformed Cd and Zn level was associated with stroke (All p < 0.05). WQS and qgcomp analyses consistently demonstrated a positive correlation between metals-mixed exposure and stroke risk, identifying Cd and Cu as key contributors to the outcomes, while Zn may serve as a protective factor. Conclusion These findings indicated that heavy metal exposure is associated with stroke risk, and the protective effect of Zn on stroke risk deserves further research to verify.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueran Wu
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Yan Lu
- Suzhou Centre for Disease Control and Prevention, Suzhou, China
| |
Collapse
|
6
|
Guo W, Weng T, Song Y. Impact of blood lead and manganese levels on metabolic dysfunction-associated steatotic liver disease prevalence: insights from NHANES (2017-2020). BMC Gastroenterol 2025; 25:160. [PMID: 40069625 PMCID: PMC11899840 DOI: 10.1186/s12876-025-03731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The metabolic dysfunction-associated steatotic liver disease (MASLD) paradigm represents a significant departure from the previous nonalcoholic fatty liver disease (NAFLD) framework, offering a non-stigmatizing approach that enhances awareness and accelerates patient understanding. Our primary aim was to investigate the potential relationship between blood lead and manganese exposure and the onset of MASLD. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2017 to 2020, a cross-sectional study included 4,475 participants was performed to assess the relationship. The statistical analysis used throughout the study included multivariable linear regression and multiple logistic regression models, adjusted for potential confounders to ensure robust and reliable results. We applied a thorough multivariable analysis, examining various factors including age, sex, and ethnicity to enhance the robustness of our findings. RESULTS Employing linear regression models in our study, we observed a clear positive correlation between elevated levels of blood lead and manganese and Controlled attenuation parameter (CAP). Additionally, employing multiple logistic regression models for detailed analysis, we noted a significant increase in the likelihood of MASLD with higher levels of blood lead and manganese. CONCLUSION The findings of this study strongly suggest a notable correlation between increased levels of blood lead and manganese with both CAP and the presence of MASLD. This study represents a population-based approach, enhancing the generalizability of the findings to the broader U.S. POPULATION
Collapse
Affiliation(s)
- Wenying Guo
- Ningbo medical center Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Ting Weng
- Ningbo medical center Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Yufei Song
- Ningbo medical center Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Chuang YT, Yen CY, Liu W, Chien TM, Chang FR, Tsai YH, Tang JY, Chang HW. The protection of bisphenol A-modulated miRNAs and targets by natural products. ENVIRONMENT INTERNATIONAL 2025; 196:109299. [PMID: 39884249 DOI: 10.1016/j.envint.2025.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant with endocrine-disrupting functions. Identifying protective drugs and exploring the mechanisms against BPA are crucial in healthcare. Natural products exhibiting antioxidant properties are considered to be able to protect against BPA toxicity. Although BPA-modulated targets and miRNAs have been individually reported, their connections to natural products were rarely organized. With the help of a protein-protein interaction database (STRING), the relationship between individual BPA-modulated targets was interconnected to provide a systemic view. In this review, BPA-downregulated and -upregulated targets are classified, and their interactive network was innovatively analyzed using the bioinformatic database (STRING). BPA-modulated miRNAs were also retrieved and ingeniously connected to BPA-modulated targets. Moreover, a novel connection between BPA-countering natural products was integrated into BPA-modulated miRNAs and targets. All these targets-associated natural products and/or miRNAs were incorporated into the STRING network, providing systemic relationships. Overall, the BPA-modulated target-miRNA-protecting natural product axis was innovatively constructed, providing a straightforward direction for exploring the integrated BPA-countering effects and mechanisms of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
8
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
9
|
Sengul E, Yildirim S, Cinar İ, Tekin S, Dag Y, Bolat M, Gok M, Warda M. Mitigation of Acute Hepatotoxicity Induced by Cadmium Through Morin: Modulation of Oxidative and Pro-apoptotic Endoplasmic Reticulum Stress and Inflammatory Responses in Rats. Biol Trace Elem Res 2024; 202:5106-5117. [PMID: 38238535 PMCID: PMC11442647 DOI: 10.1007/s12011-024-04064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 10/01/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal with significant environmental health hazards. It enters the body through various routes with tissue accumulation. The relatively longer half-life with slow body clearance significantly results in hepatotoxicity during its liver detoxification. Therefore, researchers are exploring the potential use of herbal-derived phytocomponents to mitigate their toxicity. Here, we investigated, for the first time, the possible ameliorative effect of the phytochemical Morin (3,5,7,29,49-pentahydroxyflavone) against acute Cd-induced hepatotoxicity while resolving its underlying cellular mechanisms in a rat animal model. The study involved 50 adult male Sprague-Dawley rats weighing 200-250 g. The animals were divided into five equal groups: control, Cd, Morin100 + Cd, Morin200 + Cd, and Morin200. The 2nd, 3rd, and 4th groups were intraperitoneally treated with Cd (6.5 mg/kg), while the 3rd, 4th, and 5th groups were orally treated with Morin (100 and 200 mg/kg) for 5 consecutive days. On the 6th day, hepatic function (serum ALT, AST, ALP, LDH enzyme activities, and total bilirubin level) testing, transcriptome analysis, and immunohistochemistry were performed to elucidate the ameliorative effect of Morin on hepatotoxicity. In addition to restoring liver function and tissue injury, Morin alleviated Cd-induced hepatic oxidative/endoplasmic reticulum stress in a dose-dependent manner, as revealed by upregulating the expression of antioxidants (SOD, GSH, Gpx, CAT, and Nrf2) and decreasing the expression of ER stress markers. The expression of the proinflammatory mediators (TNF-α, IL-1-β, and IL-6) was also downregulated while improving the anti-inflammatory (IL-10 and IL-4) expression levels. Morin further slowed the apoptotic cascades by deregulating the expression of pro-apoptotic Bax and Caspase 12 markers concomitant with an increase in anti-apoptotic Blc2 mRNA expression. Furthermore, Morin restored Cd-induced tissue damage and markedly suppressed the cytoplasmic expression of JNK and p-PERK immunostained proteins. This study demonstrated the dose-dependent antioxidant hepatoprotective effect of Morin against acute hepatic Cd intoxication. This effect is likely linked with the modulation of upstream p-GRP78/PERK/ATF6 pro-apoptotic oxidative/ER stress and the downstream JNK/BAX/caspase 12 apoptotic signaling pathways.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon 2024; 10:e37545. [PMID: 39309893 PMCID: PMC11416300 DOI: 10.1016/j.heliyon.2024.e37545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organisms encounter reactive oxidants through intrinsic metabolism and environmental exposure to toxicants. Reactive oxygen and nitrogen species (ROS, RNS) are generally considered detrimental because they induce oxidative stress. In order to combat oxidative stress, a potential modulator of cellular defense nuclear factor erythroid 2-related factor 2 (Nrf2) and its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1) operate as a common, genetically preserved intrinsic defense system. There has been a significant increase in the amount of harmful metalloids and metals that individuals are exposed to through their food, water, and air, primarily due to human activities. Many studies have looked at the connection between the emergence of different ailments in humans and ecological exposure to metalloids, i.e., arsenic (As) and metals viz., chromium (Cr), mercury (Hg), cadmium (Cd), cobalt (Co), and lead (Pb). It is known that they can produce ROS in several organs by both direct and indirect means. Studies suggest that Nrf2 signaling is a crucial mechanism in maintaining antioxidant balance and can have two roles, depending on the particular biological setting. From one perspective, Nrf2 is an essential defense mechanism against metal-induced toxicity. Still, it may also operate as a catalyst for metal-induced carcinogenesis in situations involving protracted exposure and persistent activation. Therefore, this review aims to provide an overview of the antioxidant defense mechanism of Nrf2-Keap1 signaling and the interrelation between Nrf2 signaling and the toxic elements.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad - 380009, India
| | - Gitika Kharkwal
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University Kanpur - 208024, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| |
Collapse
|
11
|
Chen X, Sun W, Song Y, Wu S, Xie S, Xiong W, Peng C, Peng Y, Wang Z, Lek S, Hogstrand C, Sørensen M, Pan L, Liu D. Acute waterborne cadmium exposure induces liver ferroptosis in Channa argus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116947. [PMID: 39213749 DOI: 10.1016/j.ecoenv.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The impact of cadmium (Cd) toxicity on fish liver injury has received much attention in recent years. Currently, autophagy, apoptosis and endoplasmic reticulum stress were reported in Cd exposed fish liver, and if there are other mechanisms (such as ferroptosis) and relevant signaling pathways involved in fish remains unknown. An experiment was conducted to investigate Cd toxicity in Channa argus (Cantor, 1842) exposed to 0, 1.0, and 2.0 mg Cd/L of water for 96 h. Cd disrupted the structure of mitochondria in the liver. Besides, Cd induced ferroptosis by significantly increasing the level of Fe2+, ROS, MDA and significantly decreasing the level of Ferritin, GSH, GSH-Px, GPX4, GST and SOD (p < 0.05 in all cases). In addition, the mRNA expression of ferroptosis related genes, gpx4 and slc7a11, were significantly downregulated by Cd. Moreover, Cd exposure significantly inhibited the Nrf2/Keap1 signaling pathway, one of the pathways involved in ferroptosis, by upregulating the mRNA levels of keap1a and keap1b, and downregulating the mRNA levels of nrf2 and its target genes (ho-1, nqo1 and cat). Cd exposure also caused extensive accumulation of vacuoles and lipid droplets in liver, as well as an increase in triglyceride content. Cd significantly affected lipid metabolism related enzyme activity and gene expression, which were also regulated by Nrf2/Keap1 signaling pathway. In summary, these results indicate that ferroptosis is a mechanism in waterborne Cd exposed fish liver injury via the Nrf2/Keap1 signaling pathway and the Cd induced hepatic steatosis is also modulated by Nrf2/Keap1 pathway at the whole-body level in fish. These findings provide new insights into the fish liver injury and molecular basis of Cd toxicity.
Collapse
Affiliation(s)
- Xingyu Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Wenqian Sun
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Yanting Song
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Shangong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen Xiong
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Chengdong Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Peng
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Zhengxiang Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China
| | - Sovan Lek
- Laboratoire Evolution & Diversité Biologique, UMR 5174, Université Paul Sabatier-Toulouse III, 118 routes de Narbonne, 31062, Toulouse Cedex 4, France
| | - Christer Hogstrand
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| | - Lei Pan
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Mallamaci R, Barbarossa A, Carrieri A, Meleleo D, Carocci A. Evaluation of the Potential Cytoprotective Effect of Melatonin in Comparison with Vitamin E and Trolox against Cd 2+-Induced Toxicity in SH-SY5Y, HCT 116, and HepG2 Cell Lines. Int J Mol Sci 2024; 25:8055. [PMID: 39125623 PMCID: PMC11312335 DOI: 10.3390/ijms25158055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to cellular health, leading to oxidative stress and cell damage. Antioxidant agents, particularly those of natural origin, have been studied as a potential alternative for mitigating heavy metal toxicity. This study aimed to evaluate the cytoprotective effects of the antioxidant melatonin (MLT) in comparison with Vitamin E (VitE) and Trolox against Cd2+-induced cellular toxicity. The MTT assay was employed to assess cell viability in neuronal SH-SY5Y, colorectal HCT 116, and hepatic HepG2 cell lines. The results showed that all three antioxidants offered some level of protection against Cd toxicity, with Vitamin E proving to be the most effective. MLT also demonstrated a substantial cytoprotective effect, especially at the highest Cd concentration of 30 µM. These findings suggest that MLT, alongside Vit E and Trolox, could be valuable in mitigating the detrimental effects of Cd exposure by reducing the oxidative stress in these cellular models.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alexia Barbarossa
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| | - Antonio Carrieri
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy
| | - Alessia Carocci
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| |
Collapse
|
13
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
14
|
Li H, Cheng BJ, Yang PY, Wang C, Meng K, Li TL, Wang J, Liu R. Associations of Urinary Heavy Metal Mixtures with High Remnant Cholesterol among US Adults: Evidence from the National Health and Nutrition Examination Survey (1998-2018). TOXICS 2024; 12:430. [PMID: 38922110 PMCID: PMC11209470 DOI: 10.3390/toxics12060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we conducted a cross-sectional analysis of 5690 participants, assessing urinary concentrations of ten heavy metals. Ten heavy metals in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Fasting residual cholesterol ≥0.8 mmol/L was defined as HRC (using blood samples). Statistical analyses included weighted multivariable logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the associations of heavy metal exposure with HRC. Stratified analyses based on individual characteristics were also conducted. Multivariable logistic regression found that the four metals (OR Q4 vs. Q1: 1.33, 95% CI: 1.01-1.75 for barium (Ba); OR Q4 vs. Q1: 1.50, 95% CI: 1.16-1.94 for cadmium (Cd); OR Q4 vs. Q1: 1.52, 95% CI: 1.15-2.01 for mercury (Hg); OR Q4 vs. Q1: 1.35, 95% CI: 1.06-1.73 for lead (Pb)) were positively correlated with the elevated risk of HRC after adjusting for covariates. In addition, all three mixed models, including WQS (OR: 1.25; 95% CI: 1.07-1.46), qgcomp (OR: 1.17; 95% CI: 1.03-1.34), and BKMR, consistently showed a significant positive correlation between co-exposure to heavy metal mixtures and HRC, with Ba and Cd being the main contributors within the mixture. These associations were more pronounced in younger adults (20 to 59 years), males, and those with a higher body mass index status (≥25 kg/m2). Our findings reveal a significant relationship between exposure to the mixture of heavy metals and HRC among US adults, with Ba and Cd being the major contributors to the mixture's overall effect. Public health efforts aimed at reducing heavy metal exposure can help prevent HRC and, in turn, cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.L.); (B.-J.C.); (P.-Y.Y.); (C.W.); (K.M.); (T.-L.L.); (J.W.)
| |
Collapse
|
15
|
Zhang Y, Huang H, Luo C, Zhang X, Chen Y, Yue F, Xie B, Chen T, Zou C. The Next-Generation Probiotic E. coli 1917-pSK18a-MT Ameliorates Cadmium-Induced Liver Injury by Surface Display of Metallothionein and Modulation of Gut Microbiota. Nutrients 2024; 16:1468. [PMID: 38794706 PMCID: PMC11124084 DOI: 10.3390/nu16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.
Collapse
Affiliation(s)
- Yan Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| | - Hong Huang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| | - Chuanlin Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Xinfeng Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Yanjing Chen
- Department of Obstetrics & Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Fenfang Yue
- School of Life Sciences, Nanchang University, Nanchang 330031, China;
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Bingqing Xie
- Department of Obstetrics & Gynecology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Tingtao Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Changwei Zou
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| |
Collapse
|
16
|
Hu X, Zhao S, Guo Z, Zhu Y, Zhang S, Li D, Shu G. Tetramethylpyrazine Antagonizes the Subchronic Cadmium Exposure-Induced Oxidative Damage in Mouse Livers via the Nrf2/HO-1 Pathway. Molecules 2024; 29:1434. [PMID: 38611714 PMCID: PMC11013177 DOI: 10.3390/molecules29071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Xue Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Siqi Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Ziming Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Yiling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Shuai Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| | - Danqin Li
- College of Veterinary Medicine, Kansas State University, 1700 Denison Ave., Manhattan, KS 66502, USA
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (S.Z.); (Z.G.); (Y.Z.); (S.Z.)
| |
Collapse
|
17
|
Shi Z, Wan Y, Peng M, Zhang J, Gao Z, Wang X, Zhu F. Vitamin E: An assistant for black soldier fly to reduce cadmium accumulation and toxicity. ENVIRONMENT INTERNATIONAL 2024; 185:108547. [PMID: 38458120 DOI: 10.1016/j.envint.2024.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal associated with osteoporosis, liver, and kidney disease. The black soldier fly (BSF) Hermetia illucens may be exposed to Cd during the transformation of livestock manure. The BSF has a high tolerance to Cd. In the previous work of the laboratory, we found that vitamin E (VE) may play a role in the tolerance of BSF to Cd exposure. The main findings are as follows: The BSF larvae pretreated with exogenous VE had heavier body weight, lower content and toxicity of Cd under similar Cd exposure. Even in high Cd exposure at the concentrations of 300 and 700 mg/kg, the BSF larvae pretreated with exogenous VE at a concentration of 100 mg/kg still reduced the Cd toxicity to 85.33 % and 84.43 %, respectively. The best-fitting models showed that metallothionein (MT) content, oxidative damage (8-hydroxydeoxyguanosine content, malondialdehyde content), antioxidant power (total antioxidant power, peroxidase activity) had a great influence on content and toxicity of Cd bioaccumulated in the larvae. The degree of oxidative damage was reduced in the larvae with exogenous VE pretreatments. This variation can be explained by their changed MT content and increased antioxidant power because of exogenous VE. These results reveal the roles of VE in insects defense against Cd exposure and provide a new option for the prevention and therapy of damage caused by Cd exposure.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yujia Wan
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Miao Peng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Lee Y, Jang HR, Lee D, Lee J, Jung HR, Cho SY, Lee HY. Graphislactone A, a Fungal Antioxidant Metabolite, Reduces Lipogenesis and Protects against Diet-Induced Hepatic Steatosis in Mice. Int J Mol Sci 2024; 25:1096. [PMID: 38256169 PMCID: PMC10816634 DOI: 10.3390/ijms25021096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Graphislactone A (GPA), a secondary metabolite derived from a mycobiont found in the lichens of the genus Graphis, exhibits antioxidant properties. However, the potential biological functions and therapeutic applications of GPA at the cellular and animal levels have not yet been investigated. In the present study, we explored the therapeutic potential of GPA in mitigating non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms through a series of experiments using various cell lines and animal models. GPA demonstrated antioxidant capacity on a par with that of vitamin C in cultured hepatocytes and reduced the inflammatory response induced by lipopolysaccharide in primary macrophages. However, in animal studies using an NAFLD mouse model, GPA had a milder impact on liver inflammation while markedly attenuating hepatic steatosis. This effect was confirmed in an animal model of early fatty liver disease without inflammation. Mechanistically, GPA inhibited lipogenesis rather than fat oxidation in cultured hepatocytes. Similarly, RNA sequencing data revealed intriguing associations between GPA and the adipogenic pathways during adipocyte differentiation. GPA effectively reduced lipid accumulation and suppressed lipogenic gene expression in AML12 hepatocytes and 3T3-L1 adipocytes. In summary, our study demonstrates the potential application of GPA to protect against hepatic steatosis in vivo and suggests a novel role for GPA as an underlying mechanism in lipogenesis, paving the way for future exploration of its therapeutic potential.
Collapse
Affiliation(s)
- Yeonmi Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hye-Rim Jang
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Dongjin Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jongjun Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Hae-Rim Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea (S.-Y.C.)
| | - Sung-Yup Cho
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea (S.-Y.C.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hui-Young Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
19
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Cheng P, Tao Y, Hu J, Wang H, Zhao R, Mei S, Yang Y, Ye F, Chen Z, Ding H, Xing M, Xu P, Wu L, Li X, Zhang X, Ji Z, Xiang J, Xu D, Chen Y, Wang X, Lou X. Relationship of individual and mixed urinary metals exposure with liver function in the China National Human Biomonitoring (CNHBM) of Zhejiang Province. CHEMOSPHERE 2023; 342:140050. [PMID: 37660798 DOI: 10.1016/j.chemosphere.2023.140050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Heavy metals have been reported to affect liver function. However, there is currently little and inconsistent knowledge about the effects of combined and individual urinary metals on specific parameters of liver function in the general population. Therefore, this study aimed to investigate their associations. METHODS This study involved 807 general population from the China National Human Biomonitoring of Zhejiang Province 2017-2018. Concentrations of urinary metals, including Chromium (Cr), Cobalt (Co), Nickle (Ni), Arsenic (As), Selenium (Se), Molybdenum (Mo), Cadmium (Cd), Thallium (Tl) and Lead (Pb) were measured. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein (TP), albumin (ALB), direct bilirubin (DBIL), total bilirubin (TBIL) as liver function biomarkers. Multivariable linear regression and weighted quantile sum (WQS) regression were employed to explore the associations of urinary metals with liver function biomarkers. Subgroup analysis stratified by gender and age, excluding smokers and drinkers for sensitivity analysis. RESULTS Both statistical models indicated that urinary metals were positively associated with ALT and AST, while negatively with TP, ALB, DBIL and TBIL. In the WQS analysis, each quartile increase in the ln-transformed levels of metal mixtures was associated with 4.11 IU/L (95% CI: 1.07, 7.15) higher ALT and 3.00 IU/L (95% CI: 1.75, 4.25) higher AST, as well as, with 0.67 g/L (95% CI: 1.24, -0.11) lower TP, 0.74 g/L (95% CI: 1.09, -0.39) lower ALB, 0.38 μmol/L (95% CI: 0.67, -0.09) lower DBIL, and 1.56 μmol/L (95% CI: 2.22, -0.90) lower TBIL. The association between urinary metals and ALT was primarily driven by Cd (55.8%), Cr contributed the most to the association with AST (20.2%) and TBIL (45.2%), while the association with TP was primarily driven by Ni (38.2%), the association with ALB was primarily driven by As (32.8%), and the association with DBIL was primarily driven by Pb (30.9%). The associations between urinary metals and liver function might differ by sex and age. CONCLUSION Urinary metals were significantly associated with liver function parameters. Further studies are required to clarify the relationship between heavy metals and liver function.
Collapse
Affiliation(s)
- Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Yi Tao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Jinfeng Hu
- Shangcheng District Center for Disease Control and Prevention, Hangzhou, 310009, China
| | - Hongxin Wang
- Wucheng District Center for Disease Control and Prevention, Jinhua, 321025, China
| | - Ruifang Zhao
- Qujiang District Center for Disease Control and Prevention, Quzhou, 324022, China
| | - Shenghua Mei
- Longquan County Center for Disease Control and Prevention, Lishui, 323799, China
| | - Yin Yang
- Jinyun County Center for Disease Control and Prevention, Lishui, 321499, China
| | - Fugen Ye
- Songyang County Center for Disease Control and Prevention, Lishui, 323499, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hao Ding
- Environmental Science Research & Design Institute of Zhejiang Province, Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xuwenqi Zhang
- Environmental Science Research & Design Institute of Zhejiang Province, Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province, Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| |
Collapse
|
21
|
Mili A, Das S, Nandakumar K, Lobo R. Molecular docking and dynamics guided approach to identify potential anti-inflammatory molecules as NRF2 activator to protect against drug-induced liver injury (DILI): a computational study. J Biomol Struct Dyn 2023; 41:9193-9210. [PMID: 36326112 DOI: 10.1080/07391102.2022.2141885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Inflammation and oxidative stress can contribute to the etiology of metabolic and chronic illnesses. The ability to prevent oxidative stress induced diseases such as cancer, cardiovascular disease, Alzheimer's disease, and others has been the subject of global research. Drug-induced liver injury (DILI) pathogenesis can be either due to oxidative stress or inflammatory response elicited by the drug, its metabolite, or herbal supplements. Our present research uses computational studies to identify a molecule with anti-inflammatory properties that can operate as an NRF2 activator. Acquiring and preparing the KEAP1-NRF2 Protein (PDB: 4L7D) with Schrodinger Suite was followed by developing a ligand library (Anti-inflammatory library downloaded from ChemDiv database). Molecular docking studies were performed in HTVS, SP, and XP modes, respectively. Based on the docking score, interaction, ADMET and binding free energy, the top ten compounds were selected and subjected to induced-fit docking (IFD) analysis for further study. The top three molecules were chosen for a molecular dynamics (MD) simulation study. Using the Desmond module of the Schrodinger Suite, the stability of the protein-ligand complex and protein-ligand contact throughout 100ns were evaluated during the MD simulation study. In our study, it was observed that three compounds exhibit exceptional stability and retain the essential interaction throughout the studies, and it is anticipated that these compounds may act as effective NRF2 activators. Further in vitro and in vivo assessments can be conducted to determine its potential to prevent DILI via acting as an NRF2 activator for future drug development.
Collapse
Affiliation(s)
- Ajay Mili
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
22
|
Matsas A, Sachinidis A, Lamprinou M, Stamoula E, Christopoulos P. Vitamin Effects in Primary Dysmenorrhea. Life (Basel) 2023; 13:1308. [PMID: 37374091 DOI: 10.3390/life13061308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary dysmenorrhea is considered to be one of the most common gynecological complaints, affecting women's daily activities and social life. The severity of dysmenorrhea varies among women, and its management is of high importance for them. Given that non-steroidal anti-inflammatory drugs (NSAIDs), the established treatment for dysmenorrhea, are associated with many adverse events, alternative therapeutic options are under evaluation. Emerging evidence correlates management of dysmenorrhea with micronutrients, especially vitamins. PURPOSE The aim of this narrative review is to highlight and provide evidence of the potential benefits of vitamins for the management of dysmenorrhea. METHODS The articles were searched on PubMed, Scopus and Google Scholar. The searching process was based on keywords, such as "primary dysmenorrhea", "vitamins", "supplementation", "vitamin D", "vitamin E" and others. Our search focused on data derived from clinical trials, published only during the last decade (older articles were excluded). RESULTS In this review, 13 clinical trials were investigated. Most of them supported the anti-inflammatory, antioxidant and analgesic properties of vitamins. Particularly, vitamins D and E revealed a desirable effect on dysmenorrhea relief Conclusion: Despite the scarcity and heterogeneity of related research, the studies indicate a role of vitamins for the management of primary dysmenorrhea, proposing that they should be considered as alternative therapeutic candidates for clinical use. Nevertheless, this correlation warrants further research.
Collapse
Affiliation(s)
- Alkis Matsas
- Second Department of Obstetrics and Gynaecology, Medical School, "Aretaieion'' University Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Athanasios Sachinidis
- Fourth Department of Internal Medicine, Hippokration General Hospital of Thessaloniki, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynaecology, Medical School, "Aretaieion'' University Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
23
|
Li W, Li X, Su J, Chen H, Zhao P, Qian H, Gao X, Ye Q, Zhang G, Li X. Associations of blood metals with liver function: Analysis of NHANES from 2011 to 2018. CHEMOSPHERE 2023; 317:137854. [PMID: 36649900 DOI: 10.1016/j.chemosphere.2023.137854] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Heavy metals have been reported to affect liver function. However, there is currently little and inconsistent knowledge about the effects of combined and individual blood metals on specific parameters of liver function in the general population. Hence, this study aimed to elucidate their associations. METHODS Data from National Health and Nutrition Examination Survey (NHANES) 2011-2018 were used in this cross-sectional study. Multivariate linear, and a quantile-based g-computation (qgcomp) were applied to explore the associations between blood metals [mercury (Hg), manganese (Mn), lead (Pb), cadmium (Cd), selenium (Se)], alone and in combination, and liver function parameters [alanine transaminase (ALT), aspartate transaminase (AST), ALT/AST, alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and serum total bilirubin (TBIL)]. RESULTS A total of 15,328 were included. Multivariate linear models indicated that liver function was significantly associated with blood heavy metals. The most significant relationship was found between Se and AST (β 5.09, 95%CI (3.28,6.91), p<0.001), Mn and ALT (β 1.24, 95%CI (0.57, 1.91), p<0.001). Furthermore, the qgcomp analysis showed that the combination of five blood metals was positively associated with AST, ALT, GGT, TBIL and HSI. Cd contributed the most to the correlation of AST (weight = 0.447), Se contributed the most to the association of ALT (weight = 0.438) and HSI (weight = 0.570), Pb contributed the most to the association of GGT (weight = 0.421) and Hg contributed the most to the correlation of TBIL (weight = 0.331). CONCLUSIONS Blood heavy metal levels were significantly associated with liver function parameters. Further studies are required to clarify the relationship between heavy metals and liver function.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xinyan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Jing Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Department of Gastroenterology, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, 221009, China.
| | - Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Ping Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Haisheng Qian
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Qiang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
24
|
Xia Y, Luo Q, Huang C, Shi L, Jahangir A, Pan T, Wei X, He J, Liu W, Shi R, Geng Y, Fang J, Tang L, Guo H, Ouyang P, Chen Z. Ferric citrate-induced colonic mucosal damage associated with oxidative stress, inflammation responses, apoptosis, and the changes of gut microbial composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114364. [PMID: 36508806 DOI: 10.1016/j.ecoenv.2022.114364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Ferric citrate (FC) has been used as an iron fortifier and nutritional supplement, which is reported to induce colitis in rats, however the underlying mechanism remains to be elucidated. We performed a 16-week study of FC in male healthy C57BL/6 mice (nine-month-old) with oral administration of Ctr (0.9 % NaCl), 1.25 % FC (71 mg/kg/bw), 2.5 % FC (143 mg/kg/bw) and 5 % FC (286 mg/kg/bw). FC-exposure resulted in colon iron accumulation, histological alteration and reduce antioxidant enzyme activities, such as glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), together with enhanced lipid peroxidation level, including malondialdehyde (MDA) level and 4-Hydroxynonenal (4-HNE) protein expression. Exposure to FC was associated with upregulated levels of the interleukin (IL)- 6, IL-1β, IL-18, IL-8 and tumor necrosis factor α (TNF-α), while down-regulated levels of IL-4 and IL-10. Exposure to FC was positively associated with the mRNA and protein expressions of cysteine-aspartic proteases (Caspase)- 9, Caspase-3, Bcl-2-associated X protein (Bax), while negatively associated with B-cell lymphoma 2 (Bcl2) in mitochondrial apoptosis signaling pathway. FC-exposure changed the diversity and composition of gut microbes. Additionally, the serum lipopolysaccharide (LPS) contents increased in FC-exposed groups when compared with the control group, while the expression of colonic tight junction proteins (TJPs), such as Claudin-1 and Occludin were decreased. These findings indicate that the colonic mucosal injury induced by FC-exposure are associated with oxidative stress generation, inflammation response and cell apoptosis, as well as the changes in gut microbes diversity and composition.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Asad Jahangir
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Pan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo He
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Geng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Tang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Therapeutic strategies for liver diseases based on redox control systems. Biomed Pharmacother 2022; 156:113764. [DOI: 10.1016/j.biopha.2022.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
|
26
|
Oleic Acid Facilitates Cd Excretion by Increasing the Abundance of Burkholderia in Cd-Exposed Mice. Int J Mol Sci 2022; 23:ijms232314718. [PMID: 36499044 PMCID: PMC9741113 DOI: 10.3390/ijms232314718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
As a global pollutant, cadmium (Cd) can easily enter the body through food chains, threatening human health. Most Cd is initially absorbed in the gut, with the gut microbiota playing a pivotal role in reducing Cd absorption and accumulation. This study assessed the effects of three fatty acids on Cd accumulation and toxicity in Cd-exposed mice. The results showed that oleic acid (OA) was the most effective in facilitating Cd excretion in mice among these fatty acids. The use of OA led to reduced Cd accumulation in the organs and increased Cd content in the feces. The metagenomic analysis of the gut microbiota showed that the genus Burkholderia was the most significantly restored by OA in Cd-exposed mice. Burkholderia cepacia, as the type species for the genus Burkholderia, also exhibited strong Cd tolerance after treatment with OA. Furthermore, the electron microscopy analysis showed that most of the Cd was adsorbed on the surface of B. cepacia, where the extracellular polymeric substances (EPSs) secreted by B. cepacia play a key role, displaying a strong capacity for Cd adsorption. The peak at 2355 cm-1 and the total sulfhydryl group content of EPSs showed significant increases following co-treatment with Cd and OA. The results demonstrated the potential roles that gut Burkholderia may play in OA-mediated Cd excretion in mice.
Collapse
|
27
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
28
|
Yin P, Björnsson BT, Fjelldal PG, Saito T, Remø SC, Edvardsen RB, Hansen T, Sharma S, Olsen RE, Hamre K. Impact of Antioxidant Feed and Growth Manipulation on the Redox Regulation of Atlantic Salmon Smolts. Antioxidants (Basel) 2022; 11:antiox11091708. [PMID: 36139780 PMCID: PMC9495322 DOI: 10.3390/antiox11091708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates a close relationship between oxidative stress and growth rate in fish. However, the underlying mechanisms of this relationship remain unclear. This study evaluated the combined effect of dietary antioxidants and growth hormone (GH) on the liver and the muscle redox status of Atlantic salmon. There were two sequential experimental phases (EP) termed EP1 and EP2, each lasting for 6 weeks. In EP1, Atlantic salmon were fed either low-(L, 230 mg/kg ascorbic acid (Asc), 120 mg/kg α-tocopherol (α-TOH)), or high-(H, 380 mg/kg Asc, 210 mg/kg α-TOH)vitamin diets. The vitamins were supplemented as stable forms and the feeding was continued in EP2. In EP2, half of the fish were implanted with 3 μL per g body weight of recombinant bovine GH (Posilac®, 1 mg rbGH g BW−1) suspended in sesame oil, while the other half were held in different tanks and sham-implanted with similar volumes of the sesame oil vehicle. Here, we show that increasing high levels of vitamin C and E (diet H) increased their content in muscle and liver during EP1. GH implantation decreased vitamin C and E levels in both liver and muscle but increased malondialdehyde (MDA) levels only in the liver. GH also affected many genes and pathways of antioxidant enzymes and the redox balance. Among the most consistent were the upregulation of genes coding for the NADPH oxidase family (NOXs) and downregulation of the oxidative stress response transcription factor, nuclear factor-erythroid 2-related factor 2 (nrf2), and its downstream target genes in the liver. We verified that GH increases the growth rate until the end of the trail and induces an oxidative effect in the liver and muscle of Atlantic salmon. Dietary antioxidants do lower oxidative stress but have no effect on the growth rate. The present study is intended as a starting point to understand the potential interactions between growth and redox signaling in fish.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 411 24 Gothenburg, Sweden
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway
| | | | | | - Tom Hansen
- Institute of Marine Research, Matre Aquaculture Research Station, 5984 Matredal, Norway
| | | | - Rolf Erik Olsen
- Institutt for Biologi Fakultet for Naturvitenskap, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway
- Correspondence:
| |
Collapse
|
29
|
Du H, Zheng Y, Zhang W, Tang H, Jing B, Li H, Xu F, Lin J, Fu H, Chang L, Shu G. Nano-Selenium Alleviates Cadmium-Induced Acute Hepatic Toxicity by Decreasing Oxidative Stress and Activating the Nrf2 Pathway in Male Kunming Mice. Front Vet Sci 2022; 9:942189. [PMID: 35958302 PMCID: PMC9362431 DOI: 10.3389/fvets.2022.942189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Hong Du
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilei Zheng
- College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijen Chang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Lijen Chang
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Gang Shu
| |
Collapse
|
30
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
31
|
Tian M, Yan J, Zhang H, Wei Y, Zhang M, Rao Z, Zhang M, Wang H, Wang Y, Li X. Screening and validation of biomarkers for cadmium-induced liver injury based on targeted bile acid metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118837. [PMID: 35077840 DOI: 10.1016/j.envpol.2022.118837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Although cadmium (Cd) is a toxic heavy metal that reportedly causes liver injury, few studies have investigated biomarkers of Cd-induced liver injury. The purpose of this study is to investigate the role of bile acid (BA) in Cd-induced liver injury and determine reliable and sensitive biochemical parameters for the diagnosis of Cd-induced liver injury. In this study, 48 Sprague-Dawley rats were randomly divided into six groups and administered either normal saline or 2.5, 5, 10, 20, and 40 mg/kg/d cadmium chloride for 12 weeks. A total of 403 subjects living in either a control area (n = 135) or Cd polluted area (n = 268) of Dongdagou-Xinglong (DDGXL) cohort were included, a population with long-term low Cd exposure. The BA profiles in rats' liver, serum, caecal contents, faeces, and subjects' serum were detected using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Changes in rats' and subjects' liver injury indices, rats' liver pathological degeneration, and rats' liver and subjects' blood Cd levels were also measured. Cadmium exposure caused cholestasis and an increase in toxic BAs, leading to liver injury in rats. Among them, glycoursodeoxycholic acid (GUDCA), glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), and taurodeoxycholate acid (TDCA) are expected to be potential biomarkers for the early detect of Cd-induced liver injury. Serum BAs can be used to assess Cd-induced liver injury as a simple, feasible, and suitable method in rats. Serum GUDCA, GLCA, TDCA, and TLCA were verified to be of value to evaluate Cd-induced liver injury and Cd exposure in humans. These findings provided evidence for screening and validation of additional biomarkers for Cd-induced liver injury based on targeted BA metabolomics.
Collapse
Affiliation(s)
- Meng Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingtong Zhang
- GanSu Provincial Institute of Drug Control, Lanzhou, 730000, Gansu, China
| | - Zhi Rao
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Mingkang Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haiping Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yanping Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
32
|
Yan X, Pan S, Dong X, Tan B, Li T, Huang W, Suo X, Li Z, Yang Y. Vitamin E amelioration of oxidative stress and low immunity induced by high-lipid diets in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). FISH & SHELLFISH IMMUNOLOGY 2022; 124:156-163. [PMID: 35395411 DOI: 10.1016/j.fsi.2022.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The experiment was conducted to investigate the effects of vitamin E (VE) on growth, oxidative stress and immunity for hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diet. Six groups of iso-protein (50.23%) and iso-lipidic high-lipid (15.36%) experimental diets were prepared by adding 0 (basic diet control), 0.01%, 0.02%, 0.03%, 0.04%, 0.05% α-tocopherol respectively in basic diet. Each treatment consisted of 3 replicates and 30 fish (10.20 ± 0.02 g) in each replicate for 8 weeks. The results showed that: 1) compared with the control group, the growth performance of grouper was not affected by the addition of VE in high-lipid diet, but the specific growth rate (SGR) in high VE dose (0.6%) group were significantly decreased compared with 0.02% and 0.03% groups. 2) Adding VE to high-lipid diet can alleviate the hepatic oxidative damage caused by high-lipid diet, and significantly improve the serum and liver antioxidant enzyme activity. 3) Compared with the control group, appropriate VE significantly increased the expression of liver anti-inflammatory factors TGF-β and IL10, and significantly decreased the expression of proinflammatory factors IL8 and IL6. In conclusion, adding appropriate amount of VE into high-lipid diet can improve antioxidant capacity and immunity of grouper, we speculated that VE may alleviate lipid peroxidation by improving antioxidant capacity to reduce the inflammatory response. In combination with the results of the current study, we recommend an additional dose of 0.02%-0.03% of α-tocopherol in this experiment under high-lipid conditions.
Collapse
Affiliation(s)
- Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| |
Collapse
|
33
|
Chen Z, Zuo Z, Chen K, Yang Z, Wang F, Fang J, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Geng Y, Liu W, Deng H. Activated Nrf-2 Pathway by Vitamin E to Attenuate Testicular Injuries of Rats with Sub-chronic Cadmium Exposure. Biol Trace Elem Res 2022; 200:1722-1735. [PMID: 34173155 DOI: 10.1007/s12011-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd), a heavy metal element, cumulates in the testis and can cause male reproductive toxicity. Although vitamin E (VE) as one of potential antioxidants protects the testis against toxicity of Cd, the underlying mechanism remained uncompleted clear. The aim of this study was to investigate whether the Nrf-2 pathway is involved with the protective effect of VE on testicular damages caused by sub-chronic Cd exposure. Thirty-two SD rats were divided into four groups and orally administrated with VE and/or Cd for 28 consecutive days: control group, VE group (100 mg VE/kg), Cd group (5 mg CdCl2/kg), and VE + Cd group (100 mg VE/kg + 5 mg CdCl2/kg). The results showed that 28-day exposure of Cd caused accumulation of Cd, histopathological lesions, and alternations of sperm parameters (elevated rate of abnormal sperm, decreased count of sperm, declined motility, and viability of sperm). Moreover, the rats exposed to Cd showed significant oxidative stress (increased contents of MDA and decreased levels or activities of T-AOC, GSH, CAT, SOD and GSH-Px) and inhibition of Nrf-2 signaling pathway (downregulation of Nrf-2, HO-1, NQO-1, GCLC, GCLM and GST) of the testes. In contrast, VE treatment significantly reduced the Cd accumulation, alleviated histopathological lesions and dysfunctions, activated Nrf-2 pathway, and attenuated the oxidative stress caused by Cd in the testes of rats. In conclusion, VE, through upregulating Nrf-2 pathway, could protect testis against oxidative damages induced by sub-chronic Cd exposure.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
34
|
Liu L, Zhao L, Liu Y, Yu X, Qiao X. Rutin Ameliorates Cadmium-Induced Necroptosis in the Chicken Liver via Inhibiting Oxidative Stress and MAPK/NF-κB Pathway. Biol Trace Elem Res 2022; 200:1799-1810. [PMID: 34091842 DOI: 10.1007/s12011-021-02764-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is a recognized toxic metal and exerts serious hepatotoxicity in animals and humans. Rutin (RUT) is a dietary bioflavonoid with strong antioxidant and anti-inflammatory potential. However, little is known about the alleviating effect of RUT against Cd-induced liver necroptosis. The aim of this study was to ascertain the ameliorative mechanism of RUT on necroptosis triggered by Cd in chicken liver. One hundred twenty-eight 100-day-old Isa hens were randomly divided into four groups: the control group, RUT group, Cd + RUT cotreated group, and Cd group. Cd exposure prominently elevated Cd accumulation and the activities of liver function indicators (ALT and AST). Furthermore, the histopathological results, the overexpression of genes (RIPK1, RIPK3, and MLKL) related to the necroptosis pathway, and low Caspase 8 levels in Cd-exposed chicken liver indicated that Cd intoxication induced necroptosis in chicken liver. Meanwhile, Cd administration drastically increased the levels of oxidizing stress biomarkers (ROS production, MDA content, iNOS activity, and NO generation), and obviously reduced the activities of antioxidant enzymes (SOD, GPx, and CAT) and total antioxidant capacity (T-AOC) in chicken liver. Cd treatment promoted the expression of the main members of the MAPK and NF-κB pathways (JNK, ERK, P38, NF-κB, and TNF-α) and activated heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90). However, RUT application remarkably alleviated these Cd-induced variations and necroptosis injury. Overall, our study demonstrated that RUT might prevent Cd-induced necroptosis in the chicken liver by inhibiting oxidative stress and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China.
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China
| | - Xiaoli Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
35
|
Han D, Song N, Wang W, Chen T, Miao Z. Subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16576-16587. [PMID: 34648162 DOI: 10.1007/s11356-021-16883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), as a common environmental pollutant, has been reported to cause T lymphocyte dysfunction and cell apoptosis in multiple organs. However, whether subacute Cd exposure can induce apoptosis of hepatocytes and the relationship with Th1/Th2 imbalance were still unclear. In this study, ten 6-week-old piglets were selected and randomly assigned into two groups, the control group and the Cd group. The control group was fed with the standard diet, and for the Cd group, the standard diet was supplemented with 20 mg/kg CdCl2; liver tissue was collected on the 40th day of the experiment. Immunofluorescence, qRT-PCR, and western blot were performed to detect the expression of miR-369, Th1/Th2 biomarkers, endoplasmic reticulum (ER) stress-related genes, and apoptotic genes. TUNEL assay was applied to stain apoptotic hepatocytes. In the Cd group, the apoptosis of hepatocytes was significantly increased, and associated with the declined expression of miR-369, Th1 polarization, the elevated expression of ER stress pathway genes and their downstream pro-apoptosis genes, and downregulated expression of anti-apoptotic genes. These results manifest that subacute Cd exposure mediates Th1 polarization to promote ER stress-induced porcine hepatocyte apoptosis via regulating miR-369-TNFα. These results not only provide a basis for the enrichment of Cd toxicology but also support a theoretical foundation for the prevention and therapy of Cd poisoning. Schematic diagram illustrating the proposed mechanism of subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
36
|
Zhang H, Yan J, Xie Y, Chang X, Li J, Ren C, Zhu J, Ren L, Qi K, Bai Z, Li X. Dual role of cadmium in rat liver: Inducing liver injury and inhibiting the progression of early liver cancer. Toxicol Lett 2022; 355:62-81. [PMID: 34785185 DOI: 10.1016/j.toxlet.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
The heavy metal cadmium (Cd) can induce damage in liver and liver cancer cells; however, the mechanism underlying its toxicity needs to be further verified in vivo. We daily administered CdCl2 to adult male rats at different dosages via gavage for 12 weeks and established rat liver injury model and liver cancer model to study the dual role of Cd in rat liver. Increased exposure to Cd resulted in abnormal liver function indicators, pathological degeneration, rat liver cell necrosis, and proliferation of collagen fibres. Using immunohistochemistry, we found that the area of GST-P-positive precancerous liver lesions decreased in a dose-dependent manner. Real-time quantitative polymerase chain reaction, western blot, immunohistochemistry, and transmission electron microscopy revealed that Cd induced mitophagy, as well as mitophagy blockade, as evidenced by the downregulation of TOMM20 and upregulation of LC3II and P62 with increasing Cd dose. Next, the expression of PINK1/Parkin, a classic signalling pathway protein that regulates mitophagy, was examined. Cd was found to promote PINK1/Parkin expression, which was proportional to the Cd dose. In conclusion, Cd activates PINK1/Parkin-mediated mitophagy in a dose-dependent manner. Mitophagy blockade likely aggravates Cd toxicity, leading to the dual role of inducing liver injury and inhibiting the progression of early liver cancer.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chenghui Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Zhu
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Pathology, Donggang District, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Longfei Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Kuo Qi
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
37
|
Wu B, Zheng X, Li X, Wang C, Li L, Tang Z, Cui H, Li Z, Chen L, Ma X. Design, synthesis and activity evaluation of prodrug form JBP485 and Vitamin E for alleviation of NASH. Bioorg Med Chem Lett 2022; 56:128464. [PMID: 34808388 DOI: 10.1016/j.bmcl.2021.128464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious form of non-alcoholic fatty liver disease (NAFLD) characterized by liver steatosis with lobular inflammation, hepatocyte injury and pericellular fibrosis. JBP485 is a hydrophilic dipeptide with protective effects on liver through alleviation of oxidative stress and inhibition of hepatocyte apoptosis and ICAM-1 expression. Vitamin E (VE), as a powerful biological antioxidant, exerts a certain protective effect on cell membranes and lipoproteins from lipid peroxidation. In this study, on the basis of the structural characteristics of two agents, the prodrug form target of JBP485 and VE (JBP485-VE) was designed and synthesized via succinic acid linker. The synthesized compound significantly reduced the degree of inflammation and fibrosis according to hematoxylin-eosin (H&E) and sirius red staining assay for the liver tissue in CCl4-induced NASH mouse model. The clear reduction of TG, T-CHO and ALT, AST content also demonstrated its efficacy in the treatment of NASH. In addition, JBP485-VE also reduced the expression of the inflammatory markers IL-2, IL-17A and malondialdehyde (MDA) in liver tissue, which indicated its higher anti-inflammatory and anti-oxidative stress activity. All these evaluated biological properties suggest that the strategy of prodrug design provided an effective method for the treatment of NASH.
Collapse
Affiliation(s)
- Bin Wu
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xu Zheng
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Xing Li
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lei Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zeyao Tang
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Hongxia Cui
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Zhen Li
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China
| | - Lixue Chen
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Science, Dalian Medical University, Dalian 116044, PR China.
| |
Collapse
|
38
|
Yang C, Li Y, Ding R, Xing H, Wang R, Zhang M. Lead exposure as a causative factor for metabolic associated fatty liver disease (MAFLD) and a lead exposure related nomogram for MAFLD prevalence. Front Public Health 2022; 10:1000403. [PMID: 36311639 PMCID: PMC9597460 DOI: 10.3389/fpubh.2022.1000403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The relationship between lead exposure and neurological disorders has been extensively studied, but the effects of lead exposure on hepatotoxicity are unknown. Metabolically related fatty liver disease (MAFLD) is an update of previous non-alcoholic fatty liver disease (NAFLD). It redefines the diagnostic conditions and emphasizes metabolic factors while considering non-alcoholic factors. Lead can affect the endocrine system and metabolism, so we believe that lead exposure may contribute to MAFLD. 41,723 individuals who had undergone blood lead testing from 2005 to 2018 in the National Health and Nutrition Examination Survey (NHANES) database were selected for this study. The characteristics of population lead exposure in the last decade or so, the effect of lead exposure on liver function and whether lead exposure can cause MAFLD were analyzed. Co-variates were adjusted according to age, ethnicity, body mass index (BMI), waist circumference, visceral adiposity index (VAI), poverty indices (PIR), diabetes, hypertension, and hyperlipidemia. The results showed that blood lead concentrations stabilized at a low level after a decreasing trend from year to year. The differences in blood lead concentrations were associated with differences in age, sex, race, education level, and PIR. Lead exposure was an independent risk factor for MAFLD, and lead and nine other factors were used as independent risk factors for MAFLD, so a nomogram was established to predict the prevalence probability of MAFLD.
Collapse
Affiliation(s)
- Chenyu Yang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Higher Institution Engineering Research Center of Children's Medical Big Data Intelligent Application, Chongqing, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, China
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, China
| | - Ran Ding
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Huiwu Xing
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ruijue Wang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Higher Institution Engineering Research Center of Children's Medical Big Data Intelligent Application, Chongqing, China
- *Correspondence: Ruijue Wang
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Higher Institution Engineering Research Center of Children's Medical Big Data Intelligent Application, Chongqing, China
- Mingman Zhang
| |
Collapse
|
39
|
Vitamin E Supplementation Enhances Lipid Oxidative Stability via Increasing Vitamin E Retention, Rather Than Gene Expression of MAPK-Nrf2 Signaling Pathway in Muscles of Broilers. Foods 2021; 10:foods10112555. [PMID: 34828836 PMCID: PMC8624736 DOI: 10.3390/foods10112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Dietary vitamin E (VE) supplementation is a method to produce VE-enriched meat and improve meat lipid oxidative stability. We aimed to study the effect of the VE supplementation duration on meat lipid oxidative stability, VE retention, and antioxidant enzymes’ activity, and explore its relationship with the mitogen-activated protein kinases (MAPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in broilers slaughtered after electrical stunning. A total of 240 male 18-day-old Arbor Acres Plus broilers were distributed to four treatments, with six replicates in each treatment, and ten broilers per replicate. Broilers were fed with a basal diet (no supplementation of VE) or VE diet (200 IU/kg VE, DL-α- tocopherol) for one (W1), two (W2), or three (W3) weeks before electrical stunning (130 mA, 60 Hz, for 1s) and slaughter. The VE retention was positively and linearly affected (p < 0.01) by the VE feeding duration at one to three weeks before slaughter, and negatively (all p < 0.01) related to the thiobarbituric acid reactive substance (TBARS) content in both breast and thigh muscles at d 0, d 2, and d 6 postmortem. The VE retention was negatively (p < 0.05) related to the gene expression of c-Jun N-terminal kinases 1 (JNK1) and 2 (JNK2), Nrf2 in breast muscles, and JNK1 and p38 MAPK in thigh muscles. In conclusion, dietary vitamin E supplementation at 200 IU/kg for three weeks before electrical stunning and slaughter improved lipid oxidative stability via increasing VE retention, rather than the regulation by gene expression of the MAPK-Nrf2 signaling pathway in skeletal muscles of broilers.
Collapse
|
40
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
41
|
Huang R, Pan H, Zhou M, Jin J, Ju Z, Ren G, Shen M, Zhou P, Chen X. Potential liver damage due to co-exposure to As, Cd, and Pb in mining areas: Association analysis and research trends from a Chinese perspective. ENVIRONMENTAL RESEARCH 2021; 201:111598. [PMID: 34186077 DOI: 10.1016/j.envres.2021.111598] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
There is global concern regarding the public health hazards of environmental exposure to multiple toxic heavy metals. The effects of toxic heavy metals on liver function have been suggested in previous reports, but the association between exposure to multiple toxic heavy metals and liver function has not been elucidated. The aim of this study was to investigate the effects of exposure to multiple toxic heavy metals, arsenic(As), lead(Pb), and cadmium(Cd), on liver function through population-based and animal studies. A total of 3590 participants were enrolled from the mining areas in Western Hunan Province. The concentrations of As, Pb, and Cd in the urine and plasma samples were determined using quadrupole inductively coupled plasma mass spectrometry (ICP-MS). Bayesian kernel machine regression (BKMR) was employed for the joint association assay. An animal study was conducted to further verify the cumulative effects of metals on liver damage-related parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels. Research trends regarding toxic metals were also explored to obtain in-depth understanding of the current knowledge in this field. Typically, for single-exposure analysis, in most mines, Pb exhibited a significantly negative association with ALT levels, whereas for cumulative effects analysis, when As, Pb, and Cd concentrations were at the 50thpercentile, a significantly negative effect on liver ALT levels was observed. Furthermore, animal studies have shown that co-exposure to As, Pb, and Cd could aggravate liver dysfunction in mice compared to that in the single-metal treated group (p < 0.05). From 1990 to 2019, 1965 projects relating to As, Pb, and Cd research have been initiated, and the total RMB(RenMingBi) funded was approximately 800 million in China, as opposed to 2500 projects in the US with an approximate amount of US$ 1 billion, which is substantially greater than that of China. Finally, from a global viewpoint, scientists should continue to substantially contribute to the field of heavy metal contamination through more extensive academic investigation, global cooperation, and the development of novel control methods. Overall, this study identified that elevated combined concentrations of As, Pb, and Cd were significantly negatively associated with liver function.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Guofeng Ren
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Minxue Shen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
42
|
Yang L, Guo X, Mao X, Jia X, Zhou Y, Hu Y, Sun L, Guo J, Xiao H, Zhang Z. Hepatic toxicity of fluorene-9-bisphenol (BHPF) on CD-1 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112298. [PMID: 33989918 DOI: 10.1016/j.ecoenv.2021.112298] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute for bisphenol A (BPA), has been widely used in the synthesis of polyester polymers. Studies have reported multiple BHPF toxicities but its effect on the liver remains unknown. In this study, we performed short-term and subchronic toxicity tests, as well as primary hepatocyte experiments, to investigate the hepatic toxicity of BHPF using CD-1 mice. And microarray was used to analyze the changes of global gene expression in the liver of mice treated with BHPF. The results showed that the liver coefficient and the activities of serum aminotransferases were obviously elevated by BHPF at doses of 27.8 mg/kg body weight (bw)/day or higher in mice treated for 10 days. Histological analysis showed obvious changes, including narrowed hepatic sinuses, dilated central vein, leucocyte infiltration, and cytoplasmic vacuolation, in the livers of mice treated with BHPF at dosages of 2 mg/kg bw/3-day and higher for 36 days. Microarray analyses revealed 2623 differentially expressed genes (DEGs) in the livers of mice treated with 50 mg/kg bw/day of BHPF for 3 days, which could be enriched in GO terms of T cell activation, leukocyte migration, and leukocyte chemotaxis and KEGG pathways of natural killer cell-mediated cytotoxicity and autoimmune thyroid disease. The top 10 hub DEGs, including LTF and MMP8, were observed in the protein-protein interaction network obtained via STRING database analysis, and are proposed as potential biomarkers for liver injury studies. Primary hepatocyte experiments demonstrated the hepatotoxicity of BHPF at concentrations of 10-6 M and higher. This study indicates that BHPF could cause liver injury at relatively low levels, suggesting that the risk of human BHPF exposure should be of concern.
Collapse
Affiliation(s)
- Lei Yang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Hu
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Libei Sun
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Han Xiao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China.
| |
Collapse
|
43
|
Shi J, Chang X, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Protective Effects of α-Lipoic Acid and Chlorogenic Acid on Cadmium-Induced Liver Injury in Three-Yellow Chickens. Animals (Basel) 2021; 11:ani11061606. [PMID: 34072384 PMCID: PMC8228482 DOI: 10.3390/ani11061606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cadmium (Cd) exerts pernicious influences on global health. We evaluated the protective effects of α-lipoic acid (α-LA) or chlorogenic acid (CGA) and their combination on counteracting Cd toxicity in vivo in three-yellow chickens. Administration of Cd (50 mg/L) alone lowered the production performance and resulted in biochemical, histologic and enzyme changes within the liver consistent with hepatic injury induced by oxidative stress and apoptosis of hepatocytes. However, the above variations of the Cd group were partially or fully reversed by administration of either α-LA or CGA; their combination showed an even better effect in attenuating Cd-induced hepatotoxicity. This study provided a practical and feasible approach to rescuing Cd intoxication in animal production. Abstract Cadmium (Cd) is a type of noxious heavy metal that is distributed widely. It can severely injure the hepatocytes and cause liver dysfunction by inducing oxidative stress and mitochondrial damage. We evaluated the protective effects of α-lipoic acid (α-LA) or chlorogenic acid (CGA) and their combination on counteracting cadmium toxicity in vivo in three-yellow chickens. For three months, CdCl2 (50 mg/L) was administrated through their drinking water, α-LA (400 mg/kg) was added to feed and CGA (45 mg/kg) was employed by gavage. The administration of Cd led to variations in growth performance, biochemical markers (of the liver, kidney and heart), hematological parameters, liver histopathology (which suggested hepatic injury) and ultrastructure of hepatocytes. Some antioxidant enzymes and oxidative stress parameters showed significant differences in the Cd-exposure group when compared with the control group. The groups treated with Cd and administrated α-LA or CGA showed significant amelioration with inhibited mitochondrial pathway-induced apoptosis. Combining both drugs was the most effective in reducing Cd toxicity in the liver. In summary, the results demonstrated that α-LA and CGA may be beneficial in alleviating oxidative stress induced by oxygen free radicals and tissue injury resulting from Cd-triggered hepatotoxicity.
Collapse
Affiliation(s)
- Jiabin Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaocui Chang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (X.C.); (H.Z.); (J.G.); (Y.Y.); (X.L.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-879-79042
| |
Collapse
|
44
|
Wang M, Li Y, Gao Y, Li Q, Cao Y, Shen Y, Chen P, Yan J, Li J. Vitamin E regulates bovine granulosa cell apoptosis via NRF2-mediated defence mechanism by activating PI3K/AKT and ERK1/2 signalling pathways. Reprod Domest Anim 2021; 56:1066-1084. [PMID: 33978262 DOI: 10.1111/rda.13950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/08/2021] [Indexed: 01/20/2023]
Abstract
High-yield dairy cows are usually subject to high-intensive cell metabolism and produce excessive reactive oxygen species (ROS). Once ROS is beyond the threshold of scavenging ability, it can induce oxidative stress, imperilling the reproductive performance of cows. The study was to investigate the effects of vitamin E (VE) on H2 O2 -induced proliferation and apoptosis of bovine granulosa cells and the underlying molecular mechanism. Granulosa cells were pretreated with VE for 24 hr and then treated with H2 O2 for 6 hr. The results showed that VE treatment decreased the intracellular ROS levels, increased the MDA content, and improved the antioxidant enzyme activity in a dose-dependent manner. Furthermore, VE treatment promoted the proliferation and inhibited apoptosis in granulosa cells by up-regulation of CCND1 and BCL2 levels and down-regulation of P21, BAX, and CASP3 levels. The cytoprotective effects of VE were attributed to the activation of the NRF2 signalling pathway. Knockdown of the NRF2 impaired the cytoprotective effects of VE on granulosa cells. Besides, the PI3K/AKT and ERK1/2, but not the p38 signalling pathway is involved in the regulation of VE-mediated cell proliferation and apoptosis. The PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited the VE-induced granulosa cell proliferation and promoted apoptosis, whereas the p38 inhibitor SB203580 had the opposite effects. These results were confirmed by proliferation and apoptosis-related gene expression at mRNA and protein levels. The results also showed that the PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited VE-induced NRF2, GCLC, GCLM, and HO-1 expression, whereas the p38 inhibitor SB203580 not. Overall, the results demonstrated that VE-regulated granulosa cell proliferation and apoptosis via NRF2-mediated defence system by activating the PI3K/AKT and ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinling Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
45
|
Wu H, Zheng S, Zhang J, Xu S, Miao Z. Cadmium induces endoplasmic reticulum stress-mediated apoptosis in pig pancreas via the increase of Th1 cells. Toxicology 2021; 457:152790. [PMID: 33891997 DOI: 10.1016/j.tox.2021.152790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd), an environmental pollutant, causes several adverse reactions in animals. High dose of Cd has serious cytotoxicities, including the induction of programmed cell necrosis, autophagy and apoptosis, which has aroused wide public concern. The balance of cytokine network is affected by Th1/Th2 balance which is closely related to immune response and the occurrence, development, treatment and outcome of various diseases. Cd can induce severe apoptosis, but the relationship between Cd induced apoptosis and Th1/Th2 balance has not been clarified. In this study, we established a pig Cd poisoning model, exposing to CdCl2 for 40 days (20 mg Cd/kg diet). Firstly, deviation of Th1/Th2 balance was observed by fluorescence staining, and apoptosis was observed by TUNEL staining. Then, real-time fluorescence quantitative analysis and Western blot were used to detect the expression of related proteins. The results show that Cd can interfere with the balance of Th1/Th2 and shift the balance towards Th1. In addition, through the experiments, we found that Cd exposure can increase the expression of glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78), marker proteins of unfolded protein response (UPR). Cd exposure can increase the expression of pancreatic endoplasmic reticulum kinase (PERK), CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring enzyme 1 (IRE-1), activating transcription factor 6 (ATF-6), cysteinyl aspartate specific proteinase (Caspase12), indicating the three branches (ATF6, PERK and IRE-1) of endoplasmic reticulum stress (ER-stress) were activated. Moreover, we found that the expression of pro-apoptosis genes in the downstream pathway of ER-stress increased. In summary, our results indicated that Cd exposure upregulated the expression of pro-apoptosis related genes and caused apoptosis via the activation of the ER-stress signaling pathways in pancreas cells. And these negative effects were correlated with the equilibrium drift of Th1/Th2, increase in the expression and secretion of Th1 cytokines.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
46
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|