1
|
Abha Mishra KM, Kumari N, Carta F, Renzi G, Supuran CT, Sethi KK. Design, Synthesis, and In Vitro Evaluation of Aromatic Sulfonamides as Human Carbonic Anhydrase I, II, IX, and XII Inhibitors and Their Antioxidant Activity. J Biochem Mol Toxicol 2025; 39:e70135. [PMID: 39812110 DOI: 10.1002/jbt.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (Ki) against hCA I ranged from 0.75 nM to 1972 nM. The sulfonamides inhibited isoform hCA II significantly, with a Ki ranging from 0.09 to 56 nM. Similarly, the inhibitory effects on hCA IX and XII were found with Ki spanning from 27.8 to 2099 nM and 9.43 to 509 nM, respectively. Most of the synthesized compounds showed significant inhibition in comparison to standard drugs such as acetazolamide, ethoxzolamide, zonisamide, methazolamide, dorzolamide, and SLC-0111. Antioxidant activity was assessed using the DPPH assay, with compound 13 showing better antioxidant activity with an IC50 of 54.8 µg/mL, as compared to the standard ascorbic acid (IC50 64.7 µg/mL). The molecular docking studies provided insights into the binding modes of these compounds. The in silico physicochemical properties, pharmacokinetic/ADME, and toxicity properties evaluations confirmed favorable drug-likeness properties, complying with Lipinski's rule. These findings underscore the therapeutic potential of these compounds for the treatment of retinal/cerebral edema, glaucoma, edema, epilepsy management, high-altitude sickness, and cancer.
Collapse
Affiliation(s)
- K M Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Nutan Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Gioele Renzi
- NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India
| |
Collapse
|
2
|
Zengin M, Unsal Tan O, Sabuncuoglu S, Arafa RK, Balkan A. Design and Discovery of New Dual Carbonic Anhydrase IX and VEGFR-2 Inhibitors Based on the Benzenesulfonamide-Bearing 4-Thiazolidinones/2,4-Thiazolidinediones Scaffold. Drug Dev Res 2024; 85:e70030. [PMID: 39660547 DOI: 10.1002/ddr.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Dual-targeting drug design has become a popular approach in investigating and developing potent anticancer agents. In this regard, carbonic anhydrase (CAIX) and vascular endothelial growth factor receptor (VEGFR-2) are emerging as highly effective targets in the battle against cancer. In the present study, two series of 4-thiazolidinones/2,4-thiazolidinediones carrying 2-methylbenzenesulfonamide derivatives were designed and synthesized as potential dual CAIX/VEGFR-2 inhibitors. All the target compounds were evaluated against CAIX enzyme compared to dorzolamide and acetazolamide, subsequently the most potent CAIX inhibitors (3a, 3b, 3o, 6d, 6g, and 6i) were selected to evaluate their inhibitory activity against VEGFR-2 using sorafenib as a reference drug. These compounds were also evaluated against MCF-7 breast cancer cells and the murine fibroblast 3T3 cell line. According to the results, 3b (CAIX IC50 = 0.035 µM, VEGFR-2 IC50 = 0.093 µM) and 6i (CAIX IC50 = 0.041 µM, VEGFR-2 IC50 = 0.048 µM) emerged the most potent compounds against CAIX and VEGFR-2. Furthermore, docking studies of selected compounds were performed with the CAIX and the tyrosine kinase domain of VEGFR-2 to comprehend the ligand-binding interactions. Physicochemical predictions were examined using in silico techniques. In conclusion, these scaffolds present promising leads and furnish promising chemical backbones for the design of potent dual CAIX and VEGFR-2 inhibitors.b.
Collapse
Affiliation(s)
- Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Cairo, Egypt
| | - Ayla Balkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Salem R, Eldehna WM, Abdel-Aziz HA. Spiro-fused indoline-quinazoline hybrids as smart bombs against TNF-α-mediated inflammation. Int J Biol Macromol 2024; 283:137554. [PMID: 39549799 DOI: 10.1016/j.ijbiomac.2024.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Inflammation is central to numerous diseases, highlighting the need for new anti-inflammatory agents. This study explores the potential of novel spirofused indoline-quinazoline hybrids (4a-p) as anti-inflammatory compounds, inspired by a spiroisatin analogue (VI) that showed modest TNF-α inhibition. We aimed to enhance activity by modifying the isatin scaffold: first, introducing N-alkylation (propyl, butyl, or isobutyl) to improve hydrophobic interactions within the TNF-α dimer active site; second, adding halogens (F, Cl, Br) at the 5-position to increase lipophilicity. Anti-inflammatory activity against TNF-α was confirmed in-vivo for all synthesized analogues, with 4b, 4e, 4k, and 4n emerging as the top candidates. Further studies on these four compounds assessed their analgesic effects, as well as their impact on PGE2, NF-κB, paw thickness, and paw weight. In-vitro analyses revealed nanomolar TNFR2-TNF-α binding inhibition for the four leads. Safety evaluations included histopathology, ulcerogenic potential, kidney and liver functions, and acute hemotoxicity. In-silico studies examined drug-likeness, pharmacokinetics, and TNF-α dimer interactions. These results suggest that the four lead compounds possess promising profiles compared to standard therapies.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
4
|
Marques CS, Brandão P, Burke AJ. Targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2): Latest Insights on Synthetic Strategies. Molecules 2024; 29:5341. [PMID: 39598729 PMCID: PMC11596329 DOI: 10.3390/molecules29225341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) is a crucial mediator of angiogenesis, playing a pivotal role in both normal physiological processes and cancer progression. Tumors harness VEGFR-2 signaling to promote abnormal blood vessel growth, which is a key step in the metastasis process, making it a valuable target for anticancer drug development. While there are VEGFR-2 inhibitors approved for therapeutic use, they face challenges like drug resistance, off-target effects, and adverse side effects, limiting their effectiveness. The quest for new drug candidates with VEGFR-2 inhibitory activity often starts with the selection of key structural motifs present in molecules currently used in clinical practice, expanding the chemical space by generating novel derivatives bearing one or more of these moieties. This review provides an overview of recent advances in the development of novel VEGFR-2 inhibitors, focusing on the synthesis of new drug candidates with promising antiproliferative and VEGFR-2 inhibition activities, organizing them by relevant structural features.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000-641 Evora, Portugal
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitátio, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Anthony J. Burke
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Bonardi A, Nocentini A, de Luca V, Capasso C, Elkaeed EB, Eldehna WM, Supuran CT. Hydrogen Sulfide-Releasing Carbonic Anhydrase Inhibitors Effectively Suppress Cancer Cell Growth. Int J Mol Sci 2024; 25:10006. [PMID: 39337494 PMCID: PMC11432087 DOI: 10.3390/ijms251810006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
This study proposes a novel therapeutic strategy for cancer management by combining the antitumor effects of hydrogen sulfide (H2S) and inhibition of carbonic anhydrases (CAs; EC 4.2.1.1), specifically isoforms IV, IX, and XII. H2S has demonstrated cytotoxicity against various cancers at high concentrations. The inhibition of tumor-associated CAs leads to lethal intracellular alkalinization and acidification of the extracellular tumor microenvironment and restores tumor responsiveness to the immune system, chemotherapy, and radiotherapy. The study proposes H2S donor-CA inhibitor (CAI) hybrids for tumor management. These compounds effectively inhibit the target CAs, release H2S consistently, and exhibit potent antitumor effects against MDA-MB-231, HCT-116, and A549 cancer cell lines. Notably, some compounds display high cytotoxicity across all investigated cell lines. Derivative 30 shows a 2-fold increase in cytotoxicity (0.93 ± 0.02 µM) under chemically induced hypoxia in HCT-116 cells. These compounds also disturb the cell cycle, leading to a reduction in cell populations in G0/G1 and S phases, with a notable increase in G2/M and Sub-G1. This disruption is correlated with induced apoptosis, with fold increases of 37.2, 24.5, and 32.9 against HCT-116 cells and 14.2, 13.1, and 19.9 against A549 cells compared to untreated cells. These findings suggest the potential of H2S releaser-CAI hybrids as effective and versatile tools in cancer treatment.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Viviana de Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
6
|
Singh A, Singh K, Sharma A, Sharma S, Batra K, Joshi K, Singh B, Kaur K, Chadha R, Bedi PMS. Mechanistic insight and structure activity relationship of isatin-based derivatives in development of anti-breast cancer agents. Mol Cell Biochem 2024; 479:1165-1198. [PMID: 37329491 DOI: 10.1007/s11010-023-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sambhav Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kevin Batra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kaustubh Joshi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Brahmjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
7
|
Hassanzadeh F, Hejazi SH, Jafari E, fard AM, Sadeghi-aliabadi H. Molecular docking and synthesis of N-alkyl-isatin-3-imino aromatic amine derivatives and their antileishmanial and cytotoxic activities. Res Pharm Sci 2024; 19:238-250. [PMID: 39035577 PMCID: PMC11257207 DOI: 10.4103/rps.rps_244_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/06/2023] [Accepted: 03/17/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects. Experimental approach Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions. Findings/Results Compounds 5c and 4d with IC50 value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC50:59 μΜ) and 72 h (IC50: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d. Conclusions and implications The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.
Collapse
Affiliation(s)
- Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Hossein Hejazi
- Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Jafari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Atefeh Mohammadi fard
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
8
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
9
|
Trawally M, Demir-Yazıcı K, Angeli A, Kaya K, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Thiosemicarbazone-benzenesulfonamide Derivatives as Human Carbonic Anhydrases Inhibitors: Synthesis, Characterization, and In silico Studies. Anticancer Agents Med Chem 2024; 24:649-667. [PMID: 38367264 DOI: 10.2174/0118715206290722240125112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3 -. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHODS A series of novel thiosemicarbazone-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULTS The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.
Collapse
Affiliation(s)
- Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Kerem Kaya
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
10
|
Shaldam MA, Almahli H, Angeli A, Badi RM, Khaleel EF, Zain-Alabdeen AI, Elsayed ZM, Elkaeed EB, Salem R, Supuran CT, Eldehna WM, Tawfik HO. Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors. J Enzyme Inhib Med Chem 2023; 38:2203389. [PMID: 37122176 PMCID: PMC10134960 DOI: 10.1080/14756366.2023.2203389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In this work, new isatin-based sulphonamides (6a-i, 11a-c, 12a-c) were designed and synthesised as potential dual VEGFR-2 and carbonic anhydrase inhibitors with anticancer activities. Firstly, all target isatins were examined for in vitro antitumor action on NCI-USA panel (58 tumour cell lines). Then, the most potent derivatives were examined for the potential CA inhibitory action towards the physiologically relevant hCA isoforms I, II, and tumour-linked hCA IX isoform, in addition, the VEGFR-2 inhibitory activity was evaluated. The target sulphonamides failed to inhibit the CA isoforms that could be attributable to the steric effect of the neighbouring methoxy group, whereas they displayed potent VEGFR-2 inhibitory effect. Following that, isatins 11b and 12b were tested for their influence on the cell cycle disturbance, and towards the apoptotic potential. Finally, detailed molecular modelling analyses, including docking and molecular dynamics, were carried out to assess the binding mode and stability of target isatins.
Collapse
Affiliation(s)
- Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh Uinversity, Kafrelsheikh, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
El-Damasy AK, Kim HJ, Nocentini A, Seo SH, Eldehna WM, Bang EK, Supuran CT, Keum G. Discovery of new 6-ureido/amidocoumarins as highly potent and selective inhibitors for the tumour-relevant carbonic anhydrases IX and XII. J Enzyme Inhib Med Chem 2023; 38:2154603. [PMID: 36728712 PMCID: PMC9897768 DOI: 10.1080/14756366.2022.2154603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A series of 6-ureido/amidocoumarins (5a-p and 7a-c) has been designed and synthesised to develop potent and isoform- selective carbonic anhydrase hCA XI and XII inhibitors. All coumarin derivatives were investigated for their CA inhibitory effect against hCA I, II, IX, and XII. Interestingly, target coumarins potently inhibited both tumour-related isoforms hCA IX (KIs: 14.7-82.4 nM) and hCA XII (KIs: 5.9-95.1 nM), whereas the cytosolic off-target hCA I and II isoforms have not inhibited by all tested coumarins up to 100 μM. These findings granted the target coumarins an excellent selectivity profile towards both hCA IX and hCA XII isoforms, supporting their development as promising anticancer candidates. Moreover, all target molecules were evaluated for their anticancer activities against HCT-116 and MCF-7 cancer cells. The 3,5-bis-trifluoromethylphenyl ureidocoumarin 5i, exerted the best anticancer activity. Overall, ureidocoumarins, particularly compound 5i, could serve as a promising prototype for the development of potent anticancer CAIs.
Collapse
Affiliation(s)
- Ashraf K. El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,CONTACT Ashraf K. El-Damasy , Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Florence, Italy,Laboratory of Molecular Modeling Cheminformatics & QSAR, Department of NEUROFARBA-Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Seon Hee Seo
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Florence, Italy,Claudiu T. Supuran Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Florence, 50019, Italy
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea,Gyochang Keum Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| |
Collapse
|
12
|
Romagnoli R, De Ventura T, Manfredini S, Baldini E, Supuran CT, Nocentini A, Brancale A, Bortolozzi R, Manfreda L, Viola G. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J Enzyme Inhib Med Chem 2023; 38:2270180. [PMID: 37850364 PMCID: PMC10586084 DOI: 10.1080/14756366.2023.2270180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
A novel library of human carbonic anhydrase (hCA) inhibitors based on the 2-sulfanilamido[1,2,4]triazolo[1,5-a]pyrimidine skeleton modified at its 7-position was prepared by an efficient convergent procedure. These derivatives were evaluated in vitro for their inhibition properties against a representative panel of hCA isoforms (hCA I, II, IV, IX, and XII). The target tumour-associated isoforms hCA IX and XII were potently inhibited with KIs in the low nanomolar range of 5-96 nM and 4-72 nM, respectively. Compounds 1d, 1j, 1v, and 1x were the most potent hCA IX inhibitors with KIs of 5.1, 8.6, 4.7, and 5.1 nM, respectively. Along with derivatives 1d and 1j, compounds 1r and 1ab potently inhibited hCA XII isoform with KIs in a single-digit nanomolar range of 8.8, 5.4, 4.3, and 9.0 nM, respectively. Compounds 1e, 1m, and 1p exhibited the best selectivity against hCA IX and hCA XII isoforms over off-target hCA II, with selectivity indexes ranging from 5 to 14.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Andrea Brancale
- Vysoká Škola Chemicko-Technologická v Praze, Prague, Czech Republic
| | - Roberta Bortolozzi
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, Section of Pharmacology, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Lorenzo Manfreda
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, Padova, Italy
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| |
Collapse
|
13
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
14
|
Kumar A, Arya P, Sharma V, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Potent inhibitors of tumor associated carbonic anhydrases endowed with cathepsin B inhibition. Arch Pharm (Weinheim) 2023; 356:e2300349. [PMID: 37704930 DOI: 10.1002/ardp.202300349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Twenty-one novel extended analogs of acetazolamide were synthesized and screened in vitro for their inhibition efficacy against human carbonic anhydrase (hCA) isoforms I, II, IX, XII, and cathepsin B. The majority of the compounds were found to be effective inhibitors of tumor-associated hCA IX and XII, and poor inhibitors of cytosolic hCA I. Despite the strong to moderate inhibition potential possessed by these compounds toward another cytosolic isoform hCA II, some of them demonstrated better potency against hCA IX and/or XII isoforms as compared to hCA II. Four compounds (11f, 11g, 12c, and 12g) effectively inhibited hCA IX and/or XII isoforms with considerable selectivity over the off-targets hCA I and II. Interestingly, five compounds, including 11f, 11g, 12c, 12d, and 12g, inhibited hCA IX even better than the clinically used acetazolamide. Some of the novel synthesized compounds exhibited higher anti-cathepsin B potential than acetazolamide, with % inhibition of around 50%, at a concentration of 10-7 M. Further, two compounds (12g and 12c) that showed effective and selective inhibition activity profiles against hCA IX and XII were additionally found to be effective inhibitors of cathepsin B.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
15
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
16
|
Elsawi AE, Elbadawi MM, Nocentini A, Almahli H, Giovannuzzi S, Shaldam M, Salem R, Ibrahim TM, Abdel-Aziz HA, Supuran CT, Eldehna WM. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J Med Chem 2023; 66:10558-10578. [PMID: 37501287 DOI: 10.1021/acs.jmedchem.3c00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Presently, dual targeting by a single small molecule stands out as an effective cancer-fighting weapon. Carbonic anhydrase (CA) and vascular-endothelial growth factor (VEGF) are hypoxia-activatable genes that are implicated in tumorigenesis and progression of hypoxic tumors at different levels. Herein, we designed and synthesized 30 1,5-diaryl-1,2,4-triazole-tethered sulfonamides (11a-f, 12a-l, 13a-f, 15a-f) as novel SLC-0111 analogues with dual CA IX/XII and VEGFR-2 inhibitory activities. The 4-fluorophenyl SLC-0111 tail was replaced by substituted 1,5-diaryl-1,2,4-triazoles. Changing the sulfamoyl motif position provided regioisomers 11a-f and 12a-l. Elongation of the ureido linker yielded derivatives 15a-f. Inhibitory evaluations included a panel of hCAs (hCA I, II, IX, and XII) and screening against 60 cancer cell lines. Promising candidates were assessed for VEGFR-2 inhibition and selectivity and further evaluated on breast cancer cell lines (MCF-7 and T-47D) and the non-tumorigenic (MCF-10A) cells. Molecular docking studies explored the binding modes of the sulfonamides against hCA IX/XII and VEGFR-2 kinase.
Collapse
Affiliation(s)
- Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| |
Collapse
|
17
|
Eldehna WM, Mohammed EE, Al-Ansary GH, Berrino E, Elbadawi MM, Ibrahim TM, Jaballah MY, Al-Rashood ST, Binjubair FA, Celik M, Nocentini A, Elbarbry FA, Sahin F, Abdel-Aziz HA, Supuran CT, Fares M. Design and synthesis of 6-arylpyridine-tethered sulfonamides as novel selective inhibitors of carbonic anhydrase IX with promising antitumor features toward the human colorectal cancer. Eur J Med Chem 2023; 258:115538. [PMID: 37321108 DOI: 10.1016/j.ejmech.2023.115538] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO2 hydrase assay. In addition, the anticancer activity was firstly explored against a panel of 57 cancer cell lines at the USA NCI-Developmental Therapeutic Program. Compound 8g emerged as the best anti-proliferative candidate with mean GI% value equals 44. Accordingly, a cell viability assay (MTS) for 8g was applied on colorectal HCT-116 and HT-29 cancer cell lines as well as on the healthy HUVEC cells. Thereafter, Annexin V-FITC apoptosis detection, cell cycle, TUNEL, and qRT-PCR, colony formation, and wound healing assays were applied to gain mechanistic insights and to understand the behavior of colorectal cancer cells upon the treatment of compound 8g. Also, a molecular docking analysis was conducted to provide in silico insights into the reported hCA IX inhibitory activity and selectivity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Eslam E Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Emanuela Berrino
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Meltem Celik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Fawzy A Elbarbry
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR, 97123, USA
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
18
|
Ragab MA, Eldehna WM, Nocentini A, Bonardi A, Okda HE, Elgendy B, Ibrahim TS, Abd-Alhaseeb MM, Gratteri P, Supuran CT, Al-Karmalawy AA, Elagawany M. 4-(5-Amino-pyrazol-1-yl)benzenesulfonamide derivatives as novel multi-target anti-inflammatory agents endowed with inhibitory activity against COX-2, 5-LOX and carbonic anhydrase: Design, synthesis, and biological assessments. Eur J Med Chem 2023; 250:115180. [PMID: 36796297 DOI: 10.1016/j.ejmech.2023.115180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
In the current medical era, the single target inhibition paradigm of drug discovery has given way to the multi-target design concept. As the most intricate pathological process, inflammation gives rise to a variety of diseases. There are several drawbacks to the single target anti-inflammatory drugs currently available. Herein, we present the design and synthesis of a novel series of 4-(5-amino-pyrazol-1-yl)benzenesulfonamide derivatives (7a-j) with COX-2, 5-LOX and carbonic anhydrase (CA) inhibitory activities as potential multi-target anti-inflammatory agents. The pharmacophoric 4-(pyrazol-1-yl)benzenesulfonamide moiety in Celecoxib was used as the core scaffold and different substituted phenyl and 2-thienyl tails were grafted via a hydrazone linker to enhance inhibitory activity against hCA IX and XII isoforms, yielding target pyrazoles 7a-j. All reported pyrazoles were evaluated for their inhibitory activity against COX-1, COX-2, and 5-LOX. Pyrazoles 7a, 7b, and 7j showed the best inhibitory activities against the COX-2 isozyme (IC50 = 49, 60 and 60 nM, respectively) and against 5-LOX (IC50 = 2.4, 1.9, and 2.5 μM, respectively) with excellent SI indices (COX-1/COX-2) of 212.24, 208.33, and 158.33, respectively. In addition, the inhibitory activities of pyrazoles 7a-j were evaluated against four different hCA isoforms I, II, IX, and XII. Both transmembrane hCA IX and XII isoforms were potently inhibited by pyrazoles 7a-j with KI values in the nanomolar range; 13.0-82.1 nM and 5.8-62.0 nM, respectively. Furthermore, pyrazoles 7a and 7b with the highest COX-2 activity and selectivity indices were evaluated in vivo for their analgesic, anti-inflammatory, and ulcerogenic activities. The serum level of the inflammatory mediators was then measured in order to confirm the anti-inflammatory activities of pyrazoles 7a and 7b.
Collapse
Affiliation(s)
- Mahmoud A Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hazem E Okda
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy in St. Louis, MO, USA
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine, University of Health Sciences and Pharmacy in St. Louis, MO, USA; Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Buhaira, 22516, Egypt.
| |
Collapse
|
19
|
Vats L, Siwach K, Angeli A, Bikal P, Bhardwaj JK, Supuran CT, Sharma PK. Tail approach synthesis of triazolylthiazolotriazole bearing benzenesulfonamides as carbonic anhydrase inhibitors capable of inducing apoptosis. Arch Pharm (Weinheim) 2023; 356:e2200439. [PMID: 36344431 DOI: 10.1002/ardp.202200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Inhibition of human carbonic anhydrase (hCA) isoform IX with concurrent induction of apoptosis is a promising approach for targeting cancer in humans. Prompted by the scope, novel benzenesulfonamides containing the 1,2,3-triazolylthiazolotriazole tail were synthesized and screened as inhibitors of hCA isoforms I, II, IV, and IX. The tumor-associated isoform hCA IX was strongly inhibited by the sulfonamides reported here with KI values ranging from 45 nM to 1.882 μM. Overall, nine compounds showed hCA IX inhibition with KI < 250 nM. The glaucoma-associated isoform hCA II was moderately inhibited while the cytosolic isoform hCA I and membrane-bound isoform hCA IV were weakly inhibited by the synthesized sulfonamides. Compound 6Ac (KI = 3.6 nM) was found to be an almost three times more potent inhibitor of hCA II as compared to the standard drug acetazolamide (KI = 12.1 nM). The selective hCA IX inhibitors were further studied for their apoptotic efficacy in goat ovarian cells and showed better results as compared to the control. A comparative study of previously synthesized compounds and molecular docking study of representative compounds revealed some important generalizations that could prove beneficial in further investigations of isoform-selective hCA inhibitors.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India.,Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Kiran Siwach
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Andrea Angeli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Prerna Bikal
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jitender Kumar Bhardwaj
- Department of Zoology, Reproductive Physiology Laboratory, Kurukshetra University, Kurukshetra, Haryana, India
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
20
|
Tawfik HO, Belal A, Abourehab MAS, Angeli A, Bonardi A, Supuran CT, El-Hamamsy MH. Dependence on linkers' flexibility designed for benzenesulfonamides targeting discovery of novel hCA IX inhibitors as potent anticancer agents. J Enzyme Inhib Med Chem 2022; 37:2765-2785. [PMID: 36210545 PMCID: PMC9559471 DOI: 10.1080/14756366.2022.2130285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Herein we reported the design and synthesis of two series comprising twenty-two benzenesulfonamides that integrate the s-triazine moiety. Target compounds successfully suppressed the hCA IX, with IC50 ranging from 28.6 to 871 nM. Compounds 5d, 11b, 5b, and 7b were the most active analogues, which inhibited hCA IX isoform in the low nanomolar range (KI = 28.6, 31.9, 33.4, and 36.6 nM, respectively). Furthermore, they were assessed for their cytotoxic activity against a panel of 60 cancer cell lines following US-NCI protocol. According to five-dose assay, 13c showed significant anticancer activity than 5c with GI50-MID values of 25.08 and 189.01 µM, respectively. Additionally, 13c's effects on wound healing, cell cycle disruption, and apoptosis induction in NCI-H460 cancer cells were examined. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 5d to hCA IX, exploiting a favourable H-bond and lipophilic interactions.HIGHLIGHTSCarbonic anhydrase (CA) inhibitors comprising rigid and flexible linkers were developed.Compound 5d is the most potent CA IX inhibitor in the study (IC50: 28.6 nM).Compounds 5c and 13c displayed the greatest antiproliferative activity towards 60 cell lines.Compound 13c exposed constructive outcomes on normal cell lines, metastasis, and wound healing.Molecular docking and molecular dynamics (MDs) simulation was utilised to study binding mode.
Collapse
Affiliation(s)
- Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt,CONTACT H. O. Tawfik Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,C. T. Supuran Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Eldehna WM, Taghour MS, Al-Warhi T, Nocentini A, Elbadawi MM, Mahdy HA, Abdelrahman MA, Alotaibi OJ, Aljaeed N, Elimam DM, Afarinkia K, Abdel-Aziz HA, Supuran CT. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022; 37:531-541. [PMID: 34991416 PMCID: PMC8745369 DOI: 10.1080/14756366.2021.2024528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Mostafa M. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaaeldin M. Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
22
|
Zain-Alabdeen AI, El-Moselhy TF, Sharafeldin N, Angeli A, Supuran CT, El-Hamamsy MH. Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX. Sci Rep 2022; 12:16756. [PMID: 36202955 PMCID: PMC9537541 DOI: 10.1038/s41598-022-21024-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Limited presence of hCA IX in normal physiological tissues and their overexpression only in solid hypoxic tumors made this isoform excellent possible target for developing new anticancer agents. We reported designing and synthesis of two novel series of benzenesulfonamides derivatives as hCA IX inhibitors bearing rigid cyclic linkers (1,3,5-dihydrotriazine in series A and 1,3,5-triazine in series B) in replace of traditional linear linkers. Also, novel cyanoethenyl spacer was assembled next to the 1,3,5-triazine linker in series B. Target compounds of series (A) and (B) were screened against four hCA isoforms. Human CA IX efficiently inhibited in series (A) by compound 5a (KI = 134.8 nM). Meanwhile, in series (B) the most active inhibitor was 12i (KI = 38.8 nM). US-NCI protocol was followed to evaluate the anticancer activity of target compounds against panel of sixty cancer cell lines. Compound 12d, exposed the best activity towards breast cancer (MDA-MB-468) with GI% = 62%. The most active analogues, 12d and 12i were further screened for in vitro cytotoxic activity under hypoxic condition against breast cancer (MDA-MB-468) (IC50 = 3.99 ± 0.21 and 1.48 ± 0.08 µM, respectively) and leukemia (CCRF-CM) cell line (IC50 = 4.51 ± 0.24 and 9.83 ± 0.52 µM, respectively). In addition, 12d arrested breast cancer MDA-MB-468 cell cycle in G0-G1 and S phases and induced its apoptosis which indicated by increasing the level of cleaved caspases 3 and 9. Molecular docking was performed for selected analogues to understand their biological alterations. This study revealed that insertion of 1,3,5-triazines as cyclic linkers enhanced the significant anticancer and hCA IX inhibition activity of benzenesulfonamides.
Collapse
Affiliation(s)
- Abdelrahman I Zain-Alabdeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| | - Nabaweya Sharafeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| |
Collapse
|
23
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
24
|
A flexible enantioselective approach to 2,5-disubstituted cis-decahydroquinolines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Eraslan-Elma P, Akdemir A, Berrino E, Bozdağ M, Supuran CT, Karalı N. New 1H-indole-2,3-dione 3-thiosemicarbazones with 3-sulfamoylphenyl moiety as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200023. [PMID: 35500156 DOI: 10.1002/ardp.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
1-Methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-diones (2, 3, and 4) were synthesized by reaction of 5-(un)substituted 1H-indole-2,3-diones (1) with methyl iodide, ethyl chloride, and benzyl bromide. (3-Sulfamoylphenyl)isothiocyanate (6) was obtained by the treatment of 3-aminobenzenesulfonamide (5) with thiophosgene. Compound 6 was reacted with hydrazine to yield 4-(3-sulfamoylphenyl)thiosemicarbazide (7). Novel 1-(un)substituted/methyl/ethyl/benzyl-5-(un)substituted 1H-indole-2,3-dione 3-[4-(3-sulfamoylphenyl)thiosemicarbazone] derivatives (8-11) were prepared by condensation of 7 and 1-4. The structures of the synthesized compounds were confirmed by elemental analysis and spectral data. Inhibition of the widely distributed cytosolic off-targets human carbonic anhydrases (hCAs) I and II, and two tumor-associated membrane-bound isoforms (hCAs IX and XII), by 8-11 was investigated. The hCA II inhibitory effects of all tested compounds were in the subnanomolar to low nanomolar levels (Ki = 0.32-83.3 nM), and generally high selectivity for hCA II isoenzyme over hCA I, IX, and XII isoenzymes was observed. The strongest inhibitors of hCA II, 1-benzyl-5-(trifluoromethoxy)-substituted 11c (Ki = 0.32 nM) and 1-ethyl-5-chloro-substituted 10e (Ki = 0.35 nM), were docked within the enzyme active site. Molecular modeling studies with the most effective hCA IX and XII inhibitors were also carried out.
Collapse
Affiliation(s)
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Emanuela Berrino
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Murat Bozdağ
- Department of Pharmaceutical Science, University of Antwerp, Antwerp, Belgium
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università Degli Studi di Firenze, Florence, Italy
| | - Nilgün Karalı
- Health Sciences Institute, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
27
|
Kumar A, Siwach K, Rom T, Kumar R, Angeli A, Kumar Paul A, Supuran CT, Sharma PK. Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Chem 2022; 123:105764. [DOI: 10.1016/j.bioorg.2022.105764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/13/2023]
|
28
|
Said MF, George RF, Petreni A, Supuran CT, Mohamed NM. Synthesis, molecular modelling and QSAR study of new N-phenylacetamide-2-oxoindole benzensulfonamide conjugates as carbonic anhydrase inhibitors with antiproliferative activity. J Enzyme Inhib Med Chem 2022; 37:701-717. [PMID: 35168458 PMCID: PMC8863381 DOI: 10.1080/14756366.2022.2036137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In continuation of our previous studies to optimise potent carbonic anhydrase inhibitors, two new series of isatin N-phenylacetamide based sulphonamides were synthesised and screened for their human (h) carbonic anhydrase (EC 4.2.1.1) inhibitory activities against four isoforms hCA I, hCA II, hCA IX and hCA XII. The indole-2,3-dione derivative 2h showed the most effective inhibition profile against hCAI and hCA II (KI = 45.10, 5.87 nM) compared to acetazolamide (AAZ) as standard inhibitor. Moreover, 2h showed appreciable inhibition activity against the tumour-associated hCA XII, similar to AAZ showing KI of 7.91 and 5.70 nM, respectively. The analogs 3c and 3d showed good cytotoxicity effects, and 3c revealed promising selectivity towards lung cell line A549. Molecular docking was carried out for 2h and 3c to predict their binding conformations and affinities towards the hCA I, II, IX and XII isoforms.
Collapse
Affiliation(s)
- Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| |
Collapse
|
29
|
Tawfik HO, Petreni A, Supuran CT, El-Hamamsy MH. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur J Med Chem 2022; 232:114190. [PMID: 35182815 DOI: 10.1016/j.ejmech.2022.114190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
The hydrophobic and the hydrophilic rims in the active site of human carbonic anhydrase IX (hCA IX) which as well contains a zinc ion as part of the catalytic core, were simultaneously matched to design and synthesize potent and selective inhibitors using a dual-tail approach. Seventeen new compounds, 5a-q, were designed to have the benzenesulfonamide moiety as a zinc binding group. In addition, N-substituted hydrazone and N-phenyl fragments were chosen as the hydrophilic and hydrophobic parts, respectively to achieve favorable interactions with the corresponding halves of the active site. All synthesized compounds successfully suppressed the CA IX, with IC50 values in nanomolar range from 13.3 to 259 nM. Compounds, 5h, 5c, 5m, 5e, and 5k were the top-five compounds efficiently inhibited the tumor-related CA IX isoform in the low nanomolar range (KI = 13.3, 22.6, 25.8, 26.9 and 27.2 nM, respectively). The target compounds 5a-q developed remarkable selectivity toward the tumor-associated isoforms (hCA IX and XII) over the off-target isoforms (hCA I and II). Furthermore, they were assessed for their anti-proliferative activity, according to US-NCI protocol, against a panel of fifty-nine cancer cell lines. Compounds 5d, 5k and 5o were passed the criteria for activity and scheduled automatically for evaluation at five concentrations with 10-fold dilutions. Compound 5k exhibited significant in vitro anticancer activity with GI50-MID; 8.68 μM compared to compounds 5d and 5o with GI50-MID; 25.76 μM and 34.97 μM respectively. The most selective compounds 5h and 5k were further screened for their in vitro cytotoxic activity against SK-MEL-5, HCC-2998 and RXF 393 cancer cell lines under hypoxic conditions. Furthermore, 5k was screened for cell cycle disturbance, apoptosis induction and intracellular reactive oxygen species (ROS) production in SK-MEL-5 cancer cells. Finally, molecular docking studies were performed to gain insights for the plausible binding interactions and affinities for selected compounds within hCA IX active site.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
30
|
Krymov SK, Scherbakov AM, Salnikova DI, Sorokin DV, Dezhenkova LG, Ivanov IV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Synthesis, biological evaluation, and in silico studies of potential activators of apoptosis and carbonic anhydrase inhibitors on isatin-5-sulfonamide scaffold. Eur J Med Chem 2022; 228:113997. [PMID: 34902732 DOI: 10.1016/j.ejmech.2021.113997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/09/2023]
Abstract
Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations. Docking of compounds 5e and 5k into the active site of II and IX carbonic anhydrase isoforms showed the coordination of sulfonamidate anions with zinc cations, as well as a number of additional hydrophobic interactions. The trifluoromethylthio derivative 5r suppressed the growth of tumor cells at low micromolar concentrations, maintaining activity on resistant lines and under hypoxic conditions. Immunoblotting of MCF7 cells treated with the 5r revealed its antiestrogenic activity and ability to activate apoptosis in tumor cells.
Collapse
Affiliation(s)
- Stepan K Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Scherbakov
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Diana I Salnikova
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Danila V Sorokin
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Ivan V Ivanov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| | | |
Collapse
|
31
|
Elimam DM, Eldehna WM, Salem R, Bonardi A, Nocentini A, Al-Rashood ST, Elaasser MM, Gratteri P, Supuran CT, Allam HA. Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 228:114008. [PMID: 34871842 DOI: 10.1016/j.ejmech.2021.114008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
Ligustrazine is the principle bioactive alkaloid in the widely-used Chinese herb Chuan Xiong rhizome. Herein, a series of novel derivatives has been designed as human carbonic anhydrases inhibitors (hCAIs) starting from the natural product Ligustrazine inserted as a tail instead of the 4-fluorophenyl tail of SLC-0111, a front-runner selective hCA IX inhibitor currently in clinical trials as antitumor/antimetastatic agent. Other derivatives were designed via incorporation of different linkers, of amide and ester type, or incorporation of different zinc anchoring groups such as secondary sulfamoyl and carboxylic acid functionalities. The newly designed molecules were prepared following different synthetic pathways, and were assessed for their inhibitory actions against four isoforms: the widespread cytosolic (hCA I and II), and the transmembrane tumor-related (hCA IX and XII). The primary sulfonamides efficiently inhibited the target hCA IX and hCA XII in the nanomolar range (KIs: 6.2-951.5 nM and 3.3-869.3 nM, respectively). The most selective hCA IX inhibitors 6c and 18 were assessed for their potential anticancer effects, and displayed anti-proliferative activity against MCF-7 cancer cell line with IC50s of 11.9 and 36.7 μM, respectively. Molecular modelling studies unveiled the relationship between structural features and inhibitory profiles against the off-target hCA II and the target, tumor-related isoforms hCA IX and XII.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
32
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
33
|
Elimam DM, Elgazar AA, Bonardi A, Abdelfadil M, Nocentini A, El-Domany RA, Abdel-Aziz HA, Badria FA, Supuran CT, Eldehna WM. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2021; 225:113800. [PMID: 34482273 DOI: 10.1016/j.ejmech.2021.113800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
The natural product piperine, the major bioactive alkaloid present in black pepper fruits, has the ability to modulate the functional activity of several biological targets. In this study, we have utilized the natural piperine as a tail moiety to develop new SLC-0111 analogues (6a-d, 8 and 9) as potential carbonic anhydrase inhibitors. Thereafter, different functionalities, free carboxylic acid (11a-c), acetyl (13a) and ethyl ester (13b-c), were exploited as bioisosteres of the sulfamoyl functionality. All piperine-based derivatives were assessed for their inhibitory actions against four human (h) CA isoforms: hCA I, II, IX and XII. The best hCA inhibitory activity was observed for the synthesized primary piperine-sulfonamides (6a-d and 8). In particular, both para-regioisomers (6c and 8) emerged as the most potent hCA inhibitors in this study with two-digit nanomolar activity against hCA II (KIs = 93.4 and 88.6 nM, respectively), hCA IX (KIs = 38.7 and 68.2 nM, respectively), and hCA XII (KIs = 57.5 and 45.6 nM, respectively). Moreover, piperine-sulfonamide 6c was examined for its anti-cancer and pro-apoptotic actions towards breast MCF-7 cancer cell line. Collectively, piperine-based sulfonamides could be considered as a promising scaffold for development of efficient anticancer candidates with potent CA inhibitory activities.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mohamed Abdelfadil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
34
|
Singh P, Choli A, Swain B, Angeli A, Sahoo SK, Yaddanapudi VM, Supuran CT, Arifuddin M. Design and development of novel series of indole-3-sulfonamide ureido derivatives as selective carbonic anhydrase II inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100333. [PMID: 34694638 DOI: 10.1002/ardp.202100333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023]
Abstract
Indole is a privileged moiety with a wide range of bioactivities, making it a popular scaffold in drug design and development studies as well as in synthetic chemistry. Here, novel urea derivatives of indole, containing sulfonamide at position-3 of indole, were synthesized using a well-known tail approach, as carbonic anhydrases (CAs; EC 4.2.1.1) inhibitors. All the newly synthesized molecules were screened for their CA-inhibitory activity against four clinically relevant isoforms of human-origin carbonic anhydrase (hCA), that is, hCA I, hCA II, hCA IX, and hCA XII. These compounds were specifically active against hCA II, more than against hCA I, hCA IX, and hCA XII. Derivative 6l was found to be most active, with a Ki value of 7.7 µM against hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Abhishek Choli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Fiorentino, Università degl iStudi di Firenze, Florence, Italy
| | - Santosh K Sahoo
- Process Chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Venkata M Yaddanapudi
- Process Chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Fiorentino, Università degl iStudi di Firenze, Florence, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
35
|
Eldeeb AH, Abo-Ashour MF, Angeli A, Bonardi A, Lasheen DS, Elrazaz EZ, Nocentini A, Gratteri P, Abdel-Aziz HA, Supuran CT. Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur J Med Chem 2021; 221:113486. [PMID: 33965860 DOI: 10.1016/j.ejmech.2021.113486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with (Ki = 7.6 nM), while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.
Collapse
Affiliation(s)
- Assem H Eldeeb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Eman Z Elrazaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
36
|
Vellingiri A, Murugan D, Gnana Kumar G, Alagusundaram P. An elegant and efficient synthesis of heterocycles integrated with
bis
‐
N
‐acyl
pyrazoline and
bis
‐1, 2,
3‐triazole
via a green synthetic methodology. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Dinesh Murugan
- School of Chemistry, Madurai Kamaraj University Madurai India
| | | | | |
Collapse
|
37
|
Mancuso F, Di Fiore A, De Luca L, Angeli A, De Simone G, Supuran CT, Gitto R. Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorg Med Chem 2021; 44:116279. [PMID: 34216985 DOI: 10.1016/j.bmc.2021.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
To tackle the challenge of isoform selectivity, we explored the entrance of the cavity for selected druggable human Carbonic Anhydrases (hCAs). Based on X-ray crystallographic studies on the 4-(4-(2-chlorobenzoyl)piperazine-1-carbonyl)benzenesulfonamide in complex with the brain expressed hCA VII (PDB code: 7NC4), a series of 4-(4(hetero)aroylpiperazine-1-carbonyl)benzene-1-sulfonamides has been developed. To evaluate their capability to fit the hCA VII catalytic cavity, the newer benzenesulfonamides were preliminary investigated by means of docking simulations. Then, this series of thirteen benzenesulfonamides was synthesized and tested against selected druggable hCAs. Among them, the 4-(4-(furan-2-carbonyl)piperazine-1-carbonyl)benzenesulfonamide showed remarkable affinity towards hCA VII (Ki: 4.3 nM) and good selectivity over the physiologically widespread hCA I when compared to Topiramate (TPM).
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento CHIBIOFARAM, Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy.
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura De Luca
- Dipartimento CHIBIOFARAM, Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento CHIBIOFARAM, Università degli Studi di Messina, Viale Palatucci, Polo Didattico SS. Annunziata, 98168 Messina, Italy
| |
Collapse
|
38
|
Hsu TJ, Nepali K, Tsai CH, Imtiyaz Z, Lin FL, Hsiao G, Lai MJ, Cheng YW. The HDAC/HSP90 Inhibitor G570 Attenuated Blue Light-Induced Cell Migration in RPE Cells and Neovascularization in Mice through Decreased VEGF Production. Molecules 2021; 26:4359. [PMID: 34299636 PMCID: PMC8305912 DOI: 10.3390/molecules26144359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) occurs due to an abnormality of retinal pigment epithelium (RPE) cells that leads to gradual degeneration of the macula. Currently, AMD drug pipelines are endowed with limited options, and anti-VEGF agents stand as the dominantly employed therapy. Despite the proven efficacy of such agents, the evidenced side effects associated with their use underscore the need to elucidate other mechanisms involved and identify additional molecular targets for the sake of therapy improvement. The previous literature provided us with a solid rationale to preliminarily explore the potential of selective HDAC6 and HSP90 inhibitors to treat wet AMD. Rather than furnishing single-target agents (either HDAC6 or HSP90 inhibitor), this study recruited scaffolds endowed with the ability to concomitantly modulate both targets (HDAC6 and HSP90) for exploration. This plan was anticipated to accomplish the important goal of extracting amplified benefits via dual inhibition (HDAC6/HSP90) in wet AMD. As a result, G570 (indoline-based hydroxamate), a dual selective HDAC6-HSP90 inhibitor exerting its effects at micromolar concentrations, was pinpointed in the present endeavor to attenuate blue light-induced cell migration and retinal neovascularization by inhibiting VEGF production. In addition to the identification of a potential chemical tool (G570), the outcome of this study validates the candidate HDAC6-HSP90 as a compelling target for the development of futuristic therapeutics for wet AMD.
Collapse
Affiliation(s)
- Tai-Ju Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan; (T.-J.H.); (K.N.); (C.-H.T.); (Z.I.)
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan; (T.-J.H.); (K.N.); (C.-H.T.); (Z.I.)
| | - Chi-Hao Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan; (T.-J.H.); (K.N.); (C.-H.T.); (Z.I.)
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zuha Imtiyaz
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan; (T.-J.H.); (K.N.); (C.-H.T.); (Z.I.)
| | - Fan-Li Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 100301, Taiwan; (F.-L.L.); (G.H.)
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 100301, Taiwan; (F.-L.L.); (G.H.)
| | - Mei-Jung Lai
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei 100301, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan; (T.-J.H.); (K.N.); (C.-H.T.); (Z.I.)
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 100301, Taiwan
| |
Collapse
|
39
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
40
|
Eldehna WM, Abo-Ashour MF, Al-Warhi T, Al-Rashood ST, Alharbi A, Ayyad RR, Al-Khayal K, Abdulla M, Abdel-Aziz HA, Ahmad R, El-Haggar R. Development of 2-oindolin-3-ylidene-indole-3-carbohydrazide derivatives as novel apoptotic and anti-proliferative agents towards colorectal cancer cells. J Enzyme Inhib Med Chem 2021; 36:319-328. [PMID: 33345633 PMCID: PMC7751403 DOI: 10.1080/14756366.2020.1862100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial anti-apoptotic Bcl2 and BclxL proteins, are overexpressed in multiple tumour types, and has been involved in the progression and survival of malignant cells. Therefore, inhibition of such proteins has become a validated and attractive target for anticancer drug discovery. In this manner, the present studies developed a series of novel isatin-indole conjugates (7a-j and 9a-e) as potential anticancer Bcl2 and BclxL inhibitors. The progression of the two examined colorectal cancer cell lines was significantly inhibited by all of the prepared compounds with IC50 ranges132-611 nM compared to IC50 = 4.6 µM for 5FU, against HT-29 and IC50 ranges 37-468 nM compared to IC50 = 1.5 µM for 5FU, against SW-620. Thereafter, compounds 7c and 7g were selected for further investigations. Interestingly, both compounds exhibited selective cytotoxicity against both cell lines with high safety to normal fibroblast (HFF-1). In addition, both compounds 7c and 7g induced apoptosis and inhibited Bcl2 and BclxL expression in a dose-dependent manner. Collectively, the high potency and selective cytotoxicity suggested that conjugates 7c and 7g could be a starting point for further optimisation to develop novel pro-apoptotic and antitumor agents towards colon cancer.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rezk R Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
41
|
Buabeng ER, Henary M. Developments of small molecules as inhibitors for carbonic anhydrase isoforms. Bioorg Med Chem 2021; 39:116140. [PMID: 33905966 DOI: 10.1016/j.bmc.2021.116140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases are ubiquitous, and their role in the hydration of carbon dioxide is essential for the survival of many tissues and organs. However, their association with many pathological diseases, especially in glaucoma, Alzheimer's, obesity, epilepsy, and tumorigenesis, has prompted the design and synthesis of novel carbonic anhydrase inhibitors (CAIs). Herein we describe (1) approaches used in the design of CAIs and (2) synthesis of small molecules as CAIs within the last five years. Despite the active research in this area, there are still more avenues to explore, especially selective inhibition of CA I, CA IX, and XII. These isoforms would continue to open up a diversity of carbonic anhydrase inhibitors containing 1,2,3-triazoles, imidazolone, pyrrolidone, thiadiazole, isatin, and glycoconjugates as part of their molecular frameworks.
Collapse
Affiliation(s)
- Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
42
|
Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Singh P, Purnachander Yadav P, Swain B, Thacker PS, Angeli A, Supuran CT, Arifuddin M. Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorg Chem 2021; 108:104647. [PMID: 33530019 DOI: 10.1016/j.bioorg.2021.104647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 01/12/2023]
Abstract
The primary sulfonamide group is one of the most efficient zinc binding group (ZBG) for designing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In the present study primary sulfonamide linked with indolylchalcone were designed. The newly synthesized molecules (5a-r) were examined against four human (h) CA isoforms (hCA I, hCA II, hCA IX and hCA XIII). These sulfonamides showed good inhibition activity against isoforms hCA I, hCA II and hCA XIII. Compound 5i (2.3 nM), 5m (2.4 nM), 5o (3.6 nM) and 5q (7.0 nM) were more potent than standard drug AAZ (12.1 nM) against isoform hCA II, respectively. Most of the other compounds in the present series inhibited hCA XIII and hCA IX in the range of 50 nM - 100 nM.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Parvatha Purnachander Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Dept, Sezione di ScienzeFarmaceutiche e, Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad-500001, T. S, India.
| |
Collapse
|
44
|
Shaldam M, Eldehna WM, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Abdel-Aziz HA, Supuran CT. Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. Eur J Med Chem 2021; 216:113283. [PMID: 33667848 DOI: 10.1016/j.ejmech.2021.113283] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
In the present study, we describe the design of different series of benzofuran-based derivatives as potential carbonic anhydrase inhibitors (CAIs). The adopted design is based on bioisosteric replacement for the p-fluorophenyl SLC-0111 tail with the lipophilic 2-methylbenzofuran or 5-bromobenzofuran tails to furnish the 2-methylbenzofuran (MBF) sulfonamides (MBFS; 9, 11 and 13) and 5-bromobenzofuran (BBF) sulfonamides (BBFS; 27a-b, 28a-b and 29a-c), respectively. Thereafter, the urea spacer was either elongated to furnish MBFS (17 and 19), and BBFS (30) series, or replaced by a carbamate one to afford MBFS (15). All the designed compounds were synthesized and evaluated for their inhibitory activities against four human (h) CA isoforms: hCA I, II, IX and XII. MBFS (11b and 17) and BBFS (28b, 29a and 30) efficiently inhibited the tumor-related CA IX isoform in the single-digit nanomolar range (KIs = 8.4, 7.6, 5.5, 7.1 and 1.8 nM, respectively). In particular, MBFS 11b and BBFS 28b exhibited good selectivity toward hCA IX isoform over the main off-target hCA II isoform (S.I. = 26.4 and 58.9, respectively). As a consequence, 11b and 28b were examined for their anticancer and pro-apoptotic activities toward MDA-MB-231 and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
45
|
Mancuso F, De Luca L, Angeli A, Del Prete S, Capasso C, Supuran CT, Gitto R. Synthesis, computational studies and assessment of in vitro inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2021; 35:1442-1449. [PMID: 32614678 PMCID: PMC7717710 DOI: 10.1080/14756366.2020.1786821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Coumarins are widely diffused secondary metabolites possessing a plethora of biological activities. It has been established that coumarins represent a peculiar class of human carbonic anhydrase (hCA) inhibitors having a distinct mechanism of action involving a non-classical binding with amino acid residues paving the entrance of hCA catalytic site. Herein, we report the synthesis of a small series of new coumarin derivatives 7-11, 15, 17 prepared via classical Pechmann condensation starting from resorcinol derivatives and suitable β-ketoesters. The evaluation of inhibitory activity revealed that these compounds possessed nanomolar affinity and high selectivity towards tumour-associated hCA IX and XII over cytosolic hCA I and hCA II isoforms. To investigate the binding mode of these new coumarin-inspired inhibitors, the most active compounds 10 and 17 were docked within hCA XII catalytic cleft.
Collapse
Affiliation(s)
- Francesca Mancuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Messina, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Messina, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Università di Firenze, Sesto Fiorentino, Italy
| | | | | | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Università di Firenze, Sesto Fiorentino, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (CHIBIOFARAM), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
46
|
Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem 2021; 209:112923. [PMID: 33121862 DOI: 10.1016/j.ejmech.2020.112923] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) is an enzyme and a very omnipresent zinc metalloenzyme which catalyzed the reversible hydration and dehydration of carbon dioxide and bicarbonate; a reaction which plays a crucial role in many physiological and pathological processes. Carbonic anhydrase is present in human (h) with sixteen different isoforms ranging from hCA I-hCA XV. All these isoforms are widely distributed in different tissues/organs and are associated with a range of pivotal physiological activities. Due to their involvement in various physiological roles, inhibitors of different human isoforms of carbonic anhydrase have found clinical applications for the treatment of various diseases including glaucoma, retinopathy, hemolytic anemia, epilepsy, obesity, and cancer. However, clinically used inhibitors of CA (acetazolamide, brinzolamide, dorzolamide, etc.) are not selective causing the undesirable side effects. One of the major hurdles in the design and development of carbonic anhydrase inhibitors is the lack of balanced isoform selectivity which thrived to new chemotypes. In this review, we have compiled the recent strategies of various researchers related to the development of carbonic anhydrase inhibitors belonging to different structural classes like pyrimidine, pyrazoline, selenourea, isatin, indole, etc. This review also summarizes the structure-activity relationships, analysis of isoform selectivity including mechanistic and in silico studies to afford ideas and to provide focused direction for the design and development of novel isoform-selective carbonic anhydrase inhibitors with therapeutic implications.
Collapse
Affiliation(s)
- Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sandeep Rulhania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
47
|
Chahal V, Nirwan S, Pathak M, Kakkar R. Identification of potent human carbonic anhydrase IX inhibitors: a combination of pharmacophore modeling, 3D-QSAR, virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:4516-4531. [PMID: 33317405 DOI: 10.1080/07391102.2020.1860132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human carbonic anhydrase IX (hCA IX) is a promising target for the development of potential anticancer agents. In the current study, pharmacophore and 3D-QSAR models have been developed using SLC-0111 derivatives. The developed models have been further utilized for the virtual screening process to develop potent hCA IX inhibitors. Thirteen different models have been developed by employing various combinations of training and test set molecules. Based on this, a model, AADDR.135, comprising two H-bond acceptors, two H-bond donors and one aromatic ring, has been found as the best QSAR model. The proposed model exhibits high robustness (R2 = 0.9789), with good predictive ability (Q2 = 0.6872). An external library of drug-like compounds (∼10000 molecules) imported from the ZINC15 database has been screened over the model AADDR.135. In total, 1601 compounds were obtained as hits. Molecular docking studies and molecular dynamics simulations have been performed on the obtained hits and, based on these computations, two unique molecules have been identified as potential hCA IX inhibitors. These show higher binding energies compared to the parent molecule and its most potent analogue.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Varun Chahal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonam Nirwan
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mallika Pathak
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
48
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
49
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
50
|
Alkhaldi AAM, Al-Sanea MM, Nocentini A, Eldehna WM, Elsayed ZM, Bonardi A, Abo-Ashour MF, El-Damasy AK, Abdel-Maksoud MS, Al-Warhi T, Gratteri P, Abdel-Aziz HA, Supuran CT, El-Haggar R. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur J Med Chem 2020; 207:112745. [PMID: 32877804 DOI: 10.1016/j.ejmech.2020.112745] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023]
Abstract
Herein we describe design and synthesis of different series of novel small molecules featuring 3-methylthiazolo[3,2-a]benzimidazole moiety (as a tail) connected to the zinc anchoring benzenesulfonamide moiety via ureido (7), enaminone (12), hydrazone (14), or hydrazide (15) linkers. The newly prepared conjugates have been screened for their inhibitory activities toward four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms: hCA I, II, IX and XII. Thereafter, the urea and enaminone linkers were elongated by one- or two-atoms spacers to afford the elongated counterparts 9 and 13, respectively. Finally, the zinc anchoring sulfonamide group was replaced by the carboxylic acid group to afford acids 17. Compounds 12d, 13b and 15 displayed single-digit nanomolar CA IX inhibitory activities (KIs = 6.2, 9.7 and 5.5 nM, respectively), along with good selectivity towards hCA IX over hCA I and II. Subsequently, they were screened for their growth inhibitory actions against breast cancer MCF-7 and MDA-MB-231 cell lines, and for their impact on cell cycle progression and induction of apoptosis. Moreover, a molecular docking study was conducted to gain insights for the plausible binding interactions of target sulfonamides within hCA isoforms II, IX and XII binding sites.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| |
Collapse
|