1
|
Naidu D, Althaf Umar KP, Muhsina K, Augustine S, Jeengar MK, S K K. Zingiberaceae in Cardiovascular Health: A review of adipokine modulation and endothelial protection via adipocyte-endothelial crosstalk mechanism. Curr Nutr Rep 2025; 14:66. [PMID: 40366476 DOI: 10.1007/s13668-025-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF THE REVIEW Although adipose tissue controls metabolism and protects vital organs, its importance to general health is being highlighted by the rise in type 2 diabetes and cardiovascular disease. Adipokines produced by adipose cells are essential regulators of metabolism, glucose homeostasis, and inflammatory response. It also protects vascular endothelial cells for its potential implications for cardiovascular protection. Understanding its intricate involvement in adipose tissue-endothelial communication is critical in developing targeted therapeutics to treat cardiovascular conditions linked with obesity and metabolic dysregulation. Spices from the Zingiberaceae family, such as cardamom, turmeric, and ginger, have anti-inflammatory and anti-oxidant properties that help reduce oxidative stress, vascular dysfunction, and adipocyte-endothelial crosstalk which are all linked to the etiology of CVD. Comprehensive molecular insights into how they modulate adipokine signalling, inflammatory pathways, and ROS-induced adipocyte-vascular interactions remain unexplored, demanding additional translational and clinical validation. With an emphasis on patients with obesity and metabolic dysregulation, the investigation aims to elucidate the mechanisms by which the spice as whole/bioactive constituents of the Zingiberaceae family may provide protection against CVD by integrating previous studies. RECENT FINDINGS Current research continues to support the use of spices from the Zingiberaceae family, such as ginger, turmeric, cardamom, and pepper, as potential therapeutic agents for addressing metabolic complications like obesity, type II diabetes, and CVDs. These natural remedies may modulate adipocyte-endothelial crosstalk and inflammation by modulating important signalling pathways such as AMPK, AKT, PPAR, and NF-κB.. CONCLUSION This review provides a complete summary of existing knowledge, opening the way for future research and prospective therapeutic applications of Zingiberaceae spices in cardiovascular health management.
Collapse
Affiliation(s)
- Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K P Althaf Umar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K Muhsina
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sanu Augustine
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Kanthlal S K
- Department of Pharmacology, Sree Krishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram, Kerala, 695502, India.
| |
Collapse
|
2
|
Wang H, Lu Q, Chen X, Qian Y, Qian B, Tan H. Global trends and biological activity hotspots of D-limonene in essential oils: a 30-year bibliometric study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5491-5507. [PMID: 39570383 DOI: 10.1007/s00210-024-03607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
This study aims to conduct a comprehensive bibliometric analysis of global research trends and hotspots related to the biological activities of D-limonene, a prominent monoterpene compound found in essential oils, that warrant attention. We performed a bibliometric analysis of 1928 publications sourced from the Web of Science core database, covering the period from 1994 to 2024. Utilizing CiteSpace and VOSviewer software, we analyzed publication trends, collaboration networks among countries, institutions, and authors, and explored the evolution of research themes and current hotspots through keyword analysis. Our findings indicate a rapid increase in research on D-limonene activities since 2017, with China and Brazil leading in publication output. Italy and the USA play central roles within the collaboration network. Notably, a core group of authors has yet to emerge in this field. The biological activities of D-limonene, particularly its antibacterial, antioxidant, anti-inflammatory, and antitumor properties, are widely studied. Recent research hotspots focus on its neuroprotective effects and its potential role in inhibiting antibiotic resistance. The study highlights the growing interest in D-limonene and suggests that its use as an adjuvant to enhance therapeutic efficacy through synergistic interactions with other drugs may represent a significant research direction for the future. This analysis provides valuable insights for researchers and practitioners in pharmacology and related fields, emphasizing the importance of D-limonene in advancing health-related applications.
Collapse
Affiliation(s)
- Haibin Wang
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaochen Chen
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and school of public health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and school of public health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongsheng Tan
- Clinical Research Institute & School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Wang X, Zhang T, Wang S, Shi H, Dong H, Huang Y, Lai W, Hu Y, Yue C. Bio-nanocomplexes impair iron homeostasis to induce non-canonical ferroptosis in cancer cells. J Nanobiotechnology 2025; 23:121. [PMID: 39972473 PMCID: PMC11837358 DOI: 10.1186/s12951-025-03117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
The targeted elevation of the labile iron pool (LIP) represents the most direct and effective strategy to induce ferroptosis in cancer cells. However, the efficiency of increasing LIP to induce ferroptosis via iron supplementation is controversial due to the iron homeostasis between LIP and storage iron pool, leading to poor effects and serious safety concerns. In this study, a bio-nanocomplex named AbDA-Lim, composed of albumin, polydopamine, and limonene, is prepared to promote LIP and induce non-canonical ferroptosis in cancer cells by destroying the iron balance. Albumin avidity drives AbDA-Lim entering cancer cells. Subsequently, the released polydopamine enhances the expression of HMOX1 to degrade haem and facilitate the transformation of Fe (III) to Fe (II). Meanwhile, limonene reduces glutathione (GSH) levels via inhibiting CBS, thereby, triggering the release of Fe (II) into LIP from its GSH-bound storage state. The augmentation of LIP ultimately triggers non-canonical ferroptosis in cancer cells. Furthermore, the photothermal property of polydopamine augments the synergistic anti-tumor efficiency of AbDA-Lim by incorporating photothermal therapy. This study presents a distinctive, cascading, and biotic strategy for promoting LIP non-canonically to induce ferroptosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Tianyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shuai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Hanping Shi
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Yanning Huang
- Office of International Cooperation and Exchanges, Central South University, Changsha, 410008, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
4
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
5
|
Moreno KGT, Marques AAM, da Silva GP, Bertoncelo LA, Pessoal LB, Gonçalves LD, Dos Santos AC, Souza RIC, Silva DB, Gasparotto Junior A. Cardioprotective Effects of Aloysia polystachya Essential Oil on a Rat Model with Multiple Cardiovascular Risk Factors. PLANTA MEDICA 2024; 90:708-716. [PMID: 38631368 DOI: 10.1055/a-2294-6922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Traditional medicine is a frequently utilized method to treat cardiovascular disease and its primary risk factors, including hypertension and dyslipidemia. Aloysia polystachya is a species that is commonly employed to treat various pathological conditions, and it has already been identified as having some cardioprotective effects. This study aimed to investigate the protective effects of the essential oil extracted from the leaves of A. polystachya in a rat model that simulates multiple cardiovascular risk factors. We evaluate the acute toxicity, as well as the cardioprotective effects, by giving different doses of A. polystachya essential oil (1.47 mg/kg, 4.40 mg/kg, and 13.20 mg/kg) over a period of 42 days. The control group was treated with rosuvastatin (5 mg/kg). At the end of the treatments, the renal function, electrocardiography, blood pressure, vascular reactivity, serum biochemical profile, and organ histopathology were evaluated. The main compounds identified in the essential oil of A. polystachya using gas chromatography coupled with mass spectrometry were beta-myrcene (1.08%), limonene (40.13%), and carvone (56.47%). The essential oil of A. polystachya not only lacks acute toxicity but also mitigates the reduction in the excretion of sodium, chloride, and creatinine in urine. Furthermore, it reduces electrocardiographic abnormalities and decreases blood pressure levels. Moreover, this treatment prevents an elevation in markers of inflammation and oxidative stress in the bloodstream. Our findings indicate significant cardioprotective effects of the essential oil of A. polystachya against multiple risk factors for cardiovascular diseases in hypertensive rats.
Collapse
Affiliation(s)
- Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Gabriela Pereira da Silva
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Luana Ale Bertoncelo
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Luciane Barbosa Pessoal
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Larissa Dantas Gonçalves
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Ariany Carvalho Dos Santos
- Laboratory of Histopathology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFAC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
6
|
Safaeian L, Yazdiniapour Z, Hajibagher S, Bakhtiari Z, Karimian P. The effect of Dracocephalum subcapitatum hydroalcoholic extract on dexamethasone-induced hyperlipidemic rats. Res Pharm Sci 2024; 19:319-327. [PMID: 39035816 PMCID: PMC11257195 DOI: 10.4103/rps.rps_148_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Recent data show the antihyperlipidemic activities of some plants belonging to the genus Dracocephalum. In this study, the effects of hydroalcoholic extract of D. subcapitatum (O. Kuntze) Lipsky aerial parts were evaluated in a model of hyperlipidemia induced by dexamethasone. Experimental approach The extract was prepared by maceration method and its total phenolic content was determined. Seven groups of 6 Wistar rats were used as follows: group 1 (normal control) received vehicle; group 2 (extract control) treated only with 200 mg/kg D. subcapitatum; group 3 (hyperlipidemia control) received dexamethasone (10 mg/kg/day, subcutaneously); group 4 (reference) received dexamethasone and atorvastatin (40 mg/kg, orally), and groups 5-7 (test groups) received dexamethasone and simultaneously treated orally with 50, 100, or 200 mg/kg D. subcapitatum. All treatments were done for 1 week. Serum lipid profile, fasting blood glucose, malondialdehyde concentration, and liver histopathology were examined. Findings/Results Total phenolic content was 77.34 ± 4.9 mg/g as gallic acid equivalent. Treatment with D. subcapitatum (200 mg/kg) meaningfully declined triglycerides, total cholesterol, low-density lipoprotein, very low-density lipoprotein, blood glucose, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels, and alleviated hepatic steatosis in dexamethasone-induced dyslipidemic rats. Conclusion and implications Findings of the current study suggest that D. subcapitatum may be effective in the management of hyperlipidemia. Further studies are necessary to determine the clinical efficacy of this treatment and to understand the underlying mechanisms responsible for its ability to lower lipid levels.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Yazdiniapour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Hajibagher
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Bakhtiari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paridokht Karimian
- Department of Pathology, Medical School, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Ukpai OM, Ijioma SN, Kanu K, Orieke D, Chinedu-Ndukwe PA, Ugwuanyi KC, Ugbogu EA. Phytochemical composition, toxicological profiling and effect on pup birth weight of Corchorus olitorius leaf extract in rats: Implications for fetal macrosomia control. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117170. [PMID: 37704120 DOI: 10.1016/j.jep.2023.117170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corchorus olitorius is used in ethnomedicine to arrest threatened miscarriage, ease labour, and promote smooth childbirth. AIM OF THE STUDY To evaluate the phytochemical composition, toxicity profile, and effect of Corchorus olitorius L. leaf extract (COLE) on fetal macrosomia control in rats. MATERIALS AND METHODS The chemical constituents of COLE were determined using gas chromatography-mass spectrometry (GC-MS). A single dose of up to 5000 mg/kg was administered in the acute toxicity test, and the rats were monitored for 14 days. In the sub-acute toxicity study, rats were treated with the extract for 28 days, and liver function, renal function, lipid profile, and serum antioxidant parameters, coupled with liver and kidney histology, were used to assess the toxicity potential of the extract. In the pup birth weight study, treatment of pregnant rats lasted until the birth of pups and continued for an extra 4 weeks. Rats in group 1 served as a control, whereas rats in groups 2, 3, and 4 received daily doses of 200, 400, and 800 mg/kg body weight of COLE, respectively, via oral gavage. RESULTS Bioactive compounds such as D-limonene, phytol, hexadecanoic acid, 9-octadecenoic acid (Z), dodecanoic acid, and ethyl 9,12,15-octadecatrienoate with well-known pharmacological activities were detected. LD50 of COLE was >5000 mg/kg. COLE decreased body weight and increased red blood cell, packed cell volume, and haemoglobin values when compared with the control (p < 0.05). COLE significantly decreased alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase but did not cause any significant (p > 0.05) changes in other biochemical (liver and kidney) parameters when compared to control. COLE decreased total cholesterol, triglycerides, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol when compared with the control (p < 0.05). Birth weights of pups were significantly decreased in the COLE-treated groups when compared with the control (p < 0.05), but the observed difference terminated by the fourth week of weaning. CONCLUSION The results showed that COLE is not toxic but has several bioactive compounds with known pharmacological activities and therefore may be a safe oral agent for fetal macrosomia control.
Collapse
Affiliation(s)
- Onyinye Mkpola Ukpai
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Kingsley Kanu
- Department of Environmental Management and Toxicology, College of Natural Resources and Environmental Management, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Daniel Orieke
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Peace Amarachi Chinedu-Ndukwe
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Kingsley Chijioke Ugwuanyi
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | |
Collapse
|
9
|
Chukwuma CI. Antioxidative, Metabolic and Vascular Medicinal Potentials of Natural Products in the Non-Edible Wastes of Fruits Belonging to the Citrus and Prunus Genera: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:191. [PMID: 38256745 PMCID: PMC10818484 DOI: 10.3390/plants13020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Diabetes mellitus and related metabolic and vascular impairments are notable health problems. Fruits and vegetables contain phenolics that are beneficial to metabolic and oxidative health and useful in preventing associated disease. Scientific evidence has shown that some bioactive phenolics are more abundant in the non-edible parts (especially the peels) of many fruits than in their respective edible tissues. Fruits belonging to the Citrus and Prunus genera are commonly consumed worldwide, including in South Africa, and their non-edible wastes (peel and seed) have been shown to have antioxidative, metabolic and vascular pharmacological potentials and medicinal phytochemistry. It is therefore imperative to evaluate the pharmacological actions and phytochemical properties of the non-edible wastes of these fruits and understand how they could potentially be of medicinal relevance in oxidative, metabolic and vascular diseases, including diabetes, oxidative stress, obesity, hypertension and related cardiovascular impairments. In the absence of a previous review that has concomitantly presented the medicinal potentials of fruits wastes from both genera, this review presents a critical analysis of previous and recent perspectives on the medicinal potential of the non-edible wastes from the selected Citrus and Prunus fruits in metabolic, vascular and oxidative health. This review further exposes the medicinal phytochemistry, while elucidating the underlying mechanisms through the fruit wastes potentiates their therapeutic effects. A literature search was carried out on "PubMed" to identify peer-reviewed published (mostly 2015 and beyond) studies reporting the antidiabetic, antioxidative, antihypertensive, anti-hyperlipidemic and anti-inflammatory properties of the non-edible parts of the selected fruits. The data of the selected studies were analyzed to understand the bioactive mechanisms, bioactive principles and toxicological profiles. The wastes (seed and peel) of the selected fruits had antioxidant, anti-obesogenic, antihypertensive, anti-inflammatory, antidiabetic and tissue protective potentials. Some phenolic acids and terpenes, as well as flavonoids and glycosides such as narirutin, nobiletin, hesperidin, naringin, naringenin, quercetin, rutin, diosmin, etc., were the possible bioactive principles. The peel and seed of the selected fruits belonging to the Citrus and Prunus genera are potential sources of bioactive compounds that could be of medicinal relevance for improving oxidative, metabolic and vascular health. However, there is a need for appropriate toxicological studies.
Collapse
Affiliation(s)
- Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa
| |
Collapse
|
10
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
11
|
Long-Term Ingestion of Sicilian Black Bee Chestnut Honey and/or D-Limonene Counteracts Brain Damage Induced by High Fat-Diet in Obese Mice. Int J Mol Sci 2023; 24:ijms24043467. [PMID: 36834882 PMCID: PMC9966634 DOI: 10.3390/ijms24043467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is linked to neurodegeneration, which is mainly caused by inflammation and oxidative stress. We analyzed whether the long-term intake of honey and/or D-limonene, which are known for their antioxidant and anti-inflammatory actions, when ingested separately or in combination, can counteract the neurodegeneration occurring in high fat diet (HFD)-induced obesity. After 10 weeks of HFD, mice were divided into: HFD-, HFD + honey (HFD-H)-, HFD + D-limonene (HFD-L)-, HFD + honey + D-limonene (HFD-H + L)-fed groups, for another 10 weeks. Another group was fed a standard diet (STD). We analyzed the brain neurodegeneration, inflammation, oxidative stress, and gene expression of Alzheimer's disease (AD) markers. The HFD animals showed higher neuronal apoptosis, upregulation of pro-apoptotic genes Fas-L, Bim P27 and downregulation of anti-apoptotic factors BDNF and BCL2; increased gene expression of the pro-inflammatory IL-1β, IL-6 and TNF-α and elevated oxidative stress markers COX-2, iNOS, ROS and nitrite. The honey and D-limonene intake counteracted these alterations; however, they did so in a stronger manner when in combination. Genes involved in amyloid plaque processing (APP and TAU), synaptic function (Ache) and AD-related hyperphosphorylation were higher in HFD brains, and significantly downregulated in HFD-H, HFD-L and HFD-H + L. These results suggest that honey and limonene ingestion counteract obesity-related neurodegeneration and that joint consumption is more efficacious than a single administration.
Collapse
|
12
|
Moni SS, Mohan S, Makeen HA, Alhazmi HA, Basode VK, Rehman Z, Alam MS, Alam MF, Anwer T, Elmobark ME, Abdulhaq A, Alamoudi MUA, Hadi IMH, Amri SAA, Alrithi AMA, Jathmi ZAJ, Kaabi MAA. Spectral characterization and biological evaluation of biomolecules from the peels of three orange fruits: a comparative study. BRAZ J BIOL 2023; 82:e267856. [PMID: 36700593 DOI: 10.1590/1519-6984.267856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
The present work was designed to investigate the presence of bioactive chemicals in the reaction mixtures (RMs) of peels of Valencia, Mandarin, and African navel oranges, through GC-MS and FT-IR studies. Limonene, a unique compound, is present in the RMs of the three orange peels. Moreover, hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester was identified in the RMs of all the three-orange peels. The RM of Mandarin orange exhibited potent cytotoxic effect against MCF-7 ATCC human breast cancer cells (HBC). All the three RMs exhibited moderate antibacterial activity against the human pathogenic bacteria Staphylococcus aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 700603), Salmonella choleraesis (ATCC 10708), Pseudomonas aeruginosa (ATCC 27853), and Proteus mirabilis (ATCC 299).
Collapse
Affiliation(s)
- S S Moni
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Saudi Arabia
| | - S Mohan
- Jazan University, Substance Abuse and Toxicology Research Centre, Jazan, Saudi Arabia.,Saveetha University, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Department of Pharmacology, Center for Transdisciplinary Research, Chennai, India.,University of Petroleum and Energy Studies, School of Health Sciences, Dehradun, Utta-rakhand, India
| | - H A Makeen
- Jazan University, College of Pharmacy, Pharmacy Practice Research Unit, Jazan, Saudi Arabia
| | - H A Alhazmi
- Jazan University, Substance Abuse and Toxicology Research Centre, Jazan, Saudi Arabia.,Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - V K Basode
- Jazan University, College of Applied Medical Sciences, Unit of Medical Microbiology, Jazan, Saudi Arabia
| | - Z Rehman
- Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - M S Alam
- Jazan University, College of Pharmacy, Department of Pharmaceutical Chemistry and Pharmacognosy, Jazan, Saudi Arabia
| | - M F Alam
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - T Anwer
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - M E Elmobark
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Saudi Arabia
| | - A Abdulhaq
- Jazan University, College of Applied Medical Sciences, Unit of Medical Microbiology, Jazan, Saudi Arabia
| | - M U A Alamoudi
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Saudi Arabia
| | - I M H Hadi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - S A A Amri
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - A M A Alrithi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - Z A J Jathmi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| | - M A A Kaabi
- Jazan University, College of Pharmacy, Jazan, Saudi Arabia
| |
Collapse
|
13
|
D-Limonene Promotes Anti-Obesity in 3T3-L1 Adipocytes and High-Calorie Diet-Induced Obese Rats by Activating the AMPK Signaling Pathway. Nutrients 2023; 15:nu15020267. [PMID: 36678138 PMCID: PMC9861755 DOI: 10.3390/nu15020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
D-limonene (LIM) is a common monoterpene compound, principally found in citrus essential oils. This study investigated the anti-obesity effect of LIM on the 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in 3T3-L1 adipocytes and high-calorie diet-induced obese rats and confirmed the optimally effective dose of LIM. The 3T3-L1 adipocytes were treated with 0.05−0.4 mg/mL LIM for 10 days and oil red O and triglyceride (TG) content were used to determine the levels of lipid accumulation. The results showed that more than 0.05 mg/mL LIM inhibited lipid accumulation by reducing oil red O in 3T3-L1 adipocytes. Masses of 0.2 and 0.4 mg/mL LIM also decreased the TG contents in 3T3-L1 adipocytes. On the other hand, Wistar rats were given high-calorie diets, combined with LLIM (154 mg/kg) and HLIM (1000 mg/kg) treatments, for 16 weeks. The result shows that LLIM and HLIM decreased body weight, total fat tissue weight, and serum low-density lipoprotein-cholesterol (LDLc) levels. HLIM reduced serum TG and increased serum lipase and high-density lipoprotein-cholesterol (HDLc) levels. Moreover, the anti-obesity metabolic pathway showed that LIM (>0.05 mg/mL) in 3T3-L1 adipocytes and LIM (>154 mg/kg) in high-calorie diet-induced obese rats could activate the AMPK signaling pathway. The activated AMPK regulated the mRNA expression related to adipogenesis (PPARγ, C/EBPα, FABP4), lipogenesis (SREBP-1c, ACC, FAS), and lipolysis (ATGL, HSL) to inhibit obesity. This finding demonstrates that LIM has anti-obesity properties. Namely, it is seen that LIM acts by regulating the AMPK signaling pathway in 3T3-L1 adipocytes and high-calorie diet-induced obese rats. In terms of dose−response, LIM (154 mg/kg) would be an optimal effective dose for anti-obesity induced by a high-calorie diet.
Collapse
|
14
|
Lipińska MM, Haliński ŁP, Gołębiowski M, Kowalkowska AK. Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives-A Review. Int J Mol Sci 2023; 24:739. [PMID: 36614181 PMCID: PMC9821772 DOI: 10.3390/ijms24010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, we analyze the literature concerning the chemical composition of the plant extracts and secretions of this subtribe's representatives published between 1991 and 2022. Maxillariinae is one of the biggest taxa within the orchid family; however, to date, only 19 species have been investigated in this regard and, as we report, they produce 62 semiochemicals of medical potential. The presented review is the first summary of biologically active compounds found in Maxillariinae.
Collapse
Affiliation(s)
- Monika M. Lipińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Foundation Polish Orchid Association, 81-825 Sopot, Poland
| | - Łukasz P. Haliński
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Gołębiowski
- Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka K. Kowalkowska
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
15
|
Salamatullah AM. Convolvulus arvensis: Antioxidant, Antibacterial, and Antifungal Properties of Chemically Profiled Essential Oils: An Approach against Nosocomial Infections. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122138. [PMID: 36556503 PMCID: PMC9788032 DOI: 10.3390/life12122138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Convolvulus arvensis is a medicinal plant in the family Convolvulaceae, which is used in traditional phytotherapy. The objective of this work was conducted to valorize essential oils of Convolvulus arvensis (EOCA) in terms of chemical composition, antioxidant, and antibacterial properties. To achieve this objective, the chemical composition was performed by the use of GC-SM. Antioxidant power was effectuated by the use of DPPH, FRAP, and TAC assays. Evaluation of the antimicrobial power was conducted against clinically important pathogenic bacteria (E. coli, K. pneumoniae, S. pneumoniae, and S. aureus) and fungi (A. niger, C. albicans, and A. flavus) by the use of disc diffusion and minimum inhibitory concentrations (MICs) assays. The results showed that the yield of recovered EOs from Convolvulus arvensis was 0.34% of the total mass of leaves and mainly was rich in cuprenne (34%), thymol (20%), himachalene (16%), and longifolene (10%). Notably, EOCA exhibited important antioxidant effects, wherein IC50 (DPPH) and EC50 (FRAP) were determined to be 30 µg/mL and 120 µg/mL, respectively, while the total antioxidant power was determined to be 508.0 ± 6.0 µg EAA/mg. An important antibacterial effect was noted for EOCA as an excellent inhibition zone was recorded against all bacterial strains, particularly K. pneumoniae and S. aureus with 14.27 ± 0.42 and 21.35 ± 0.76 mm, respectively. Similarly, MICs of K. pneumoniae and S. aureus were 21.35 ± 0.76 mm and 28.62 ± 1.65 µg/mL, respectively. Noticeably, important antifungal activity was shown by EOCA against all fungal strains wherein the inhibition zone diameters against all fungal species ranged from 19.44 ± 1.10 to 20.41 ± 1.81 mm. Notably, MICs of EOCA against F. oxysporum and C. albicans were 18.65 ± 0.94 and 19.38 ± 0.58 g/mL, respectively. The outcome of the present work showed that EOs from Convolvulus arvensis can be used to conceptualize drugs to manage diseases relative to free radicals and infections.
Collapse
Affiliation(s)
- Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Huang CH, Hsiao SY, Lin YH, Tsai GJ. Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules 2022; 27:8966. [PMID: 36558098 PMCID: PMC9786243 DOI: 10.3390/molecules27248966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Although citrus peel is a waste material, it contains a variety of bioactive components. As our preliminary findings showed that citrus peels fermented with Saccharomyces cerevisiae T1 contained increased levels of anti-obesity flavonoids, the objective of this study was to prepare fermented citrus peel and to investigate its effect on ameliorating obesity in Sprague Dawley (SD) rats fed with a high-fat diet (HFD). After fermentation, the amounts of limonene, nobiletin and 3-methoxynobiletin in citrus peel were markedly increased. SD rats were fed with an HFD for 10 weeks, followed by fermented citrus peel-containing HFD (0.3% or 0.9% w/w) for 6 weeks. Compared with those fed with an HFD alone, lower levels of body weight, visceral fat, body fat percentage, blood triglyceride, total cholesterol, low-density lipoprotein, malondialdehyde and hepatic adipose accumulation were observed in rats fed with fermented citrus peel. In parallel, hepatic levels of acetyl-CoA carboxylase and fatty acid synthase were diminished, and the level of hormone sensitivity lipase in visceral fat was elevated. These results reveal fermented citrus peel is a promising natural product with beneficial effects of alleviating HFD-induced obesity.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shun-Yuan Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yung-Hsiang Lin
- Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
17
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Identification of D-Limonene Metabolites by LC-HRMS: An Exploratory Metabolic Switching Approach in a Mouse Model of Diet-Induced Obesity. Metabolites 2022; 12:metabo12121246. [PMID: 36557284 PMCID: PMC9780935 DOI: 10.3390/metabo12121246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic switching has been raised as an important phenomenon to be studied in relation to xenobiotic metabolites, since the dose of the exposure determines the formation of metabolites and their bioactivity. Limonene is a monoterpene mostly found in citrus fruits with health activity, and its phase II metabolites and activity are still not clear. The aim of this work was to evaluate the effects of D-limonene in the development of diet-induced obesity in mice and to investigate metabolites that could be generated in a study assessing different doses of supplementation. Animals were induced to obesity and supplemented with 0.1% or 0.8% D-limonene added to the feed. Limonene phase I and II metabolites were identified in liver and urine by LC-ESI-qToF-MS/MS. To the best of our knowledge, in this study three new phase I metabolites and ten different phase II metabolites were first attributed to D-limonene. Supplementation with 0.1% D-limonene was associated with lower weight gain and a trend to lower accumulation of adipose tissue deposits. The metabolites limonene-8,9-diol, perillic acid and perillic acid-8,9-diol should be explored in future research as anti-obesogenic agents as they were the metabolites most abundant in the urine of mice that received 0.1% D-limonene in their feed.
Collapse
|
19
|
Barré T, Carrat F, Ramier C, Fontaine H, Di Beo V, Bureau M, Dorival C, Larrey D, Delarocque-Astagneau E, Mathurin P, Marcellin F, Petrov-Sanchez V, Cagnot C, Carrieri P, Pol S, Protopopescu C, Alric L, Pomes C, Zoulim F, Maynard M, Bai R, Hucault L, Bailly F, Raffi F, Billaud E, Boutoille D, Lefebvre M, André-Garnier E, Cales P, Hubert I, Lannes A, Lunel F, Boursier J, Asselah T, Boyer N, Giuily N, Castelnau C, Scoazec G, Pol S, Fontaine H, Rousseaud E, Vallet-Pichard A, Sogni P, de Ledinghen V, Foucher J, Hiriart JB, M’Bouyou J, Irlès-Depé M, Bourlière M, Ahmed SNS, Oules V, Tran A, Anty R, Gelsi E, Truchi R, Thabut D, Hammeche S, Moussali J, Causse X, De Dieuleveult B, Ouarani B, Labarrière D, Ganne N, Grando-Lemaire V, Nahon P, Brulé S, Ulker B, Guyader D, Jezequel C, Brener A, Laligant A, Rabot A, Renard I, Habersetzer F, Baumert TF, Doffoel M, Mutter C, Simo-Noumbissie P, Razi E, Bronowicki JP, Barraud H, Bensenane M, Nani A, Hassani-Nani S, Bernard MA, Pageaux GP, Larrey D, Meszaros M, Metivier S, Bureau C, Morales T, Peron JM, Robic MA, Decaens T, Faure M, Froissart B, Hilleret MN, Zarski JP, Riachi G, Goria O, et alBarré T, Carrat F, Ramier C, Fontaine H, Di Beo V, Bureau M, Dorival C, Larrey D, Delarocque-Astagneau E, Mathurin P, Marcellin F, Petrov-Sanchez V, Cagnot C, Carrieri P, Pol S, Protopopescu C, Alric L, Pomes C, Zoulim F, Maynard M, Bai R, Hucault L, Bailly F, Raffi F, Billaud E, Boutoille D, Lefebvre M, André-Garnier E, Cales P, Hubert I, Lannes A, Lunel F, Boursier J, Asselah T, Boyer N, Giuily N, Castelnau C, Scoazec G, Pol S, Fontaine H, Rousseaud E, Vallet-Pichard A, Sogni P, de Ledinghen V, Foucher J, Hiriart JB, M’Bouyou J, Irlès-Depé M, Bourlière M, Ahmed SNS, Oules V, Tran A, Anty R, Gelsi E, Truchi R, Thabut D, Hammeche S, Moussali J, Causse X, De Dieuleveult B, Ouarani B, Labarrière D, Ganne N, Grando-Lemaire V, Nahon P, Brulé S, Ulker B, Guyader D, Jezequel C, Brener A, Laligant A, Rabot A, Renard I, Habersetzer F, Baumert TF, Doffoel M, Mutter C, Simo-Noumbissie P, Razi E, Bronowicki JP, Barraud H, Bensenane M, Nani A, Hassani-Nani S, Bernard MA, Pageaux GP, Larrey D, Meszaros M, Metivier S, Bureau C, Morales T, Peron JM, Robic MA, Decaens T, Faure M, Froissart B, Hilleret MN, Zarski JP, Riachi G, Goria O, Paris F, Montialoux H, Leroy V, Amaddeo G, Varaut A, Simoes M, Amzal R, Chazouillières O, Andreani T, Angoulevant B, Chevance A, Serfaty L, Samuel D, Antonini T, Coilly A, Duclos-Vallée JC, Tateo M, Abergel A, Reymond M, Brigitte C, Benjamin B, Muti L, Geist C, Conroy G, Riffault R, Rosa I, Barrault C, Costes L, Hagège H, Loustaud-Ratti V, Carrier P, Debette-Gratien M, Mathurin P, Lassailly G, Lemaitre E, Canva V, Dharancy S, Louvet A, Minello A, Latournerie M, Bardou M, Mouillot T, D’Alteroche L, Barbereau D, Nicolas C, Elkrief L, Jaillais A, Gournay J, Chevalier C, Archambeaud I, Habes S, Portal I, Gelu-Simeon M, Saillard E, Lafrance MJ, Catherine L, Carrat F, Chau F, Dorival C, Goderel I, Lusivika-Nzinga C, Bellance MA, Bellet J, Monfalet P, Chane-Teng J, Bijaoui S, Pannetier G, Téoulé F, Nicol J, Sebal F, Bekhti R, Cagnot C, Boston A, Nailler L, Le Meut G, Diallo A, Petrov-Sanchez V, Bourlière M, Boursier J, Carrat F, Carrieri P, Delarocque-Astagneau E, De Ledinghen V, Dorival C, Fontaine H, Fourati S, Housset C, Larrey D, Nahon P, Pageaux GP, Petrov-Sanchez V, Pol S, Bruyand M, Wittkop L, Zoulim F, Zucman-Rossi J, L’hennaff M, Sizorn M, Cagnot C, the ANRS/AFEF Hepather study group. Cannabis use as a factor of lower corpulence in hepatitis C-infected patients: results from the ANRS CO22 Hepather cohort. J Cannabis Res 2022; 4:31. [PMID: 35690798 PMCID: PMC9188079 DOI: 10.1186/s42238-022-00138-9] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background Patients with chronic hepatitis C virus (HCV) infection are at greater risk of developing metabolic disorders. Obesity is a major risk factor for these disorders, and therefore, managing body weight is crucial. Cannabis use, which is common in these patients, has been associated with lower corpulence in various populations. However, this relationship has not yet been studied in persons with chronic HCV infection. Methods Using baseline data from the French ANRS CO22 Hepather cohort, we used binary logistic and multinomial logistic regression models to test for an inverse relationship between cannabis use (former/current) and (i) central obesity (i.e., large waist circumference) and (ii) overweight and obesity (i.e., elevated body mass index (BMI)) in patients from the cohort who had chronic HCV infection. We also tested for relationships between cannabis use and both waist circumference and BMI as continuous variables, using linear regression models. Results Among the 6348 participants in the study population, 55% had central obesity, 13.7% had obesity according to their BMI, and 12.4% were current cannabis users. After multivariable adjustment, current cannabis use was associated with lower risk of central obesity (adjusted odds ratio, aOR [95% confidence interval, CI]: 0.45 [0.37–0.55]), BMI-based obesity (adjusted relative risk ratio (aRRR) [95% CI]: 0.27 [0.19–0.39]), and overweight (aRRR [95% CI]: 0.47 [0.38–0.59]). This was also true for former use, but to a lesser extent. Former and current cannabis use were inversely associated with waist circumference and BMI. Conclusions We found that former and, to a greater extent, current cannabis use were consistently associated with smaller waist circumference, lower BMI, and lower risks of overweight, obesity, and central obesity in patients with chronic HCV infection. Longitudinal studies are needed to confirm these relationships and to assess the effect of cannabis use on corpulence and liver outcomes after HCV cure. Trial registration ClinicalTrials.gov identifier: NCT01953458.
Collapse
|
20
|
Lv W, Tan X, Chen X, Hu T, Jiang J, Li Q, Chen X, Tan H, Qian B. D‐Limonene for regulating metabolism‐associated fatty liver disease (MAFLD) and analysis of the TCM constitution: A protocol for an exploratory, randomized, double‐blind, placebo‐controlled trial (DL‐MAFLD‐TCM). FOOD FRONTIERS 2022; 3:550-559. [DOI: 10.1002/fft2.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AbstractThe protocol describes the first study evaluating the treatment of metabolism‐associated fatty liver disease (MAFLD). MAFLD, formerly known as nonalcoholic fatty liver disease, was renamed by an internationally renowned liver disease expert group in 2020. MAFLD contains three types: overweight/obesity (A type), type 2 diabetes mellitus (B type), or evidence of metabolic dysregulation (C type). There is a lack of effective therapeutic drugs. We found that D‐limonene, a food additive in China, has potential activity on the A type of MAFLD through animal studies. Then, we designed an exploratory, single‐center, double‐blind, placebo‐controlled, randomized clinical trial for the evaluation of limonene capsules (marketed product in China) on regulating A type of MAFLD and analysis of the TCM constitution (DLMAFLD‐TCM). A total of 60 patients with A type of MAFLD will be randomly assigned to a treatment arm with (n = 30) or without (n = 30) Food Frontiers for Review Only limonene (placebo) for 12 weeks. The primary end point will be assessed at two end points combined for A type: changes in the controlled attenuation parameter and body mass index at baseline and 12 weeks after administration. The study procedures and informed consent form were approved by the hospital. We detail the protocol and the statistical analysis plan of the trial prior to study completion, which is for further study. This trial is registered in the Chinese Clinical Trial Registry (ChiCTR2000035888).
Collapse
Affiliation(s)
- Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiyang Tan
- Department of Rheumatology and Immunology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Xiaochen Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tingting Hu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiayuan Jiang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiang Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐yun Chen
- Department of Rheumatology and Immunology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hongsheng Tan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Biyun Qian
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Clinical Research Institute Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
21
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
22
|
AlSaffar RM, Rashid S, Ahmad SB, Rehman MU, Hussain I, Parvaiz Ahmad S, Ganaie MA. D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl 4-induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep 2022; 27:92-99. [PMID: 35435141 PMCID: PMC9037211 DOI: 10.1080/13510002.2022.2062947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.
Collapse
Affiliation(s)
- Rana M AlSaffar
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sheikh Parvaiz Ahmad
- Department of Statics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology , College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Fahmy NM, Elhady SS, Bannan DF, Malatani RT, Gad HA. Citrus reticulata Leaves Essential Oil as an Antiaging Agent: A Comparative Study between Different Cultivars and Correlation with Their Chemical Compositions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233335. [PMID: 36501374 PMCID: PMC9735646 DOI: 10.3390/plants11233335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
The mass-based metabolomic approach was implemented using GC-MS coupled with chemometric analysis to discriminate between the essential oil compositions of six cultivars of Citrus reticulata. The antiaging capability of the essential oils were investigated through measurement of their ability to inhibit the major enzymes hyaluronidase, collagenase, and amylase involved in aging. GC-MS analysis resulted in the identification of thirty-nine compounds including β-pinene, d-limonene, γ-terpinene, linalool, and dimethyl anthranilate as the main components. Multivariate analysis using principal component analysis (PCA) and hierarchal cluster analysis (HCA) successfully discriminated the cultivars into five main groups. In vitro antiaging activity showed that Kishu mandarin (Km) (2.19 ± 0.10, 465.9 ± 23.7, 0.31 ± 0.01 µg/mL), Cara mandarin (Cm) (3.22 ± 0.14, 592.1 ± 30.1, 0.66 ± 0.03 µg/mL), and Wm (8.43 ± 0.38, 695.2 ± 35.4, 0.79 ± 0.04%) had the highest inhibitory activity against hyaluronidase, collagenase, and amylase, respectively. Molecular docking studies on the major compounds validated the activities of the essential oils and suggested their possible mechanisms of action. Based on our result, certain cultivars of Citrus reticulata can be proposed as a promising candidate in antiaging skin care products.
Collapse
Affiliation(s)
- Nouran M. Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Douha F. Bannan
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rania T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haidy A. Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
24
|
Bonilla-Carvajal K, Stashenko EE, Moreno-Castellanos N. Essential Oil of Carvone Chemotype Lippia alba (Verbenaceae) Regulates Lipid Mobilization and Adipogenesis in Adipocytes. Curr Issues Mol Biol 2022; 44:5741-5755. [PMID: 36421673 PMCID: PMC9688983 DOI: 10.3390/cimb44110389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/19/2023] Open
Abstract
Obesity is characterized by an expansion of adipose tissue due to excessive accumulation of triglycerides in adipocytes, causing hypertrophy and hyperplasia, followed by hypoxia, alterations in adipocyte functionality, and chronic inflammation. However, current treatments require changes in lifestyle that are difficult to achieve and some treatments do not generate sustained weight loss over time. Therefore, we evaluated the effect of the essential oil (EO) of Lippia alba (Verbenaceae) carvone chemotype on viability, lipid mobilization, and adipogenesis of adipocytes in two normal and pathological cellular models in vitro. In 3T3-L1 adipocytes, a normal and a pathological model of obesity were induced, and then the cells were treated with L. alba carvone chemotype EO to evaluate cell viability, lipid mobilization, and adipogenesis. L. alba carvone chemotype EO does not decrease adipocyte viability at concentrations of 0.1, 1, and 5 µg/mL; furthermore, there was evidence of changes in lipid mobilization and adipogenesis, leading to a reversal of adipocyte hypertrophy. These results could be due to effects produced by EO on lipogenic and lipolytic pathways, as well as modifications in the expression of adipogenesis genes. L. alba carvone chemotype EO could be considered as a possible treatment for obesity, using the adipocyte as a therapeutic target.
Collapse
Affiliation(s)
- Katherin Bonilla-Carvajal
- Department of Basic Sciences, Health Faculty, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E. Stashenko
- Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales/CENIVAM. Chemistry School, Science Faculty, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Natalia Moreno-Castellanos
- Research Group-Centro de Investigación en Ciencia y Tecnología de Alimentos/CICTA, Department of Basic Sciences, Health Faculty, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
25
|
Ayala-Ruiz LA, Ortega-Pérez LG, Piñón-Simental JS, Magaña-Rodriguez OR, Meléndez-Herrera E, Rios-Chavez P. Role of the major terpenes of Callistemon citrinus against the oxidative stress during a hypercaloric diet in rats. Biomed Pharmacother 2022; 153:113505. [DOI: 10.1016/j.biopha.2022.113505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 12/29/2022] Open
|
26
|
Mahmoud MF, Elmaghraby AM, Ali N, Mostafa I, El-Shazly AM, Abdelfattah MA, Sobeh M. Black pepper oil (Piper nigrum L.) mitigates dexamethasone induced pancreatic damage via modulation of oxidative and nitrosative stress. Biomed Pharmacother 2022; 153:113456. [PMID: 36076569 PMCID: PMC9350854 DOI: 10.1016/j.biopha.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/06/2022] Open
Abstract
Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.
Collapse
|
27
|
Rajindran N, Wahab RA, Huda N, Julmohammad N, Shariff AHM, Ismail NI, Huyop F. Physicochemical Properties of a New Green Honey from Banggi Island, Sabah. Molecules 2022; 27:molecules27134164. [PMID: 35807409 PMCID: PMC9268174 DOI: 10.3390/molecules27134164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Green honey is exclusively available on the island of Banggi in Sabah, and its uniqueness sees the commodity being sold at a high market price. Therefore, green honey is prone to adulteration by unscrupulous individuals, possibly compromising the health of those consuming this food commodity for its curative properties. Moreover, an established standard for reducing sugar in green honey is unavailable. Ipso facto, the study aimed to profile green honey’s physical and chemical properties, such as its pH, moisture content, free acidity, ash content, electroconductivity, hydroxymethylfurfural (HMF), total phenolic content, total flavonoid content, DPPH, colour, total sugar content, total protein content, and heavy metals as well as volatile organic compounds, the data of which are profoundly valuable in safeguarding consumers’ safety while providing information for its quality certification for local consumption and export. The results revealed that the honey’s physicochemical profile is comparable to other reported kinds of honey. The honey’s naturally green colour is because of the chlorophyll from the nectar from various flowers on the island. The raw honey showed free acidity between 28 and 33 Meq/100 g, lower than the standard’s 50 Meq/100 g. The hydroxymethylfurfural content is the lowest compared to other reported honey samples, with the total phenolic content between 16 and 19 mg GAE/100 g. The honey’s reducing sugar content is lower (~37.9%) than processed ones (56.3%) because of water removal. The protein content ranged from 1 to 2 gm/kg, 4- to 6-fold and 2-fold higher than local and manuka honey, respectively. The exceptionally high content of trans-4-hydroxyproline in raw honey is its source of collagen and other healing agents. Interestingly, low levels of arsenic, lead, nickel, cadmium, copper, and cobalt were detected in the honey samples, presumably due to their subterranean hives. Nevertheless, the honey is fit for general consumption as the concentrations were below the maxima in the Codex Alimentarius Commission of 2001.
Collapse
Affiliation(s)
- Nanthini Rajindran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: (N.H.); (F.H.)
| | - Norliza Julmohammad
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | | | - Norjihada Izzah Ismail
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
- Correspondence: (N.H.); (F.H.)
| |
Collapse
|
28
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
30
|
Zhang W, Lin H, Cheng W, Huang Z, Zhang W. Protective Effect and Mechanism of Plant-Based Monoterpenoids in Non-alcoholic Fatty Liver Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4839-4859. [PMID: 35436113 DOI: 10.1021/acs.jafc.2c00744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protective effect of plant active ingredients against non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prominent, and the terpenoids have always been the main active compounds in Chinese herbal medicine exerting hepatoprotective effects. However, the related pharmacological effects, especially for monoterpenoids or iridoid glycosides, which have obvious effects on improvement of NAFLD, have not been systematically analyzed. The objective of this review is to systematically examine the molecular mechanisms of monoterpenoids in NAFLD. The signaling pathways of peroxisome proliferator-activated receptor, insulin, nuclear factor κB, toll-like receptor, adipocytokine, RAC-α serine/threonine protein kinase, mammalian target of rapamycin, 5'-AMP-activated protein kinase, and autophagy have been proven to mediate this protective effect. We further compared the experimental data from animal models, including the dosage of these monoterpenoids in detail, and demonstrated that they are effective and safe candidate drugs for NAFLD. This review provides a reference for the development of NAFLD drugs as well as a research guideline for the potential uses of plant monoterpenoids.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
31
|
Wang QS, Li M, Li X, Zhang NW, Hu HY, Zhang LL, Ren JN, Fan G, Pan SY. Protective effect of orange essential oil on the formation of non-alcoholic fatty liver disease caused by high-fat diet. Food Funct 2022; 13:933-943. [PMID: 35005749 DOI: 10.1039/d1fo03793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the protective effect of sniffing orange essential oil (OEO) on the formation of non-alcoholic fatty liver disease (NAFLD) caused by a high-fat diet. The results confirmed that sniffing OEO could reduce obesity caused by a high-fat diet (HFD) by reducing the levels of triglycerides (TGs), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In addition, the observation of liver tissue sections showed that sniffing OEO could reduce lipid accumulation in liver cells. Further analysis by western blot analysis showed that OEO treatment made the expression levels of acetyl-CoA carboxylase (ACC) and Cytochrome P450 2E1 (CYP2E1) down-regulated and the expression levels of peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) up-regulated. These results indicate that the treatment of sniffing OEO could enhance the antioxidant capacity of mice and reduce liver damage caused by a high-fat diet. Furthermore, sniffing OEO could inhibit lipid synthesis and oxidative stress stimulated by a high-fat diet. Overall, OEO treatment had a certain protective effect on NAFLD-related diseases caused by a high-fat diet. Therefore, aromatherapy may be introduced as a treatment of long-term chronic diseases.
Collapse
Affiliation(s)
- Qing-Shan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Na-Wei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui-Yan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Cheenkachorn K, Paulraj MG, Tantayotai P, Phakeenuya V, Sriariyanun M. Characterization of biologically active compounds from different herbs: Influence of drying and extraction methods. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Ding Q, Guo R, Pei L, Lai S, Li J, Yin Y, Xu T, Yang W, Song Q, Han Q, Dou X, Li S. N-acetylcysteine alleviates high fat diet-induced hepatic steatosis and liver injury via regulating intestinal microecology in mice. Food Funct 2022; 13:3368-3380. [DOI: 10.1039/d1fo03952k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial...
Collapse
|
34
|
The Beneficial Effects of Essential Oils in Anti-Obesity Treatment. Int J Mol Sci 2021; 22:ijms222111832. [PMID: 34769261 PMCID: PMC8584325 DOI: 10.3390/ijms222111832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one’s lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.
Collapse
|
35
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
36
|
Valerii MC, Turroni S, Ferreri C, Zaro M, Sansone A, Dalpiaz A, Botti G, Ferraro L, Spigarelli R, Bellocchio I, D’Amico F, Spisni E. Effect of a Fiber D-Limonene-Enriched Food Supplement on Intestinal Microbiota and Metabolic Parameters of Mice on a High-Fat Diet. Pharmaceutics 2021; 13:1753. [PMID: 34834168 PMCID: PMC8620497 DOI: 10.3390/pharmaceutics13111753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Several studies showed that D-Limonene can improve metabolic parameters of obese mice via various mechanisms, including intestinal microbiota modulation. Nevertheless, its effective doses often overcome the acceptable daily intake, rising concerns about toxicity. In this study we administered to C57BL/6 mice for 84 days a food supplement based on D-Limonene, adsorbed on dietary fibers (FLS), not able to reach the bloodstream, to counteract the metabolic effects of a high-fat diet (HFD). Results showed that daily administration of D-Limonene (30 and 60 mg/kg body weight) for 84 days decreased the weight gain of HFD mice. After 84 days we observed a statistically significant difference in weight gain in the group of mice receiving the higher dose of FLS compared to HFD mice (35.24 ± 4.56 g vs. 40.79 ± 3.28 g, p < 0.05). Moreover, FLS at both doses tested was capable of lowering triglyceridemia and also fasting glycemia at the higher dose. Some insights on the relevant fatty acid changes in hepatic tissues were obtained, highlighting the increased polyunsaturated fatty acid (PUFA) levels even at the lowest dose. FLS was also able to positively modulate the gut microbiota and prevent HFD-associated liver steatosis in a dose-dependent manner. These results demonstrate that FLS at these doses can be considered non-toxic and could be an effective tool to counteract diet-induced obesity and ameliorate metabolic profile in mice.
Collapse
Affiliation(s)
- Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy;
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.)
| | - Michela Zaro
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (C.F.); (A.S.)
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (A.D.); (G.B.)
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (A.D.); (G.B.)
| | - Luca Ferraro
- LTTA Center, Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Irene Bellocchio
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| | - Federica D’Amico
- Department of Medical and Surgical Sciences, University of Bologna, Via Zamboni 33, 40138 Bologna, Italy;
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (M.C.V.); (M.Z.); (R.S.); (I.B.)
| |
Collapse
|
37
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
The Anti-Obesity Effects of Lemon Fermented Products in 3T3-L1 Preadipocytes and in a Rat Model with High-Calorie Diet-Induced Obesity. Nutrients 2021; 13:nu13082809. [PMID: 34444969 PMCID: PMC8398352 DOI: 10.3390/nu13082809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Lemon (Citrus limon) has antioxidant, immunoregulatory, and blood lipid-lowering properties. This study aimed to determine the effect of the lemon fermented product (LFP) which is lemon fermented with Lactobacillus OPC1 to prevent obesity. The inhibition of lipid accumulation in 3T3-L1 adipocytes is examined using a Wistar rat model fed a high-fat diet to verify the anti-obesity efficacy and mechanism of LFP. Here, it was observed that LFP reduced cell proliferation and inhibited the lipid accumulation (8.3%) of 3T3-L1 adipocytes. Additionally, LFP reduced body weight (9.7%) and fat tissue weight (25.7%) of rats; reduced serum TG (17.0%), FFA (17.9%), glucose (29.3%) and ketone body (6.8%); and increased serum HDL-C (17.6%) and lipase activity (17.8%). LFP regulated the mRNA expression of genes related to lipid metabolism (PPARγ, C/EBPα, SREBP-1c, HSL, ATGL, FAS, and AMPK). Therefore, LFP reduces body weight and lipid accumulation by regulating the mRNA expression of genes related to lipid metabolism. Overall, our results implicate LFP as a potential dietary supplement for the prevention of obesity.
Collapse
|
39
|
de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2021; 63:1352-1389. [PMID: 34387521 DOI: 10.1080/10408398.2021.1963945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Brunna Genaro
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Lamesa Costa
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Abdelaali B, El Menyiy N, El Omari N, Benali T, Guaouguaou FE, Salhi N, Naceiri Mrabti H, Bouyahya A. Phytochemistry, Toxicology, and Pharmacological Properties of Origanum elongatum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6658593. [PMID: 34221086 PMCID: PMC8225437 DOI: 10.1155/2021/6658593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Origanum elongatum L. is an endemic aromatic and medicinal plant. This work reports previous studies on O. elongatum concerning its taxonomy, botanical description, geographical distribution, bioactive compounds, toxicology, and biological effects. Chemical analyses showed that O. elongatum contains different chemical compounds, in particular volatile compounds. Pharmacological investigations showed that volatile compounds and extracts from O. elongatum exhibit different pharmacological properties, such as antibacterial, antifungal, antiviral, antioxidant, vasodilator, corrosion inhibitor, and hepatoprotective effects. Moreover, toxicological reports revealed the safety of this species. The pharmacological effects of O. elongatum could be correlated with the main compounds, which exhibit different pharmacological properties with numerous mechanism insights.
Collapse
Affiliation(s)
- Balahbib Abdelaali
- Laboratory of Biodiversity, Ecology and Genome, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Laboratory of Physiology, Pharmacology and Environmental Health, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Mohammed V University in Rabat, Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
41
|
Piccialli I, Tedeschi V, Caputo L, Amato G, De Martino L, De Feo V, Secondo A, Pannaccione A. The Antioxidant Activity of Limonene Counteracts Neurotoxicity Triggered byAβ 1-42 Oligomers in Primary Cortical Neurons. Antioxidants (Basel) 2021; 10:antiox10060937. [PMID: 34207788 PMCID: PMC8227170 DOI: 10.3390/antiox10060937] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Many natural-derived compounds, including the essential oils from plants, are investigated to find new potential protective agents in several neurodegenerative disorders such as Alzheimer's disease (AD). In the present study, we tested the neuroprotective effect of limonene, one of the main components of the genus Citrus, against the neurotoxicity elicited by Aβ1-42 oligomers, currently considered a triggering factor in AD. To this aim, we assessed the acetylcholinesterase activity by Ellman's colorimetric method, the mitochondrial dehydrogenase activity by MTT assay, the nuclear morphology by Hoechst 33258, the generation of reactive oxygen species (ROS) by DCFH-DA fluorescent dye, and the electrophysiological activity of KV3.4 potassium channel subunits by patch-clamp electrophysiology. Interestingly, the monoterpene limonene showed a specific activity against acetylcholinesterase with an IC50 almost comparable to that of galantamine, used as positive control. Moreover, at the concentration of 10 µg/mL, limonene counteracted the increase of ROS production triggered by Aβ1-42 oligomers, thus preventing the upregulation of KV3.4 activity. This, in turn, prevented cell death in primary cortical neurons, showing an interesting neuroprotective profile against Aβ1-42-induced toxicity. Collectively, the present results showed that the antioxidant properties of the main component of the genus Citrus, limonene, may be useful to prevent neuronal suffering induced by Aβ1-42 oligomers preventing the hyperactivity of KV3.4.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
| | - Valentina Tedeschi
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (G.A.); (L.D.M.); (V.D.F.)
| | - Agnese Secondo
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
- Correspondence: (A.S.); (A.P.); Tel.: +39-0817463335 (A.P.)
| | - Anna Pannaccione
- Department of Neuroscience, Division of Pharmacology, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, 80131 Naples, Italy; (I.P.); (V.T.)
- Correspondence: (A.S.); (A.P.); Tel.: +39-0817463335 (A.P.)
| |
Collapse
|
42
|
Sargin SA. Plants used against obesity in Turkish folk medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113841. [PMID: 33460757 DOI: 10.1016/j.jep.2021.113841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is one of the growing public health problems in Turkey, as well as all over the world, threatening people of almost all ages. Turkey has a large potential for research on this topic due to owning broad ethnomedicinal experience and the richest flora (34% endemic) of Europe and the Middle East. Herbs that they have utilized for centuries to treat and prevent obesity can provide useful options to overcome this issue. AIM OF THE STUDY This survey was carried out to disclose the inventory of plant taxa that the people of Turkey have been using for a few centuries in treating obesity without any side effects or complications, and to compare them with experimental studies in the literature. MATERIALS AND METHODS The research was achieved in two phases on the matter above by using electronic databases, such as Web of Science, ScienceDirect, Scopus, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. Both results were shown in separate tables as well as the regional comparative analysis. RESULTS 117 herbal taxa belonging to 45 families were identified among the selected 74 studies conducted in the seven regions of Turkey. However, only 49 (41.9%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-obesity activity. Quercetin (9.1%), gallic acid (6.1%) and ferulic acid and epigallocatechin gallate (4.5%) have been recorded as the most common active ingredients among the 66 active substances identified. Prunus avium (32.4%) and Rosmarinus officinalis (25.7%) were identified as the most common plants used in Turkey. Also, Portulaca oleracea and Brassica oleracea emerged as the most investigated taxa in the literature. CONCLUSION This is the first country-wide ethnomedical review conducted on obesity treatment with plants in Turkey. Evaluating the results of the experimental anti-obesity research conducted in the recent years in the literature, it was determined that forty-nine plants were verified. This clearly shows that these herbs have a high potential to be a pharmacological resource. Moreover, 68 (41.9%) taxa, which haven't been investigated yet, are likely to be a promising resource for national and international pharmacological researchers in terms of new natural medicine searches.
Collapse
Affiliation(s)
- Seyid Ahmet Sargin
- Alanya Alaaddin Keykubat University, Faculty of Education, Alanya, Antalya, 07400, Turkey.
| |
Collapse
|
43
|
Mehanna MM, Abla KK, Elmaradny HA. Tailored Limonene-Based Nanosized Microemulsion: Formulation, Physicochemical Characterization and In Vivo Skin Irritation Assessment. Adv Pharm Bull 2021; 11:274-285. [PMID: 33880349 PMCID: PMC8046394 DOI: 10.34172/apb.2021.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose: Microemulsion (ME) achieved progressing consequences on both the research and industry levels due to their distinctive properties. ME based-limonene system is considered as a surrogate to the traditional microemulsion composed of conventional oils. Thus, a novel microemulsion based on D-limonene and Gelucire® 44/12 had been designed and evaluated with assessing the factors affecting its physicochemical characteristics and in vivo skin irritation. Methods: The impact of microemulsion components and ratios on the isotropic region of the pseudo-ternary phase diagram was investigated. The optimal formula was evaluated in terms of percentage transmittance, average globule size, size distribution, zeta potential, microscopical morphology, stability under different storage conditions and its effect on the mice ear skin. Results: The results demonstrated that Labrasol® and Labrafil® M 1944 CS had been selected as surfactant and co-surfactant, respectively, due to their emulsifying abilities. The largest isotropic area in the pseudo-ternary phase diagram was at a weight ratio of 4:1 for Labrasol® and Labrafil® M 1944 CS. The optimized microemulsion with 25% w/w of the lipid phase and 58.3% w/w of the aqueous phase displayed an optical transparency of 96.5±0.88 %, average globule size of 125±0.123 nm, polydispersity index of 0.272±0.009, zeta potential of -18.9± 2.79 mV with rounded globules morphology and high stability. The in vivo skin irritation and the histopathological evaluation of microemulsion elucidated its safety profile when applied on the skin. Conclusion: The formulated microemulsion is a prospective aid for an essential oil to minimize its volatility, enhance its stability, and mask its dermal irritant.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Kawthar Khalil Abla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda A Elmaradny
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
44
|
Dinardo FR, Maggiolino A, Casalino E, Deflorio M, Centoducati G. A Multi-Biomarker Approach in European Sea Bass Exposed to Dynamic Temperature Changes under Dietary Supplementation with Origanum vulgare Essential Oil. Animals (Basel) 2021; 11:982. [PMID: 33915858 PMCID: PMC8066705 DOI: 10.3390/ani11040982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
A feeding trial for 150 days was carried out to evaluate the cross-effects between oregano essential oil (EO) dietary supplementation and dynamic temperature change in sea bass. Under exposure to rising temperature (13-25 °C), fish were fed with a control diet (CD) and two experimental diets supplemented with 100 (D100) and 200 ppm (D200) of EO. Feed inclusion of EO promoted the activity of antioxidant enzymes in sea bass exposed to increasing temperature. Consistently with the temperature rise, TBARS concentrations increased in CD and D200 groups, whereas were almost stable in D100. Trend of blood glucose in fish fed on CD was likely affected by glycogenolysis and gluconeogenesis. Similarly, the depletion of triglycerides and cholesterol in fish fed on CD likely supported the energy cost of gluconeogenesis. On the other hand, the reduction of glucose, triglycerides, and cholesterol in D100 and D200 was mainly attributable to the hypoglycemic and hypolipidemic effects of EO. The higher levels of serum protein observed in D100 and D200 groups were also associated to a reduced thermal stress compared to CD. EO dietary supplementation may be a promising strategy to alleviate the negative effects of temperature shift on sea bass physiological and oxidative state.
Collapse
Affiliation(s)
| | | | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari Aldo Moro, Casamassima km 3, 70010 Valenzano, Italy; (F.R.D.); (A.M.); (M.D.); (G.C.)
| | | | | |
Collapse
|
45
|
Bahr T, Butler G, Rock C, Welburn K, Allred K, Rodriguez D. Cholesterol-lowering activity of natural mono- and sesquiterpenoid compounds in essential oils: A review and investigation of mechanisms using in silico protein-ligand docking. Phytother Res 2021; 35:4215-4245. [PMID: 33754393 DOI: 10.1002/ptr.7083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Mono- and sesquiterpenoids are the main chemical constituents of essential oils. Essential oils and their constituents have received increasing attention for lipid-lowering properties in both cell and animal models. Despite the chemical diversity of essential oil compounds, the effects of many of these compounds on cholesterol metabolism are highly similar. In this report, we review the literature regarding the effects of essential oils and their terpenoid constituents on cholesterol homeostasis, and explore likely mechanisms using protein-ligand docking. We identified 98 experimental and seven clinical studies on essential oils, isolated compounds, and blends; 100 of these described improvements either in blood cholesterol levels or in sterol metabolic pathways. Our review and docking analysis confirmed two likely mechanisms common to many essential oil compounds: (1) direct agonism of peroxisome-proliferator-activated receptors, and (2) direct interaction with sterol-sensing domains, motifs found in key sterol regulatory proteins including sterol regulatory element binding protein cleavage activating protein and HMG-CoA reductase. Notably, these direct interactions lead to decreased transcription and accelerated degradation of HMG-CoA reductase. Our work suggests that terpene derivatives in essential oils have cholesterol-lowering activity and could potentially work synergistically with statins, however, further high quality studies are needed to establish their clinical efficacy.
Collapse
Affiliation(s)
- Tyler Bahr
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Gavin Butler
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Christian Rock
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Kyle Welburn
- School of Osteopathic Medicine, University of the Incarnate Word, 7615 Kennedy Hill, San Antonio, Texas, 78235, USA
| | - Kathryn Allred
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| | - Damian Rodriguez
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| |
Collapse
|
46
|
Effects of Essential Oils and Some Constituents from Ingredients of Anti-Cellulite Herbal Compress on 3T3-L1 Adipocytes and Rat Aortae. Pharmaceuticals (Basel) 2021; 14:ph14030253. [PMID: 33799756 PMCID: PMC7999046 DOI: 10.3390/ph14030253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cellulite is associated with a complex array of adipocytes under the skin and vascular system. A herbal compress that was previously developed was proven to have an anti-cellulite effect in healthy volunteers within 2 weeks of treatment. However, its mechanism and ingredients responsible for reducing cellulite were not known. The purpose of this study was to investigate the activity of eight essential oils in, and two water extracts from, the ingredients of the herbal compress together with nine monoterpenoid constituents on the 3T3-L1 adipocytes. The vasodilatory effect on rat aortae was also studied. The adipocytes were induced by dexamethasone, 3-isobutyl-1-methylxanthine and insulin. At all concentrations tested, all essential oils, water extracts and their monoterpenoid constituents significantly inhibited lipid accumulation activity (p < 0.05) and decreased the amount of triglycerides when compared to untreated cells (p < 0.01). In addition, our results showed that the mixed oil distilled from the herbal compress mixed ingredients could relax the isolated rat aorta (EC50 = 14.74 ± 2.65 µg/mL). In conclusion, all essential oils, extracts and chemical constituents tested showed effects on adipogenesis inhibition and lipolysis induction on the cultured adipocytes with the mixed oil demonstrating vasorelaxation activity, all of which might be the mechanisms of the anti-cellulite effects of the herbal compress.
Collapse
|
47
|
Singh N, Yarla NS, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Features, Pharmacological Chemistry, Molecular Mechanism and Health Benefits of Lemon. Med Chem 2021; 17:187-202. [DOI: 10.2174/1573406416666200909104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Citrus limon, a Mediterranean-grown citrus species of plants belonging to
the Rutaceae family, occupies a place of an impressive range of food and medicinal uses with considerable
value in the economy of the fruit of the country. Citrus fruits are economically important with
large-scale production of both the fresh fruits and industrially processed products. The extracts and
phytochemicals obtained from all parts of C. limon have shown immense therapeutic potential because
of their anticancer, anti-tumor and anti-inflammatory nature, and also serve as an important
ingredient in the formulation of several ethnic herbal medicines. These properties are mediated by the
presence of different phytochemicals, vitamins and nutrients in the citrus fruits.
Material and Methods:
The methods involved in the preparation of the present article included the
collection of information from various scientific databases, indexed periodicals, and search engines
such as Medline Scopus google scholar PubMed, PubMed central web of science, and science direct.
Results:
This communication presents an updated account of different pharmacological aspects of C.
limon associated with its anti-oxidative, antiulcer, antihelmintic, insecticidal, anticancer, cytotoxic,
and estrogenic activities. In addition, C. limon extracts possess hepatoprotective, anti-hyperglycemic,
and antimicrobial properties. The present article includes the structure and function of different key
chemical constituents from different parts of C. limon. Also, the possible molecular mechanisms of
actions of bioactive compounds from C. limon are displayed.
Conclusion:
The traditional and ethno-medicinal literature revealed that C. limon is very effective in
different pathologies. Most of these compounds possessing antioxidant properties would be implicated
in offering health benefits by acting as potential nutraceuticals to humans with special reference to
disease management of health and disease.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| | - Nagendra Sastry Yarla
- Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, King Saud University, Faculty of Science, Riyadh, Saudi Arabia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
48
|
Nagoor Meeran M, Seenipandi A, Javed H, Sharma C, Hashiesh HM, Goyal SN, Jha NK, Ojha S. Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19? Heliyon 2021; 7:e05703. [PMID: 33490659 PMCID: PMC7810623 DOI: 10.1016/j.heliyon.2020.e05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite the tremendous social preventive measures. The therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. The identification of candidate drugs effective for COVID-19 is crucial, thus many natural products including phytochemicals are also being proposed for repurposing and evaluated for their potential in COVID-19. Among numerous phytochemicals, limonene (LMN), a dietary terpene of natural origin has been recently showed to target viral proteins in the in-silico studies. LMN is one of the main compounds identified in many citrus plants, available and accessible in diets and well-studied for its therapeutic benefits. Due to dietary nature, relative safety and efficacy along with favorable physicochemical properties, LMN has been suggested to be a fascinating candidate for further investigation in COVID-19. LMN showed to modulate numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. We hypothesized that given the pathogenesis of COVID-19 involving infection, inflammation, and immunity, LMN may have potential to limit the severity and progression of the disease owing to its immunomodulatory, anti-inflammatory, and antiviral properties. The present article discusses the possibilities of LMN in SARS-CoV-2 infections based on its immunomodulatory, anti-inflammatory, and antiviral properties. Though, the suggestion on the possible use of LMN in COVID-19 remains inconclusive until the in-silico effects confirmed in the experimental studies and further proof of the concept studies. The candidature of LMN in COVID-19 treatment somewhat appear speculative but cannot be overlooked provided favorable physiochemical and druggable properties. The safety and efficacy of LMN are necessary to be established in preclinical and clinical studies before making suggestions for use in humans.
Collapse
Affiliation(s)
- M.F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A. Seenipandi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Moller AC, Parra C, Said B, Werner E, Flores S, Villena J, Russo A, Caro N, Montenegro I, Madrid A. Antioxidant and Anti-Proliferative Activity of Essential Oil and Main Components from Leaves of Aloysia polystachya Harvested in Central Chile. Molecules 2020; 26:molecules26010131. [PMID: 33396666 PMCID: PMC7795351 DOI: 10.3390/molecules26010131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine, first, the chemical composition of Aloysia polystachya (Griseb) Moldenke essential oil, from leaves harvested in central Chile; and second, its antioxidant and cytotoxic activity. Eight compounds were identified via gas chromatography–mass spectrometry (GC–MS) analyses, with the most representative being R-carvone (91.03%), R-limonene (4.10%), and dihydrocarvone (1.07%). For Aloysia polystachya essential oil, antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, ferric reducing antioxidant power (FRAP), and total reactive antioxidant potential (TRAP)) showed good antioxidant activity compared to commercial antioxidant controls; and anti-proliferative assays against three human cancer cell lines (colon, HT-29; prostate, PC-3; and breast, MCF-7) determined an IC50 of 5.85, 6.74, and 9.53 µg/mL, and selectivity indices of 4.75, 4.12, and 2.92 for HT-29, PC-3, and MCF-7, respectively. We also report on assays with CCD 841 CoN (colon epithelial). Overall, results from this study may represent, in the near future, developments for natural-based cancer treatments.
Collapse
Affiliation(s)
- Alejandra Catalina Moller
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Carol Parra
- Laboratorio de Investigación en Nutrición y Alimentos (LINA), Departamento Disciplinario de Nutrición, Facultad de Ciencias de la Salud, Universidad de Playa Ancha, Valparaíso CP 2340000, Chile;
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura, Santiago 7630000, Chile;
| | - Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío. Avda. Andrés Bello 720, casilla 447, Chillán 3780000, Chile;
| | - Susana Flores
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
| | - Joan Villena
- Centro de Investigaciones Biomedicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alessandra Russo
- Department of Drug Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy;
| | - Nelson Caro
- Centro de Investigación Australbiotech, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
- Correspondence: (I.M.); (A.M.); Tel.: +56-032-250-0526 (A.M.)
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
- Correspondence: (I.M.); (A.M.); Tel.: +56-032-250-0526 (A.M.)
| |
Collapse
|
50
|
Santos Rodrigues AP, Faria E Souza BS, Alves Barros AS, de Oliveira Carvalho H, Lobato Duarte J, Leticia Elizandra Boettger M, Barbosa R, Maciel Ferreira A, Maciel Ferreira I, Fernandes CP, Cesar Matias Pereira A, Tavares Carvalho JC. The effects of Rosmarinus officinalis L. essential oil and its nanoemulsion on dyslipidemic Wistar rats. J Appl Biomed 2020; 18:126-135. [PMID: 34907765 DOI: 10.32725/jab.2020.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/03/2020] [Indexed: 11/05/2022] Open
Abstract
Dyslipidemias are lipid metabolism alterations that cause increased levels of serum lipoprotein, cholesterol, and triglycerides. These alterations are associated with a higher incidence of cardiovascular diseases and are a risk factor for atherosclerosis development. This study aimed to evaluate the effect of Rosmarinus officinalis essential oil (EORO, 100 mg/kg) and its nanoemulsion (NEORO, 500 µg/kg) on Triton and coconut saturated-fat-induced (CSF) dyslipidemias using Wistar rats. The phytochemical evaluation of EORO performed by gas chromatography-mass spectroscopy (GC-MS) revealed 1,8-cineole (33.70%), camphor (27.68%), limonene (21.99%), and α-pinene (8.13%) as its major compounds. Triton-induced dyslipidemia significantly increased total cholesterol, LDL, and triglycerides levels. On the other hand, the groups treated with EORO and NEORO had significantly reduced total cholesterol, LDL, and triglycerides compared to the group treated only with Triton. Similar results were observed on the positive control treated with simvastatin. Dyslipidemia induced with coconut saturated-fat (CSF) caused abdominal fat gain, hypercholesterolemia, hypertriglyceridemia, increased LDL levels, and atherogenesis in the aorta. In contrast, the groups treated with EORO, NEORO, and simvastatin had significantly reduced hypercholesterolemia and hypertriglyceridemia, reduced abdominal fat gain, and absence of atherogenesis in the vascular endothelium. Overall, in the Triton-induced dyslipidemia model, EORO treatment had superior values than NEORO's (and simvastatin), although the differences were not too high, while in the CSF model, the values were mixed. In this manner, our results show an anti-dyslipidemic and anti-atherogenic activity effect by EORO and NEORO.
Collapse
Affiliation(s)
- Ana Paula Santos Rodrigues
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Belmira Silva Faria E Souza
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Albenise Santana Alves Barros
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Helison de Oliveira Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| | - Jonatas Lobato Duarte
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
| | - Mehl Leticia Elizandra Boettger
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Robson Barbosa
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Bioquimica e Citologia Clinica, Macapa, Amapa, Brasil
| | - Adriana Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Irlon Maciel Ferreira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Curso de Quimica, Laboratorio de Biocatalise e Biotransformacao em Quimica Organica, Macapa, Amapa, Brasil
| | - Caio Pinho Fernandes
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Nanobiotecnologia Fitofarmaceutica, Macapa, Amapa, Brasil
| | - Arlindo Cesar Matias Pereira
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
| | - Jose Carlos Tavares Carvalho
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Curso de Farmacia, Laboratorio de Pesquisa em Farmacos, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Ciencias Farmaceuticas, Macapa, Amapa, Brasil
- Universidade Federal do Amapa, Departamento de Ciencias Biologicas e da Saude, Programa de Pos-graduacao em Inovacao Farmaceutica, Macapa, Amapa, Brasil
| |
Collapse
|