1
|
Hsu CW, Fang YC, Li JF, Cheng CA. Decoding Complex Biological Milieus: SHINER's Approach to Profiling and Functioning of Extracellular Vesicle Subpopulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503638. [PMID: 40255212 DOI: 10.1002/smll.202503638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs) are celebrated for their pivotal roles in cellular communication and their potential in disease diagnosis and therapeutic applications. However, their inherent heterogeneity acts as a double-edged sword, complicating the isolation of specific EV subpopulations. Conventional EV isolation methods often fall short, relying on biophysical properties, while affinity-based techniques may compromise EV integrity and utility with harsh recovery conditions. To address these limitations, the SHINER (subpopulation homogeneous isolation and nondestructive EV release) workflow is introduced, which redefines how EVs are isolated and recoverd, featuring the innovative SWITCHER (switchable extracellular vesicle releaser) tool. The SHINER workflow facilitates the precise purification and gentle recovery of target EV subpopulations from complex biological mixtures, preserving their structural integrity and biological functionality. Importantly, SHINER demonstrates exceptional adaptability to multiple markers and clinical applications. It not only enhances the ability to trace EV origins for accurate disease diagnosis but also advances fundamental EV research and provides standardized EV materials for therapeutic innovations. By improving the understanding of EVs and enabling the development of personalized diagnostics and treatments, SHINER propels EV-based science into new frontiers of advanced medicine, offering transformative potential for healthcare.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Yao-Ching Fang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Jhih-Fong Li
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| |
Collapse
|
2
|
Sakhare S, Sanap A, Bhonde R, Behera S, Potdar P, Kheur S, Kharat A. Dialysis and lyophilization of the mesenchymal stromal cell secretome for wound healing. Cytotherapy 2025; 27:544-551. [PMID: 39818643 DOI: 10.1016/j.jcyt.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AIMS The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications. METHODS AND RESULTS We dialyzed the UC-MSC-S using Slide-A-Lyzer G3 Dialysis Cassettes (20K MWCO) and then lyophilized it to obtain secretome powder. The DS fraction exhibited an 86.01-fold decrease compared with S, whereas LDS showed a 613.71-fold increase in the total protein concentration. Growth factor analysis revealed a significant decrease in the levels of interleukin-6 (IL-6; 54.44-fold), angiopoietin-1 (79.56-fold), angiopoietin-2 (51.76-fold), IL-8 (54.4-fold), platelet endothelial cell adhesion molecule-1 (PECAM-1; 63.25-fold), phosphatidylinositol glycan anchor biosynthesis class F (PIGF; 40.42-fold), vascular endothelial growth factor (VEGF; 39.64-fold), and tumor necrosis factor alpha (TNF-α; 24.62-fold) after dialysis as analyzed by the LEGEND plex multi-analyte flow assay kit on a FACS analyzer. Post-lyophilization, the levels of IL-6 (392.21-fold), angiopoietin-1 (823.04-fold), angiopoietin-2 (397.69-fold), IL-8 (584.83-fold), PECAM-1 (341.28-fold), PIGF (342.85-fold), VEGF (2209.42-fold), and TNF-α (194.4-fold) were enriched in LDS. The highest wound closure (64.07%) and a significant increase in angiogenesis were seen in DLS at the concentration of 1 µg/µL of protein by wound scratch and in ovo yolk sac membrane assay, respectively. CONCLUSIONS Dialysis followed by lyophilization is a simple and cost-effective method to fractionate and enrich the bioactive components of MSC-S without compromising the bioactivity for tailor-made applications.
Collapse
Affiliation(s)
- Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India
| | - Shubhanath Behera
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| |
Collapse
|
3
|
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, Ashraf A, Rizwan M, Kesari KK, Tabish TA, Thorat ND. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio 2025; 31:101613. [PMID: 40161926 PMCID: PMC11950786 DOI: 10.1016/j.mtbio.2025.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/01/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in exosome isolation technologies are pivotal for transforming personalized medicine and enhancing clinical diagnostics. Exosomes, small extracellular vesicles with diameters ranging between 30 and 150 nm, are secreted into bodily fluids by a variety of cells and play essential roles in intercellular communication. These vesicles facilitate the transfer of nucleic acids, lipids, and proteins, affecting a wide range of biological and pathological processes. Given their importance in disease diagnostics, therapy, and as biomarkers, there has been a surge in developing methods to isolate them from fluids such as urine, saliva, blood, and cerebrospinal fluid. While traditional isolation techniques like ultracentrifugation and polymer-based precipitation have been foundational, recent technological advances have introduced more precise methods like microfluidics and immunoaffinity capture. These newer methods enable high-throughput and specific exosome isolation by targeting surface markers, thus enhancing purity. However, challenges such as balancing purity with yield and the lack of standardized protocols across different laboratories persist, impacting the consistency of findings. By integrating advanced isolation techniques and discussing their implications in diagnostics and therapy, this review aims to catalyze further research and adoption of exosome-based technologies in medicine, marking a significant stride towards tailored healthcare solutions.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Centre for Infectious Diseases & Microbiology, School of Public Health Sciences and Technology, Malla Reddy Vishwavidyapeeth, Hyderabad 500 055, Telangana, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology, West Bengal, Kolkata, 712102, India
| | - Swastika Maitra
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Department of Physics and Bernal Institute, University of Limerick, Castletroy, Limerick V94T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| |
Collapse
|
4
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
5
|
Luther K, Navaei A, Gens L, Semple C, Moharil P, Passalacqua I, Vyas K, Wang Q, Liu SL, Sun L, Ramaswamy S, Zocco D, Nabhan JF. Scalable production and purification of engineered ARRDC1-mediated microvesicles in a HEK293 suspension cell system. Sci Rep 2025; 15:7299. [PMID: 40025043 PMCID: PMC11873033 DOI: 10.1038/s41598-025-87674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/21/2025] [Indexed: 03/04/2025] Open
Abstract
Engineering of human ARRDC1-mediated microvesicles (ARMMs) as non-viral vehicles for delivery of gene therapies bears the potential to enable novel therapeutic paradigms. We evaluated two scalable strategies to generate ARMMs loaded with protein cargo, by transient transfection or stable cell line-based production. The upstream ARMMs production processes utilized a suspension-adapted HEK293-derived line, termed 5B8. 5B8 cells yielded robust production of ARMMs after transient transfection with the ARMMs loading construct or using a stable cell line containing a transgene that encodes the ARMMs loading cassette, in shake flasks or a stirred tank bioreactor, respectively. ARMMs were purified by ultracentrifugation (small scale) or a combination of TFF and AEX (scalable production). Both purification methods produced comparable ARMMs, in terms of size and payload incorporation. Single particle analysis showed approximately 50% were payload-containing ARMMs. Additionally, an in vivo study was conducted in mice to investigate the half-life and biodistribution of ARMMs administered intravenously. ARMMs showed rapid biodistribution predominantly to the spleen and liver and, to a lesser extent, kidneys, and lungs. The half-life of ARMMs in plasma was 6 ± 0.4 min. Altogether, this work advances knowledge on scale-up of engineered cell-derived vesicles for future in vivo delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kristin Luther
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA.
| | - Ali Navaei
- Lonza Cell & Gene Technologies, Lonza Walkersville Inc., Walkersville, MD, 21793, USA
| | - Leah Gens
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Carson Semple
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Pearl Moharil
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | | | - Komal Vyas
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Qiyu Wang
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Shu-Lin Liu
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Lucy Sun
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA
| | - Senthil Ramaswamy
- Lonza Cell & Gene Technologies, Lonza Walkersville Inc., Walkersville, MD, 21793, USA
| | - Davide Zocco
- Lonza Siena, Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Joseph F Nabhan
- Vesigen Therapeutics, 790 Memorial Drive, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Páramo JA, Cenarro A, Civeira F, Roncal C. Extracellular vesicles in atherosclerosis: Current and forthcoming impact. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100718. [PMID: 38714381 DOI: 10.1016/j.arteri.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/09/2024]
Abstract
Atherosclerosis is the main pathogenic substrate for cardiovascular diseases (CVDs). Initially categorized as a passive cholesterol storage disease, nowadays, it is considered an active process, identifying inflammation among the key players for its initiation and progression. Despite these advances, patients with CVDs are still at high risk of thrombotic events and death, urging to deepen into the molecular mechanisms underlying atherogenesis, and to identify novel diagnosis and prognosis biomarkers for their stratification. In this context, extracellular vesicles (EVs) have been postulated as an alternative in search of novel biomarkers in atherosclerotic diseases, as well as to investigate the crosstalk between the cells participating in the processes leading to arterial remodelling. EVs are nanosized lipidic particles released by most cell types in physiological and pathological conditions, that enclose lipids, proteins, and nucleic acids from parental cells reflecting their activation status. First considered cellular waste disposal systems, at present, EVs have been recognized as active effectors in a myriad of cellular processes, and as potential diagnosis and prognosis biomarkers also in CVDs. This review summarizes the role of EVs as potential biomarkers of CVDs, and their involvement into the processes leading to atherosclerosis.
Collapse
Affiliation(s)
- José A Páramo
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain; Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain
| | - Ana Cenarro
- CIBERCV, ISCIII, Madrid, Spain; Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Civeira
- CIBERCV, ISCIII, Madrid, Spain; Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain.
| |
Collapse
|
7
|
Budayr OM, Miller BC, Nguyen J. Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications. J Control Release 2025; 378:266-280. [PMID: 39657892 PMCID: PMC11830559 DOI: 10.1016/j.jconrel.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Small extracellular vesicles (EVs) are a diverse group of lipid-based particles that are ≤200 nm in diameter and contain an aqueous core. EVs have been shown to mediate intercellular communications between a wide array of immune cells; the downstream effects are diverse and have potential implications for the development of novel immunotherapeutic treatments. Despite a high volume of studies addressing the role EVs play in the immune system, our understanding of the crosstalk between T cells and cancer cells remains limited. Here, we discuss how EVs derived from cancer cells modulate T cell functions and conversely, how T cell derived EVs are crucial in modulating adaptive immune functions. In the context of cancer, tumor derived EVs (TD-EVs) halt T cell-mediated immunity by interfering with effector functions and enhancing regulatory T cell (Treg) functions. In contrast, EVs derived from effector T cells can serve to stimulate anticancer immunity, curbing metastasis and tumor growth. These findings highlight important aspects of how EVs can both mediate the therapeutic effects of T cells as well as impair T cell-mediated immunity. This calls for a deeper understanding of EV-mediated effects in order to advance them as next-generation therapeutics and nanocarriers.
Collapse
Affiliation(s)
- Omar M Budayr
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Teng Y, Luo C, Qiu X, Mu J, Sriwastva MK, Xu Q, Liu M, Hu X, Xu F, Zhang L, Park JW, Hwang JY, Kong M, Liu Z, Zhang X, Xu R, Yan J, Merchant ML, McClain CJ, Zhang HG. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat Commun 2025; 16:1295. [PMID: 39900923 PMCID: PMC11790884 DOI: 10.1038/s41467-025-56498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Diet has emerged as a key impact factor for gut microbiota function. However, the complexity of dietary components makes it difficult to predict specific outcomes. Here we investigate the impact of plant-derived nanoparticles (PNP) on gut microbiota and metabolites in context of cancer immunotherapy with the humanized gnotobiotic mouse model. Specifically, we show that ginger-derived exosome-like nanoparticle (GELN) preferentially taken up by Lachnospiraceae and Lactobacillaceae mediated by digalactosyldiacylglycerol (DGDG) and glycine, respectively. We further demonstrate that GELN aly-miR159a-3p enhances anti-PD-L1 therapy in melanoma by inhibiting the expression of recipient bacterial phospholipase C (PLC) and increases the accumulation of docosahexaenoic acid (DHA). An increased level of circulating DHA inhibits PD-L1 expression in tumor cells by binding the PD-L1 promoter and subsequently prevents c-myc-initiated transcription of PD-L1. Colonization of germ-free male mice with gut bacteria from anti-PD-L1 non-responding patients supplemented with DHA enhances the efficacy of anti-PD-L1 therapy compared to controls. Our findings reveal a previously unknown mechanistic impact of PNP on human tumor immunotherapy by modulating gut bacterial metabolic pathways.
Collapse
Affiliation(s)
- Yun Teng
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| | - Chao Luo
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Central Laboratory, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaolan Qiu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Mukesh K Sriwastva
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Qingbo Xu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Minmin Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Lifeng Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Juw Won Park
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Jae Yeon Hwang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Maiying Kong
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Zhanxu Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Raobo Xu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
9
|
Park J, Lee YT, Agopian VG, Liu JS, Koltsova EK, You S, Zhu Y, Tseng HR, Yang JD. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications. Clin Mol Hepatol 2025; 31:S255-S284. [PMID: 39604328 PMCID: PMC11925447 DOI: 10.3350/cmh.2024.0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary liver malignancy often diagnosed at an advanced stage, resulting in a poor prognosis. Accurate risk stratification and early detection of HCC are critical unmet needs for improving outcomes. Several blood-based biomarkers and imaging tests are available for early detection, prediction, and monitoring of HCC. However, serum protein biomarkers such as alpha-fetoprotein have shown relatively low sensitivity, leading to inaccurate performance. Imaging studies also face limitations related to suboptimal accuracy, high cost, and limited implementation. Recently, liquid biopsy techniques have gained attention for addressing these unmet needs. Liquid biopsy is non-invasive and provides more objective readouts, requiring less reliance on healthcare professional's skills compared to imaging. Circulating tumor cells, cell-free DNA, and extracellular vesicles are targeted in liquid biopsies as novel biomarkers for HCC. Despite their potential, there are debates regarding the role of these novel biomarkers in the HCC care continuum. This review article aims to discuss the technical challenges, recent technical advancements, advantages and disadvantages of these liquid biopsies, as well as their current clinical application and future directions of liquid biopsy in HCC.
Collapse
Affiliation(s)
- Jaeho Park
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi-Te Lee
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vatche G Agopian
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica S Liu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ekaterina K Koltsova
- Smidt Heart Institute, Department of Medicine, Department of Biomedical Sciences, 8700 Beverly Blvd, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Figueroa‐Hall LK, Burrows K, Alarbi AM, Hannafon BN, Hladik C, Tan C, Ramesh R, Stewart JL, Risbrough VB, Paulus MP, Teague TK. Comparison of Methods for Isolation and Characterization of Total and Astrocyte-Enriched Extracellular Vesicles From Human Serum and Plasma. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70035. [PMID: 39958973 PMCID: PMC11826443 DOI: 10.1002/jex2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025]
Abstract
Extracellular vesicles (EV) which play critical roles in intercellular communication, have garnered interest as biomarkers with researchers studying brain-related disease processes due to their ability to be isolated from various biofluids. Astrocytes, a type of glial cell, play a critical role in neuronal regulation and function. As such, EV enriched from astrocytes can be used to interrogate cargo and identify mechanisms by which astrocytes communicate with other cells of the central nervous system or shed light on pathophysiological conditions. This manuscript compared five EV isolation methods (differential ultracentrifugation [dUC], precipitation, precipitation + purification, silicon carbon resin and size exclusion chromatography [SEC]) using small volumes of human plasma and serum with a focus on immunocapture of astrocyte-enriched EV (AEEV), with the excitatory amino acid transporter 1, or GLAST. Methods were evaluated on yield, purity, recovery and downstream application to include immunoassays for tetraspanin, immune and astrocyte markers. Results revealed that whilst precipitation-based methods such as ExoQuick yielded higher EV concentrations, size exclusion (SmartSEC, qEV) provided greater purity, emphasizing a trade-off between yield and purity. This study provides a comprehensive resource for researchers in selecting EV isolation methods tailored to small biobanked clinical samples, with the goal of advancing biomarker discovery in Neuroscience.
Collapse
Affiliation(s)
- Leandra K. Figueroa‐Hall
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Oxley College of Health and Natural SciencesThe University of TulsaTulsaOklahomaUSA
| | | | - Ahlam M. Alarbi
- Integrative Immunology CenterUniversity of Oklahoma (OU)TulsaOklahomaUSA
| | - Bethany N. Hannafon
- Department of Obstetrics and GynecologyOU Health Sciences Center (OUHSC)Oklahoma CityOklahomaUSA
- Department of Cell BiologyOUHSCOklahoma CityOklahomaUSA
- OU Health Stephenson Cancer CenterOklahoma CityOklahomaUSA
| | - Cole Hladik
- Department of Obstetrics and GynecologyOU Health Sciences Center (OUHSC)Oklahoma CityOklahomaUSA
- Department of Cell BiologyOUHSCOklahoma CityOklahomaUSA
| | - Chibing Tan
- Integrative Immunology CenterUniversity of Oklahoma (OU)TulsaOklahomaUSA
| | - Rajagopal Ramesh
- OU Health Stephenson Cancer CenterOklahoma CityOklahomaUSA
- Department of PathologyOUHSCOklahoma CityOklahomaUSA
| | - Jennifer L. Stewart
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Oxley College of Health and Natural SciencesThe University of TulsaTulsaOklahomaUSA
| | - Victoria B. Risbrough
- VA Center of Excellence for Stress and Mental HealthLa JollaCaliforniaUSA
- Department of PsychiatryUniversity of CaliforniaSan Diego, La JollaCaliforniaUSA
| | - Martin P. Paulus
- Laureate Institute for Brain ResearchTulsaOklahomaUSA
- Oxley College of Health and Natural SciencesThe University of TulsaTulsaOklahomaUSA
| | - T. Kent Teague
- Integrative Immunology CenterUniversity of Oklahoma (OU)TulsaOklahomaUSA
- Department of Biochemistry and MicrobiologyThe Oklahoma State University Center for Health SciencesTulsaOklahomaUSA
- Department of Pharmaceutical SciencesOUHSCOklahoma CityOklahomaUSA
- Departments of Surgery and PsychiatrySchool of Community MedicineOU, TulsaOklahomaUSA
| |
Collapse
|
11
|
Zarovni N, Mladenović D, Brambilla D, Panico F, Chiari M. Stoichiometric constraints for detection of EV-borne biomarkers in blood. J Extracell Vesicles 2025; 14:e70034. [PMID: 39901737 PMCID: PMC11791308 DOI: 10.1002/jev2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Stochiometric issues, encompassing both the quantity and heterogeneity of extracellular vesicles (EVs) derived from tumour or other tissues in blood, pose important challenges across various stages of biomarker discovery and detection, affecting the integrity of data, introducing losses and artifacts during blood processing, EV purification and analysis. These challenges shape the diagnostic utility of EVs especially within the framework of established and emerging methodologies. By addressing these challenges, we aim to delineate crucial parameters and requirements for tumour-specific EV detection, or more precisely, for tumour identification via EV based assays. Our endeavour involves a comprehensive examination of the layers that mask or confound the traceability of EV markers such as nucleic acids and proteins, and focus on 'low prevalence-low concentration' scenario. Finally, we evaluate the advantages versus limitations of single-particle analysers over more conventional bulk assays, suggesting that the combined use of both to capture and interpret the EV signals, in particular the EV surface displayed proteins, may ultimately provide quantitative information on their absolute abundance and distribution.
Collapse
Affiliation(s)
| | - Danilo Mladenović
- HansaBioMed Life Sciences OÜTallinnEstonia
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Dario Brambilla
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Federica Panico
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Marcella Chiari
- RoseBioMilanItaly
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| |
Collapse
|
12
|
Muttiah B, Law JX. Milk-derived extracellular vesicles and gut health. NPJ Sci Food 2025; 9:12. [PMID: 39885215 PMCID: PMC11782608 DOI: 10.1038/s41538-025-00375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Milk is a nutrient-rich liquid produced by mammals, offering various health benefits due to its composition of proteins, fats, carbohydrates, vitamins, and minerals. Beyond traditional nutritional aspects, recent research has focused on extracellular vesicles (EVs) found in milk and their potential health benefits, especially for gastrointestinal (GI) health. Milk-derived EVs have been shown to influence gut microbiota, promote gut barrier integrity, support tissue repair and regeneration, modulate immune responses, and potentially aid in managing conditions like inflammatory bowel disease (IBD) and colorectal cancer. This review discusses the current understanding of milk-EVs' effects on gut health, highlighting their potential therapeutic applications and future research directions. These findings underscore the promising role of milk-derived EVs in advancing GI health and therapeutics, paving the way for innovative approaches in oral drug delivery and targeted treatments for GI disorders.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
14
|
Khristov V, Weber SR, Caton-Darby M, Campbell G, Sundstrom JM. Diagnostic and Therapeutic Utility of Extracellular Vesicles in Ocular Disease. Int J Mol Sci 2025; 26:836. [PMID: 39859553 PMCID: PMC11765869 DOI: 10.3390/ijms26020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells, with prominent roles in both physiological and pathological processes. The size, number, and molecular composition of released EVs correlate to the cells of origin, modulated by the cell's environment and pathologic state. The proteins, DNA, RNA, and protein cargo carried by EVs are protected by degradation, with a prominent role in targeted intercellular signaling. These properties make EVs salient targets as both carriers of biomarkers and potential therapeutic delivery vehicles. The majority of EV research has focused on blood, urine, saliva, and cerebrospinal fluid due to easy accessibility. EVs have also been identified and studied in all ocular biofluids, including the vitreous humor, the aqueous humor, and the tear film, and the study of EVs in ocular disease is a new, promising, and underexplored direction with unique challenges and considerations. This review covers recent advances in the diagnostic and therapeutic use of ocular EVs, with a focus on human applications and key preceding in vitro and in vivo animal studies. We also discuss future directions based on the study of EVs in other organ systems and disease sates.
Collapse
Affiliation(s)
- Vladimir Khristov
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Sarah R. Weber
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Mireille Caton-Darby
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Gregory Campbell
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| |
Collapse
|
15
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
16
|
Ahmad M, Liu Y, Huang S, Huo Y, Yi G, Liu C, Jamil W, Yang X, Zhang W, Li Y, Xiang D, Huoqing H, Liu S, Wang W, Li C. Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from Fusarium oxysporum f. sp. cubense. PLANTS (BASEL, SWITZERLAND) 2024; 13:3534. [PMID: 39771233 PMCID: PMC11679526 DOI: 10.3390/plants13243534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) produced by Fusarium oxysporum f. sp. cubense (Foc) play vital roles in plant-pathogen interactions; however, the isolation of purified Foc TR4-EVs and their pathogenicity and proteomic profiles are not well studied. This study aims to isolate and characterize purified Foc TR4-EVs and compare their pathogenic effects and protein profiles with crude TR4-EVs. Foc TR4-EVs were isolated using ultracentrifugation and purified by iodixanol gradient centrifugation. After characterization and evaluation of the pathogenicity effects on banana leaves, LC-MS/MS was performed to conduct the proteomics assay. Results indicated that Fraction 2 EVs exhibited clearer spherical structures (TEM), excessive abundance (1.70 × 109 particles/mL), greater intensity (400 a.u), mean size (154.5 nm), moderate protein content (333.16 ng/µL), and protein profile (25-77 kDa), which were superior to Fractions 1, 3, and crude EVs. Crude EVs displayed significant background interference with EV structures (TEM), highest abundance (2.11 × 109 particles/mL), lower intensity (7.0 a.u), higher protein content (528.33 ng/µL), and higher molecular weight proteins (55-70 kDa) compared to gradient EVs. A non-significant biocontrol effect of Foc-EVs on the growth of TR4 spores was observed. Pathogenicity assays revealed that crude EVs caused the largest (2.805 cm2), while Fraction 2 (1.386 cm2) and Fraction 3 (1.255 cm2) resulted in moderate lesions on banana leaves. Proteomic analysis identified 807 unique proteins in Fraction 2, enriched in pathways related to EV trafficking and signaling. In comparison, crude EVs contained 179 unique non-EV proteins related to metabolism and secondary metabolites, indicating that non-EV proteins of crude EVs also influence the pathogenicity observed in banana leaves. This study emphasizes the importance of EV purification, with Fraction 2 being a critical focus for future research on Foc EV pathogenicity.
Collapse
Affiliation(s)
- Mudassar Ahmad
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yushan Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shiyi Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yile Huo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chongfei Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wajeeha Jamil
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaofang Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuqing Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dandan Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Huang Huoqing
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siwen Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Ham YM, Kang Y, Kang SJ, Lee S, Lee J, Rhee WJ. Advanced Enrichment and Separation of Extracellular Vesicles through the Super Absorbent Polymer Nanosieves. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65863-65876. [PMID: 39560656 DOI: 10.1021/acsami.4c14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Extracellular vesicles (EVs) are promising therapeutic biomaterials capable of transferring their cargo molecules and external drugs to other cells in vivo and contain various biomarkers that can be used in liquid biopsies. The clinical application of EVs requires an efficient EV enrichment system for the large-scale production or high-throughput isolation of EVs from liquid samples, such as culture media, plant juices, and body fluids. However, current EV enrichment methods, such as ultrafiltration and ultracentrifugation, have limited applicability owing to their associated costs, inefficiency, scalability, and centrifugation time. Herein, we describe the development of a nanosieve based on a superabsorbent polymer for selective EV enrichment. The nanosieve absorbs small molecules while expelling large molecules, such as EVs, through the nanosized channels. We successfully concentrated EVs from clinical samples, such as serum and plasma, with superior cost and time efficiencies. The nanosieves did not interact with the EVs during enrichment, allowing the retention of their therapeutic functions. In addition, the nanosieve surface was specifically engineered to provide multifunctionality to effectively promote EV capture from bulk solutions. Overall, our nanosieve-based EV enrichment method is effective, time- and cost-saving, versatile, scalable, and modulable, and is an excellent option for EV production.
Collapse
Affiliation(s)
- Yoo Min Ham
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yubin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soobin Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiyoon Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Burgelman M, Dujardin P, Willems A, Hochepied T, Van Imschoot G, Van Wonterghem E, Van Hoecke L, Vandendriessche C, Vandenbroucke RE. Challenging the conventional wisdom: Re-evaluating Smpd3's role in extracellular vesicle biogenesis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70015. [PMID: 39525277 PMCID: PMC11544639 DOI: 10.1002/jex2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/27/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, impacting diverse physiological and pathological processes. Current in vitro EV biogenesis studies often utilize pharmacological inhibitors, inducing off-target effects and overlooking cell-specific production nuances. Addressing these limitations, we utilized CRISPR/Cas9 to generate heterozygous full-body and conditional sphingomyelin phosphodiesterase 3 (Smpd3) knockout (KO) transgenic mice. Smpd3, also known as neutral sphingomyelinase 2 (nSMase2), triggers membrane curvature through sphingomyelin hydrolysis to ceramide, thereby influencing exosome release. Intriguingly, Smpd3 deficiency demonstrated no impact on EV release both in vitro and in vivo, underscoring its potential cell-type-specific role in EV biogenesis. Notably, bone marrow derived macrophages (BMDMs) did exhibit reduced EV release upon Alix deletion. Our findings open avenues for subsequent inquiries, enriching our knowledge of EV biogenesis and illuminating intercellular communication in health and disease.
Collapse
Affiliation(s)
- Marlies Burgelman
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Pieter Dujardin
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Anthony Willems
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Tino Hochepied
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Griet Van Imschoot
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Lien Van Hoecke
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
19
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
20
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
21
|
Wang J, Xie F, He Q, Gu R, Zhang S, Su X, Pan X, Zhang T, Karrar E, Li J, Wu W, Chen C. Hybrid nanovesicles derived from grapes and tomatoes with synergistic antioxidative activity. Biomater Sci 2024; 12:5631-5643. [PMID: 39377178 DOI: 10.1039/d4bm00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Edible plants, rich in antioxidant compounds, offer defense against oxidative stress-induced cellular damage. However, the antioxidative benefits of edible plant-derived molecules are limited due to their instability, poor solubility, and low bioavailability. Plant-derived nanovesicles (PDNVs) have emerged as the next-generation nanotherapeutics and delivery platforms; yet, challenges including low purity, significant heterogeneity, insufficient enrichment of bioactive component and compromised therapeutic efficacy limit their application. In this study, a solvent-assisted vesicle hybridization technique was developed to engineer hybrid plant-derived nanovesicles (PDNVs), exemplified by grape and tomato-derived nanovesicles (GT-HNVs), which outperform their natural counterparts. The GT-HNVs demonstrated superior stability, enhanced radical-scavenging capabilities, and greater cellular uptake efficiency. Notably, GT-HNVs significantly reduced reactive oxygen species (ROS) levels and improved antioxidative enzyme activities in L-02 cells. Moreover, they mitigated oxidative stress-induced mitochondrial damage, restoring the membrane potential and morphology. Collectively, these findings underscore the therapeutic potential of hybrid PDNVs and offer an innovative strategy for their future research.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Fangting Xie
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Qiuxia He
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Siqin Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueqi Su
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Xueping Pan
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Tianyu Zhang
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Emad Karrar
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Jian Li
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Weijing Wu
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, 361018, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| |
Collapse
|
22
|
Oshchepkova A, Chernikov I, Miroshnichenko S, Patutina O, Markov O, Savin I, Staroseletz Y, Meschaninova M, Puchkov P, Zhukov S, Kupryushkin M, Maslov M, Sen’kova A, Vlassov V, Chernolovskaya E, Zenkova M. Extracellular vesicle mimetics as delivery vehicles for oligonucleotide-based therapeutics and plasmid DNA. Front Bioeng Biotechnol 2024; 12:1437817. [PMID: 39493304 PMCID: PMC11528538 DOI: 10.3389/fbioe.2024.1437817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Small membrane particles called extracellular vesicles (EVs) transport biologically active cargo between cells, providing intercellular communication. The clinical application of EVs is limited due to the lack of scalable and cost-effective approaches for their production and purification, as well as effective loading strategies. Methods Here we used EV mimetics produced by cell treatment with the actin-destabilizing agent cytochalasin B as an alternative to EVs for the delivery of therapeutic nucleic acids. Results Cytochalasin-B-inducible nanovesicles (CINVs) delivered a fully modified N-(methanesulfonyl)- or mesyl (µ-) antisense oligonucleotide to B16 melanoma cells, selectively decreasing the level of target microRNA-21 with effectiveness comparable to that observed upon Lipofectamine 2000-mediated delivery. The efficiency of the CINV-mediated delivery of plasmid DNA encoding EGFP varied depending on the type of recipient cells. Surprisingly, under experimental conditions, CINVs were unable to deliver both modified and natural short RNA duplexes-small interfering RNA and immunostimulatory RNA-probably due to their poor loading into CINVs. Discussion CINVs demonstrated unique properties for the delivery of therapeutic nucleic acids, especially for antisense oligonucleotide-based therapy.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ivan Chernikov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Svetlana Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olga Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Innokenty Savin
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Yaroslav Staroseletz
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mariya Meschaninova
- Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Pavel Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow, Russia
| | - Sergey Zhukov
- Laboratory of Nucleic Acids Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Maxim Kupryushkin
- Laboratory of Nucleic Acids Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mikhail Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow, Russia
| | - Aleksandra Sen’kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
23
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Khan A, Raza F, He N. Nanoscale Extracellular Vesicle-Enabled Liquid Biopsy: Advances and Challenges for Lung Cancer Detection. MICROMACHINES 2024; 15:1181. [PMID: 39459055 PMCID: PMC11509190 DOI: 10.3390/mi15101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Lei Z, Krishnamachary B, Khan NZ, Ji Y, Li Y, Li H, Brunner K, Faden AI, Jones JW, Wu J. Spinal cord injury disrupts plasma extracellular vesicles cargoes leading to neuroinflammation in the brain and neurological dysfunction in aged male mice. Brain Behav Immun 2024; 120:584-603. [PMID: 38986724 PMCID: PMC11269008 DOI: 10.1016/j.bbi.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Balaji Krishnamachary
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kavitha Brunner
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
27
|
Poupardin R, Wolf M, Maeding N, Paniushkina L, Geissler S, Bergese P, Witwer KW, Schallmoser K, Fuhrmann G, Strunk D. Advances in Extracellular Vesicle Research Over the Past Decade: Source and Isolation Method are Connected with Cargo and Function. Adv Healthc Mater 2024; 13:e2303941. [PMID: 38270559 DOI: 10.1002/adhm.202303941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/26/2024]
Abstract
The evolution of extracellular vesicle (EV) research has introduced nanotechnology into biomedical cell communication science while recognizing what is formerly considered cell "dust" as constituting an entirely new universe of cell signaling particles. To display the global EV research landscape, a systematic review of 20 364 original research articles selected from all 40 684 EV-related records identified in PubMed 2013-2022 is performed. Machine-learning is used to categorize the high-dimensional data and further dissected significant associations between EV source, isolation method, cargo, and function. Unexpected correlations between these four categories indicate prevalent experimental strategies based on cargo connectivity with function of interest being associated with certain EV sources or isolation strategies. Conceptually relevant association of size-based EV isolation with protein cargo and uptake function will guide strategic conclusions enhancing future EV research and product development. Based on this study, an open-source database is built to facilitate further analysis with conventional or AI tools to identify additional causative associations of interest.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Martin Wolf
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Liliia Paniushkina
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25121, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Firenze, 50121, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, 35122, Italy
| | - Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katharina Schallmoser
- Institute of Transfusion Medicine, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Gregor Fuhrmann
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
- Institute of Transfusion Medicine, Paracelsus Medical University, Salzburg, 5020, Austria
| |
Collapse
|
28
|
Aghajanloo B, Hadady H, Ejeian F, Inglis DW, Hughes MP, Tehrani AF, Nasr-Esfahani MH. Biomechanics of circulating cellular and subcellular bioparticles: beyond separation. Cell Commun Signal 2024; 22:331. [PMID: 38886776 PMCID: PMC11181607 DOI: 10.1186/s12964-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.
Collapse
Affiliation(s)
- Behrouz Aghajanloo
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Science, Research and Technology (DISAT), Politecnico di Torino, Turin, Italy
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
29
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
30
|
Effah CY, Ding X, Drokow EK, Li X, Tong R, Sun T. Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis. Front Immunol 2024; 15:1296061. [PMID: 38420121 PMCID: PMC10899385 DOI: 10.3389/fimmu.2024.1296061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Sepsis is one of the medical conditions with a high mortality rate and lacks specific treatment despite several years of extensive research. Bacterial extracellular vesicles (bEVs) are emerging as a focal target in the pathophysiology and treatment of sepsis. Extracellular vesicles (EVs) derived from pathogenic microorganisms carry pathogenic factors such as carbohydrates, proteins, lipids, nucleic acids, and virulence factors and are regarded as "long-range weapons" to trigger an inflammatory response. In particular, the small size of bEVs can cross the blood-brain and placental barriers that are difficult for pathogens to cross, deliver pathogenic agents to host cells, activate the host immune system, and possibly accelerate the bacterial infection process and subsequent sepsis. Over the years, research into host-derived EVs has increased, leading to breakthroughs in cancer and sepsis treatments. However, related approaches to the role and use of bacterial-derived EVs are still rare in the treatment of sepsis. Herein, this review looked at the dual nature of bEVs in sepsis by highlighting their inherent functions and emphasizing their therapeutic characteristics and potential. Various biomimetics of bEVs for the treatment and prevention of sepsis have also been reviewed. Finally, the latest progress and various obstacles in the clinical application of bEVs have been highlighted.
Collapse
Affiliation(s)
- Clement Yaw Effah
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Xianfei Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Emmanuel Kwateng Drokow
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Biostatistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Ran Tong
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| | - Tongwen Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Zhengzhou, China
- Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou, China
| |
Collapse
|
31
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
32
|
Malvicini R, De Lazzari G, Tolomeo AM, Santa-Cruz D, Ullah M, Cirillo C, Grumati P, Pacienza N, Muraca M, Yannarelli G. Influence of the isolation method on characteristics and functional activity of mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 2024; 26:157-170. [PMID: 38069981 DOI: 10.1016/j.jcyt.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AIMS Extracellular vesicle (EV) isolation methods are based on different physicochemical properties and may result in the purification of distinct EV populations. We compared two different isolation methods suitable for producing clinical-grade mesenchymal stromal cell-derived EVs (MSC-EVs)-ion exchange chromatography (IEX) and ultrafiltration (UF)-and evaluated their impact on the composition and functional properties of EVs. METHODS EVs were purified from conditioned culture medium using an anion exchange resin (IEX) or Amicon filters with a 100-kDa cutoff (UF) (MilliporeSigma, Burlington, MA, USA). We assessed nanoparticle size and distribution by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) and morphology by transmission electron microscopy. We also measured protein, lipid and total RNA concentration and immunophenotyped both EV populations by flow cytometry (MACSPlex assay; Miltenyi Biotec, Bergisch Gladbach, Germany). Moreover, immunomodulatory activity was tested using a standardized macrophage polarization assay and T-cell stimulation assay. Finally, proteomic analysis and cytokine quantification were carried out to better characterize both EV populations. RESULTS We found by both TRPS and NTA that IEX and UF yielded a comparable amount of total particles with similar size and distribution. In addition, a similar quantity of lipids was obtained with the two procedures. However, IEX yielded 10-fold higher RNA quantity and a larger amount of proteins than UF. MSC-EVs isolated from IEX and UF were positive for the exosome markers CD9, CD63 and CD81 and showed a comparable surface marker expression pattern. Both populations demonstrated immunomodulatory activity in vitro, as they prevented acquisition of the M1 phenotype in lipopolysaccharide-stimulated macrophages and inhibited acquisition of the activation markers CD69 and CD25 on T cells, but the IEX-EVs exerted a significantly greater immunomodulatory effect on both macrophages and T cells compared with UF-EVs. Proteomic analysis and gene ontology enrichment analysis revealed no major differences between the preparations. Finally, cytokine quantification revealed that IEX-EVs were more enriched in some crucial anti-inflammatory and immunomodulatory cytokines (e.g., IL-2, IL-10, transforming growth factor beta and vascular endothelial growth factor) compared with UF-EVs. CONCLUSIONS MSC-EVs isolated by IEX and UF displayed similar physicochemical, phenotypic and functional characteristics. In our conditions, both EV populations demonstrated important anti-inflammatory activity in macrophages and T cells. However, IEX-EVs were more potent than UF-EVs, which may indicate the superiority of this method for the production of clinical-grade EVs.
Collapse
Affiliation(s)
- Ricardo Malvicini
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Department of Women's and Children's Health, University of Padua, Padua, Italy; Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria, Padua, Italy.
| | - Giada De Lazzari
- Department of Women's and Children's Health, University of Padua, Padua, Italy; Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria, Padua, Italy; Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Diego Santa-Cruz
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy; Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy; Laboratory of Extracellular Vesicles as Therapeutic Tools, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; LIFELAB Program, Consorzio per la Ricerca Sanitaria, Padua, Italy
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
34
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Didamoony MA, Soubh AA, Atwa AM, Ahmed LA. Innovative preconditioning strategies for improving the therapeutic efficacy of extracellular vesicles derived from mesenchymal stem cells in gastrointestinal diseases. Inflammopharmacology 2023; 31:2973-2993. [PMID: 37874430 PMCID: PMC10692273 DOI: 10.1007/s10787-023-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal (GI) diseases have become a global health issue and an economic burden due to their wide distribution, late prognosis, and the inefficacy of recent available medications. Therefore, it is crucial to search for new strategies for their management. In the recent decades, mesenchymal stem cells (MSCs) therapy has attracted attention as a viable option for treating a myriad of GI disorders such as hepatic fibrosis (HF), ulcerative colitis (UC), acute liver injury (ALI), and non-alcoholic fatty liver disease (NAFLD) due to their regenerative and paracrine properties. Importantly, recent studies have shown that MSC-derived extracellular vesicles (MSC-EVs) are responsible for most of the therapeutic effects of MSCs. In addition, EVs have revealed several benefits over their parent MSCs, such as being less immunogenic, having a lower risk of tumour formation, being able to cross biological barriers, and being easier to store. MSC-EVs exhibited regenerative, anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic effects in different experimental models of GI diseases. However, a key issue with their clinical application is the maintenance of their stability and efficacy following in vivo transplantation. Preconditioning of MSC-EVs or their parent cells is one of the novel methods used to improve their effectiveness and stability. Herein, we discuss the application of MSC-EVs in several GI disorders taking into account their mechanism of action. We also summarise the challenges and restrictions that need to be overcome to promote their clinical application in the treatment of various GI diseases as well as the recent developments to improve their effectiveness. A representation of the innovative preconditioning techniques that have been suggested for improving the therapeutic efficacy of MSC-EVs in GI diseases. The pathological conditions in various GI disorders (ALI, UC, HF and NAFLD) create a harsh environment for EVs and their parents, increasing the risk of apoptosis and senescence of MSCs and thereby diminishing MSC-EVs yield and restricting their large-scale applications. Preconditioning with pharmacological agents or biological mediators can improve the therapeutic efficacy of MSC-EVs through their adaption to the lethal environment to which they are subjected. This can result in establishment of a more conducive environment and activation of numerous vital trajectories that act to improve the immunomodulatory, reparative and regenerative activities of the derived EVs, as a part of MSCs paracrine system. ALI, acute liver injury; GI diseases, gastrointestinal diseases; HF, hepatic fibrosis; HSP, heat shock protein; miRNA, microRNA; mRNA, messenger RNA; MSC-EVs, mesenchymal stem cell-derived extracellular vesicles; NAFLD, non-alcoholic fatty liver disease; UC, ulcerative colitis.
Collapse
Affiliation(s)
- Manar A Didamoony
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt.
| | - Ayman A Soubh
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Ahram Canadian University, 4th Industrial Zone, Banks Complex, 6th of October City, Giza, 12451, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Egyptian Russian University, Cairo, 11829, Egypt
| | - Lamiaa A Ahmed
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
36
|
Yáñez-Mó M, Siljander PR. Editorial- Insights of extracellular vesicles in cell biology. Eur J Cell Biol 2023; 102:151327. [PMID: 37330395 DOI: 10.1016/j.ejcb.2023.151327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023] Open
Affiliation(s)
- María Yáñez-Mó
- Dept Biología Molecular, Universidad Autónoma de Madrid, IUBM, Centro de Biología Molecular Severo Ochoa, IIS-IP, Madrid, Spain
| | - Pia Rm Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Cuadrado-Payán E, Ramírez-Bajo MJ, Bañón-Maneus E, Rovira J, Diekmann F, Revuelta I, Cucchiari D. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers. Front Immunol 2023; 14:1154650. [PMID: 37662919 PMCID: PMC10469977 DOI: 10.3389/fimmu.2023.1154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody-mediated rejection is the leading cause of kidney graft dysfunction. The process of diagnosing it requires the performance of an invasive biopsy and subsequent histological examination. Early and sensitive biomarkers of graft damage and alloimmunity are needed to identify graft injury and eventually limit the need for a kidney biopsy. Moreover, other scenarios such as delayed graft function or interstitial fibrosis and tubular atrophy face the same problem. In recent years, interest has grown around extracellular vesicles, specifically exosomes actively secreted by immune cells, which are intercellular communicators and have shown biological significance. This review presents their potential as biomarkers in kidney transplantation and alloimmunity.
Collapse
Affiliation(s)
- Elena Cuadrado-Payán
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Elisenda Bañón-Maneus
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Revuelta
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDINREN), Insituto de Salud Carlos III, Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| |
Collapse
|
38
|
Benayas B, Morales J, Gori A, Strada A, Gagni P, Frigerio R, Egea C, Armisén P, Cretich M, Yáñez-Mó M. Proof of concept of using a membrane-sensing peptide for sEVs affinity-based isolation. Front Bioeng Biotechnol 2023; 11:1238898. [PMID: 37636002 PMCID: PMC10457001 DOI: 10.3389/fbioe.2023.1238898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: One main limitation in biomarker studies using EVs is the lack of a suitable isolation method rendering high yield and purity samples in a quick and easily standardized procedure. Here we report an affinity isolation method with a membrane-sensing peptide (MSP) derived from bradykinin. Methods: We designed a protocol based on agarose beads carrying cation chelates to specifically bind to the 6His-tagged membrane-sensing peptide. This approach presents several advantages: 1) cation-carrying agaroses are widely used and standardized for His-tagged protein isolation, 2) the affinity protocol can be performed in small volumes, feasible and manageable for clinical routine and 3) elution with imidazole or EDTA allows a gentle and easy recovery without EV damage, facilitating subsequent characterization and functional analyses. Results: The optimized final procedure incubates 0.5 mg of peptide for 10 min with 10 µL of Long-arm Cobalt agarose before an overnight incubation with concentrated cell conditioned medium. EV downstream analyses can be directly performed on the agarose beads adding lysis or nucleic-acid extraction buffers, or gently eluted with imidazole or EDTA, rendering a fully competent EV preparation. Discussion: This new isolation methodology is based on the recognition of general membrane characteristics independent of surface markers. It is thus unbiased and can be used in any species EV sample, even in samples from animal or plant species against which no suitable antibodies exist. Being an affinity method, the sample handling protocol is very simple, less time-consuming, does not require specialized equipment and can be easily introduced in a clinical automated routine. We demonstrated the high purity and yield of the method in comparison with other commercially available kits. This method can also be scale up or down, with the possibility of analyzing very low amounts of sample, and it is compatible with any downstream analyses thanks to the gentle elution procedure.
Collapse
Affiliation(s)
- Beatriz Benayas
- Agarose Bead Technologies (ABT), Torrejon de Ardoz, Spain
- Department Biología Molecular, Universidad Autónoma de Madrid, IUBM, Centro de Biología Molecular Severo Ochoa, IIS-IP, Madrid, Spain
| | - Joaquín Morales
- Department Biología Molecular, Universidad Autónoma de Madrid, IUBM, Centro de Biología Molecular Severo Ochoa, IIS-IP, Madrid, Spain
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Alessandro Strada
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Roberto Frigerio
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - Carolina Egea
- Agarose Bead Technologies (ABT), Torrejon de Ardoz, Spain
| | - Pilar Armisén
- Agarose Bead Technologies (ABT), Torrejon de Ardoz, Spain
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Milan, Italy
| | - María Yáñez-Mó
- Department Biología Molecular, Universidad Autónoma de Madrid, IUBM, Centro de Biología Molecular Severo Ochoa, IIS-IP, Madrid, Spain
| |
Collapse
|
39
|
Tang Y, Liu X, Sun M, Xiong S, Xiao N, Li J, He X, Xie J. Recent Progress in Extracellular Vesicle-Based Carriers for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2023; 15:1902. [PMID: 37514088 PMCID: PMC10384044 DOI: 10.3390/pharmaceutics15071902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-based vesicles released by cells that play a critical role in various physiological and pathological processes. They act as vehicles for transporting a variety of endogenous cargo molecules, enabling intercellular communication. Due to their natural properties, EVs have emerged as a promising "cell-free therapy" strategy for treating various diseases, including cancer. They serve as excellent carriers for different therapeutics, including nucleic acids, proteins, small molecules, and other nanomaterials. Modifying or engineering EVs can improve the efficacy, targeting, specificity, and biocompatibility of EV-based therapeutics for cancer therapy. In this review, we comprehensively outline the biogenesis, isolation, and methodologies of EVs, as well as their biological functions. We then focus on specific applications of EVs as drug carriers in cancer therapy by citing prominent recent studies. Additionally, we discuss the opportunities and challenges for using EVs as pharmaceutical drug delivery vehicles. Ultimately, we aim to provide theoretical and technical support for the development of EV-based carriers for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xingyou Liu
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Meng Sun
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianchao Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
40
|
Benayas B, Morales J, Egea C, Armisén P, Yáñez‐Mó M. Optimization of extracellular vesicle isolation and their separation from lipoproteins by size exclusion chromatography. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e100. [PMID: 38939075 PMCID: PMC11080862 DOI: 10.1002/jex2.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2024]
Abstract
Interest in the use of extracellular vesicles (EVs) as biomarkers of disease is rapidly growing. However, one main unsolved issue in the EV field is finding a technique able to eliminate non-EV contaminants present in biofluid samples in a one-step isolation protocol. Due to the expansion and value of size exclusion chromatography (SEC) as one of the best EV isolation methods, we have tested several agarose resins with different agarose percentages, bead sizes and crosslinking features to optimize EV isolation. For this optimization of SEC, we first employed conditioned media from a melanoma cell culture, a simpler sample in comparison to biological fluids, but which also contains abundant contaminants such as soluble protein and lipoproteins (LPPs). The distinct agaroses and the combinations of resins with different agarose percentages in the same column were tested. Soluble protein, EVs and LPPs levels from the different eluted fractions were quantitated by immunodetection or absorbance measurements. Samples were also analysed by NTA and TEM to verify the yield and the LPP contamination. Different percentages of agarose resins (2%, 4% and 6%) yielded samples with increasing LPP contamination respectively, which was not improved in the columns that combined them. Crosslinking of the agarose did not affect EV isolation yield nor the LPP contamination. In contrast, reducing the bead size greatly improved EV purity. We thus selected 4% Rapid Run Fine agarose beads as the resin that more efficiently isolated EVs with almost no contamination of other particles. Using blood plasma samples, this resin also demonstrated an improved capacity in the isolation of EVs from LPPs in comparison to the agaroses most commonly used in the field and differential ultracentrifugation.
Collapse
Affiliation(s)
- Beatriz Benayas
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| | - Joaquín Morales
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| | - Carolina Egea
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
| | - Pilar Armisén
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
| | - María Yáñez‐Mó
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| |
Collapse
|
41
|
Elsherbini A, Zhu Z, Quadri Z, Crivelli SM, Ren X, Vekaria HJ, Tripathi P, Zhang L, Zhi W, Bieberich E. Novel Isolation Method Reveals Sex-Specific Composition and Neurotoxicity of Small Extracellular Vesicles in a Mouse Model of Alzheimer's Disease. Cells 2023; 12:1623. [PMID: 37371093 PMCID: PMC10297289 DOI: 10.3390/cells12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We developed a new method to isolate small extracellular vesicles (sEVs) from male and female wild-type and 5xFAD mouse brains to investigate the sex-specific functions of sEVs in Alzheimer's disease (AD). A mass spectrometric analysis revealed that sEVs contained proteins critical for EV formation and Aβ. ExoView analysis showed that female mice contained more GFAP and Aβ-labeled sEVs, suggesting that a larger proportion of sEVs from the female brain is derived from astrocytes and/or more likely to bind to Aβ. Moreover, sEVs from female brains had more acid sphingomyelinase (ASM) and ceramide, an enzyme and its sphingolipid product important for EV formation and Aβ binding to EVs, respectively. We confirmed the function of ASM in EV formation and Aβ binding using co-labeling and proximity ligation assays, showing that ASM inhibitors prevented complex formation between Aβ and ceramide in primary cultured astrocytes. Finally, our study demonstrated that sEVs from female 5xFAD mice were more neurotoxic than those from males, as determined by impaired mitochondrial function (Seahorse assays) and LDH cytotoxicity assays. Our study suggests that sex-specific sEVs are functionally distinct markers for AD and that ASM is a potential target for AD therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Simone M. Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Xiaojia Ren
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA;
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Wenbo Zhi
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| |
Collapse
|
42
|
Kangas P, Nyman TA, Metsähonkala L, Burns C, Tempest R, Williams T, Karttunen J, Jokinen TS. Towards optimised extracellular vesicle proteomics from cerebrospinal fluid. Sci Rep 2023; 13:9564. [PMID: 37308520 PMCID: PMC10261101 DOI: 10.1038/s41598-023-36706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
The proteomic profile of extracellular vesicles (EVs) from cerebrospinal fluid (CSF) can reveal novel biomarkers for diseases of the brain. Here, we validate an ultrafiltration combined with size-exclusion chromatography (UF-SEC) method for isolation of EVs from canine CSF and probe the effect of starting volume on the EV proteomics profile. First, we performed a literature review of CSF EV articles to define the current state of art, discovering a need for basic characterisation of CSF EVs. Secondly, we isolated EVs from CSF by UF-SEC and characterised the SEC fractions by protein amount, particle count, transmission electron microscopy, and immunoblotting. Data are presented as mean ± standard deviation. Using proteomics, SEC fractions 3-5 were compared and enrichment of EV markers in fraction 3 was detected, whereas fractions 4-5 contained more apolipoproteins. Lastly, we compared starting volumes of pooled CSF (6 ml, 3 ml, 1 ml, and 0.5 ml) to evaluate the effect on the proteomic profile. Even with a 0.5 ml starting volume, 743 ± 77 or 345 ± 88 proteins were identified depending on whether 'matches between runs' was active in MaxQuant. The results confirm that UF-SEC effectively isolates CSF EVs and that EV proteomic analysis can be performed from 0.5 ml of canine CSF.
Collapse
Affiliation(s)
- Petra Kangas
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Liisa Metsähonkala
- Epilepsia Helsinki, Member of ERN-EpiCARE, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Tim Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jenni Karttunen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Zhang Q, Jeppesen DK, Higginbotham JN, Franklin JL, Coffey RJ. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat Protoc 2023; 18:1462-1487. [PMID: 36914899 PMCID: PMC10445291 DOI: 10.1038/s41596-023-00811-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/10/2023] [Indexed: 03/16/2023]
Abstract
There is an increasing appreciation for the heterogeneous nature of extracellular vesicles (EVs). In addition, two nonvesicular extracellular nanoparticles (NVEPs), exomeres and supermeres, have been discovered recently that are enriched in many cargo previously ascribed to EVs. The EV field has largely focused on EV isolation and characterization, while studies on NVEPs are limited. At this juncture, it is critically important to have robust and reliable methods to separate distinct populations of EVs and NVEPs to assign cargo to their correct carrier. Here, we provide a comprehensive step-by-step protocol for sequential isolation of large and small EVs, nonvesicular fractions, exomeres and supermeres from the same starting material. We describe in detail the use of differential ultracentrifugation, filtration, concentration and high-resolution density-gradient fractionation to obtain purified fractions of distinct populations of EVs and NVEPs. This protocol allows assignment and enrichment of a biomolecule of interest to its specific extracellular compartment. Compared to other isolation methods, our protocol has unique advantages, including high purity and reproducibility, with minimal expertise required. The protocol can be applied to purification of EVs and NVEPs from cell culture medium and human plasma and requires ~72 h to complete. Adoption of this protocol will help translational investigators identify potential circulating biomarkers and therapeutic targets for a host of human diseases and allow basic scientists to better understand EV and NVEP biogenesis and function. Overall, this protocol will allow those interested in isolating EVs and extracellular particles to advance scientific inquiry to answer outstanding questions in the field.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
44
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
45
|
Barranco I, Sanchez-López CM, Bucci D, Alvarez-Barrientos A, Rodriguez-Martinez H, Marcilla A, Roca J. The Proteome of Large or Small Extracellular Vesicles in Pig Seminal Plasma Differs, Defining Sources and Biological Functions. Mol Cell Proteomics 2023; 22:100514. [PMID: 36796643 PMCID: PMC10017305 DOI: 10.1016/j.mcpro.2023.100514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023] Open
Abstract
Seminal plasma contains many morphologically heterogeneous extracellular vesicles (sEVs). These are sequentially released by cells of the testis, epididymis, and accessory sex glands and involved in male and female reproductive processes. This study aimed to define in depth sEV subsets isolated by ultrafiltration and size exclusion chromatography, decode their proteomic profiles using liquid chromatography-tandem mass spectrometry, and quantify identified proteins using sequential window acquisition of all theoretical mass spectra. The sEV subsets were defined as large (L-EVs) or small (S-EVs) by their protein concentration, morphology, size distribution, and EV-specific protein markers and purity. Liquid chromatography-tandem mass spectrometry identified a total of 1034 proteins, 737 of them quantified by SWATH in S-EVs, L-EVs, and non-EVs-enriched samples (18-20 size exclusion chromatography-eluted fractions). The differential expression analysis revealed 197 differentially abundant proteins between both EV subsets, S-EVs and L-EVs, and 37 and 199 between S-EVs and L-EVs versus non-EVs-enriched samples, respectively. The gene ontology enrichment analysis of differentially abundant proteins suggested, based on the type of protein detected, that S-EVs could be mainly released through an apocrine blebbing pathway and be involved in modulating the immune environment of the female reproductive tract as well as during sperm-oocyte interaction. In contrast, L-EVs could be released by fusion of multivesicular bodies with the plasma membrane becoming involved in sperm physiological processes, such as capacitation and avoidance of oxidative stress. In conclusion, this study provides a procedure capable of isolating subsets of EVs from pig seminal plasma with a high degree of purity and shows differences in the proteomic profile between EV subsets, indicating different sources and biological functions for the sEVs.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, Valencia, Spain
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | | | | | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
46
|
Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram" of Organ Function, Disfunction and Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:5. [PMID: 36729313 DOI: 10.1007/s00005-023-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 02/03/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.
Collapse
|
47
|
Khristov V, Lin A, Freedman Z, Staub J, Shenoy G, Mrowczynski O, Rizk E, Zacharia B, Connor J. Tumor-Derived Biomarkers in Liquid Biopsy of Glioblastoma. World Neurosurg 2023; 170:182-194. [PMID: 36347463 DOI: 10.1016/j.wneu.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
There is a pressing clinical need for minimally invasive liquid biopsies to supplement imaging in the treatment of glioblastoma. Diagnostic imaging is often difficult to interpret and the medical community is divided on distinguishing among complete response, partial response, stable disease, and progressive disease. A minimally invasive liquid biopsy would supplement imaging and clinical findings and has the capacity to be helpful in several ways: 1) diagnosis, 2) selection of patients for specific treatments, 3) tracking of treatment response, and 4) prognostic value. The liquid biome is the combination of biological fluids including blood, urine, and cerebrospinal fluid that contain small amounts of tumor cells, DNA/RNA coding material, peptides, and metabolites. Within the liquid biome, 2 broad categories of biomarkers can exist: tumor-derived, which can be directly traced to the tumor, and tumor-associated, which can be traced back to the response of the body to disease. Although tumor-associated biomarkers are promising liquid biopsy candidates, recent advances in biomarker enrichment and detection have allowed concentration on a new class of biomarker: tumor-derived biomarkers. This review focuses on making the distinction between the 2 biomarker categories and highlights promising new direction.
Collapse
Affiliation(s)
- Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA.
| | - Andrea Lin
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Zachary Freedman
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Jacob Staub
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Oliver Mrowczynski
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Brad Zacharia
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| |
Collapse
|
48
|
MMP-9 as Prognostic Marker for Brain Tumours: A Comparative Study on Serum-Derived Small Extracellular Vesicles. Cancers (Basel) 2023; 15:cancers15030712. [PMID: 36765669 PMCID: PMC9913777 DOI: 10.3390/cancers15030712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours.
Collapse
|
49
|
Lopez K, Lai SWT, Lopez Gonzalez EDJ, Dávila RG, Shuck SC. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Front Cell Dev Biol 2023; 11:1154576. [PMID: 37025182 PMCID: PMC10071009 DOI: 10.3389/fcell.2023.1154576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse set of membrane-derived particles released from cells and are found in numerous biological matrices and the extracellular space. Specific classes of EVs include apoptotic bodies, exosomes, and microvesicles, which vary in their size, origin, membrane protein expression, and interior cargo. EVs provide a mechanism for shuttling cargo between cells, which can influence cell physiology by transporting proteins, DNA, and RNA. EVs are an abundant component of the tumor microenvironment (TME) and are proposed to drive tumor growth and progression by communicating between fibroblasts, macrophages, and tumor cells in the TME. The cargo, source, and type of EV influences the pro- or anti-tumoral role of these molecules. Therefore, robust EV isolation and characterization techniques are required to ensure accurate elucidation of their association with disease. Here, we summarize different EV subclasses, methods for EV isolation and characterization, and a selection of current clinical trials studying EVs. We also review key studies exploring the role and impact of EVs in the TME, including how EVs mediate intercellular communication, drive cancer progression, and remodel the TME.
Collapse
|
50
|
Chang C, Tang X, Li W. A Modified Differential Centrifugation Protocol for Isolation and Quantitation of Extracellular Heat Shock Protein 90 (eHsp90). Methods Mol Biol 2023; 2693:251-261. [PMID: 37540440 DOI: 10.1007/978-1-0716-3342-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Studies of the past 15 years have revealed a critical role for extracellular heat shock protein 90alpha (eHsp90α) in the development of several human disorders, including wound healing, cachexia (muscle wasting), inflammatory diseases, and cancers. The two established functions of highly purified eHsp90α protein are to promote cell survival and to stimulate cell migration. However, the mechanism of secretion and the method of isolation of eHsp90α remained to be standardized. Among the half a dozen reported methodologies, differential centrifugation is considered the "gold standard" largely for its quantitative recovery of eHsp90α from a conditioned medium of cultured cells. Herein, we describe a revised protocol that isolates three fractions of extracellular vesicles with distinct ranges of diameters and the leftover vesicle-free supernatant for biochemical analyses, especially eHsp90α, from tumor cell-conditioned media. Quantitation of the relative amount of eHsp90α can be carried out with known amounts of recombinant Hsp90α protein on the same SDS-PAGE. We believe that this modified methodology will prove to be a useful tool for studying eHsp90α in cultured cells and beyond.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA.
| | - Xin Tang
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA
| | - Wei Li
- Department of Dermatology the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA, USA
| |
Collapse
|