1
|
Jadhav A, Menon A, Gupta K, Singh N. Molecular and therapeutic insight into ER stress signalling in NSCLC. J Drug Target 2025; 33:877-886. [PMID: 39883064 DOI: 10.1080/1061186x.2025.2461105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Endoplasmic Reticulum (ER) stress is intricately involved in cancer development, progression and response to chemotherapy. ER stress related genes might play an important role in predicting the prognosis in lung adenocarcinoma patients and may be manipulated to improve the treatment outcome and overall survival rate. In this review, we analysed the contribution of the three major ER stress pathways-IRE1, ATF6, and PERK-in lung cancer pathogenesis via modulation of tumour microenvironment (TME) and processes as metastasis, angiogenesis, apoptosis and N-glycosylation. Furthermore, we discuss the regulatory role of microRNAs in fine-tuning ER stress pathways in Non-Small Cell Lung Cancer (NSCLC). Our review also highlights various promising strategies to overcome chemoresistance by targeting ER stress pathways, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Aastha Jadhav
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arjun Menon
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kush Gupta
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Neeru Singh
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Veth TS, Sutherland E, Markuson KA, Zhang R, Duboff AG, Huang J, Bergen D, Lee AE, Melani RD, Canterbury JD, Zabrouskov V, McAlister GC, Mullen C, Riley NM. Improvements in Glycoproteomics through Architecture Changes to the Orbitrap Tribrid MS Platform. Anal Chem 2025; 97:11413-11423. [PMID: 40439173 DOI: 10.1021/acs.analchem.4c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Hardware changes introduced on the Orbitrap Ascend Tribrid MS include dual ion routing multipoles (IRMs) that enable parallelized accumulation, dissociation, and Orbitrap mass analysis of three separate ion populations. The balance between these instrument functions is especially important in glycoproteomics, where complexities of glycopeptide fragmentation necessitate large precursor ion populations and long ion accumulation times for quality MS/MS spectra. To compound matters further, dissociation methods like electron transfer dissociation (ETD) that benefit glycopeptide characterization come with overhead times that slow down scan acquisition. Here we explored how the Orbitrap Ascend's dual IRM architecture can improve glycopeptide analysis, with a focus on O-glycopeptide characterization using ETD with supplemental collisional activation (EThcD). We found that parallelization of ion accumulation and EThcD fragmentation increased scan acquisition speed without sacrificing spectral quality, subsequently increasing the number of O-glycopeptides identified relative to analyses on the Orbitrap Eclipse (i.e., the previous generation Tribrid MS). Additionally, we systematically evaluated ion-ion reaction times and supplemental activation energies used for EThcD to understand how best to utilize acquisition time. We observed that shorter-than-expected ion-ion reaction times minimized scan overhead time without sacrificing c/z•-fragment ion generation and that higher supplemental collision energies can generate combinations of glycan-retaining and glycan-neutral-loss peptide backbone fragments that benefit O-glycopeptide identification. We also saw improvements in N-glycopeptide analysis using collision-based dissociation, especially with methods using faster scan speeds. Overall, these data show how architectural changes to the Tribrid MS platform benefit glycoproteomic experiments by parallelizing scan functions to minimize overhead time and improve sensitivity.
Collapse
Affiliation(s)
- Tim S Veth
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Emmajay Sutherland
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Kayla A Markuson
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Ruby Zhang
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Anna G Duboff
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Jingjing Huang
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - David Bergen
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - Amanda E Lee
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - Rafael D Melani
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | | | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | | | | | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| |
Collapse
|
3
|
Lee Y, Koh HG, Kim KH, Jin YS, Sung BH, Kim J. Enhancing the persistence of engineered biotherapeutics in the gut: Adhesion, glycan metabolism, and environmental resistance. Adv Drug Deliv Rev 2025; 221:115591. [PMID: 40250567 DOI: 10.1016/j.addr.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Engineered live biotherapeutic products (eLBPs) are receiving increasing attention as next-generation therapeutics to treat a variety of diseases with high specificity and effectiveness. Despite their potential, eLBPs face challenges, such as limited colonization, competition with native microbiota, nutrient depletion, and susceptibility to gastrointestinal stresses, which ultimately reduce their persistence in the gut and hinder their therapeutic efficacy. This review examines the key strategies to enhance the persistence and activity of eLBPs in the gut environment. First, methods to strengthen the adhesion capacity of eLBPs are discussed, including genetic engineering to express adhesins and chemical surface modifications to improve their binding to mucus and epithelial cells. Second, strategies to improve the ability of eLBPs to efficiently use mucin-derived sugars, which are continuously secreted by intestinal epithelial cells, were highlighted. These strategies involve the introduction and optimization of glycan-degrading enzymes and metabolic pathways for key mucin sugars, such as N-acetylglucosamine, galactose, and sialic acid, to support sustained energy production and enhance gut colonization. Third, strategies to improve the resistance of eLBPs against environmental stress are discussed, including genetic modifications to stabilize cell membranes, enhancement of ion pump activity, overexpression of stress-response proteins, and encapsulation techniques to provide protection. The implementation of these strategies can address challenges related to gut colonization by eLBPs, thereby enhancing their metabolic activity and enabling sustained and efficient secretion of therapeutic molecules. This review offers a comprehensive framework for developing and optimizing eLBPs, paving the way for their successful clinical application with enhanced effectiveness in treating gastrointestinal and systemic diseases.
Collapse
Affiliation(s)
- Yujin Lee
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Gangwon-do 25354, Republic of Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun 25354 Gangwon-do, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jungyeon Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Gangwon-do 25354, Republic of Korea; Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun 25354 Gangwon-do, Republic of Korea.
| |
Collapse
|
4
|
Li Y, Song Q, Guo R, Qian Y, Jiang Y, Song Z. Glucose metabolism through the hexosamine biosynthetic pathway drives hepatic de novo lipogenesis via promoting N-linked protein glycosylation. Am J Physiol Gastrointest Liver Physiol 2025; 328:G746-G759. [PMID: 40331866 DOI: 10.1152/ajpgi.00056.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 05/08/2025]
Abstract
De novo lipogenesis (DNL) converts excess glucose into lipids, whereas the hexosamine biosynthetic pathway (HBP), a glycolytic branch, generates UDP-N-acetylglucosamine for protein glycosylation, including O-GlcNAcylation and N-linked glycosylation. Both pathways are active in hepatocytes and integral to glucose metabolism; however, their functional interplay remains unclear. Here, we investigated the role of HBP in hepatic DNL activation using both in vitro and in vivo models. AML12 hepatocytes were cultured in low- and high-glucose media with or without HBP blockade, both pharmacologically and genetically. For in vivo studies, male C57BL/6J mice were subjected to a fasting-refeeding regimen with or without intraperitoneal administration of azaserine, a competitive inhibitor of glutamine-fructose-6-phosphate transaminase 1 (GFPT1), the rate-limiting enzyme of the HBP. Our results demonstrated that, in AML12 cells, glucose exposure activated both DNL and HBP, leading to triacylglycerol (TAG) accumulation, whereas HBP inhibition ameliorated DNL and TAG accumulation. In mice, refeeding after a 24-h fasting induced hepatic DNL, which was abolished by HBP inhibition, indicating its mechanistic involvement in glucose-driven lipogenesis. Mechanistically, we identified ATF4 as a key regulator of GFPT1 upregulation under high-glucose conditions. As expected, both glucose-treated hepatocytes and livers from fasting-refed mice exhibited increased protein glycosylation. Notably, blocking N-linked glycosylation, but not O-GlcNAcylation, abolished glucose-induced DNL activation, indicating that HBP is essential for glucose-induced DNL pathway activation via promoting N-linked glycosylation, independent of O-GlcNAcylation. In conclusion, our findings establish that an intact HBP is required for glucose-induced hepatic DNL activation, primarily through promoting protein N-linked glycosylation.NEW & NOTEWORTHY High-glucose exposure activates both hepatic HBP and DNL pathways. The glucose metabolism into HBP is essential for the activation of the DNL pathway. ATF4 activation plays a mechanistic role in high glucose-induced HBP activation. HBP drives high glucose-induced hepatic DNL activation via promoting N-linked protein glycosylation.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Rui Guo
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yanyu Qian
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
5
|
Veličković D, Purkerson J, Bhotika H, Huyck H, Clair G, Pryhuber GS, Anderton C. Integrating N-glycan and CODEX imaging reveal cell-specific protein glycosylation in healthy human lung. Mol Omics 2025. [PMID: 40392055 PMCID: PMC12090982 DOI: 10.1039/d4mo00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
Identifying cell-specific glycan structures in human lungs is critical for understanding the chemistry and mechanisms that guide cell-cell and cell-matrix interactions and determining nuanced functions of specific glycosylation. Our dual-modality omics platform, which uses matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to profile glycan chemistry at 50 μm × 50 μm scale, combined with co-detection by indexing (CODEX) to provide cell identification from the exact same tissue section, is a significant step in this direction. It enabled us to detect, differentiate, and reveal chemical properties of N-glycans in the various cell types of a human lung, suggesting the cell-specific function of distinct carbohydrate moieties. This innovative technological combination bridges the gap between the specific protein glycosylation and their cellular origin, paving the way for targeted studies in the lungs and many other human tissues where glycans mediate cell-cell recognition events.
Collapse
Affiliation(s)
- Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Jeffrey Purkerson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Harsh Bhotika
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Heidie Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Geremy Clair
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
6
|
Mukherjee MM, Biesbrock D, Abramowitz LK, Pavan M, Kumar B, Walter PJ, Azadi P, Jacobson KA, Hanover JA. Selective bioorthogonal probe for N-glycan hybrid structures. Nat Chem Biol 2025; 21:681-692. [PMID: 39468349 DOI: 10.1038/s41589-024-01756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
Metabolic incorporation of chemically tagged monosaccharides is a facile means of tagging cellular glycoproteins and glycolipids. However, since the monosaccharide precursors are often shared by several pathways, selectivity has been difficult to attain. For example, N-linked glycosylation is a chemically complex and ubiquitous posttranslational modification, with three distinct classes of GlcNAc-containing N-glycan structures: oligomannose, hybrid and complex. Here we describe the synthesis of 1,3-Pr2-6-OTs GlcNAlk (MM-JH-1) as a next-generation metabolic chemical reporter for the selective labeling of hybrid N-glycan structures. We first developed a general strategy for defining the selectivity of labeling with chemically tagged monosaccharides. We then applied this approach to establish that MM-JH-1 is selectively incorporated into hybrid N-glycans. Using this metabolic chemical reporter as a detection tool, we performed imaging and fractionation to define features of the intracellular localization and trafficking of target proteins bearing hybrid N-glycan structures.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Yan Z, Han J, Mi Z, Wang Z, Fu Y, Wang C, Dang N, Liu H, Zhang F. GPNMB disrupts SNARE complex assembly to maintain bacterial proliferation within macrophages. Cell Mol Immunol 2025; 22:512-526. [PMID: 40038549 PMCID: PMC12041529 DOI: 10.1038/s41423-025-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Xenophagy plays a crucial role in restraining the growth of intracellular bacteria in macrophages. However, the machinery governing autophagosome‒lysosome fusion during bacterial infection remains incompletely understood. Here, we utilize leprosy, an ideal model for exploring the interactions between host defense mechanisms and bacterial infection. We highlight the glycoprotein nonmetastatic melanoma protein B (GPNMB), which is highly expressed in macrophages from lepromatous leprosy (L-Lep) patients and interferes with xenophagy during bacterial infection. Upon infection, GPNMB interacts with autophagosomal-localized STX17, leading to a reduced N-glycosylation level at N296 of GPNMB. This modification promotes the degradation of SNAP29, thus preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. Consequently, the fusion of autophagosomes with lysosomes is disrupted, resulting in inhibited cellular autophagic flux. In addition to Mycobacterium leprae, GPNMB deficiency impairs the proliferation of various intracellular bacteria in human macrophages, suggesting a universal role of GPNMB in intracellular bacterial infection. Furthermore, compared with their counterparts, Gpnmbfl/fl Lyz2-Cre mice presented decreased Mycobacterium marinum amplification. Overall, our study reveals a previously unrecognized role of GPNMB in host antibacterial defense and provides insights into its regulatory mechanism in SNARE complex assembly.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Jinghong Han
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yixuan Fu
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
9
|
Huang Q, Dong H, Jia W, Ren Y, Li W, Zhong L, Gong L, Yang J. Regulation of N-Glycosylation of CDNF on Its Protein Stability and Function in Hypoxia/Reoxygenation Model of H9C2 Cells. Cell Biol Int 2025; 49:472-483. [PMID: 39921278 DOI: 10.1002/cbin.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/10/2025]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a cause of high post-interventional mortality in patients with acute myocardial infarction (MI). Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) resident protein, and its expression and secretion are induced when tissues and cells are subjected to hypoxia, ischemia, or traumatic injury. As a novel cardiomyokine, CDNF plays a crucial role in the progression of myocardial I/R injury. In our previous study, we reported that the overexpression of CDNF inhibited tunicamycin-induced H9C2 cell apoptosis. Moreover, there is a unique N-glycosylation site at Asn57 in the CDNF protein, which likely affects its function in H9C2 cells. However, the detailed impact remains unexplored. In our current study, we observed elevated levels of CDNF in the serum of acute MI patients, myocardial tissue of I/R model mice, and H/R model H9C2 cells. To detect the effect of N-glycosylation on the CDNF protein, we constructed an Asn57 mutant (N57A) plasmid and found that the N57A protein presented similar intracellular localization to those of the wild-type CDNF protein. However, the N57A protein demonstrated reduced stability, and the mutant protein could not protect H/R-induced H9C2 cells from apoptosis. Moreover, this process may occur through the downregulation of the PI3K/Akt pathway. Therefore, N-glycosylation of CDNF may be essential for protein stability and its protective role in H/R injury in H9C2 cells.
Collapse
Affiliation(s)
- Qingwen Huang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yanxin Ren
- Department of Medical, The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Wei Li
- Department of Medical, The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
10
|
Vela Navarro N, De Nadai Mundim G, Cudic M. Implications of Mucin-Type O-Glycosylation in Alzheimer's Disease. Molecules 2025; 30:1895. [PMID: 40363702 PMCID: PMC12073284 DOI: 10.3390/molecules30091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders linked to aging. Major hallmarks of AD pathogenesis include amyloid-β peptide (Aβ) plaques, which are extracellular deposits originating from the processing of the amyloid precursor protein (APP), and neurofibrillary tangles (NFTs), which are intracellular aggregates of tau protein. Recent evidence indicates that disruptions in metal homeostasis and impaired immune recognition of these aggregates trigger neuroinflammation, ultimately driving disease progression. Therefore, a more comprehensive approach is needed to understand the underlying causes of the disease. Patients with AD present abnormal glycan profiles, and most known AD-related molecules are either modified with glycans or involved in glycan regulation. A deeper understanding of how O-glycosylation influences the balance between amyloid-beta peptide production and clearance, as well as microglia's pro- and anti-inflammatory responses, is crucial for deciphering the early pathogenic events of AD. This review aims to provide a comprehensive summary of the extensive research conducted on the role of mucin-type O-glycosylation in the pathogenesis of AD, discussing its role in disease onset and immune recognition.
Collapse
Affiliation(s)
| | | | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA; (N.V.N.); (G.D.N.M.)
| |
Collapse
|
11
|
Yang X, Liu Y, Cao J, Wu C, Tang L, Bian W, Chen Y, Yu L, Wu Y, Li S, Shen Y, Xia J, Du J. Targeting epigenetic and post-translational modifications of NRF2: key regulatory factors in disease treatment. Cell Death Discov 2025; 11:189. [PMID: 40258841 PMCID: PMC12012105 DOI: 10.1038/s41420-025-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor involved in regulating cellular antioxidant defense and detoxification mechanisms. It mitigates oxidative stress and xenobiotic-induced damage by inducing the expression of cytoprotective enzymes, including HO-1 and NQO1. NRF2 also modulates inflammatory responses by inhibiting pro-inflammatory genes and mediates cell death pathways, including apoptosis and ferroptosis. Targeting NRF2 offers potential therapeutic avenues for treating various diseases. NRF2 is regulated through two principal mechanisms: post-translational modifications (PTMs) and epigenetic alterations. PTMs, including phosphorylation, ubiquitination, and acetylation, play a pivotal role in modulating NRF2's stability, activity, and subcellular localization, thereby precisely controlling its function in the antioxidant response. For instance, ubiquitination can lead to NRF2 degradation and reduced antioxidant activity, while deubiquitination enhances its stability and function. Epigenetic modifications, such as DNA methylation, histone modifications, and interactions with non-coding RNAs (e.g., MALAT1, PVT1, MIR4435-2HG, and TUG1), are essential for regulating NRF2 expression by modulating chromatin architecture and gene accessibility. This paper systematically summarizes the molecular mechanisms by which PTMs and epigenetic alterations regulate NRF2, and elucidates its critical role in cellular defense and disease. By analyzing the impact of PTMs, such as phosphorylation, ubiquitination, and acetylation, as well as DNA methylation, histone modifications, and non-coding RNA interactions on NRF2 stability, activity, and expression, the study reveals the complex cellular protection network mediated by NRF2. Furthermore, the paper explores how these regulatory mechanisms affect NRF2's roles in oxidative stress, inflammation, and cell death, identifying novel therapeutic targets and strategies. This provides new insights into the treatment of NRF2-related diseases, such as cancer, neurodegenerative disorders, and metabolic syndrome. This research deepens our understanding of NRF2's role in cellular homeostasis and lays the foundation for the development of NRF2-targeted therapies.
Collapse
Affiliation(s)
- Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
12
|
Wang K, Ma W, Meng X, Xu Z, Zhao W, Li T. Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions. Chemistry 2025; 31:e202500183. [PMID: 40079522 DOI: 10.1002/chem.202500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
Collapse
Affiliation(s)
- Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Granica M, Laskowski G, Link-Lenczowski P, Graczyk-Jarzynka A. Modulation of N-glycosylation in the PD-1: PD-L1 axis as a strategy to enhance cancer immunotherapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189274. [PMID: 39875060 DOI: 10.1016/j.bbcan.2025.189274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The modulation of the N-glycosylation status in immune checkpoints, particularly the PD-1/PD-L1 axis, has emerged as a promising approach to enhance cancer immunotherapies. While immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 have achieved significant clinical success, recent studies highlight the critical role of N-glycosylation in regulating their expression, stability, and function. Alterations in N-glycosylation might affect the efficacy of ICIs by modulating the interactions between immune checkpoints and antibodies used in therapy. This review focuses on the glycosylation of PD-1 and its ligands PD-L1 and PD-L2, examining how N-glycans influence immune responses and contribute to immune evasion by tumors. It explores innovative strategies to modulate glycosylation in tumor and immune cells, including the use of N-glycosylation inhibitors and novel genetic manipulation techniques. Understanding the interplay between N-glycosylation and immune checkpoint functions is essential for optimizing immunotherapy outcomes and overcoming therapeutic resistance in cancer patients.
Collapse
Affiliation(s)
- Monika Granica
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gustaw Laskowski
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
14
|
Biersteker R, Larsen OF, Wuhrer M, Huizinga TWJ, Toes REM, Hafkenscheid L. Variable domain glycosylation as a marker and modulator of immune responses: Insights into autoimmunity and B-cell malignancies. Semin Immunol 2025; 78:101946. [PMID: 40158366 DOI: 10.1016/j.smim.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation of antibodies is essential for shaping immune responses, as it contributes significantly to antibody function and diversity. While immunoglobulin G (IgG) Fc glycosylation is well-characterized, variable domain glycosylation (VDG) introduces an additional and less understood layer of complexity. Notably, VDG is associated with rheumatoid arthritis, where disease-specific IgG autoantibodies abundantly express this modification. Moreover, its presence on these antibodies correlates with disease progression in at-risk individuals and therapeutic outcomes. Emerging evidence links increased VDG levels to other autoimmune diseases and B-cell malignancies, highlighting its potential as both a marker and modulator in disease onset and progression. Importantly, VDG on IgG is now recognized to influence antigen binding, enhance antibody stability, and modulate interactions with the human neonatal Fc receptor. In addition, glycans in the antigen-binding domains of autoreactive B-cell receptors (BCRs) can significantly impact B cell activation. In follicular lymphoma and other B-cell malignancies, the presence of N-glycosylation sites in the immunoglobulin variable domains leads to the introduction of oligomannose glycans, which are postulated to bind to mannose-specific lectins. This interaction might promote antigen-independent activation of BCRs, thereby supporting malignant B cell survival and proliferation. Here, we explore the regulatory pathways of VDG and its functional roles across both physiological and pathological conditions, underscoring its prevalence and significance in various autoimmune diseases and B-cell malignancies. Ultimately, advancing our understanding of the regulatory factors influencing VDG and its functional implications could be highly rewarding for identifying potential therapeutic targets and strategies to prevent and treat autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Roxane Biersteker
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Oliver F Larsen
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
15
|
Sadakierska-Chudy A, Szymanowski P, Szepieniec WK, Bartosiewicz A, Lebioda A, Płoski R, Pollak A. Inherited and de novo variants in young females potentially associated with pelvic organ prolapse. Am J Obstet Gynecol 2025:S0002-9378(25)00175-9. [PMID: 40157519 DOI: 10.1016/j.ajog.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Pelvic organ prolapse is a common condition usually affecting postmenopausal women, but it is also seen in about 10% of women aged 20 to 39 years. In young females, genetic factors seem to be of particular interest. OBJECTIVE This study aimed to identify inherited and de novo variants relevant to pelvic organ prolapse in young females without a family history. STUDY DESIGN A total of 25 women aged ≤40 years with parity ≤2 and Pelvic Organ Prolapse Quantification stage ≥II were included in the study. Moreover, females had no history of pelvic organ prolapse and any previous history of urogynecological surgery. A trio-based exome analysis was performed on patients and both their parents. Bioinformatic analysis of raw whole exome sequencing data and genetic variant prioritization were performed using in-house bioinformatic pipeline. The ClinVar database, GeneCard, and the Human Protein Atlas were used to determine clinical significance, disease associations, and linked phenotypes of the genetic variants. The impact of causative genetic variants on protein structure and function was assessed using various prediction tools including Sorting Intolerant From Tolerant, PolyPhen2, MutPred2, Phyre2, and SNPeffect 4.0. To determine the molecular interaction network of the proteins, Search Tool for the Retrieval of Interacting Genes database was applied. RESULTS The mean age of women was 33.50 (±3.07) years, the mean body mass index value was 21.80 (±2.07), and the number of parity was 1.76 (±0.44). In the study group, 18 of 25 women required surgical treatment. Whole exome sequencing analysis identified 76 de novo variants, but only 19 were missense and 2 were nonsense variants. Three genetic variants in CSPG4, ITGA7, and MT-CO3 genes appear potentially relevant to pelvic organ prolapse. Interestingly, paternally inherited variants in SGCG, CYP24A1, and TK2 genes likely related to pelvic organ prolapse were found in carriers of new de novo variants. CONCLUSION In this study, no common genetic variants were found in the female group. Potentially causative patient-specific variants were found in genes related to extracellular matrix, mitochondria, or skeletal muscle conditions. The uncovered genetic variants presumably disrupt the functioning of muscles and mitochondria, which may consequently lead to pelvic floor dysfunction in young women.
Collapse
Affiliation(s)
| | - Paweł Szymanowski
- Department of Gynecology and Urogynecology, Faculty of Medicine, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wioletta Katarzyna Szepieniec
- Department of Gynecology and Urogynecology, Faculty of Medicine, Collegium Medicum, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | | | - Arleta Lebioda
- Division of Molecular Techniques, Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
16
|
Ahuja P, Singh M, Ujjain SK. Advancements in Electrochemical Biosensors for Comprehensive Glycosylation Assessment of Biotherapeutics. SENSORS (BASEL, SWITZERLAND) 2025; 25:2064. [PMID: 40218579 PMCID: PMC11991509 DOI: 10.3390/s25072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Proteins represent a significant portion of the global therapeutics market, surpassing hundreds of billions of dollars annually. Among the various post-translational modifications, glycosylation plays a crucial role in influencing protein structure, stability, and function. This modification is especially important in biotherapeutics, where the precise characterization of glycans is vital for ensuring product efficacy and safety. Although mass spectrometry-based techniques have become essential tools for glycomic analysis due to their high sensitivity and resolution, their complexity and lengthy processing times limit their practical application. In contrast, electrochemical methods provide a rapid, cost-effective, and sensitive alternative for glycosylation assessment, enabling the real-time analysis of glycan structures on biotherapeutic proteins. These electrochemical techniques, often used in conjunction with complementary methods, offer valuable insights into the glycosylation profiles of both isolated glycoproteins and intact cells. This review examines the latest advancements in electrochemical biosensors for glycosylation analysis, highlighting their potential in enhancing the characterization of biotherapeutics and advancing the field of precision medicine.
Collapse
Affiliation(s)
- Preety Ahuja
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Manpreet Singh
- Department of Mechanical Engineering, College of Engineering and Information Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Sanjeev Kumar Ujjain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| |
Collapse
|
17
|
Piscitelli E, Abeni E, Balbino C, Angeli E, Cocola C, Pelucchi P, Palizban M, Diaspro A, Götte M, Zucchi I, Reinbold RA. Glycosylation Regulation by TMEM230 in Aging and Autoimmunity. Int J Mol Sci 2025; 26:2412. [PMID: 40141059 PMCID: PMC11942208 DOI: 10.3390/ijms26062412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the specific signatures of glycans and glycosylated factors present on the cell plasma membrane or in the stromal components of tissue. Glycosylated factors are generated in nearly innumerable variations in nature, allowing for the immensely diverse role of these factors in aging and flexibility necessary for cellular interactions in tissue functionality. In previous studies, we showed that differential expression of TMEM230, an endoplasmic reticulum (ER) protein was associated with specific signatures of enzymes regulating glycan synthesis and processing and glycosylation in rheumatoid arthritis synovial tissue using single-cell transcript sequencing. In this current study, we characterize the genes and pathways co-modulated in all cell types of the synovial tissue with the enzymes regulating glycan synthesis and processing, as well as glycosylation. Genes and biological and molecular pathways associated with hallmarks of aging were in mitochondria-dependent oxidative phosphorylation and reactive oxygen species synthesis, ER-dependent stress and unfolded protein response, DNA repair (UV response and P53 signaling pathways), and senescence, glycolysis and apoptosis regulation through PI3K-AKT-mTOR signaling have been shown to play important roles in aging or neurodegeneration (such as Parkinson's and Alzheimer's disease). We propose that the downregulation of TMEM230 and RNASET2 may represent a paradigm for the study of age-dependent autoimmune disorders due to their role in regulating glycosylation, unfolded protein response, and PI3K-AKT-mTOR signaling.
Collapse
Affiliation(s)
- Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | | | - Elena Angeli
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
| | - Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Alberto Diaspro
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
- Nanoscopy, Istituto Italiano Tecnologia, 16152 Genoa, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| | - Rolland A. Reinbold
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
18
|
Takarada T, Fujinaka R, Shimada M, Fukuda M, Yamada T, Tanaka M. Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159588. [PMID: 39672228 DOI: 10.1016/j.bbalip.2024.159588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.
Collapse
Affiliation(s)
- Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Rikako Fujinaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masaki Shimada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| |
Collapse
|
19
|
Pan Z, Liu Y, Dai H, Xu S, Qin M, Wang K, Luo C, Luo C, Zhang Q, Liang Z, Feng S. Identification of interferon-stimulated response elements (ISREs) in canines. BMC Vet Res 2025; 21:128. [PMID: 40025541 PMCID: PMC11871823 DOI: 10.1186/s12917-025-04577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
Interferon (IFN) responses are vital for antiviral defense, with interferon-stimulated response elements (ISREs) crucial for regulating IFN signaling. While ISREs are well-studied in humans and mice, research on canine ISREs is limited. This study aimed to clarify the role of canine ISREs and create a new method for detecting IFN activity. Canine IFN α (CaIFNα) was produced using the Pichia pastoris (P. pastoris) system, and an ISRE-based flow cytometry method was developed to measure its activity. ISREs for CaIFNα were predicted via bioinformatics analysis. Subsequently, viral suppression assays were conducted using vesicular stomatitis virus, canine influenza virus, and H9N2 to evaluate the antiviral activity of recombinant CaIFNα. Fluorescence analysis confirmed that CaIFNα activates ISRE2, ISRE8, and ISRE10, thereby enhancing the transcription and expression of the enhanced green fluorescent protein (EGFP) fusion gene. A novel ISRE and EGFP based flow cytometry method enabled precise quantification of CaIFNα levels through fluorescence cell counts, with a detection sensitivity reaching 0.1 × 10- 7 mg/mL. Results demonstrate that CaIFNα possesses multiple antiviral activity and activates specific ISREs, augmenting gene expression. This approach advances the study of canine ISREs and supports the development and clinical application of CaIFNα for diagnosing viral infections and monitoring treatment efficacy.
Collapse
Affiliation(s)
- Zhichao Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ke Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenying Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changqi Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinying Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.
| |
Collapse
|
20
|
Jiang C, Zhang J, Wang G, Wang Y, Hu C, Qin W, Pan T, Gu S, Wang X, Chen K, Chai X, Yang M, Zhou F, Warren A, Xiong J, Miao W. Decoding the Nature of the Peritrich Stalk: A Distinctive Organelle in a Large Group of Ciliated Unicellular Eukaryotes. J Eukaryot Microbiol 2025; 72:e70006. [PMID: 40059491 DOI: 10.1111/jeu.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Ciliates represent a diverse assemblage of ancient single-celled eukaryotes characterized by diverse morphological features. Among certain sessilid peritrich ciliates, an exceptional morphological structure known as the stalk has been documented since the pioneering work of Antonie van Leeuwenhoek in the 17th century. This study conducts a comparative genomic analysis of three sessile peritrich species-Epistylis sp., Vorticella campanula, and Zoothamnium arbuscula-and two free-swimming species, Tetrahymena thermophila and Paramecium tetraurelia, within the class Oligohymenophorea. We find that carbohydrate-related components are consistently associated with diverse stalk substructures. Evidence suggests that the branched stalks of colonial E. hentscheli are supported by chitin-based ring-like structures. Through proteomic analysis of the Epistylis stalk, we found peritrich-specific genes, including coiled-coil domain-containing (CCDC) proteins and epidermal growth factor-like (EGF-like) proteins, as key stalk components. CCDC proteins are part of the stalk sheath, and their N-glycosylation may enhance adhesion between the cell body and stalk through lectin interactions. This study sheds light on the genetic innovations behind the stalk in peritrichs, which support their sessile and colonial lifestyles, and identifies peritrich-specific CCDC proteins as potential targets for disrupting the attachment of sessilids to aquaculture animals, addressing issues related to epibiotic burden.
Collapse
Affiliation(s)
- Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jing Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangying Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Harbin Normal University, Harbin, China
| | - Che Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Harbin Normal University, Harbin, China
| | - Weiwei Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Pan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaocui Chai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
21
|
Pindwarawala M, Abid FA, Lee J, Miller ML, Noppers JS, Rideout AP, Agosto MA. Defective glycosylation and ELFN1 binding of mGluR6 congenital stationary night blindness mutants. Life Sci Alliance 2025; 8:e202403118. [PMID: 39681475 DOI: 10.26508/lsa.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization. The mechanisms of mGluR6 trafficking and synaptic targeting remain poorly understood. In this study, we investigated mGluR6 missense mutations from patients with congenital stationary night blindness (CSNB), which is associated with loss of synaptic transmission to ON-BCs. We found that multiple CSNB mutations in the extracellular ligand-binding domain of mGluR6 impart a trafficking defect leading to lack of complex N-glycosylation but efficient plasma membrane insertion, suggesting a Golgi bypass mechanism. These mutants fail to bind ELFN1, consistent with lack of a necessary modification normally acquired in the Golgi. The same mutants were mislocalized in bipolar cells, explaining the loss of function in CSNB. The results reveal a key role of Golgi trafficking in mGluR6 function, and suggest a role of the extracellular domain in Golgi sorting.
Collapse
Affiliation(s)
| | - Faiyaz Ak Abid
- Department of Microbiology and Immunology, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Jaeeun Lee
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Michael L Miller
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Juliet S Noppers
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Andrew P Rideout
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Canada
| |
Collapse
|
22
|
Fu W, Xie Q, Yu P, Liu S, Xu L, Ye X, Zhao W, Wang Q, Pan Y, Zhang Z, Wang Z. Pig jejunal single-cell RNA landscapes revealing breed-specific immunology differentiation at various domestication stages. Front Immunol 2025; 16:1530214. [PMID: 40151618 PMCID: PMC11947726 DOI: 10.3389/fimmu.2025.1530214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background Domestication of wild boars into local and intensive pig breeds has driven adaptive genomic changes, resulting in significant phenotypic differences in intestinal immune function. The intestine relies on diverse immune cells, but their evolutionary changes during domestication remain poorly understood at single-cell resolution. Methods We performed single-cell RNA sequencing (scRNA-seq) and marker gene analysis on jejunal tissues from wild boars, a Chinese local breed (Jinhua), and an intensive breed (Duroc). Then, we developed an immune cell evaluation system that includes immune scoring, gene identification, and cell communication analysis. Additionally, we mapped domestication-related clustering relationships, highlighting changes in gene expression and immune function. Results We generated a single-cell atlas of jejunal tissues, analyzing 26,246 cells and identifying 11 distinct cell lineages, including epithelial and plasma cells, and discovered shared and unique patterns in intestinal nutrition and immunity across breeds. Immune cell evaluation analysis confirmed the conservation and heterogeneity of immune cells, manifested by highly conserved functions of immune cell subgroups, but wild boars possess stronger immune capabilities than domesticated breeds. We also discovered four patterns of domestication-related breed-specific genes related to metabolism, immune surveillance, and cytotoxic functions. Lastly, we identified a unique population of plasma cells with distinctive antibody production in Jinhua pig population. Conclusions Our findings provide valuable single-cell insights into the cellular heterogeneity and immune function evolution in the jejunum during pig at various domestication stages. The single-cell atlas also serves as a resource for comparative studies and supports breeding programs aimed at enhancing immune traits in pigs.
Collapse
Affiliation(s)
- Wenyu Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd, Hefei, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuchun Pan
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
23
|
Powell WC, Jing R, Herlory M, Holland P, Poliyenko D, Ebmeier CC, Stowell MHB, Walczak MA. Chemical Synthesis Reveals Pathogenic Role of N-Glycosylation in Microtubule-Associated Protein Tau. J Am Chem Soc 2025; 147:6995-7007. [PMID: 39959999 PMCID: PMC11892074 DOI: 10.1021/jacs.4c17873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of tau protein aggregates. In this study, we investigated the effects of N-glycosylation on tau, focusing on its impact on aggregation and phase behavior. We chemically prepared homogeneous glycoproteins with high-mannose glycans or a single N-acetylglucosamine at the confirmed glycosylation sites in K18 and 2N4R tau. Our findings reveal that N-glycosylation significantly alters biophysical properties and potentially cellular functions of tau. Small glycans promote tau aggregation and liquid-liquid phase separation (LLPS), while larger glycans reduce these effects. High mannose glycans at N410 enhance phosphorylation by GSK3β, suggesting a pathological role in AD. Functional assays demonstrate that N-glycosylation does not impact microtubule polymerization dynamics but modulates aggregation kinetics and morphology. This research underscores the importance of glycosylation in tau pathology and opens new avenues for therapeutic interventions targeting glycan processing.
Collapse
Affiliation(s)
- Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Morgane Herlory
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Patrick Holland
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Darya Poliyenko
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Christopher C Ebmeier
- Proteomics and Mass Spectrometry Core Facility, Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, United States
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Svecla M, Li-Gao R, Falck D, Bonacina F. N-glycosylation signature and its relevance in cardiovascular immunometabolism. Vascul Pharmacol 2025; 159:107474. [PMID: 39988310 DOI: 10.1016/j.vph.2025.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Glycosylation is a post-translational modification in which complex, branched carbohydrates (glycans) are covalently attached to proteins or lipids. Asparagine-link protein (N-) glycosylation is among the most common types of glycosylation. This process is essential for many biological and cellular functions, and impaired N-glycosylation has been widely implicated in inflammation and cardiovascular diseases. Different technical approaches have been used to increase the coverage of the N-glycome, revealing a high level of complexity of glycans, regarding their structure and attachment site on a protein. In this context, new insights from genomic studies have revealed a genetic regulation of glycosylation, linking genetic variants to total plasma N-glycosylation and N-glycosylation of immunoglobulin G (IgG). In addition, RNAseq approaches have revealed a degree of transcriptional regulation for the glycoenzymes involved in glycan structure. However, our understanding of the association between cardiovascular risk and glycosylation, determined by a complex overlay of genetic and environmental factors, remains limited. Mostly, plasma N-glycosylation profiling in different human cohorts or experimental investigations of specific enzyme functions in models of atherosclerosis have been reported. Most of the uncovered glycosylation associations with pathological mechanisms revolve around the recruitment of inflammatory cells to the vessel wall and lipoprotein metabolism. This review aims to summarise insights from omics studies into the immune and metabolic regulation of N-glycosylation and its association with cardiovascular and metabolic disease risk and to provide mechanistic insights from experimental models. The combination of emerging techniques for glycomics and glycoproteomics with already achieved omics approaches to map the transcriptomic, epigenomic, and metabolomic profile at single-cell resolution will deepen our understanding of the molecular regulation of glycosylation as well as identify novel biomarkers and targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Svecla
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - David Falck
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Glycomics Group, Leiden, the Netherlands
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Eggermont L, Lumen N, Van Praet C, Delanghe J, Rottey S, Vermassen T. A comprehensive view of N-glycosylation as clinical biomarker in prostate cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189239. [PMID: 39672278 DOI: 10.1016/j.bbcan.2024.189239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alterations in the prostate cancer (PCa) N-glycome have gained attention as a potential biomarker. This comprehensive review explores the diversity of N-glycosylation patterns observed in PCa-related cell lines, tissue, serum and urine, focusing on prostate-specific antigen (PSA) and the total pool of glycoproteins. Within the context of PCa, altered N-glycosylation patterns are a mechanism of immune escape and a disruption in normal glycoprotein distribution and trafficking. Glycoproteins with PCa-induced N-glycosylation patterns tend to accumulate in prostate tissue and the bloodstream, thereby diminishing N-glycan proportions in urine. Based on literary observations, aberrations in N-glycan branching are probably a characteristic of metabolic reprogramming and (chronic) inflammation. Changes in (core) fucosylation, specific N-glycosylation structures (such as N,N'-diacetyllactosamine) and high-mannose glycans otherwise are more likely indicators of cancer development and progression. Further investigation into these PCa-specific alterations holds promise in the discovery of new diagnostic, prognostic and response prediction biomarkers in PCa.
Collapse
Affiliation(s)
- Lissa Eggermont
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Charles Van Praet
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joris Delanghe
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sylvie Rottey
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tijl Vermassen
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
26
|
Jochim BE, Topalidou I, Lehrbach NJ. Protein sequence editing defines distinct and overlapping functions of SKN-1A/Nrf1 and SKN-1C/Nrf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635299. [PMID: 39975340 PMCID: PMC11838306 DOI: 10.1101/2025.01.29.635299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The Nrf/NFE2L family of transcription factors regulates redox balance, xenobiotic detoxification, metabolism, proteostasis, and aging. Nrf1/NFE2L1 is primarily responsible for stress-responsive upregulation of proteasome subunit genes and is essential for adaptation to proteotoxic stress. Nrf2/NFE2L2 is mainly involved in activating oxidative stress responses and promoting xenobiotic detoxification. Nrf1 and Nrf2 contain very similar DNA binding domains and can drive similar transcriptional responses. In C. elegans, a single gene, skn-1, encodes distinct protein isoforms, SKN-1A and SKN-1C, that function analogously to mammalian Nrf1 and Nrf2, respectively, and share an identical DNA binding domain. Thus, the extent to which SKN-1A/Nrf1 and SKN-1C/Nrf2 functions are distinct or overlapping has been unclear. Regulation of the proteasome by SKN-1A/Nrf1 requires post-translational conversion of N-glycosylated asparagine residues to aspartate by the PNG-1/NGLY1 peptide:N-glycanase, a process we term 'sequence editing'. Here, we reveal the consequences of sequence editing for the transcriptomic output of activated SKN-1A. We confirm that activation of proteasome subunit genes is strictly dependent on sequence editing. In addition, we find that sequence edited SKN-1A can also activate genes linked to redox homeostasis and xenobiotic detoxification that are also regulated by SKN-1C, but the extent of these genes' activation is antagonized by sequence editing. Using mutant alleles that selectively inactivate either SKN-1A or SKN-1C, we show that both isoforms promote optimal oxidative stress resistance, acting as effectors for distinct signaling pathways. These findings suggest that sequence editing governs SKN-1/Nrf functions by tuning the SKN-1A/Nrf1 regulated transcriptome.
Collapse
|
27
|
Tian J, Jia W, Dong H, Luo X, Gong L, Ren Y, Zhong L, Wang J, Shi D. Molecular Mechanisms Underlying the Loop-Closing Dynamics of β-1,4 Galactosyltransferase 1. J Chem Inf Model 2025; 65:390-401. [PMID: 39737871 PMCID: PMC11734692 DOI: 10.1021/acs.jcim.4c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
The β-1,4 galactosylation catalyzed by β-1,4 galactosyltransferases (β4Gal-Ts) is not only closely associated with diverse physiological and pathological processes in humans but also widely applied in the N-glycan modification of protein glycoengineering. The loop-closing process of β4Gal-Ts is an essential intermediate step intervening in the binding events of donor substrate (UDP-Gal/Mn2+) and acceptor substrate during its catalytic cycle, with a significant impact on the galactosylation activities. However, the molecular mechanisms in regulating loop-closing dynamics are not entirely clear. Here, we construct Markov state models (MSMs) based on approximately 20 μs of all-atom molecular dynamics simulations to explore the loop-closing dynamics for β-1,4 galactosyltransferase 1 (β4Gal-T1). Our MSM reveals five key metastable states of β4Gal-T1 upon substrate binding, indicating that the entire conformational transition occurs on a time scale of ∼10 μs. Moreover, a regulatory mechanism involving six conserved residues (R187, H190, F222, W310, I341, and D346) among β4Gal-Ts is validated to account for the loop-closing dynamics of the C-loop and W-loop by site-directed mutagenesis and enzymatic activity assays, exhibiting high consistency with our computational predictions. Overall, our research proposes detailed atomic-level insight into the loop-closing dynamics of the C-loop and W-loop on β4Gal-T1, contributing to a deeper understanding of catalytic mechanisms of β-1,4 galactosylation.
Collapse
Affiliation(s)
- Jiaqi Tian
- School of
Medical Informatics and Engineering, Xuzhou
Medical University, Xuzhou 221140, Jiangsu Province, China
| | - Wenjuan Jia
- Department
of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Haibin Dong
- Department
of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Xialin Luo
- Shanghai
Center for Clinical Laboratory, Shanghai 200120, China
| | - Lei Gong
- Department
of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Yanxin Ren
- Department
of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Lin Zhong
- Department
of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Jianxun Wang
- School of
Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Danfeng Shi
- Xuzhou College
of Industrial Technology, Xuzhou 221140, Jiangsu Province, China
| |
Collapse
|
28
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
29
|
Gao P, Chen H, Sun Y, Qian X, Sun T, Fan Y, Zhang J. ALG13-Related Epilepsy: Current Insights and Future Research Directions. Neurochem Res 2024; 50:60. [PMID: 39673593 DOI: 10.1007/s11064-024-04300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to ALG13 deficiency and the onset of epilepsy. Despite these findings, the precise role of ALG13 in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on ALG13-related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Haoran Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yangyang Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Xin Qian
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yuhan Fan
- General Hospital of Ningxia Medical University, No. 804 of Shengli Street, Yinchuan, Ningxia Province, 750004, China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
| |
Collapse
|
30
|
Chongsaritsinsuk J, Rangel-Angarita V, Lucas TM, Mahoney KE, Enny OM, Katemauswa M, Malaker SA. Quantification and Site-Specific Analysis of Co-occupied N- and O-Glycopeptides. J Proteome Res 2024; 23:5449-5461. [PMID: 39498894 PMCID: PMC12057997 DOI: 10.1021/acs.jproteome.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide. Alternatively, electron-based methods are preferable for O-glycosite localization. However, the presence of simultaneously N- and O-glycosylated peptides could suggest the necessity of electron-based fragmentation methods for N-glycoproteomics, which is not commonly performed. Thus, we quantified the prevalence of N- and O-glycopeptides in mucins and other glycoproteins. A much higher frequency of co-occupancy within mucins was detected whereas only a negligible occurrence occurred within nonmucin glycoproteins. This was demonstrated from analyses of recombinant and/or purified proteins, as well as more complex samples. Where co-occupancy occurred, O-glycosites were frequently localized to the Ser/Thr within the N-sequon. Additionally, we found that O-glycans in close proximity to the occupied Asn were predominantly unelaborated core 1 structures, while those further away were more extended. Overall, we demonstrate electron-based methods are required for robust site-specific analysis of mucins, wherein co-occupancy is more prevalent. Conversely, collisional methods are generally sufficient for analyses of other types of glycoproteins.
Collapse
Affiliation(s)
| | | | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Olivia M. Enny
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mitchelle Katemauswa
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
31
|
Wu H, Wan L, Liu Z, Jian Y, Zhang C, Mao X, Wang Z, Wang Q, Hu Y, Xiong L, Xia Z, Xue J, Li S, He P, Shan L, Xu S. Mechanistic study of SCOOPs recognition by MIK2-BAK1 complex reveals the role of N-glycans in plant ligand-receptor-coreceptor complex formation. NATURE PLANTS 2024; 10:1984-1998. [PMID: 39511418 DOI: 10.1038/s41477-024-01836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Ligand-induced receptor and co-receptor heterodimerization is a common mechanism in receptor kinase (RK) signalling activation. SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) mediate the complex formation of Arabidopsis RK MIK2 and co-receptor BAK1, triggering immune responses. Through structural, biochemical and genetic analyses, we demonstrate that SCOOPs use their SxS motif and adjacent residues to bind MIK2 and the carboxy-terminal GGR residues to link MIK2 to BAK1. While N-glycosylation of plant RKs is typically associated with protein maturation, plasma membrane targeting and conformation maintenance, a surprising revelation emerges from our crystal structural analysis of MIK2-SCOOP-BAK1 complexes. Specific N-glycans on MIK2 directly interact with BAK1 upon SCOOP sensing. The absence of N-glycosylation at the specific site in MIK2 neither affects its subcellular localization and protein accumulation in plant cells nor alters its structural conformation, but markedly reduces its affinity for BAK1, abolishing SCOOP-triggered immune responses. This N-glycan-mediated receptor and co-receptor heterodimerization occurs in both Arabidopsis and Brassica napus. Our findings elucidate the molecular basis of SCOOP perception by the MIK2-BAK1 immune complex and underscore the crucial role of N-glycans in plant receptor-coreceptor interactions and signalling activation, shaping immune responses.
Collapse
Affiliation(s)
- Huimin Wu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lihao Wan
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen Zhang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiakun Mao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyun Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Hu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhujun Xia
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Juan Xue
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Shutong Xu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
32
|
Xiao D, Hu G, Ding Q, He H, Wang J, Geng F. Research Note: Comprehensive proteomic, phosphoproteomic, and N-glycoproteomic analysis of chicken egg yolk plasma. Poult Sci 2024; 103:104253. [PMID: 39278115 PMCID: PMC11418097 DOI: 10.1016/j.psj.2024.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Chicken egg yolk plasma (EYP), the supernatant fraction of egg yolk obtained by water dilution and centrifugation, is a rich source of various bioactive substances and a significant bearer of yolk-emulsifying properties. This study utilized proteomics to conduct a comprehensive and in-depth analysis of both common and modified EYP proteins (phosphorylated proteins and N-glycosylated proteins). Total of 208 proteins were identified in EYP, including 42 phosphorylated proteins with 137 phosphorylation sites and 150 N-glycoproteins with 332 N-glycosylation sites. Among the phosphorylation sites, tyrosine accounted for 80.6%, while the N-glycosylation sites predominantly featured "N-X-T" motifs, accounting for 58.7%. Functional enrichment analysis revealed that most proteins were involved in regulating enzyme activity and inhibition with a particular focus on modulating peptidase activity. Notably, vitellogenins-2 (30 phosphorylation sites, 9 N-glycosylation sites) and apolipoprotein B (10 phosphorylation sites, 56 N-glycosylation sites) were the 2 proteins with the most modification sites. Additionally, EYP was found to contain the highly N-glycosylated complement proteins C3 and C4. These findings provide new insights into the protein composition of EYP and its roles in chicken embryo development and immune defense, offering a theoretical foundation for the application of EYP in various fields.
Collapse
Affiliation(s)
- Di Xiao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Qianying Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong He
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
33
|
Lv Y, Chen Y, Li X, Huang Q, Lu R, Ye J, Meng W, Fan C, Mo X. Predicting psychiatric risk: IgG N-glycosylation traits as biomarkers for mental health. Front Psychiatry 2024; 15:1431942. [PMID: 39649366 PMCID: PMC11622602 DOI: 10.3389/fpsyt.2024.1431942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Background Growing evidence suggests that chronic inflammation, resulting from intricate immune system interactions, significantly contributes to the onset of psychiatric disorders. Observational studies have identified a link between immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but the causality of these associations remains unclear. Methods Genetic variants for IgG N-glycosylation traits and psychiatric disorders were obtained from published genome-wide association studies. The inverse-variance-weighted (IVW) method, MR-Egger, and weighted median were used to estimate causal effects. The Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and MR-PRESSO global test were used for sensitivity analyses. Results In the Psychiatric Genomics Consortium (PGC) database, genetically predicted IGP7 showed a protective role in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP), while elevated IGP34, and IGP57 increased SCZ risk. High levels of IGP21 were associated with an increased risk of post-traumatic stress disorder (PTSD), while elevated levels of IGP22 exhibited a causal association with a decreased risk of attention-deficit/hyperactivity disorder (ADHD). No causal relationship between IgG N-glycan traits and autism spectrum disorder (ASD) and no evidence of reverse causal associations was found. Conclusion Here, we demonstrate that IgG N-glycan traits have a causal relationship with psychiatric disorders, especially IGP7's protective role, offering new insights into their pathogenesis. Our findings suggest potential strategies for predicting and intervening in psychiatric disorder risk through IgG N-glycan traits.
Collapse
Affiliation(s)
- Yinchun Lv
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Chen
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaorong Huang
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Lu
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C. C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Junman Ye
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wentong Meng
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xianming Mo
- Department of Neurology, Laboratory of Stem Cell Biology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Wilczak M, Surman M, Przybyło M. Towards Understanding the Role of the Glycosylation of Proteins Present in Extracellular Vesicles in Urinary Tract Diseases: Contributions to Cancer and Beyond. Molecules 2024; 29:5241. [PMID: 39598633 PMCID: PMC11596185 DOI: 10.3390/molecules29225241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are a population of nanoscale particles surrounded by a phospholipid bilayer, enabling intercellular transfer of bioactive molecules. Once released from the parental cell, EVs can be found in most biological fluids in the human body and can be isolated from them. For this reason, EVs have significant diagnostic potential and can serve as an excellent source of circulating disease biomarkers. Protein glycosylation plays a key role in many biological processes, and aberrant glycosylation is a hallmark of various diseases. EVs have been shown to carry multiple glycoproteins, but little is known about the specific biological roles of these glycoproteins in the context of EVs. Moreover, specific changes in EV glycosylation have been described for several diseases, including cancers and metabolic, cardiovascular, neurological or kidney diseases. Urine is the richest source of EVs, providing almost unlimited (in terms of volume) opportunities for non-invasive EV isolation. Recent studies have also revealed a pathological link between urinary EV glycosylation and urological cancers, as well as other pathologies of the urinary tract. In this review, we discuss recent research advances in this field and the diagnostic/prognostic potential of urinary EV glycosylation. In addition, we summarize common methods for isolating EVs from urine and techniques used to study their glycosylation.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Lojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| |
Collapse
|
35
|
Ren Y, Wang F, Sun R, Zhang Y, Zheng X, Liu H, Chen L, Lin Y, Zhao Y, Liang M, Chao Z. N-glycosylation Modification Reveals Insights into the Oxidative Reactions of Liver in Wuzhishan Pigs. Molecules 2024; 29:5222. [PMID: 39598613 PMCID: PMC11596063 DOI: 10.3390/molecules29225222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Although porcine liver contributes to their growth and development by nutrition production and energy supply, oxidative stress-induced hepatocyte damage is inevitable during metabolism. N-glycosylation is a common modification in oxidation; nevertheless, the effects of N-glycosylation on pig liver oxidative reactions remain undefined. In this study, liver proteins with N-glycosylation were detected in Wuzhishan (WZS) pigs between 4 and 8 months old and Large White (LW) pigs at 4 months old based on LC-MS/MS. The results showed that the number of differentially expressed proteins (DEPs) was larger between different pig cultivars than that between WZS pigs at various growth periods. The enriched pathways of DEPs were mainly related to oxidative reactions, and 10 proteins were finally selected that primarily consisted of CYPs, GSTs and HSPs with expressions significantly correlating to liver size and weight. The oxidative genes shared N-glycosylation-modified models of N-x-S and N-G. Five out of 10 proteins were upregulated in WZS pigs compared to LW pigs at 4 months old, while five proteins increased in WZS pigs from 4 to 8 months old. In conclusion, this research provides valuable information on the N-glycosylation motifs in liver oxidation genes of WZS pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
36
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
37
|
Arshad F, Sarfraz A, Rubab A, Shehroz M, Moura AA, Sheheryar S, Ullah R, Shahat AA, Ibrahim MA, Nishan U, Shah M. Rational design of novel peptide-based vaccine against the emerging OZ virus. Hum Immunol 2024; 85:111162. [PMID: 39447523 DOI: 10.1016/j.humimm.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Oz virus (OZV) belongs to the Orthomyxoviridae family which includes viruses with a negative-sense, single-stranded, and segmented RNA genome. OZV is a zoonotic pathogen, particularly since the virus can cause deadly illness when injected intracerebrally into nursing mice. OZV is an emerging pathogen with the potential to spark a pandemic as there is no preventive and licensed treatment against this virus. The goal of this study was to develop a novel multi-epitope vaccination against OZV proteins utilizing immunoinformatics and immunological simulation analysis. This work evaluated immunological epitopes (B cells, MHC-I, and MHC-II) to identify highly antigenic OZV target proteins. Shortlisted epitopes were joined together by using appropriate linkers and adjuvants to design multi-epitope vaccine constructs (MEVC). The vaccine models were designed, improved, validated, and the globular regions and post-translational modifications (PTMs) were also evaluated in the vaccine's structure. Molecular docking analysis with the Toll-like receptor (TLR4) showed strong interactions and appropriate binding energies. Molecular dynamics (MD) simulation confirmed stable interactions between the vaccines and TLR4. Bioinformatics tools helped optimize codons, resulting in successful cloning into appropriate host vectors. This study showed that the developed vaccines are stable and non-allergenic in the human body and successfully stimulated immunological responses against OZV. Finally, a mechanism of action for the designed vaccine construct was also proposed. Further experimental validations of the designed vaccine construct will pave the way to create a potentially effective vaccine against this emerging pathogen.
Collapse
Affiliation(s)
- Fizza Arshad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aleeza Rubab
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan; Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
38
|
Chen L, Liu H, Zhan W, Long C, Xu F, Li X, Tian XL, Chen S. Alteration of N-glycosylation of CDON promotes H 2O 2-induced DNA damage in H9c2 cardiomyocytes. Int J Biochem Cell Biol 2024; 176:106671. [PMID: 39389454 DOI: 10.1016/j.biocel.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Protein glycosylation is involved in DNA damage. Recently, DNA damage has been connected with the pathogenesis of heart failure. Cell adhesion associated, oncogene regulated (CDON), considered as an N-linked glycoprotein, is a transmembrane receptor for modulating cardiac function. But the role of CDON and its glycosylation in DNA damage remains unknown. In this study, we found that the knockdown of CDON caused DNA double-strand breaks as indicated by an increase in phosphorylated histone H2AX (γH2AX) protein level, immunofluorescent intensity of γH2AX and tail DNA moment in H9c2 cardiomyocytes. Conversely, overexpression of CDON led to decreasing DNA damage induced by hydrogen peroxide (H2O2) and upregulating the expression of genes related to DNA repair pathways-homologous recombination (HR) and non-homologous end joining (NHEJ). Moreover, we expressed nine predicted N-glycosylation site mutants in H9c2 cells prior to treatment with H2O2. The results showed that mutation of N-glycosylation sites (N99Q, N179Q, and N870Q) increased the accumulation of DNA damage and downregulated the expression of HR-related genes, demonstrating that CDON N-glycosylation on DNA damage is site-specific and these specific N-glycan sites may regulate HR repair-related transcript abundance of genes. Our data highlight that N-glycosylation of CDON is critical to cardiomyocyte DNA lesion. It may uncover the potential strategies targeting DNA damage pathway in heart disease.
Collapse
Affiliation(s)
- Liping Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Hongfei Liu
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Wenxing Zhan
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Changkun Long
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Fang Xu
- Epigenetic regulation and Aging, Human Aging Research Institute, School of Life Science, Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang 330031, China.
| | - Xueer Li
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| | - Shenghan Chen
- Vascular Function Laboratory, Human Aging Research Institute, School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China.
| |
Collapse
|
39
|
Liao Y, Muntean BS. KCTD1 regulation of Adenylyl cyclase type 5 adjusts striatal cAMP signaling. Proc Natl Acad Sci U S A 2024; 121:e2406686121. [PMID: 39413138 PMCID: PMC11513970 DOI: 10.1073/pnas.2406686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Dopamine transfers information to striatal neurons, and disrupted neurotransmission leads to motor deficits observed in movement disorders. Striatal dopamine converges downstream to Adenylyl Cyclase Type 5 (AC5)-mediated synthesis of cAMP, indicating the essential role of signal transduction in motor physiology. However, the relationship between dopamine decoding and AC5 regulation is unknown. Here, we utilized an unbiased global protein stability screen to identify Potassium Channel Tetramerization Domain 1 (KCTD1) as a key regulator of AC5 level that is mechanistically tied to N-linked glycosylation. We then implemented a CRISPR/SaCas9 approach to eliminate KCTD1 in striatal neurons expressing a Förster resonance energy transfer (FRET)-based cAMP biosensor. 2-photon imaging of striatal neurons in intact circuits uncovered that dopaminergic signaling was substantially compromised in the absence of KCTD1. Finally, knockdown of KCTD1 in genetically defined dorsal striatal neurons significantly altered motor behavior in mice. These results reveal that KCTD1 acts as an essential modifier of dopaminergic signaling by stabilizing striatal AC5.
Collapse
Affiliation(s)
- Yini Liao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| |
Collapse
|
40
|
Veličković D, Purkerson J, Bhotika H, Huyck H, Clair G, Pryhuber GS, Anderton C. Integrating N -glycan and CODEX imaging reveal cell-specific protein glycosylation in healthy human lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617274. [PMID: 39416038 PMCID: PMC11483035 DOI: 10.1101/2024.10.08.617274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
N -linked glycosylation, the major post-translational modification of cellular proteins, is important for proper lung functioning, serving to fold, traffic, and stabilize protein structures and to mediate various cell-cell recognition events. Identifying cell-specific N -glycan structures in human lungs is critical for understanding the chemistry and mechanisms that guide cell-cell and cell-matrix interactions and determining nuanced functions of specific N -glycosylation. Our study, which used matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) combined with co-detection by indexing (CODEX) to reveal the cellular origin of N -glycans, is a significant step in this direction. This innovative technological combination enabled us to detect and differentiate N -glycans located in the vicinity of cells surrounding airways and blood vessels, parenchyma, submucosal glands, cartilage, and smooth muscles. The potential impact of our findings on future research is immense. For instance, our algorithm for grouping N -glycans based on their functional chemical features, combined with identifying group niches, paves the way for targeted studies. We found that fucosylated N -glycans are dominant around immune cells, tetra antennary N -glycans in the cartilage, high-mannose N -glycans surrounding the bronchus originate from associated collagenous structures, complex fucosylated-tetra antennary-polylactosamine N -glycans are spread over smooth muscle structures and in epithelial cells surrounding arteries, and N -glycans with Hex:6 HexNAc:6 compositions, which, according to our algorithm, can be ascribed to either tetra antennary or bisecting N -glycan, are highly abundant in the parenchyma. The findings suggest cell or region-specific functions for these localized glycan structures.
Collapse
|
41
|
Park K, Garde A, Thendral SB, Soh AW, Chi Q, Sherwood DR. De novo lipid synthesis and polarized prenylation drive cell invasion through basement membrane. J Cell Biol 2024; 223:e202402035. [PMID: 39007804 PMCID: PMC11248228 DOI: 10.1083/jcb.202402035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
To breach the basement membrane, cells in development and cancer use large, transient, specialized lipid-rich membrane protrusions. Using live imaging, endogenous protein tagging, and cell-specific RNAi during Caenorhabditis elegans anchor cell (AC) invasion, we demonstrate that the lipogenic SREBP transcription factor SBP-1 drives the expression of the fatty acid synthesis enzymes POD-2 and FASN-1 prior to invasion. We show that phospholipid-producing LPIN-1 and sphingomyelin synthase SMS-1, which use fatty acids as substrates, produce lysosome stores that build the AC's invasive protrusion, and that SMS-1 also promotes protrusion localization of the lipid raft partitioning ZMP-1 matrix metalloproteinase. Finally, we discover that HMG-CoA reductase HMGR-1, which generates isoprenoids for prenylation, localizes to the ER and enriches in peroxisomes at the AC invasive front, and that the final transmembrane prenylation enzyme, ICMT-1, localizes to endoplasmic reticulum exit sites that dynamically polarize to deliver prenylated GTPases for protrusion formation. Together, these results reveal a collaboration between lipogenesis and a polarized lipid prenylation system that drives invasive protrusion formation.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Durham, NC, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | | | - Adam W.J. Soh
- Department of Biology, Duke University, Durham, NC, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
42
|
Zhang J, Xiong X, Li J, Luo C, Su Q, Hao X, Wu Q, Huang W. Valtrate Suppresses TNFSF14-Mediated Arrhythmia After Myocardial Ischemia-Reperfusion by Inducing N-linked Glycosylation of LTβR to Regulate MGA/MAX/c-Myc/Cx43. J Cardiovasc Pharmacol 2024; 84:418-433. [PMID: 39028940 DOI: 10.1097/fjc.0000000000001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
Myocardial ischemia-reperfusion (MIR)-induced arrhythmia remains a major cause of death in patients with cardiovascular diseases. The reduction of Cx43 has been known as a major inducer of arrhythmias after MIR, but the reason for the reduction of Cx43 remains largely unknown. The aim of this study was to find the key mechanism underlying the reduction of Cx43 after MIR and to screen out an herbal extract to attenuate arrhythmia after MIR. The differentially expressed genes in the peripheral blood mononuclear cell (PBMCs) after MIR were analyzed using the data from several gene expression omnibus data sets, followed by the identification in PBMCs and the serum of patients with myocardial infarction. Tumor necrosis factor superfamily protein 14 (TNFSF14) was increased in PBMCs and the serum of patients, which might be associated with the injury after MIR. The toxic effects of TNFSF14 on cardiomyocytes were investigated in vitro . Valtrate was screened out from several herbal extracts. Its protection against TNFSF14-induced injury was evaluated in cardiomyocytes and animal models with MIR. Recombinant TNFSF14 protein not only suppressed the viability of cardiomyocytes but also decreased Cx43 by stimulating the receptor LTβR. LTβR induces the competitive binding of MAX to MGA rather than the transcriptional factor c-Myc, thereby suppressing c-Myc-mediated transcription of Cx43. Valtrate promoted the N-linked glycosylation modification of LTβR, which reversed TNFSF14-induced reduction of Cx43 and attenuated arrhythmia after MIR. In all, valtrate suppresses TNFSF14-induced reduction of Cx43, thereby attenuating arrhythmia after MIR.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Humans
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/genetics
- Connexin 43/metabolism
- Connexin 43/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Male
- Disease Models, Animal
- Glycosylation
- Signal Transduction
- Anti-Arrhythmia Agents/pharmacology
- Mice, Inbred C57BL
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/drug effects
- Heart Rate/drug effects
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Xiaoqi Xiong
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Jun Li
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Changjun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou City, China
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Hao
- Health Mangement Institute, the Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China ; and
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
43
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
44
|
Kohda A, Kamakura S, Hayase J, Sumimoto H. The NADPH oxidases DUOX1 and DUOX2 are sorted to the apical plasma membrane in epithelial cells via their respective maturation factors DUOXA1 and DUOXA2. Genes Cells 2024; 29:921-930. [PMID: 39126279 PMCID: PMC11555622 DOI: 10.1111/gtc.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells. Impairment of N-glycosylation of DUOXA1 results in mistargeting of DUOX1 to the basolateral membrane. Similar to DUOX1 complexed with the glycosylation-defective DUOXA1, the naturally non-glycosylated oxidase NOX5, which forms a homo-oligomer, is targeted basolaterally. On the other hand, a mutant DUOXA2 deficient in N-glycosylation is less stable than the wild-type protein but still capable of recruiting DUOX2 to the apical membrane, whereas DUOX2 is missorted to the basolateral membrane when paired with DUOXA1. These findings indicate that DUOXA2 is crucial but its N-glycosylation is dispensable for DUOX2 apical recruitment; instead, its C-terminal region seems to be involved. Thus, apical sorting of DUOX1 and DUOX2 is likely regulated in a distinct manner by their respective partners DUOXA1 and DUOXA2.
Collapse
Affiliation(s)
- Akira Kohda
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Sachiko Kamakura
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Junya Hayase
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Hideki Sumimoto
- Department of BiochemistryKyushu University Graduate School of Medical SciencesFukuokaJapan
| |
Collapse
|
45
|
Xu Y, Ren S, Wang H, Qin Y, Liu T, Sun C, Xiao Y, Shao B, Zhang J, Chen Q, Zhao P, Yang G, Liu X, Wang H. Endometrial regeneration cell-derived exosomes loaded with siSLAMF6 inhibit cardiac allograft rejection through the suppression of desialylation modification. Cell Mol Biol Lett 2024; 29:128. [PMID: 39354345 PMCID: PMC11443917 DOI: 10.1186/s11658-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUNDS Acute transplant rejection is a major component of poor prognoses for organ transplantation. Owing to the multiple complex mechanisms involved, new treatments are still under exploration. Endometrial regenerative cells (ERCs) have been widely used in various refractory immune-related diseases, but the role of ERC-derived exosomes (ERC-Exos) in alleviating transplant rejection has not been extensively studied. Signaling lymphocyte activation molecule family 6 (SLAMF6) plays an important role in regulating immune responses. In this study, we explored the main mechanism by which ERC-Exos loaded with siSLAMF6 can alleviate allogeneic transplant rejection. METHODS C57BL/6 mouse recipients of BALB/c mouse kidney transplants were randomly divided into four groups and treated with exosomes. The graft pathology was evaluated by H&E staining. Splenic and transplanted heart immune cell populations were analyzed by flow cytometry. Recipient serum cytokine profiles were determined by enzyme-linked immunosorbent assay (ELISA). The proliferation and differentiation capacity of CD4+ T cell populations were evaluated in vitro. The α-2,6-sialylation levels in the CD4+ T cells were determined by SNA blotting. RESULTS In vivo, mice treated with ERC-siSLAMF6 Exo achieved significantly prolonged allograft survival. The serum cytokine profiles of the recipients were significantly altered in the ERC-siSLAMF6 Exo-treated recipients. In vitro, we found that ERC-siSLAMF6-Exo considerably downregulated α-2,6-sialyltransferase (ST6GAL1) expression in CD4+ T cells, and significantly reduced α-2,6-sialylation levels. Through desialylation, ERC-siSLAMF6 Exo therapy significantly decreased CD4+ T cell proliferation and inhibited CD4+ T cell differentiation into Th1 and Th17 cells while promoting regulatory T cell (Treg) differentiation. CONCLUSIONS Our study indicated that ERC-Exos loaded with siSLAMF6 reduce the amount of sialic acid connected to α-2,6 at the end of the N-glycan chain on the CD4+ T cell surface, increase the number of therapeutic exosomes endocytosed into CD4+ T cells, and inhibit the activation of T cell receptor signaling pathways, which prolongs allograft survival. This study confirms the feasibility of using ERC-Exos as natural carriers combined with gene therapy, which could be used as a potential therapeutic strategy to alleviate allograft rejection.
Collapse
Affiliation(s)
- Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yafei Qin
- Department of Vascular Surgery, Henan Provincial People's Hospital, The Affiliated People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yiyi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Pengyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guangmei Yang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xu Liu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
46
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
47
|
Zhang W, Chen T, Zhao H, Ren S. Glycosylation in aging and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1208-1220. [PMID: 39225075 PMCID: PMC11466714 DOI: 10.3724/abbs.2024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 09/04/2024] Open
Abstract
Aging, a complex biological process, involves the progressive decline of physiological functions across various systems, leading to increased susceptibility to neurodegenerative diseases. In society, demographic aging imposes significant economic and social burdens due to these conditions. This review specifically examines the association of protein glycosylation with aging and neurodegenerative diseases. Glycosylation, a critical post-translational modification, influences numerous aspects of protein function that are pivotal in aging and the pathophysiology of diseases such as Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. We highlight the alterations in glycosylation patterns observed during aging, their implications in the onset and progression of neurodegenerative diseases, and the potential of glycosylation profiles as biomarkers for early detection, prognosis, and monitoring of these age-associated conditions, and delve into the mechanisms of glycosylation. Furthermore, this review explores their role in regulating protein function and mediating critical biological interactions in these diseases. By examining the changes in glycosylation profiles associated with each part, this review underscores the potential of glycosylation research as a tool to enhance our understanding of aging and its related diseases.
Collapse
Affiliation(s)
- Weilong Zhang
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Tian Chen
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Huijuan Zhao
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shifang Ren
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
48
|
Jaiyesimi O, Kuppuswamy S, Zhang G, Batan S, Zhi W, Ganta VC. Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia. Arterioscler Thromb Vasc Biol 2024; 44:1764-1783. [PMID: 38934117 PMCID: PMC11323258 DOI: 10.1161/atvbaha.124.320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.
Collapse
Affiliation(s)
- Olukemi Jaiyesimi
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sivaraman Kuppuswamy
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Guangwei Zhang
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Sonia Batan
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Center for Biotechnology and Genomic Medicine (W.Z.), Augusta University, GA
| | - Vijay C Ganta
- Vascular Biology Center and Department of Medicine (J.O., S.K., G.Z., S.B., V.C.G.), Augusta University, GA
| |
Collapse
|
49
|
Mencke R, Al Ali L, de Koning MSLY, Pasch A, Minnion M, Feelisch M, van Veldhuisen DJ, van der Horst ICC, Gansevoort RT, Bakker SJL, de Borst MH, van Goor H, van der Harst P, Lipsic E, Hillebrands JL. Serum Calcification Propensity Is Increased in Myocardial Infarction and Hints at a Pathophysiological Role Independent of Classical Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2024; 44:1884-1894. [PMID: 38899469 DOI: 10.1161/atvbaha.124.320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS T50 was measured by nephelometry in 347 patients from the GIPS-III trial (Metabolic Modulation With Metformin to Reduce Heart Failure After Acute Myocardial Infarction: Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction: a Randomized Controlled Trial) and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Lawien Al Ali
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Marie-Sophie L Y de Koning
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland (A.P.)
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Austria (A.P.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Dirk J van Veldhuisen
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | | | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, the Netherlands (P.v.d.H.)
| | - Erik Lipsic
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| |
Collapse
|
50
|
Baek S, Chang JW, Yoo SM, Choo J, Jung S, Nah J, Jung YK. TMEM9 activates Rab9-dependent alternative autophagy through interaction with Beclin1. Cell Mol Life Sci 2024; 81:322. [PMID: 39078420 PMCID: PMC11335249 DOI: 10.1007/s00018-024-05366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protein 9 (TMEM9) is a transmembrane protein that regulates lysosomal acidification by interacting with the v-type ATPase complex. However, the role of TMEM9 in the lysosome-dependent autophagy machinery has yet to be identified. In this study, we demonstrate that the lysosomal protein TMEM9, which is involved in vesicle acidification, regulates Rab9-dependent alternative autophagy through its interaction with Beclin1. The cytosolic domain of TMEM9 interacts with Beclin1 via its Bcl-2-binding domain. This interaction between TMEM9 and Beclin1 dissociates Bcl-2, an autophagy-inhibiting partner, from Beclin1, thereby activating LC3-independent and Rab9-dependent alternative autophagy. Late endosomal and lysosomal TMEM9 apparently colocalizes with Rab9 but not with LC3. Furthermore, we show that multiple glycosylation of TMEM9, essential for lysosomal localization, is essential for its interaction with Beclin1 and the activation of Rab9-dependent alternative autophagy. These findings reveal that TMEM9 recruits and activates the Beclin1 complex at the site of Rab9-dependent autophagosome to induce alternative autophagy.
Collapse
Affiliation(s)
- Sohyeon Baek
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae-Woong Chang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seung-Min Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - JeongRim Choo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sunmin Jung
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jihoon Nah
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, 28644, South Korea.
- Department of Biochemistry, Chungbuk National University, Cheongju, 28644, South Korea.
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|