1
|
Liu L, Shi X, Jia L, Wang R, Liu C. Natural Compounds and Health Benefits of Ganoderma capense. Molecules 2025; 30:2250. [PMID: 40430421 PMCID: PMC12114035 DOI: 10.3390/molecules30102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Ganoderma capense, a member of the Ganoderma genus within the Polyporaceae family, has long been recognized for its high nutritional value and extensive use in traditional medicine. Its primary distribution is in China and South Africa, with the type locality being South Africa. This species is rich in a diverse array of bioactive compounds, including various polysaccharides, glycopeptide macromolecules, and various small-molecule compounds, such as sesquiterpenes, triterpenes, steroids, and alkaloids. Research indicates that these chemical constituents exhibit numerous pharmacological properties, including antioxidant, anti-inflammatory, and anti-tumor activities, as well as inhibition of acetylcholinesterase, reduction in blood lipids, and promotion of neural synapse growth. Apart from its use in traditional Chinese medicine, the components of G. capense are utilized globally for the treatment of a wide range of diseases, including Alzheimer's disease, febrile convulsions, HIV, and diabetes. This underscores the extensive medical applications of G. capense, emphasizing its significance in contemporary and traditional healthcare. This review summarizes the latest research findings on the bioactive compounds and pharmacological effects of G. capense, compiled from databases such as PubMed, Web of Science, and Elsevier. This study aimed at providing researchers in this field with in-depth scientific insights and guidance, promoting further application and development in the pharmaceutical and food industries, and serving as a reference for subsequent exploration of active substances and the development of new disease treatments.
Collapse
Affiliation(s)
- Longshi Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Xinge Shi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Longkang Jia
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Ran Wang
- College of Food and Biotechnology, Changchun Polytechnic University, Changchun 130033, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| |
Collapse
|
2
|
Li J, Miao Y, Guo C, Tang Y, Xin S, Fan Z, Su Y, Li Q. Ultrasound combined mechanical wall-breaking extraction of new Ganoderma leucocontextum polysaccharides and their application as a structural and functional improver in set fat-free goat yogurt production. Food Chem 2025; 468:142374. [PMID: 39674011 DOI: 10.1016/j.foodchem.2024.142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Herein, we investigate the yield, micro-structures, rheological properties and bioactivities of new Ganoderma leucocontextum polysaccharide (GLPUBE) obtained from Kangding via ultrasound combined mechanical wall-breaking extraction (UBE), and examine the effect of GLPUBE as a structural and functional improver on the physicochemical, sensory, aromatic, water-holding capacity (WHC), textural, rheological, micro-structural and protein structural properties, and bioactivities of set fat-free goat yogurt (set-FGY). Through response surface optimisation, the extracted GLPUBE achieved a maximum yield of 2.18 %, showing good apparent viscosity and elastic behaviour in 3 % aqueous solution as well as good micro-structure and significant anti-oxidant and anti-diabetic activities. The presence of 0.12 % GLPUBE significantly improved the WHC, pH, acidity, textural and rheological properties, protein concentration and secondary structure, but had no effect on the protein primary structure in set-FGY production. The addition of 0.12 % GLPUBE had an excellent ability in promoting sensory acceptance; total solid, and total polyphenol contents, WHC, pH, acidity, texture, free amino acid contents, viscosity, rheology and aroma properties; enhancing anti-oxidant and anti-diabetic abilities; inhibiting protein degradation; and maintaining the micro-structure and stability of the primary and secondary structures of protein complex of set-FGY during 21 days of storage. Therefore, GLPUBE can be used as an innovative structural and functional improver in set fat-free yogurt industry.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yuzhi Miao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Caifu Guo
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Ying Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Songling Xin
- Sichuan Cuisine Development and Research Center, Sichuan Tourism University, Chengdu 610100, China
| | - Zixi Fan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yanqiu Su
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Qi Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, China
| |
Collapse
|
3
|
Peng S, Ou Y, Zhang Y, Yao H, Chen WH. Extraction Optimization and Bioactivity of Polysaccharides from Ganoderma leucocontextum Spores. Pharmaceuticals (Basel) 2025; 18:241. [PMID: 40006054 PMCID: PMC11859662 DOI: 10.3390/ph18020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Oxidative stress is associated with the occurrence and progress of aging. Natural polysaccharides have attracted considerable attention in the field of antioxidants and anti-aging products due to their superior biological activity and low toxicity. Ganoderma leucocontextum is primarily found in the Tibetan plateau region and is classified as a subspecies of Ganoderma. Known as the famous white Ganoderma, it is a precious food and medicine that has potent biological activity, including antitumor, hypoglycemic, and immune regulation. Since available resources are limited, there are few studies on the spore of Ganoderma leucocontextum. Methods: In this work, a polysaccharide (named GLSP) was extracted from the spore of Ganoderma leucocontextum using a fast, simple, efficient, and environmentally friendly extraction process: the three-phase partitioning (TPP) method. Results: The extraction condition was optimized under the Box-Behnken design (BBD): ratio of the solute to the solvent, 1:21.126 (w/v); (NH4)2SO4 concentration, 30% (w/v); ratio of the slurry to tert-butanol, 1:1.945 (v/v); and shaking temperature, 54.136 °C. Furthermore, a polysaccharide termed GLSP-A1 was purified from GLSP by column chromatography. The basic physicochemical properties were analyzed by molecular weight, Fourier transform infrared spectroscopy, monosaccharide composition, and scanning electron microscopy. Conclusions: GLSP-A1 down-regulated the expression of the pro-inflammation cytokines interleukin-6 and interleukin-1β, indicating favorable in vitro anti-inflammatory properties. In vivo, the effect of GLSP-A1 on aging was examined using the Caenorhabditis model. The results showed that GLSP-A1 reduced reactive oxygen species levels and lipofuscin accumulation. In general, these findings improve our understanding of the chemical content and bioactivity of a polysaccharide from Ganoderma leucocontextum spore and highlight the possibility of GLSP-A1 being utilized in dietary supplements for its anti-aging properties.
Collapse
Affiliation(s)
- Siying Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.O.); (Y.Z.)
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China;
| |
Collapse
|
4
|
Hosseini Nasab N, Raza H, Eom YS, Shah FH, Kwak JH, Kim SJ. Exploring chalcone-sulfonyl piperazine hybrids as anti-diabetes candidates: design, synthesis, biological evaluation, and molecular docking study. Mol Divers 2025; 29:43-59. [PMID: 38775996 DOI: 10.1007/s11030-024-10831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 02/02/2025]
Abstract
To address the escalating rates of diabetes mellitus worldwide, there is a growing need for novel compounds. The demand for more affordable and efficient methods of managing diabetes is increasing due to the inevitable side effects associated with existing antidiabetic medications. In this present research, various chalcone-sulfonyl piperazine hybrid compounds (5a-k) were designed and synthesized to develop inhibitors against alpha-glucosidase and alpha-amylase. In addition, several spectroscopic methods, including FT-IR, 1H-NMR, 13C-NMR, and HRMS, were employed to confirm the exact structures of the synthesized derivatives. All synthesized compounds were evaluated for their ability to inhibit alpha-glucosidase and alpha-amylase in vitro using acarbose as the reference standard and they showed excellent to good inhibitory potentials. Compound 5k exhibited excellent inhibitory activity against alpha-glucosidase (IC50 = 0.31 ± 0.01 µM) and alpha-amylase (IC50 = 4.51 ± 1.15 µM), which is 27-fold more active against alpha-glucosidase and 7-fold more active against alpha-amylase compared to acarbose, which had IC50 values of 8.62 ± 1.66 µM for alpha-glucosidase and 30.97 ± 2.91 µM for alpha-amylase. It was discovered from the Lineweaver-Burk plot that 5k exhibited competitive inhibition against alpha-glucosidase. Furthermore, cytotoxicity screening assay results against human fibroblast HT1080 cells showed that all compounds had a good level of safety profile. To explore the binding interactions of the most potent compound (5k) with the active site of enzymes, molecular docking research was conducted, and the results obtained supported the experimental data.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea.
| |
Collapse
|
5
|
Yuan WN, Jin LX, Luo SJ, Yuan MW, Cai ZN, Qin HB. Concise total synthesis of (±)-applanatumol Y. Org Biomol Chem 2025; 23:814-816. [PMID: 39661008 DOI: 10.1039/d4ob01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Total synthesis of (±)-applanatumol Y was achieved in 5 steps, featuring a cascade annulation including Michael addition, aldol condensation, and oxy-Michael addition reactions, all promoted by DBU. This approach offers a streamlined and cost-effective route for constructing complex tricyclic frameworks under mild and metal-free conditions.
Collapse
Affiliation(s)
- Wan-Ning Yuan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ling-Xin Jin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Song-Juan Luo
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ming-Wei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, China
| | - Zhao-Nan Cai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Hong-Bo Qin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| |
Collapse
|
6
|
Yang F, Wang H, Chen LQ, Zhou N, Lu JJ, Pu XX, Wan B, Wang L, Liu SJ. Clostridium lapidicellarium sp. nov. and Clostridium moutaii sp. nov., two species isolated from fermentation cellar-producing sauce-flavour Chinese baijiu. Int J Syst Evol Microbiol 2024; 74. [PMID: 39560674 DOI: 10.1099/ijsem.0.006580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Clostridium is an important microbial component in pit mud due to its ability to produce alcohol and short-chain fatty acids. This study presents the characterization and taxonomy of two Gram-stain-positive, strictly anaerobic, rod-shaped mesophilic bacterial strains, designated MT-113T and MT-5T, isolated from pit mud in a fermentation cellar used for producing sauce-flavour Chinese baijiu. Phylogenetic analysis based on genome and 16S rRNA gene sequences of strains MT-113T and MT-5T indicates their affiliation with the genus Clostridium sensu stricto (Cluster I of the Clostridia), with C. luticellarii FW431T and C. aromativorans WLY-B-L2T as the closest related species. The major cellular fatty acids (>10.0%) of both strains are C14 : 0 and summed feature 1 (iso-C15 : 1 h and/or C13 : 0 3-OH). The G+C molar contents of the complete genomes for strains MT-113T and MT-5T are 35.84 and 32.74 mol%, respectively. The average nucleotide identity and average amino acid identity values between strains MT-113T, MT-5T, C. aromativorans WLY-B-L2T and C. luticellarii FW431T range from 79 to 85%. The primary products of glucose fermentation by MT-113T are acetic, butyric and isovaleric acids, while those of MT-5T are acetic, isobutyric, butyric and isovaleric acids. Based on their phenotypic, chemotaxonomic and phylogenetic characteristics, strains MT-113T (=CGMCC 1.18018T = JCM 36532T) and MT-5T (=CGMCC 1.18016T = JCM 36530T) are proposed as the type strains of two novel species of the genus Clostridium, namely Clostridium lapidicellarium sp. nov. and Clostridium moutaii sp. nov., respectively.
Collapse
Affiliation(s)
- Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Hui Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | | | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian-Jun Lu
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Xiu-Xin Pu
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Bo Wan
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi 564501, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
7
|
Hu J, Li GF, Xu FM, Li Q, Lv T, Peng TF, Yin S, Gong W. Antibacterial lanostane triterpenoids from Ganoderma tsugae. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:541-547. [PMID: 37796245 DOI: 10.1080/10286020.2023.2260749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
A phytochemical investigation on the 80% EtOH extract of the fruiting bodies of Ganoderma tsugae resulted into the isolation of two previously undescribed lanostane triterpenoids, 7,11-dioxo-3β-acetyloxy-26,27-dihydroxy-lanosta-8,24-diene (1) and 7,20-dioxo-3β-acetyloxy-11β,15α-dihydroxy-22,23,24,25,26,27-hexanorlanosta-8-ene (2), togeher with one known lanostane triterpenoid ganodermanontriol (3). Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. All the triterpenoids were in vitro evaluated for their antibacterial activities against six pathogenic microorganisms. Compound 3 exhibited some activities against three Gram positive bacteria with MIC values less than 30 μg/ml.
Collapse
Affiliation(s)
- Jiang Hu
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Guo-Fen Li
- Maternal and Child Health and Family Planning Service Center of Zhanyi, Zhanyi 655331, China
| | - Feng-Ming Xu
- Department of Internal Neurology, The First People Hospital Of Qujing, Qujing 655000, China
| | - Qiang Li
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Tao Lv
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Tian-Feng Peng
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Si Yin
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Wei Gong
- Department of the Food and Drug Inspection, Shenyang Joint Logistics Support Center Drug Instrument Supervision and Inspection Station, Shenyang 110026, China
| |
Collapse
|
8
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Pang X, Yang B, Zhou X, Wang J, Yang J, Liu Y. Two New Isocoumarins Isolated from the Marine-Sponge-Derived Fungus Setosphaeria sp. SCSIO41009. Chem Biodivers 2024; 21:e202302069. [PMID: 38246882 DOI: 10.1002/cbdv.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Two new dihydroisocoumarins, exserolides L and M (1 and 2), along with six known compounds (3-8) were isolated from the extract of the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. Their structures were established by spectroscopic analyses. The absolute configurations of two new compounds were determined by modified Mosher's method and ECD data. Compounds 1 and 4 showed significant antiviral activities against A/Puerto Rico/8/34 H274Y (H1 N1) with IC50 values of 4.07±0.76 μM and 20.06±4.85 μM, respectively.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jie Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
10
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
11
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
12
|
Pan Y, Zhang Y, Li J, Zhang Z, He Y, Zhao Q, Yang H, Zhou P. A proteoglycan isolated from Ganoderma lucidum attenuates diabetic kidney disease by inhibiting oxidative stress-induced renal fibrosis both in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116405. [PMID: 36966849 DOI: 10.1016/j.jep.2023.116405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) was regarded as "miraculous herb" by the Chinese and recorded detailly in the "Shen Nong Ben Cao Jing" as a tonic to improve health and prolong life. A proteoglycan (namely, FYGL) was extracted from Ganoderma lucidum, which was a water-soluble hyperbranched proteoglycan, and was found to be able to protect pancreatic tissue against oxidative stress damage. AIM OF THE STUDY Diabetic kidney disease (DKD) is a complication of diabetes, but the effective treatment is still lack. Chronic hyperglycemia in diabetic patients induce the accumulation of ROS, which injure the renal tissue and lead to the renal dysfunction. In this work, the efficacy and target mechanics of FYGL on diabetic renal function were investigated. MATERIALS AND METHODS In the present study, the mechanism of the reno-protection of FYGL was analyzed on diabetic db/db mice and rat glomerular mesangial cells (HBZY-1) induced by high glucose (HG) with palmitate (PA) (HG/PA). In vitro, the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated by commercial kits. the expressions of NOX1 and NOX4, phosphorylation of MAPK and NF-κB, and pro-fibrotic proteins were measured by Western blot. In vivo, diabetic db/db mice were gavaged with FYGL for 8 weeks, body weight and fasting blood glucose (FBG) were tested weekly. On 8th week, the serum, urine and renal tissue were collected for glucose tolerance test (OGTT), redox indicator (SOD, CAT, GSH and MDA), lipid metabolism (TC, TG, LDL and HDL), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), 8-oxo-deoxyguanosine (8-OHdG), and the changes of histopathology and expression of collagen IV and AGEs. RESULTS The results in vitro showed that FYGL significantly inhibited the HG/PA-induced HBZY-1 cells proliferation, ROS generation, MDA production, promoted SOD activity, and suppressed NOX1, NOX4, MAPK, NF-κB, and pro-fibrotic proteins expression. In addition, FYGL markedly alleviated blood glucose, antioxidant activity and lipid metabolism, improved renal functions, and relieved renal histopathological abnormalities, especially renal fibrosis. CONCLUSIONS The antioxidant activity of FYGL can reduce ROS caused by diabetes and protect renal from oxidative stress-induced dysfunction, thereby improving renal function. This study shows that FYGL has the potential to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| | - Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
13
|
Xu Q, Sheng CY. Lanostane triterpenoids from the fruiting bodies of Ganoderma hainanense and their cytotoxic activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:342-348. [PMID: 35771834 DOI: 10.1080/10286020.2022.2094787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed lanostane triterpenoids, 24E-en-11-oxo-ganoderiol D (1), 11β-hydroxy-ganoderiol D (2), and 11β-hydroxy-lucidone H (3) were isolated from the 80% EtOH extract of the fruiting bodies of Ganoderma hainanense. Structural elucidation of all the compounds were performed by spectral methods such as 1 D and 2 D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. All the triterpenoids were in vitro evaluated for their cytotoxic activities against six mammary adenocarcinoma cell lines (MCF7, MDA-MB-231, SK-BR-3, BT-20, HCC38, and AU565). As a result, compound 3 exhibited significant cytotoxic activities against all tested cell lines with IC50 values less than 20 μM.
Collapse
Affiliation(s)
- Qian Xu
- Department of General Surgery, The First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang 215400, China
| | - Chen-Yi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
14
|
Fang DS, Cheng CR, Qiu MH, Peng XR. Diverse meroterpenoids with α-glucosidase inhibitory activity from Ganoderma cochlear. Fitoterapia 2023; 165:105420. [PMID: 36586625 DOI: 10.1016/j.fitote.2022.105420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Three new meroterpenoids, cochlearins J-L (1-3) and three known meroterpenoids (4-6) were isolated from the fruiting bodies of Ganoderma cochlear. NMR (1H and 13C NMR, 1H - 1H COSY, HSQC, HMBC and ROESY), and HRESIMS were employed for the structure elucidation of new compounds. The stereostructures of 1-3 were confirmed by calculated ECD and optical rotation methods. Furthermore, compounds (+)-1, (-)-1, (+)-2, (-)-2, (+)-3, (-)-3, and 4-6 were evaluated for their α-glucosidase inhibitory activity. The results showed that compounds (+)-1, (-)-1 and (+)-2 exhibited stronger inhibition against α-glucosidase with IC50 values of 24.18 ± 1.98, 26.49 ± 3.20 and 29.68 ± 2.73 μM, respectively, compared to the positive control ursolic acid (49.65 ± 2.21 μM). The molecular docking experiments reveal that (+)-2 and (-)-2 had different binding mode with α-glucosidase, leading to their different inhibition.
Collapse
Affiliation(s)
- Da-Shuang Fang
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Chun-Ru Cheng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|
15
|
Bao L, Zhang Y, Zhang G, Jiang D, Yan D. Abnormal proliferation of gut mycobiota contributes to the aggravation of Type 2 diabetes. Commun Biol 2023; 6:226. [PMID: 36854740 PMCID: PMC9974954 DOI: 10.1038/s42003-023-04591-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Type 2 diabetes (T2D) constitutes a worldwide health threat, and the underlying mechanism for the development and progression of T2D is complex and multifactorial. During the last decade, gut commensal bacteria have been found to play a crucial role in the regulation of T2D and related metabolic disorders. However, as a considerable component in gut microbiome, the relationship between mycobiota and T2D and related metabolic disorders remains unclear. As a proof-of-concept, we observed that the ablation of the commensal fungi in mice can protect HFD (High fat diet) induced insulin resistance and related metabolic disorders. Both ITS2 (internal transcribed spacer 2) sequencing and culture-dependent analysis show the enrichment of Candida albicans in samples from individuals with T2D (Chinese Clinical Trial Registry, ChiCTR2100042049). Repopulation with C. albicans in HFD mice accelerated insulin resistance and related disorders. Mechanically, we found the β-glucan from C. albicans mirrored the deteriorating effect of C. albicans through the dectin-1 dependent pathway. Our current findings support that gut mycobiota play an important role in the progress of T2D and indicated the preventing of gut mycobiota is a promising strategy to alleviate insulin resistance and related metabolic dysfunctions.
Collapse
Affiliation(s)
- Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, 100050, Beijing, China
| | - Guoying Zhang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China
| | - Dan Yan
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, No.10 Tieyi-Road, Haidian District, 100038, Beijing, China.
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, 100050, Beijing, China.
| |
Collapse
|
16
|
Chen J, Li L, Zhang X, Zhang Y, Zheng Q, Lan M, Li B. Structural characteristics and antioxidant and hypoglycemic activities of a heteropolysaccharide from Anemarrhena asphodeloides Bunge. Int J Biol Macromol 2023; 236:123843. [PMID: 36858093 DOI: 10.1016/j.ijbiomac.2023.123843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
In this study, an acid polysaccharide (AABP-1B) was extracted from the rhizome of Anemarrhena asphodeloides Bunge and purified using 60 % alcohol precipitation and DEAE-52 cellulose. The molecular weight of AABP-1B was 105 kDa, and it consisted of mannose (Man), rhamnose (Rha), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in a ratio of 6.3:1.3:1.1:0.2:0.4:0.7. Methylation and NMR analyses revealed that the backbone of AABP-1 consists of 4)-β-D-Manp-(1 and 4)-2-O-acetyl-β-D-Manp-(1. In addition, the biological activity assays showed that AABP-1B not only displays potential antioxidant activity but also exhibits the α-glucosidase and α-amylase inhibitory effect. Moreover, AABP-1B enhanced glucose consumption and glycogen synthesis in insulin-resistant (IR) HepG2 cells. These results suggest that AABP-1B has potential hypoglycemic activity.
Collapse
Affiliation(s)
- Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; International School of Public Health and One Health, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yuan Zhang
- Guangdong Provincial Institute of Sports Science, Guangzhou 510640, China
| | - Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Meijuan Lan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Deng S, AGA E, Xie H, Xiong H, Ye B. Evaluation of the acute toxicity and 28-days subacute toxicity of the alcoholic extract from Ganoderma leucocontextum. Food Sci Nutr 2023; 11:434-442. [PMID: 36655071 PMCID: PMC9834818 DOI: 10.1002/fsn3.3075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 01/21/2023] Open
Abstract
Ganoderma leucocontextum is a well-known traditional medicine in Tibet Autonomous Region, which has benefits, such as anti-hypoxia, neurotrophic action on nerves, easing coughs and relieving asthma, strengthening the body and prolonging life. However, few research have focused on its negative effects, possibly jeopardizing its safety. The purpose of this study is to evaluate the acute and subacute toxicity of an alcoholic extract from G. leucocontextum (GLA) in vivo. The phytochemical characterization analysis showed that alcoholic extract from G. leucocontextum were rich in polysaccharides, triterpenoids. Then, in acute oral toxicity, male and female mice from Institute of Cancer Research (ICR) were orally administered with 16 g/kg GLA and were observed for 14 days. In the subacute toxicity, male and female Sprague-Dawley (SD) rats were orally administered with 2, 4, and 8 g/kg doses of GLA for 28 days. There was no death or clinical changes in male and female mice in the acute toxicity test. During the subacute toxicity test, the difference in body weights, food consumption, biochemical and hematological parameters, and organ coefficients between treated and control groups were unrelated to GLA treatment. The obtained data show that the GLA had no significant toxic effects when administered orally to male and female rats in acute and subacute toxicity.
Collapse
Affiliation(s)
- Shizhan Deng
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| | - Er‐bu AGA
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| | - Hongjun Xie
- Medical College of Tibet UniversityLasaChina
| | - Hai Xiong
- Medical College of Tibet UniversityLasaChina
| | - Bengui Ye
- Medical College of Tibet UniversityLasaChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy Sichuan UniversityChengduChina
| |
Collapse
|
18
|
Qiao S, Liu C, Sun L, Wang T, Dai H, Wang K, Bao L, Li H, Wang W, Liu SJ, Liu H. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab 2022; 4:1271-1286. [PMID: 36253620 DOI: 10.1038/s42255-022-00649-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/30/2022] [Indexed: 01/20/2023]
Abstract
Obesity, dyslipidemia and gut dysbiosis are all linked to cardiovascular diseases. A Ganoderma meroterpene derivative (GMD) has been shown to alleviate obesity and hyperlipidemia through modulating the gut microbiota in obese mice. Here we show that GMD protects against obesity-associated atherosclerosis by increasing the abundance of Parabacteroides merdae in the gut and enhancing branched-chain amino acid (BCAA) catabolism. Administration of live P. merdae to high-fat-diet-fed ApoE-null male mice reduces atherosclerotic lesions and enhances intestinal BCAA degradation. The degradation of BCAAs is mediated by the porA gene expressed in P. merdae. Deletion of porA from P. merdae blunts its capacity to degrade BCAAs and leads to inefficacy in fighting against atherosclerosis. We further show that P. merdae inhibits the mTORC1 pathway in atherosclerotic plaques. In support of our preclinical findings, an in silico analysis of human gut metagenomic studies indicates that P. merdae and porA genes are depleted in the gut microbiomes of individuals with atherosclerosis. Our results provide mechanistic insights into the therapeutic potential of GMD through P. merdae in treating obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Shuang-Jiang Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
19
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | |
Collapse
|
20
|
Pei Y, Gong S, Song M, El‐kott AF, Bani‐Fwaz MZ, Xu Y, Xu Y. In Silico Studies, Biological Effects and Anti‐Lung Cancer Potential of Triacetyl Resveratrol as Natural Phenolic Compound. ChemistrySelect 2022. [DOI: 10.1002/slct.202201491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanzhi Pei
- Department of thoracic surgery First Affiliated Hospital of Jiamusi University Heilongjiang Jiamusi 154002 China
| | - Shuning Gong
- The Cadre Ward Central Theater Command Air Force Hospital, Datong Shanxi 037000 China
| | - Min Song
- The first respiratory department of the first hospital of Handan Hebei Province HandanHebei 056002 China
| | - Attalla F. El‐kott
- Biology Department, Faculty of Science King Khalid University Abha Saudi Arabia
- Zoology Department, College of Science Damanhour University Damanhour Egypt
| | - Mutasem Z. Bani‐Fwaz
- Department of Chemistry, College of Science King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Yan Xu
- Department Integrated Chongqing University Cancer Hospital, Chongqing Cancer Hospital Chongqing 400030 China
| | - Yan Xu
- Department of thoracic surgery First Affiliated Hospital of Jiamusi University Heilongjiang Jiamusi 154002 China
| |
Collapse
|
21
|
Ma S, Li Z, Yu P, Shi H, Yang H, Yi J, Zhang Z, Duan X, Xie X, She X. Construction of the Skeleton of Lucidumone. Org Lett 2022; 24:5541-5545. [PMID: 35894551 DOI: 10.1021/acs.orglett.2c02023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The skeleton of lucidumone was constructed through oxidative dearomatization/intramolecular Diels-Alder reaction, Cu-mediated remote C-H hydroxylation, allyl oxidation, acid-promoted dynamic kinetic resolution cyclization, and benzylic oxidation.
Collapse
Affiliation(s)
- Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pengfei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiuzhou Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoguang Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
22
|
Dai L, Yan J, Xia Q, Wang S, Zhou Q, Zhang J, Wen C. Inhibition on α‐amylase and α‐glucosidase of polysaccharides from
Inonotus obliquus
and effects on delaying the digestion of polysaccharides‐dough system. STARCH-STARKE 2022. [DOI: 10.1002/star.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐jun Dai
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Jia‐xing Yan
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Qing Xia
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Shi‐qi Wang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Qing Zhou
- Department of Pharmacy Wuhan City Central Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430014 China
| | - Jiu‐liang Zhang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Chong Wen
- Clinical College of Traditional Chinese Medicine Hubei University of Chinese Medicine Wuhan 430061 China
| |
Collapse
|
23
|
Chang YH, Hung HY. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur J Med Chem 2022; 237:114405. [PMID: 35489224 DOI: 10.1016/j.ejmech.2022.114405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022]
Abstract
Obesity is not only viewed as a chronic aggressive disorder but is also associated with an increased risk for various diseases. Nonetheless, new anti-obesity drugs are an urgent need since few pharmacological choices are available on the market. Natural compounds have served as templates for drug discovery, whereas modified molecules from the leads identified based on in vitro models often reveal noncorresponding bioactivity between in vitro and in vivo studies. Therefore, to provide inspiration for the exploration of innovative anti-obesity agents, recent discoveries of natural anti-obesity compounds with in vivo evidence have been summarized according to their chemical structures, and the comparable efficacy of these compounds is categorized using animal models. In addition, several synthetic derivatives optimized from the phytochemicals are also provided to discuss medicinal chemistry achievements guided by natural sources.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
24
|
Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Identification of Cyclic Sulfonamides with an N-Arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling. Pharmaceuticals (Basel) 2022; 15:106. [PMID: 35056163 PMCID: PMC8777765 DOI: 10.3390/ph15010106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM), a complicated metabolic disorder, is due to insensitivity to insulin function or reduction in insulin secretion, which results in postprandial hyperglycemia. α-Glucosidase inhibitors (AGIs) and α-amylase inhibitors (AAIs) block the function of digestive enzymes, which delays the carbohydrate hydrolysis process and ultimately helps to control the postprandial hyperglycemia. Diversified 2-(3-(3-methoxybenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides were synthesized and evaluated for their in vitro inhibitory potential against α-glucosidase and α-amylase enzymes. The compounds with chloro, bromo and methyl substituents demonstrated good inhibition of α-glucosidase enzymes having IC50 values in the range of 25.88-46.25 μM, which are less than the standard drug, acarbose (IC50 = 58.8 μM). Similarly, some derivatives having chloro, bromo and nitro substituents were observed potent inhibitors of α-amylase enzyme, with IC50 values of 7.52 to 15.06 μM, lower than acarbose (IC50 = 17.0 μM). In addition, the most potent compound, N-(4-bromophenyl)-2-(4-hydroxy-3-(3-methoxybenzoyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetamide (12i), was found to be a non-competitive and competitive inhibitor of α-glucosidase and α-amylase enzymes, respectively, during kinetic studies. The molecular docking studies provided the binding modes of active compounds and the molecular dynamics simulation studies of compound 12i in complex with α-amylase also showed that the compound is binding in a fashion similar to that predicted by molecular docking studies.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45500, Pakistan;
| | - Sadia Sultan
- Faculty of Pharmacy, Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia;
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
25
|
Qin FY, Xu T, Li YP, Zhang HX, Cai D, Liu LZ, Cheng YX. Terminal Cyclohexane-Type Meroterpenoids from the Fruiting Bodies of Ganoderma cochlear. Front Chem 2021; 9:783705. [PMID: 34926404 PMCID: PMC8677669 DOI: 10.3389/fchem.2021.783705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Eleven new cyclohexane-type meroterpenoids (1, 3-5, 7, 8, 11-15) and four known similar meroterpenoids (2, 6, 9, and 10) were isolated from Ganoderma cochlear. Their structures and absolute configurations at stereogenic centers were elucidated by using HRESIMS, NMR spectroscopy and computational methods. In addition, the structure of the known meroterpenoid, cochlearol G (2), was revised, and the absolute configurations at the stereogenic centers of known meroterpenoids 9 and 10 were determined. All the isolated meroterpenoids were evaluated for their activities against renal fibrosis and triple negative breast cancer, and their insulin resistance. The results of the renal fibrosis study showed that meroterpenoid 11 inhibits over-expression of fibronectin, collagen I and α-SMA. Results of the wound healing study revealed that 4, 6 and 8 significantly inhibit migration of BT549 cells. Observations made in Western blotting experiments showed that 6 decreases the levels of TWIST1 and ZEB1, and increases the level of E-cadherin. Finally, meroterpenoids 7, 9, 11, and 15 significantly up-regulate p-AMPK protein expression in normal L6 myotubes cells.
Collapse
Affiliation(s)
- Fu-Ying Qin
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Te Xu
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Yan-Peng Li
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Hao-Xing Zhang
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Dan Cai
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Li-Zhong Liu
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Health Science Center, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| |
Collapse
|
26
|
Qin FY, Zhang JJ, Wang DW, Xu T, Cai D, Cheng YX. Direct determination of E and Z configurations for double bond in bioactive meroterpenoids from Ganoderma mushrooms by diagnostic 1H NMR chemical shifts and structure revisions of previous analogues. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Zhang JJ, Wang DW, Cai D, Lu Q, Cheng YX. Meroterpenoids From Ganoderma lucidum Mushrooms and Their Biological Roles in Insulin Resistance and Triple-Negative Breast Cancer. Front Chem 2021; 9:772740. [PMID: 34805099 PMCID: PMC8595597 DOI: 10.3389/fchem.2021.772740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Ganoderma fungi as popular raw materials of numerous functional foods have been extensively investigated. In this study, five pairs of meroterpenoid enantiomers beyond well-known triterpenoids and polysaccharides, dayaolingzhiols I−M (1–5), were characterized from Ganoderma lucidum. Their structures were identified using spectroscopic and computational methods. Structurally, compound 1 features a novel dioxabicyclo[2.2.2]octan-3-one motif in the side chain. Ethnoknowledge-derived biological evaluation found that (+)-5 could activate Akt and AMPK phosphorylation in insulin-stimulated C2C12 cells, and (+)-5 could activate glucose uptake dose dependently in C2C12 cells. Furthermore, we found that (+)-1 (+)-4, and (–)-4 could significantly inhibit cell migration of the MDA-MB-231 cell line, of which (+)-4 showed significant inhibitory effects against cell migration of the MDA-MB-231 cell line in a dose-dependent manner. These findings revealed the meroterpenoidal composition of G. lucidum and its roles in the prevention of chronic diseases such as diabetes mellitus and triple-negative breast cancer.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Dai-Wei Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qing Lu
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| |
Collapse
|
28
|
Peng ZC, He J, Pan XG, Zhang J, Wang YM, Ye XS, Xia CY, Lian WW, Yan Y, He XL, Zhang WK, Xu JK. Secoiridoid dimers and their biogenetic precursors from the fruits of Cornus officinalis with potential therapeutic effects on type 2 diabetes. Bioorg Chem 2021; 117:105399. [PMID: 34688131 DOI: 10.1016/j.bioorg.2021.105399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Cornusdiridoid A-F (1-6), six unusual cornuside-morroniside secoiridoid dimers, and their possible new biogenetic precursor, 3″,5″-dehydroxycornuside (7), together with four known secoiridoids (8-11), were obtained from the fruits of Cornus officinalis. Their structures were elucidated on the basis of various spectroscopic and chemical methods. A plausible biosynthetic pathway of compounds 1-11 was proposed. The α-glucosidase inhibitory, antioxidant and anti-inflammatory activities of these isolates were evaluated. Some of them emerged out as potent antidiabetic, anti-inflammatory and free radical scavenging agents. Molecular docking was also carried out for antidiabetic target α-glucosidase to investigate the possible binding modes of the most potent α-glucosidase inhibitor, vincosamide (9). These results revealed that the secoiridoids from C. officinalis fruits may be served as new potential antidiabetic agents to prevent and treat type 2 diabetes.
Collapse
Affiliation(s)
- Zhong-Can Peng
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xian-Sheng Ye
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xiao-Li He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
29
|
Liu Y, Huang L, Hu H, Cai M, Liang X, Li X, Zhang Z, Xie Y, Xiao C, Chen S, Chen D, Yong T, Pan H, Gao X, Wu Q. Whole-genome assembly of Ganoderma leucocontextum (Ganodermataceae, Fungi) discovered from the Tibetan Plateau of China. G3-GENES GENOMES GENETICS 2021; 11:6377781. [PMID: 34586388 PMCID: PMC8664445 DOI: 10.1093/g3journal/jkab337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Ganoderma leucocontextum, a newly discovered species of Ganodermataceae in China, has diverse pharmacological activities. G. leucocontextum was widely cultivated in southwest China, but the systematic genetic study has been impeded by the lack of a reference genome. Herein, we present the first whole-genome assembly of G. leucocontextum based on the Illumina and Nanopore platform from high-quality DNA extracted from a monokaryon strain (DH-8). The generated genome was 50.05 Mb in size with a N50 scaffold size of 3.06 Mb, 78,206 coding sequences and 13,390 putative genes. Genome completeness was assessed using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool, which identified 96.55% of the 280 Fungi BUSCO genes. Furthermore, differences in functional genes of secondary metabolites (terpenoids) were analyzed between G. leucocontextum and G. lucidum. G. leucocontextum has more genes related to terpenoids synthesis compared to G. lucidum, which may be one of the reasons why they exhibit different biological activities. This is the first genome assembly and annotation for G. leucocontextum, which would enrich the toolbox for biological and genetic studies in G. leucocontextum.
Collapse
Affiliation(s)
- Yuanchao Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, 510663, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhi Zhang
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, 510663, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, 510663, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shaodan Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tianqiao Yong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Honghui Pan
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiong Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
30
|
Wang YJ, Abdugheni R, Liu C, Zhou N, You X, Liu SJ. Blautia intestinalis sp. nov., isolated from human feces. Int J Syst Evol Microbiol 2021; 71. [PMID: 34546872 DOI: 10.1099/ijsem.0.005005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic bacterial strain (27-44T) was isolated from a stool specimen from an autistic child collected in PR China. The strain was Gram-stain-positive, non-motile, non-pigmented, non-spore-forming, and cells were oval to rod-shaped. Strain 27-44T grew at 20-40 °C (optimal at 37 °C) and at pH 6.0-10 (optimal at 6.0-8.0). The major polar lipids were one phospholipid, two glycolipids, two aminophospholipids and one unidentified lipid. The major cellular fatty acids of strain 27-44T were C16 : 0 and C17 : 0 2-OH. The end product of glucose fermentation was mainly butyric acid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 27-44T was a member of the genus Blautia and phylogenetically closely related to Blautia obeum ATCC 29174T (with 97.8 % seque nce similarity). The genome of strain 27-44T was 3.5 Mbp with a DNA G+C content of 42.36 mol%. A total of 3436 genes were predicted and, of these, 3133 genes were annotated by KEGG. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons, strain 27-44T represents a novel species within the genus Blautia, for which the name Blautia intestinalis sp. nov. is proposed. The type strain is 27-44T= CGMCC 1.5285T=NBRC 113774T.
Collapse
Affiliation(s)
- Yu-Jing Wang
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- State Key Laboratory of Microbial Biotechnology, Shandong University, Tsingdao 266237, PR China
| |
Collapse
|
31
|
Gao X, Qi J, Ho CT, Li B, Xie Y, Chen S, Hu H, Chen Z, Wu Q. Purification, Physicochemical Properties, and Antioxidant Activities of Two Low-Molecular-Weight Polysaccharides from Ganoderma leucocontextum Fruiting Bodies. Antioxidants (Basel) 2021; 10:antiox10071145. [PMID: 34356378 PMCID: PMC8301108 DOI: 10.3390/antiox10071145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Two low-molecular-weight polysaccharides (GLP-1 and GLP-2) were purified from Ganoderma leucocontextum fruiting bodies, and their physicochemical properties and antioxidant activities were investigated and compared in this study. The results showed that GLP-1 and GLP-2 were mainly composed of mannose, glucose, galactose, xylose, and arabinose, with weight-average molecular weights of 6.31 and 14.07 kDa, respectively. Additionally, GLP-1 and GLP-2 had a similar chain conformation, crystal structure, and molecular surface morphology. Moreover, GLP-1 exhibited stronger antioxidant activities than GLP-2 in five different assays: 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), hydroxyl radical, superoxide anion radical, ferric reducing antioxidant power (FRAP), and oxygen radical antioxidant capacity (ORAC). The main linkage types of GLP-1 were found to be →4)-α-D-Glcp-(1→, →4)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→, →6)-β-D-Galp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and Glcp-(1→ by methylation analysis and nuclear magnetic resonance (NMR) spectroscopy. In addition, GLP-1 could protect NIH3T3 cells against tert-butyl hydroperoxide (tBHP)-induced oxidative damage by increasing catalase (CAT) and glutathione peroxidase (GSH-Px) activities, elevating the glutathione/oxidized glutathione (GSH/GSSG) ratio, and decreasing the malondialdehyde (MDA) level. These findings indicated that GLP-1 could be explored as a potential antioxidant agent for application in functional foods.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Jiayi Qi
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA;
| | - Bin Li
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Shaodan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
| | - Huiping Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
| | - Zhongzheng Chen
- Department of Bioengineering, College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China; (J.Q.); (B.L.)
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Department of Food Science, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.C.); (Q.W.)
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.G.); (Y.X.); (S.C.); (H.H.)
- Correspondence: (Z.C.); (Q.W.)
| |
Collapse
|
32
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
33
|
Jiang LR, Qin Y, Nong JL, An H. Network pharmacology analysis of pharmacological mechanisms underlying the anti-type 2 diabetes mellitus effect of guava leaf. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Obadi M, Sun J, Xu B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res Int 2021; 140:110065. [DOI: 10.1016/j.foodres.2020.110065] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
|
35
|
Bao L, Yang C, Shi Z, Wang Z, Jiang D. Analysis of Serum Metabolomics in Obese Mice Induced by High-Fat Diet. Diabetes Metab Syndr Obes 2021; 14:4671-4678. [PMID: 34876827 PMCID: PMC8643162 DOI: 10.2147/dmso.s337979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Obesity is a public health problem all over the world, and dietary habits are considered one of the important reasons. METHODS In this study, serum metabolites of mice fed a normal or high-fat diet (HFD) were analyzed using UPLC-QTOF-MS. RESULTS A significant increase in body weight was noted in HFD mice. The HFD and control groups were significantly different from each other on OPLS-DA scores. The major metabolites contributing to obesity were lipid metabolites (phosphatidylcholines, phosphatidylethanolamine, and lysophosphatidylcholines). In addition, this study revealed that glycerophospholipid metabolism, α-linolenic acid metabolism, and linoleic acid metabolism were related to obesity and obesity-associated diseases. CONCLUSION These results can be used to better understand obesity and assess its risk, which will provide new ideas for treatment.
Collapse
Affiliation(s)
- Li Bao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
| | - Zhanrong Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Zhanrong Wang Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing100038, People’s Republic of China, Tel +86-10-6392-6405 Email
| | - Dechun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Biocharacteristic Profiling for Evaluation of Rational Drug Use, Beijing, People’s Republic of China
- Dechun Jiang Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing100038, People’s Republic of China, Tel +86-10-6392-6723 Email
| |
Collapse
|
36
|
Marahatha R, Basnet S, Bhattarai BR, Budhathoki P, Aryal B, Adhikari B, Lamichhane G, Poudel DK, Parajuli N. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis. BMC Complement Med Ther 2021; 21:1. [PMID: 33386071 PMCID: PMC7775628 DOI: 10.1186/s12906-020-03162-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hypercholesterolemia has posed a serious threat of heart diseases and stroke worldwide. Xanthine oxidase (XO), the rate-limiting enzyme in uric acid biosynthesis, is regarded as the root of reactive oxygen species (ROS) that generate atherosclerosis and cholesterol crystals. β-Hydroxy β-methylglutaryl-coenzyme A reductase (HMGR) is a rate-limiting enzyme in cholesterol biosynthesis. Although some commercially available enzyme inhibiting drugs have effectively reduced cholesterol levels, most of them have failed to meet potential drug candidates’ requirements. Here, we have carried out an in-silico analysis of secondary metabolites that have already shown good inhibitory activity against XO and HMGR in a wet lab setup. Methods Out of 118 secondary metabolites reviewed, sixteen molecules inhibiting XO and HMGR were selected based on the IC50 values reported in in vitro assays. Further, receptor-based virtual screening was carried out against secondary metabolites using GOLD Protein-Ligand Docking Software, combined with subsequent post-docking, to study the binding affinities of ligands to the enzymes. In-silico ADMET analysis was carried out to explore their pharmacokinetic properties, followed by toxicity prediction through ProTox-II. Results The molecular docking of amentoflavone (GOLD score 70.54, ∆G calc. = − 10.4 Kcal/mol) and ganomycin I (GOLD score 59.61, ∆G calc. = − 6.8 Kcal/mol) displayed that the drug has effectively bound at the competitive site of XO and HMGR, respectively. Besides, 6-paradol and selgin could be potential drug candidates inhibiting XO. Likewise, n-octadecanyl-O-α-D-glucopyranosyl (6′ → 1″)-O-α-D-glucopyranoside could be potential drug candidates to maintain serum cholesterol. In-silico ADMET analysis has shown that these sixteen metabolites were optimal within the categorical range compared to commercially available XO and HMGR inhibitors, respectively. Toxicity analysis through ProTox-II revealed that 6-gingerol, ganoleucoin K, and ganoleucoin Z are toxic for human use. Conclusion This computational analysis supports earlier experimental evidence towards the inhibition of XO and HMGR by natural products. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Cancer Care Nepal and Research Center, Jorpati, Kathmandu, Nepal
| | - Bibek Raj Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Prakriti Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Babita Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikash Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ganesh Lamichhane
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Darbin Kumar Poudel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
37
|
Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr Polym 2020; 249:116874. [DOI: 10.1016/j.carbpol.2020.116874] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
|
38
|
Wang L, Li JQ, Zhang J, Li ZM, Liu HG, Wang YZ. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv 2020; 10:42084-42097. [PMID: 35516772 PMCID: PMC9057998 DOI: 10.1039/d0ra07219b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, some natural products isolated from the fungi of the genus Ganoderma have been found to have anti-tumor, liver protection, anti-inflammatory, immune regulation, anti-oxidation, anti-viral, anti-hyperglycemic and anti-hyperlipidemic effects. This review summarizes the research progress of some promising natural products and their pharmacological activities. The triterpenoids, meroterpenoids, sesquiterpenoids, steroids, alkaloids and polysaccharides isolated from Ganoderma lucidum and other species of Ganoderma were reviewed, including their corresponding chemical structures and biological activities. In particular, the triterpenes, polysaccharides and meroterpenoids of Ganoderma show a wide range of biological activities. Among them, the hydroxyl groups on the C-3, C-24 and C-25 positions of the lanostane triterpenes compound were the necessary active groups for the anti-HIV-1 virus. Previous study showed that lanostane triterpenes can inhibit human immunodeficiency virus-1 protease with an IC50 value of 20-40 μM, which has potential anti-HIV-1 activity. Polysaccharides can promote the production of TNF α and IFN-γ by macrophages and spleen cells in mice, and further inhibit or kill tumor cells. Some meroterpenoids contain oxygen-containing heterocycles, and they have significant antioxidant activity. In addition, Ganoderma has been used as a medicine to treat diseases for more than 2000 years, and we also reviewed its traditional uses.
Collapse
Affiliation(s)
- Li Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Jie-Qing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Zhi-Min Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Hong-Gao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| |
Collapse
|
39
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Teng Y, Liang H, Zhang Z, He Y, Pan Y, Yuan S, Wu X, Zhao Q, Yang H, Zhou P. Biodistribution and immunomodulatory activities of a proteoglycan isolated from Ganoderma lucidum. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol 2020; 145:111738. [PMID: 32916220 PMCID: PMC7480666 DOI: 10.1016/j.fct.2020.111738] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Recently the use of bioactive α-glucosidase inhibitors for the treatment of diabetes have been proven to be the most efficient remedy for controlling postprandial hyperglycemia and its detrimental physiological complications, especially in type 2 diabetes. The carbohydrate hydrolysing enzyme, α-glucosidase, is generally competitively inhibited by the α-glucosidase inhibitors and results in the delayed glucose absorption in small intestine, ultimately controlling the postprandial hyperglycemia. Here we have reviewed the most recent updates in the bioactive α-glucosidase inhibitors category. This review provides an overview of the α-glucosidase inhibitory potentials and efficiency of controlling postprandial hyperglycemia of various bioactive compounds such as flavonoids, phenolic compound, polysaccharide, betulinic acid, tannins, anthocyanins, steroids, polyol, polyphenols, galangin, procyanidins, hydroxyl-α-sanshool, hydroxyl-β-sanshool, erythritol, ganomycin, caffeoylquinic acid, resin glycosides, saponins, avicularin, oleanolic acids, urasolic acid, ethanolic extracts etc., from various dietary and non-dietary naturally occurring sources.
Collapse
Affiliation(s)
- Uday Hossain
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
42
|
Zhao JY, Ding JH, Li ZH, Feng T, Zhang HB, Liu JK. Two new compounds from cultures of the basidiomycete Daedaleopsis tricolor. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:941-946. [PMID: 31573332 DOI: 10.1080/10286020.2019.1668377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Two new compounds, daedatrin K (1) and 2-hydroxy-1-(5-(hydroxymethyl)furan-2-yl)propan-1-one (2), were isolated from cultures of the basidiomycetes Daedaleopsis tricolor. The new structures were elucidated on the basis of extensive spectroscopic methods. At the same time, two compounds were tested for their cytotoxicities against five human cancer cell lines. [Formula: see text].
Collapse
Affiliation(s)
- Jiang-Yuan Zhao
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Jian-Hai Ding
- Engineering and Technology Research Center of Liupanshan Resources, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
43
|
Ye WY, Wang JZ, Deng GG, Dang YW, Liu HW, Chen G. Estrogenic activities of compound GL-1, isolated from Ganoderma lucidum. Nat Prod Res 2020; 35:6062-6066. [PMID: 32901516 DOI: 10.1080/14786419.2020.1819270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, the estrogenic effect of GL-1, a component of the Ganoderma lucidum, was studied, and the possible mechanism was discussed preliminarily. The binding ability of GL-1 to estrogen receptor was calculated by computer aided simulation. The effects of GL-1 on the proliferation of estrogen sensitive estrogen receptor (ER) (+) MCF-7 cells and estrogen insensitive ER (-) MDA-MB-231 cells were detected by MTT method. The effects of GL-1 on the proliferation of estrogen-induced MCF-7 cells, and the effects of the estrogen receptor inhibitor ICI182780 on the proliferation of GL-1-induced MCF-7 cells were detected by MTT assay. The expression of ERα and ERβ monoclonal antibody were detected by Western blot. The results showed that GL-1 has a good binding ability to estrogen receptor β, and has estrogen-like effect, which might be related to secretion of estrogen and expression of ERβ by binding to ERs.
Collapse
Affiliation(s)
- Wang-Yang Ye
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Zhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Gai-Gai Deng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, China
| | - Yi-Wu Dang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong-Wei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
44
|
Gesto DS, Pereira CMS, Cerqueira NMFS, Sousa SF. An Atomic-Level Perspective of HMG-CoA-Reductase: The Target Enzyme to Treat Hypercholesterolemia. Molecules 2020; 25:molecules25173891. [PMID: 32859023 PMCID: PMC7503714 DOI: 10.3390/molecules25173891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
This review provides an updated atomic-level perspective regarding the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), linking the more recent data on this enzyme with a structure/function interpretation. This enzyme catalyzes one of the most important steps in cholesterol biosynthesis and is regarded as one of the most important drug targets in the treatment of hypercholesterolemia. Taking this into consideration, we review in the present article several aspects of this enzyme, including its structure and biochemistry, its catalytic mechanism and different reported and proposed approaches for inhibiting this enzyme, including the commercially available statins or the possibility of using dimerization inhibitors.
Collapse
Affiliation(s)
- Diana S. Gesto
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Carlos M. S. Pereira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Nuno M. F. S. Cerqueira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
- Correspondence:
| |
Collapse
|
45
|
Nie X, Chen Y, Li W, Lu Y. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112839. [PMID: 32268205 DOI: 10.1016/j.jep.2020.112839] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium Nobile Lindl. (DNL) is one of the central herbs in traditional Chinese medicine which mainly distributes in Guizhou, Yunnan, Guangxi and other sub-tropical areas south of the Yangtze River. In the past decades, it has been used to treat tumors, hyperglycemia, hyperlipidemia, and diseases of the nervous system that may be caused by aging. AIM OF THE REVIEW The purpose of this review is to summarize the anti-aging information of DNL from the molecular mechanism level, including classic theories related to aging, main chemical components, pharmacological research and anti-aging theory based on traditional Chinese medicine theory, for exploring the future development and clinical treatment. MATERIALS AND METHODS The information in this paper has been collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, Ph.D. and M.S. dissertations systematically. RESULTS In this paper, we have reviewed the several mechanisms underlying the potential effects of DNL on the prevention of aging, including the scavenging of free radicals for oxidation, delaying of DNA impairment, inhibition of apoptosis, and alteration of DNA methylation. Together with the theory of telomeres, this review also has summarized recent research progress in the use of DNL and its traditional efficacy. CONCLUSIONS We conclude that "strengthening Yin and benefiting the spirit", "thickening the intestine and stomach", "lightning the body and prolonging the life-span", and delaying aging, are key effects of DNL that can be used to combat age-related diseases (ARDs) such as Alzheimer's disease, hyperlipidemia, and diabetes. This review provides a reference for future study of ARDs and the clinical application of DNL.
Collapse
Affiliation(s)
- Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
46
|
Renoprotective ganodermaones A and B with rearranged meroterpenoid carbon skelotons from Ganoderma fungi. Bioorg Chem 2020; 100:103930. [DOI: 10.1016/j.bioorg.2020.103930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/20/2023]
|
47
|
Lee SR, Lee D, Lee BS, Ryoo R, Pang C, Kang KS, Kim KH. Phallac acids A and B, new sesquiterpenes from the fruiting bodies of Phallus luteus. J Antibiot (Tokyo) 2020; 73:729-732. [PMID: 32472053 DOI: 10.1038/s41429-020-0328-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 11/09/2022]
Abstract
Phallus luteus (Phallaceae), previously known as Dictyophora indusiata, is an edible and medicinal mushroom. As part of a continuing project to discover structurally and/or biologically novel natural products from wild mushrooms, we aimed to perform a chemical investigation of the methanol extract of P. luteus combined with a liquid chromatography-mass spectrometry-guided analysis coupled to an in-house UV spectral library. Two new sesquiterpenes, phallac acids A (1) and B (2), were isolated and determined. The chemical structure of the new natural products was unambiguously determined using a combination of 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry data. To our knowledge, this is the first study to report linear sesquiterpene carboxylic acids from P. luteus. The new compounds were evaluated for α-glucosidase inhibitory activities where phallac acid B (2) showed α-glucosidase inhibitory potential (IC50 value of 94.89 ± 5.57 μM) compared with the standard acarbose (IC50 value of 26.23 ± 1.31 μM).
Collapse
Affiliation(s)
- Seoung Rak Lee
- Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Bum Soo Lee
- Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ki Hyun Kim
- Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
48
|
Purification, Preliminary Structural Characterization, and In Vitro Inhibitory Effect on Digestive Enzymes by β-Glucan from Qingke (Tibetan Hulless Barley). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/2709536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and Objective. Qingke (Tibetan hulless barley, Hordeum vulgare L.) contains a high content of β-glucan among all the cereal varieties. Although β-glucan has multiple physiological functions, the physiological function of qingke β-glucan was few studied. In this study, the β-glucan was isolated, purified, determined the structural characterization, and measured the inhibitory activity to enzymes correlating blood sugar and lipid. Methods. β-Glucan was isolated from enzymatic aqueous extract of qingke by using deproteinization, decolorization, DEAE-52 column chromatography, and sepharose CL-4B agarose gel column chromatography. The structure of the β-glucan was determined using FT-IR and 13C-NMR spectra analysis, and molecular mass by use of HPSEC-dRI-LS. The kinematic viscosity was measured. The inhibitory effects of this β-glucan on four enzymes were investigated. Results. This β-glucan had a uniform molecular weight of 201,000 Da with β-(1⟶4) as the main chain and β-(1⟶3) as a side chain. The β-glucan presented a relatively strong inhibitory activity on α-glucosidase, moderate inhibition on invertase, and a weak inhibition on α-amylase, whereas it did not inhibit lipase. Conclusion. The study indicates that the enzymatic β-glucan from qingke has the potential as natural auxiliary hypoglycemic additives in functional medicine or foods.
Collapse
|
49
|
Guo J, Kong F, Ma Q, Xie Q, Zhang R, Dai H, Wu Y, Zhao Y. Meroterpenoids With Protein Tyrosine Phosphatase 1B Inhibitory Activities From the Fruiting Bodies of Ganoderma ahmadii. Front Chem 2020; 8:279. [PMID: 32373585 PMCID: PMC7176929 DOI: 10.3389/fchem.2020.00279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/23/2020] [Indexed: 11/23/2022] Open
Abstract
Ganoderma fungi have long been used as functional foods and traditional medicines in Asian countries. Ganoderma ahmadii is one of the main species of Ganoderma fungi distributed in Hainan province of China, the fruiting bodies of which have been used in folk to lower blood sugar for a long time. A chemical investigation of the fruiting bodies of Ganoderma ahmadii led to the isolation of seven new meroterpenoids, named ganoduriporols F-L (1–7). The chemical structures of the compounds were elucidated by spectroscopic data including HRESIMS and 2D NMR. Compounds 5–7 represent the first examples of ganoduriporol-type meroterpenoids bearing oxepane rings in their skeletons. Compounds 1–4 showed inhibitory activity against protein tyrosine phosphatase 1B (PTP1B) comparable to the positive control Na3VO4, with IC50 values of 17, 20, 19, and 23 μM, respectively.
Collapse
Affiliation(s)
- Jiaocen Guo
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China.,College of Horticulture, Hainan University, Haikou, China
| | - Fandong Kong
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Qingyun Ma
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Qingyi Xie
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Renshuai Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haofu Dai
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, China
| | - Youxing Zhao
- Hainan Key Laboratory for Research and Development of Natural Product From Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
50
|
Osella MI, Salazar MO, Gamarra MD, Moreno DM, Lambertucci F, Frances DE, Furlan RLE. Arylsulfonyl histamine derivatives as powerful and selective α-glucosidase inhibitors. RSC Med Chem 2020; 11:518-527. [PMID: 33479653 PMCID: PMC7489258 DOI: 10.1039/c9md00559e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
A series of simple N-arylbenzenesulfonyl histamine derivatives were prepared and screened against α-glucosidase. Inhibition was in the micromolar range for several N α,N τ-di-arylsulfonyl compounds, with N α,N τ-di-4-trifluorobenzenesulfonyl histamine (IId) being the best inhibitor. Compound IId is a reversible and competitive α-glucosidase inhibitor, and presented good selectivity with respect to other target enzymes, including β-glucosidase and α-amylase, and interesting predicted physicochemical properties. Docking studies have been run to postulate ligand-enzyme interactions to account for the experimental results. In vivo, compound IId produced a similar hypoglycemic effect to acarbose with half of its dose.
Collapse
Affiliation(s)
- M I Osella
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| | - M O Salazar
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| | - M D Gamarra
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA) , Departamento de Biológica , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Intendente Guiraldes 2160 , Ciudad Autónoma de Buenos Aires C1428EGA , Argentina
| | - D M Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR) , Área Química General e Inorgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - F Lambertucci
- Instituto de Fisiología Experimental (IFISE, CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - D E Frances
- Instituto de Fisiología Experimental (IFISE, CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - R L E Furlan
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| |
Collapse
|