1
|
Rafiei N, Aratboni HA, Lavandosque LL, Mastrangelo CB, Hirai WY, de Oliveira LFP, Gonçalves GLP, Lavres J, Rossi ML, Martinelli AP, de Lira SP, Kazemeini SA, Winck FV. Haematococcus pluvialis bionanoparticles boost maize seedling health, serving as a sustainable seed priming agent and biostimulant for agriculture. PHYSIOLOGIA PLANTARUM 2025; 177:e70245. [PMID: 40309930 PMCID: PMC12044640 DOI: 10.1111/ppl.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
The rising frequency of extreme climate events requires sustainable strategies to secure food production. Environmental stress impacts seed germination and seedling development, posing a significant agricultural challenge. To address this, we developed and applied iron-based nanoparticles (Bio-NPs) synthesized through green biosynthesis from Haematococcus pluvialis, a microalga rich in antioxidants like astaxanthin. These Bio-NPs, approximately 21 nm in diameter and characterized by a negative surface charge, were used as priming agents for maize seeds. Their effects on physiological traits were analyzed with multispectral imaging, showing enhanced normalized difference vegetation index (NDVI) and chlorophyll levels in maize seedlings, highlighting Bio-NPs as effective biostimulants. Among the tested concentrations, 6 mM Bio-NPs yielded the most substantial improvements in seedling health compared to unprimed and hydro-primed groups. Importantly, in vitro studies confirmed that Bio-NPs had no harmful effects on beneficial bacteria and fungi of agronomic importance, underscoring their safety. Although the exact biological pathways responsible for these enhancements are yet to be fully understood, further research into plant responses to Bio-NPs could yield new insights into plant biostimulation. Bio-NPs thus hold promises for strengthening seedling resilience under extreme environmental scenarios, currently observed due to global climate change, offering a safe, sustainable approach to agricultural enhancement. By leveraging microalgae-based biostimulants, this work advances seed priming technology, fostering crop resilience and supporting environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Nahid Rafiei
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Hossein Alishah Aratboni
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Leandro Luis Lavandosque
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Clíssia Barboza Mastrangelo
- Laboratory of Radiobiology and Environment, Center for Nuclear Energy in Agriculture (CENA)University of São Paulo (USP)São PauloBrazil
| | - Welinton Yoshio Hirai
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | | | - Gabriel Luiz Padoan Gonçalves
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | - José Lavres
- Laboratory of Stable Isotopes, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Mônica Lanzoni Rossi
- Laboratory of Plant Biotechnology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Adriana Pinheiro Martinelli
- Laboratory of Plant Biotechnology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| | - Simone Possedente de Lira
- Department of Exact SciencesUniversity of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ)São PauloBrazil
| | | | - Flavia Vischi Winck
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in AgricultureUniversity of São PauloSão PauloBrazil
| |
Collapse
|
2
|
Ruiz KB, Lianza M, Segovia-Ulloa S, Sepúlveda-Villegas S, Salas F, Tejos R, Biondi S, Antognoni F. Priming with quinoa dehulling residues induces changes in gene expression, boosts antioxidant defense, and mitigates salt stress in Arabidopsis thaliana L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109704. [PMID: 40043456 DOI: 10.1016/j.plaphy.2025.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/08/2025] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
Biostimulants help plants to cope with abiotic stresses and using those obtained by recycling waste bioproducts is an eco-friendly technology with great potential. Quinoa (Chenopodium quinoa Willd.) is a highly nutritious grain originally cultivated in the Andes but now spreading worldwide. Before consumption, quinoa seeds undergo a dehulling process that produces large amounts of a waste product rich in saponins and other bioactive compounds. In this study, the by-product of quinoa seed dehulling (quinoa hull powder, QHP) was analysed for its plant biostimulant activity. The objective was to analyze whether QHP could improve growth and induce biochemical and transcriptional changes under control or saline (25, 50, and 100 mM NaCl) conditions in the model plant Arabidopsis thaliana. QHP was supplied either by pre-soaking seeds prior to sowing (seed priming) or added to the seedling growth medium. Complete and partial recovery of germinability to control levels was observed in seeds primed with 0.05 mg mL-1 QHP in the presence of 50 and 100 mM NaCl, respectively. Seedlings transferred to QHP-supplemented saline medium showed improved shoot and root biomass and primary root length as well as reduced oxidative stress (MDA, and H2O2 production). RT-qPCR analysis of stress-responsive genes revealed that some were induced by QHP alone while salt-induced expression of others was modulated by QHP. The phytochemical composition of QHP suggests that, in addition to saponins, protective compounds, such as proline, spermidine, carotenoids, and polyphenols, could be potentially responsible for its activity.
Collapse
Affiliation(s)
- Karina B Ruiz
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, Av. Arturo Prat Ch. 2120, Iquique, 1100000, Chile
| | - Mariacaterina Lianza
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini Campus, Corso d' Augusto 237, 47921, Rimini, Italy
| | - Sebastian Segovia-Ulloa
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, Av. Arturo Prat Ch. 2120, Iquique, 1100000, Chile
| | - Sebastián Sepúlveda-Villegas
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, Av. Arturo Prat Ch. 2120, Iquique, 1100000, Chile
| | - Felipe Salas
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, Av. Arturo Prat Ch. 2120, Iquique, 1100000, Chile
| | - Ricardo Tejos
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, Av. Arturo Prat Ch. 2120, Iquique, 1100000, Chile
| | - Stefania Biondi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Fabiana Antognoni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini Campus, Corso d' Augusto 237, 47921, Rimini, Italy.
| |
Collapse
|
3
|
Habibi N, Aryan S, Sediqui N, Terada N, Sanada A, Kamata A, Koshio K. Enhancing Salt Tolerance in Tomato Plants Through PEG6000 Seed Priming: Inducing Antioxidant Activity and Mitigating Oxidative Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1296. [PMID: 40364325 PMCID: PMC12073543 DOI: 10.3390/plants14091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is a major constraint to crop productivity, negatively affecting plant physiology and fruit quality. This study hypothesized that seed priming with polyethylene glycol (PEG6000) might enhance antioxidant activity by mitigating oxidative stress in Solanum lycopersicum 'Micro-Tom' under salt stress. Seeds primed with -1.2 MPa PEG6000 were grown in Rockwool and treated with 0, 50, 100, 150, and 200 mM NaCl. Primed plants showed a 32% increase in leaf potassium (K+) and a 28% decrease in sodium (Na+) accumulation compared to non-primed plants under 150 mM NaCl. Glucose, fructose, and sucrose contents increased by 25%, 22%, and 19%, respectively, in primed fruits, while citric acid decreased by 15%. Malondialdehyde (MDA) and electrolyte leakage were reduced by 35% and 29%, respectively, in primed plants under moderate salinity. Antioxidant enzyme activities-SOD, POD, CAT, and APX were enhanced by 30-45% in primed plants under 100 and 150 mM NaCl, compared to non-primed controls. Abscisic acid (ABA) levels increased by 40% in primed roots under salt stress. Activities of polyamine-related enzymes (DAO, PAO, and ADC) also rose significantly. Priming improved protein content by 20% and relative water content by 18%. These results suggest that PEG6000 seed priming enhances salt tolerance by boosting antioxidant defense, regulating osmotic balance, and improving ion homeostasis, offering a viable strategy for sustaining tomato productivity under salinity.
Collapse
Affiliation(s)
- Nasratullah Habibi
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; (N.S.); (N.T.); (A.S.); (K.K.)
- Faculty of Agriculture, Balkh University, Mazar-e-Sharif 1701, Balkh, Afghanistan
| | - Shafiqullah Aryan
- Faculty of Agriculture, Nangarhar University, Jalalabad 2601, Nangarhar, Afghanistan;
| | - Naveedullah Sediqui
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; (N.S.); (N.T.); (A.S.); (K.K.)
| | - Naoki Terada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; (N.S.); (N.T.); (A.S.); (K.K.)
| | - Atsushi Sanada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; (N.S.); (N.T.); (A.S.); (K.K.)
| | - Atsushi Kamata
- Faculty of Agriculture, Tokyo University of Agriculture, Isehara Farm, 1499-1 Maehata, Sannomiya, Kanagawa, Isehara 259-1103, Japan;
| | - Kaihei Koshio
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan; (N.S.); (N.T.); (A.S.); (K.K.)
| |
Collapse
|
4
|
Luhua Y, Yu N, Chunjie C, Wangdan X, Qiaoqiao G, Xinfeng J, Shurong J, Jianfeng Y, Yanjun G. Unlocking the Synergy: ABA Seed Priming Enhances Drought Tolerance in Seedlings of Sweet Sorghum Through ABA-IAA Crosstalk. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269610 DOI: 10.1111/pce.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Abscisic acid (ABA) seed priming impacts plant growth and stress resistance, yet its precise physiological and molecular mechanisms remain elusive. This study explored the role of ABA-priming in enhancing drought acclimation in sweet sorghum (Sorghum bicolor Moench) using physiological assessments and comparative transcriptomics. Under drought stress, ABA-primed seedlings exhibited increased plant height, larger leaves, and higher leaf water content compared to non-primed plants. While drought negatively affected photosynthesis through the regulation of photosystem I and II, ABA-priming improved photosynthesis and WUE by involving in differential expression of photosystem II genes. ABA-priming promoted the accumulation of cuticular wax and cutin, effectively reducing leaf water loss. Drought triggered endogenous ABA production via ABA inactivation genes (UGT, BGLU), while ABA-priming activated auxin (IAA) biosynthesis via YUCCA, enhancing auxin-mediated responses and gibberellic acid (GA) signalling. The synergistic action of ABA and IAA culminated in enhanced drought tolerance. Additionally, ABA-priming and drought stress regulated NAC transcription factors, with SbNAC21-1 emerging as a pivotal transcriptional activator intricately linked to auxin signalling. Overexpression of SbNAC21-1 in Arabidopsis effectively enhanced drought tolerance. These findings offer valuable insights into the intricate mechanisms underpinning the beneficial effects of ABA-priming, ultimately enhancing plant adaptability to environmental stressors.
Collapse
Affiliation(s)
- Yao Luhua
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Department of Agriculture and Forestry, Hainan Tropical Ocean University, Sanya, China
| | - Ni Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chen Chunjie
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiong Wangdan
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Gan Qiaoqiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jia Xinfeng
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Jin Shurong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Jianfeng
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| | - Guo Yanjun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Falak A, Anas M, Khan A, Hayat A, Shaheen Z, Saleem MH, Fahad S, Quraishi UM. Efficacy of ascorbic acid coated quantum dots in alleviating lead-induced oxidative damage and enhancing growth parameters in rice (Oryza sativa L.) for sustainable cultivation. J Trace Elem Med Biol 2025; 88:127603. [PMID: 39847985 DOI: 10.1016/j.jtemb.2025.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.4 mV), particle size (472.3 nm, PDI 0.745), UV-Vis absorption peak (240 nm), FT-IR analysis revealing functional groups (carboxylic acid and alkene), and TEM showing spherical morphology (average size 9.43 nm). Pb stress reduced key traits in JP-5, including tillers per plant (11.11 %), grain yield (18.22 %), kernel weight (18.22 %), protein (40.19 %), phenolic content (59.66 %), and antioxidant capacity (17.75 %), while 50 ppm AsA-QDs improved these by 33.33 %, 5.73 %, 2.03 %, and 13.19 %, respectively. Similarly, Pb stress reduced plant height, T/P, biomass yield (BY), GY, TKW, total sugars, reducing sugars, non-reducing sugars, starch, proteins, and TPC in Super Basmati by 19.76 %, 21.43 %, 11.01 %, 11.01 %, 7.52 %, 38.09 %, 7.24 %, 13.96 %, 11.97 %, and 40.39 %, respectively, while PbQD1 improved these traits by 14.29 %, 15.49 %, 9.25 %, 109.52 %, 8.31 %, 31.72 %, 25.91 %, and 7.075 %, respectively. The findings demonstrate that AsA-QDs effectively mitigate Pb toxicity by reducing oxidative stress, enhancing growth parameters, and restoring yield components, establishing them as a promising nanomaterial for sustainable crop resilience under Pb stress.
Collapse
Affiliation(s)
- Aliza Falak
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Amjid Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Botany, University of Mianwali, Mianwali, Punjab 42200, Pakistan.
| | - Alvina Hayat
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Zeenat Shaheen
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, Qatar.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Gopalsamy A, Tamilmani E, Shanmugam K, Koilpitchai NN, Durairaj V, Mylsamy P, Jaganathavarma A, Ranganathan U. Seeds of Excellence: Review on impact of seed quality enhancement on babygreens biomass production. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2025; 19:101597. [DOI: 10.1016/j.jafr.2024.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Ahmadi T, Shabani L, Sabzalian MR, Hassannejad S. Comparative analysis of LED priming effects on two medicinal lemon balm genotypes one and three weeks post-drought stress. BMC PLANT BIOLOGY 2025; 25:266. [PMID: 40021984 PMCID: PMC11869611 DOI: 10.1186/s12870-025-06274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Light is essential for producing high-quality plants. The advancement of light-emitting diode technology has unlocked new opportunities for growing plants in controlled settings. In this study, the effects of light-emitting diodes priming and drought stress on some physiological and biochemical parameters were studied in two Melissa officinalis genotypes (Ilam and Isfahan) one and three weeks after drought stress. The experiments were conducted in a factorial arrangement within a completely randomized design with three replications. RESULTS Drought stress reduced growth indicators such as fresh and dry weights of aerial parts, leaf number, and relative water content. Light-emitting diode priming relieved such reductions in both genotypes. The accumulation of phenolic compounds, anthocyanin, and levels of proline, along with the activity of the enzyme phenylalanine ammonia-lyase, increased under drought stress, with the maximum increase achieved under red + blue and blue light-emitting diode light-primed plants. Especially in the Ilam genotype, phenylalanine ammonia-lyase enzyme activities and the accumulation of phenolic compounds were remarkably enhanced by the use of red + blue light-emitting diode light. Also, abscisic acid showed higher values under drought stress and the highest in pre-treatments with red + blue and red light-emitting diodes. CONCLUSION The effects of different treatments on the physiological indices showed that drought tolerance in Melissa officinalis was improved due to the priming of red + blue light-emitting diode in both genotypes. Thus, our results emphasized the use of light-emitting diode priming as a useful method to enhance the drought resistance of medicinal plants.
Collapse
Affiliation(s)
- Tayebeh Ahmadi
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahr-e Kord, Iran.
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq.
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University & Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad Reza Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sahar Hassannejad
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, 44002, Iraq
| |
Collapse
|
8
|
Sajid M, Ahmed S, Sardar R, Ali A, Yasin NA. Role of polyethylene glycol to alleviate lead stress in Raphanus sativus. PeerJ 2025; 13:e18147. [PMID: 39802184 PMCID: PMC11725271 DOI: 10.7717/peerj.18147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/30/2024] [Indexed: 01/16/2025] Open
Abstract
The continuous contamination of heavy metals (HMs) in our ecosystem due to industrialization, urbanization and other anthropogenic activities has become a serious environmental constraint to successful crop production. Lead (Pb) toxicity causes ionic, oxidative and osmotic injuries which induce various morphological, physiological, metabolic and molecular abnormalities in plants. Polyethylene glycol (PEG) is widely used to elucidate drought stress induction and alleviation mechanisms in treated plants. Some recent studies have unveiled the potential of PEG in regulating plant growth and developmental procedures including seed germination, root and shoot growth and alleviating the detrimental impacts of abiotic stresses in plants. Therefore, the current study aimed to assess the effects of seed priming with various concentrations (10%, 20%, 30% and 40%) of PEG on the growth and development of radish plants growing under Pb stress (75 mg/kg soil). Lead toxicity reduced root growth (32.89%), shoot growth (32.81%), total chlorophyll (56.25%) and protein content (58.66%) in treated plants. Similarly, plants showed reduced biomass production of root (35.48%) and shoot (31.25%) under Pb stress, while 30% PEG seed priming enhanced biomass production of root (28.57%) and shoot (35.29%) under Pb contaminated regimes. On the other hand, seedlings obtained from 30% PEG priming demonstrated a notable augmentation in the concentrations of photosynthetic pigments, antioxidative activity and biomass accumulation of the plants. PEG-treated plants showed modulations in the enzymatic activities of peroxidase (PO), catalase (CAT) and superoxide dismutase (SOD). These changes collectively played a role in mitigating the adverse effects of Pb on plant physiology. Our data revealed that PEG interceded stress extenuation encompasses numerous regulatory mechanisms including scavenging of ROS through antioxidant and non-antioxidants, improved photosynthetic activity and appropriate nutrition. Hence, it becomes necessary to elucidate the beneficial role of PEG in developing approaches for improving plant growth and stress tolerance.
Collapse
Affiliation(s)
- Muhammad Sajid
- Institute of Botany, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rehana Sardar
- Department of Botany, Emerson University, Multan, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha,, Sargodha, Punjab, Pakistan
| | - Nasim Ahmad Yasin
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
9
|
Choi JY, Ju YH, Nakamichi A, Cho SW, Woo SH, Sakagami JI. Effect of Seed Hydropriming on the Elongation of Plumule and Radicle During the Germination Process and Changes in Enzyme Activity Under Water-Deficient Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3537. [PMID: 39771234 PMCID: PMC11679898 DOI: 10.3390/plants13243537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Hydropriming rice seeds effectively improve the germination percentage, shortens the germination period, and promotes seedling growth. The impact of seed hydropriming is to speed up growth under dry soil conditions, thereby avoiding drought damage. This study analyzes the effect of hydropriming on morpho-physiological changes in the water uptake of rice seeds using "Kasalath" and "Nipponbare" under water-deficit conditions. Upon exposure to osmotic stress, both varieties showed delays in the time to reach germination. In addition, all germination phases exhibited reductions in the activity of alpha-amylase and total soluble sugar by osmotic stress; however, in all germination phases of the hydroprimed seeds, the activity and contents of those were significantly increased, resulting in increased size of the coleoptile, plumule, and radicle. In hydroprimed seeds, "Kasalath" was superior to "Nipponbare" in the ratio of the water-deficit-to-well-watered conditions for all traits related to germination, which may have been attributable to hydropriming having a greater effect on "Kasalath". Interestingly, Primed "Kasalath" had a lower level of α-amylase, despite the having a higher content of total soluble sugars than primed "Nipponbare".
Collapse
Affiliation(s)
- Ju-Young Choi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
| | - Young-Hwan Ju
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
| | - Ayaka Nakamichi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Seong-Woo Cho
- Department of Smart Agro-Industry, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Jun-Ichi Sakagami
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (J.-Y.C.); (Y.-H.J.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
10
|
Sheikhi H, Nicola S, Delshad M, Bulgari R. Sodium selenate biofortification, through seed priming, on dill microgreens grown in two different cultivation systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1474420. [PMID: 39691483 PMCID: PMC11651346 DOI: 10.3389/fpls.2024.1474420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
Human health is significantly influenced by the quality of vegetables included in the diet. Soilless cultivation methods have the potential to enhance and standardize the levels of secondary metabolites or specific bioactive compounds in plants, even when utilizing LED lighting. In recent years, tailored foods, enriched with important microelements, are growing in popularity. The present research was conducted to explore the quantitative and qualitative aspects of dill (Anethum graveolens L.), grown either indoor or in a greenhouse and harvested during the microgreen stage. Seeds of dill were primed with 1.5 and 3 mg L-1 selenium (Se). Untreated dry and hydro-primed seeds were used as the control and positive control groups, respectively. Results demonstrated a higher yield in indoor farm environment (1255.6 g FW m-2) compared to greenhouse (655.1 g FW m-2), with a general positive effect on the morphological traits studied, with no significant influence from priming and Se. The mean value of phenolic index of microgreens grown in the greenhouse was 13.66% greater than that grown in indoor condition. It was also observed that seeds priming with Se can effectively raise the Se content in dill microgreens, in both tested conditions. Overall, our results suggest that the 3 mg L-1 Se seems to be the most promising concentration to obtain Se-enriched microgreens.
Collapse
Affiliation(s)
- Hossein Sheikhi
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Mojtaba Delshad
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roberta Bulgari
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|
11
|
Wojtyla Ł, Wleklik K, Borek S, Garnczarska M. Polyamine Seed Priming: A Way to Enhance Stress Tolerance in Plants. Int J Mol Sci 2024; 25:12588. [PMID: 39684300 DOI: 10.3390/ijms252312588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polyamines (PAs), such as putrescine, spermine, and spermidine, are bioactive molecules that play a vital role in plant responses to stresses. Although they are frequently applied to achieve higher levels of stress tolerance in plants, their function in seed biology is still not fully understood. PAs have been described in only a limited number of studies as seed priming agents, but most of the data report only the physiological and biochemical PA effects, and only a few reports concern the molecular mechanisms. In this review, we summarized PA seed priming effects on germination, seedling establishment, and young plant response to abiotic stresses, and tried to draw a general scheme of PA action during early developmental plant stages.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Karolina Wleklik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
13
|
Tripathi DK, Bhat JA, Antoniou C, Kandhol N, Singh VP, Fernie AR, Fotopoulos V. Redox Regulation by Priming Agents Toward a Sustainable Agriculture. PLANT & CELL PHYSIOLOGY 2024; 65:1087-1102. [PMID: 38591871 PMCID: PMC11287215 DOI: 10.1093/pcp/pcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Plants are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species leading to oxidative stress and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals has been recently recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, glutathione, peroxiredoxins, glutaredoxins, ascorbate, thioredoxins and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and health of crop plants, with an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play a crucial role in the modulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components toward enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are discussed, with an aim of encouraging future research in this field toward effective application of priming in stress management in crops including horticultural species.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | | | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, AUUP Campus Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
14
|
Juraniec M, Goormaghtigh E, Posmyk MM, Verbruggen N. An ecotype-specific effect of osmopriming and melatonin during salt stress in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:707. [PMID: 39054444 PMCID: PMC11270801 DOI: 10.1186/s12870-024-05434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Natural populations of Arabidopsis thaliana exhibit phenotypic variations in specific environments and growth conditions. However, this variation has not been explored after seed osmopriming treatments. The natural variation in biomass production and root system architecture (RSA) was investigated across the Arabidopsis thaliana core collection in response to the pre-sawing seed treatments by osmopriming, with and without melatonin (Mel). The goal was to identify and characterize physiologically contrasting ecotypes. RESULTS Variability in RSA parameters in response to PEG-6000 seed osmopriming with and without Mel was observed across Arabidopsis thaliana ecotypes with especially positive impact of Mel addition under both control and 100 mM NaCl stress conditions. Two ecotypes, Can-0 and Kn-0, exhibited contrasted root phenotypes: seed osmopriming with and without Mel reduced the root growth of Can-0 plants while enhancing it in Kn-0 ones under both control and salt stress conditions. To understand the stress responses in these two ecotypes, main stress markers as well as physiological analyses were assessed in shoots and roots. Although the effect of Mel addition was evident in both ecotypes, its protective effect was more pronounced in Kn-0. Antioxidant enzymes were induced by osmopriming with Mel in both ecotypes, but Kn-0 was characterized by a higher responsiveness, especially in the activities of peroxidases in roots. Kn-0 plants experienced lower oxidative stress, and salt-induced ROS accumulation was reduced by osmopriming with Mel. In contrast, Can-0 exhibited lower enzyme activities but the accumulation of proline in its organs was particularly high. In both ecotypes, a greater response of antioxidant enzymes and proline accumulation was observed compared to mechanisms involving the reduction of Na+ content and prevention of K+ efflux. CONCLUSIONS In contrast to Can-0, Kn-0 plants grown from seeds osmoprimed with and without Mel displayed a lower root sensitivity to NaCl-induced oxidative stress. The opposite root growth patterns, enhanced by osmopriming treatments might result from different protective mechanisms employed by these two ecotypes which in turn result from adaptive strategies proper to specific habitats from which Can-0 and Kn-0 originate. The isolation of contrasting phenotypes paves the way for the identification of genetic factors affecting osmopriming efficiency.
Collapse
Affiliation(s)
- Michał Juraniec
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| | - Małgorzata M Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90 237, Poland.
| | - Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Faculté des Sciences, Université libre de Bruxelles, Brussels, 1050, Belgium
| |
Collapse
|
15
|
Chen Y, Liu Z, Han D, Yang Q, Li C, Shi X, Zhang M, Yang C, Qiu L, Jia H, Wang S, Lu W, Ma Q, Yan L. Cold tolerance SNPs and candidate gene mining in the soybean germination stage based on genome-wide association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:178. [PMID: 38976061 DOI: 10.1007/s00122-024-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE Three QTLs associated with low-temperature tolerance were identified by genome-wide association analysis, and 15 candidate genes were identified by haplotype analysis and gene expression analyses. Low temperature is a critical factor affecting the geographical distribution, growth, development, and yield of soybeans, with cold stress during seed germination leading to substantial productivity loss. In this study, an association panel comprising 260 soybean accessions was evaluated for four germination traits and four cold tolerance index traits, revealing extensive variation in cold tolerance. Genome-wide association study (GWAS) identified 10 quantitative trait nucleotides (QTNs) associated with cold tolerance, utilizing 30,799 single nucleotide polymorphisms (SNPs) and four GWAS models. Linkage disequilibrium (LD) analysis positioned these QTNs within three cold-tolerance quantitative trait loci (QTL) and, with QTL19-1, was positioned by three multi-locus models, underscoring its importance as a key QTL. Integrative haplotype analysis, supplemented by transcriptome analysis, uncovered 15 candidate genes. The haplotypes within the genes Glyma.18G044200, Glyma.18G044300, Glyma.18G044900, Glyma.18G045100, Glyma.19G222500, and Glyma.19G222600 exhibited significant phenotypic variations, with differential expression in materials with varying cold tolerance. The QTNs and candidate genes identified in this study offer substantial potential for marker-assisted selection and gene editing in breeding cold-tolerant soybeans, providing valuable insights into the genetic mechanisms underlying cold tolerance during soybean germination.
Collapse
Affiliation(s)
- Yuehan Chen
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Zhi Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Qing Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Chenhui Li
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongchang Jia
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Shu Wang
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China
| | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China.
| | - Qian Ma
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-center, Hebei-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
16
|
Wan Y, Liu J, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu J. Current advances and future trends of hormesis in disease. NPJ AGING 2024; 10:26. [PMID: 38750132 PMCID: PMC11096327 DOI: 10.1038/s41514-024-00155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Hormesis, an adaptive response, occurs when exposure to low doses of a stressor potentially induces a stimulatory effect, while higher doses may inhibit it. This phenomenon is widely observed across various organisms and stressors, significantly advancing our understanding and inspiring further exploration of the beneficial effects of toxins at doses both below and beyond traditional thresholds. This has profound implications for promoting biological regulation at the cellular level and enhancing adaptability throughout the biosphere. Therefore, conducting bibliometric analysis in this field is crucial for accurately analyzing and summarizing its current research status. The results of the bibliometric analysis reveal a steady increase in the number of publications in this field over the years. The United States emerges as the leading country in both publication and citation numbers, with the journal Dose-Response publishing the highest number of papers in this area. Calabrese E.J. is a prominent person with significant contributions and influence among authors. Through keyword co-occurrence and trend analysis, current hotspots in this field are identified, primarily focusing on the relationship between hormesis, oxidative stress, and aging. Analysis of highly cited references predicts that future research trends may center around the relationship between hormesis and stress at different doses, as well as exploring the mechanisms and applications of hormesis. In conclusion, this review aims to visually represent hormesis-related research through bibliometric methods, uncovering emerging patterns and areas of focus within the field. It provides a summary of the current research status and forecasts trends in hormesis-related research.
Collapse
Affiliation(s)
- Yantong Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixuan Jia
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guijie Tian
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhuo Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Ma L, Wei J, Han G, Sun X, Yang X. Seed osmopriming with polyethylene glycol (PEG) enhances seed germination and seedling physiological traits of Coronilla varia L. under water stress. PLoS One 2024; 19:e0303145. [PMID: 38728268 PMCID: PMC11086902 DOI: 10.1371/journal.pone.0303145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.
Collapse
Affiliation(s)
- Leyuan Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Jingui Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Guojun Han
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Xiaomei Sun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Xiaobing Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| |
Collapse
|
18
|
Fu Y, Li P, Si Z, Ma S, Gao Y. Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress. Int J Mol Sci 2024; 25:5055. [PMID: 38732273 PMCID: PMC11084420 DOI: 10.3390/ijms25095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 μM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Zhuanyun Si
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
19
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
20
|
Kaushal K, Rajani K, Kumar RR, Ranjan T, Kumar A, Ahmad MF, Kumar V, Kumar V, Kumar A. Physio-biochemical responses and crop performance analysis in chickpea upon botanical priming. Sci Rep 2024; 14:9342. [PMID: 38653763 PMCID: PMC11039450 DOI: 10.1038/s41598-024-59878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.
Collapse
Affiliation(s)
- Kamini Kaushal
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Division of Seed Science and Technology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kumari Rajani
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India.
- Bhola Paswan Shastri Agricultural College, Bihar Agricultural University, Sabour, Purnea, 854302, India.
| | - Ravi Ranjan Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Bhola Paswan Shastri Agricultural College, Bihar Agricultural University, Sabour, Purnea, 854302, India
| | - Tushar Ranjan
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Anand Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - M Feza Ahmad
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Vikash Kumar
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Vinod Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Aman Kumar
- Department of Seed Science and Technology, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| |
Collapse
|
21
|
Iqbal H, Yaning C. Redox priming could be an appropriate technique to minimize drought-induced adversities in quinoa. FRONTIERS IN PLANT SCIENCE 2024; 15:1253677. [PMID: 38638353 PMCID: PMC11025396 DOI: 10.3389/fpls.2024.1253677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
The exogenous use of the redox compound (H2O2) plays a significant role in abiotic stress tolerance. The present study investigated various H2O2 application methods (seed priming, foliar spray, and surface irrigation) with varying concentration levels (0 mM, 5 mM, 10 mM, 15 mM, 40 mM, 80 mM, and 160 mM) to evaluate the efficiency of supplying exogenous H2O2 to quinoa under water-deficit conditions. Drought stress reduced quinoa growth and yield by perturbing morphological traits, leading to the overproduction of reactive oxygen species and increased electrolyte leakage. Although all studied modes of H2O2 application improved quinoa performance, surface irrigation was found to be sensitive, causing oxidative damage in the present study. Seed priming showed a prominent increase in plant height due to profound emergence indexes compared to other modes under drought conditions. Strikingly, seed priming followed by foliar spray improved drought tolerance in quinoa and showed higher grain yield compared to surface irrigations. This increase in the yield performance of quinoa was attributed to improvements in total chlorophyll (37%), leaf relative water content (RWC; 20%), superoxide dismutase (SOD; 35%), peroxidase (97%), polyphenol oxidase (60%), and phenylalanine ammonia-lyase (58%) activities, and the accumulation of glycine betaine (96%), total soluble protein (TSP; 17%), proline contents (35%), and the highest reduction in leaf malondialdehyde contents (MDA; 36%) under drought stress. PCA analysis indicated that physio-biochemical traits (proline, SOD, TSP, total chlorophyll, MSI, and RWC) were strongly positively correlated with grain yield, and their contribution was much higher in redox priming than other application methods. In conclusion, exogenous H2O2 application, preferably redox priming, could be chosen to decrease drought-induced performance and yield losses in quinoa.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
22
|
Libron JAMA, Putri HH, Bore EK, Chepkoech R, Akagi I, Odama E, Goto K, Tamaru S, Yabuta S, Sakagami JI. Halopriming in the submergence-tolerant rice variety improved the resilience to salinity and combined salinity-submergence at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108494. [PMID: 38513520 DOI: 10.1016/j.plaphy.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The role of halopriming in alleviating the detrimental effects of salinity and combined salinity-submergence was evaluated using two rice genotypes, "IR06F148" (anaerobic germination + submergence tolerant [Sub1]) and "Salt-star" (salt tolerant) with contrasting levels of tolerance. Nonprimed seeds and those primed with 1% calcium chloride (CaCl2) were germinated, and the seedlings were exposed to salinity (50 or 100 mM sodium chloride [NaCl]) and submergence (nonsaline or saline water). Salinity substantially inhibited plant height, shoot/root dry mass, and leaf area. Priming improved the resilience to 50 mM NaCl by increasing the chlorophyll content and lowering hydrogen peroxide (H2O2) production; and to 100 mM NaCl by increasing the total soluble sugars. However, apparent differences in the responses of primed "Salt-star", such as an increase in the Na+, K+, and Ca2+ levels, indicated that halopriming differentially affected the response to salt based on the salinity tolerance of the variety. Submergence reduced the shoot biomass, chlorophyll, and photosynthetic efficiency to a greater extent in "Salt-star" than in "IR06F148". Priming, especially in "Salt-star", caused a lesser reduction in the chlorophyll (Chl) and maximum quantum yield of photosystem II (Fv/Fm) but increased the total soluble sugars post-submergence, indicating a boost in the photosynthetic efficiency. The responses of the two varieties to submergence depended on their tolerance, and halopriming affected each variety differently. The metabolic and molecular changes induced by halopriming in submergence-tolerant rice may be explored further to understand the underlying mechanisms of improved resilience.
Collapse
Affiliation(s)
- Julie Ann Mher Alcances Libron
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Hana Haruna Putri
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Emmanuel Kiprono Bore
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; Kenya Plant Health Inspectorate Service, Nairobi, Kenya.
| | - Rael Chepkoech
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Isao Akagi
- Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Emmanuel Odama
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; National Agricultural Research Organization, Abi Zonal Agricultural Research and Development Institute, Plot 3, Lugard Avenue P.O. Box 295, Entebbe, Uganda.
| | - Keita Goto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Shotaro Tamaru
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Shin Yabuta
- Setsunan University, 45-1 Nagaotoge, Hirakata, Osaka, 573-0101, Japan.
| | - Jun-Ichi Sakagami
- Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
23
|
Khanam S, Funatsu T, Tanaka K, Kaneko Y. Using a novel CLEM system to localize lipid droplets and membranes in desiccated embryonic axis cells of soybean seeds. Microscopy (Oxf) 2023; 72:506-510. [PMID: 36823361 DOI: 10.1093/jmicro/dfad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Lipid droplets and membranes in radicle cells from desiccated embryonic axes of soybean (Glycine max) seeds were examined by a recently developed correlative light and electron microscopy system, which has been designed to facilitate the observation of identical locations using an upright reflected light microscope and compact SEM successively with minimum time lapse. Lipids are major components of membranes and are also stored in numerous lipid droplets lining plasma membranes in many seed cells. Fluorescently stained lipid droplets and membranes in the desiccated radicle cells were mainly located along the surface of shrunk protoplasm and around presumptive protein bodies, which will turn into vacuoles and increase their volume for radicle protrusion. Co-localization of lipid droplets and membranes suggests the presence of a membrane protection mechanism during desiccation and rehydration processes that ensures prompt elongation of radicle cells during germination.
Collapse
Affiliation(s)
- Salma Khanam
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | - Koji Tanaka
- Kumagaya Plant, Nikon Corporation, Saitama 360-8559, Japan
| | - Yasuko Kaneko
- Department of Natural Science in the Faculty of Education, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
24
|
Tian Y, Gama-Arachchige NS, Zhao M. Trends in Seed Priming Research in the Past 30 Years Based on Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3483. [PMID: 37836223 PMCID: PMC10575273 DOI: 10.3390/plants12193483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Seed priming (SP) treatments are widely used in agriculture and restoration to improve seed germination and seedling vigor. Although there exists a considerable amount of scientific literature on SP, it has seldom undergone visual and quantitative analyses. To gain insights into the patterns observed in SP research over the last three decades, we conducted a bibliometric analysis using the Science Citation Index-Expanded (SCI-E) database, aiming to minimize the similarity score in plagiarism detection. This analysis offers a thorough examination of yearly publications, temporal patterns in keyword usage, the top-performing journals, authors, institutions, and countries within the field of SP. Our research findings suggest a steady annual increase of 10.59% in the volume of SP publications, accompanied by a significant upward trajectory in the average citations received per paper annually. According to the analysis of keywords, it was found that "priming" and "germination" emerged as the most frequently used terms in the field of SP research. Seed Science and Technology ranked first among the top journals, and Plant Physiology had greater influence in the field of SP in terms of number of citations. The majority of the top 10 productive institutions were situated in developing countries. In addition, these nations exhibited the highest volume of published works and citations. Our analysis revealed a shift in research focus within the field of SP over the past three decades, transitioning from agricultural science to encompass plant science and environmental science. With the growing recognition of SP's research across different disciplines, there exist abundant prospects for international and interdisciplinary partnerships, collaborative organizations, and progress in this field.
Collapse
Affiliation(s)
- Yu Tian
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China;
| | | | - Ming Zhao
- State Key Laboratory of Vegetation & Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
25
|
Pal B, Bhattacharjee S. Herbal and chemical seed potentiations improve the redox health of aged seeds of indigenous aromatic rice cultivars through regulation of oxidative window, gene expression, and restoration of hormonal homeostasis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1269-1288. [PMID: 38024956 PMCID: PMC10678913 DOI: 10.1007/s12298-023-01375-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Previous studies associated with seed potentiation support the critical role of metabolic readjustment in restricting the loss of seed vigor and viability of aged seeds. However, their exact role in the regulation of 'oxidative windows' of potentiated seeds is rarely studied and hence is the subject of the present investigation. Seed potentiation of two contrasting indigenous aromatic rice cultivars, differing in sensitivity towards redox attributes (Oryza sativa L., Cultivars Tulaipanji and Jamainadu), with standardized doses of hydrogen peroxide (20 mM), triadimefon (250 μM), herbal extract (1% aqueous extract of Lantana camara flower) and distilled water before accelerated aging (RH 92% and 41 °C for 24 h) found to have significant impact on redox regulation of aged seeds and improvement of germination phenotypes. The efficacy of integrated RBOH-ascorbate-glutathione/catalase pathway, redox status and other redox fingerprints in the metabolic landscape of potentiated-aged seeds vis-a-vis non-potentiated-aged seeds corroborate the impact of seed potentiation on the regulation of 'oxidative window' of experimental rice seeds. Gene expression analysis of central redox hub enzymes (Osrboh, OsAPx2, OsGRase, OsCatA) strongly substantiates the impact of seed potentiation on transcriptional regulation of genes for redox homeostasis in accelerated aged seeds. The novelty of the current effort is that it suggests a positive nexus between seed potentiation-induced redox regulation and hormonal homeostasis. The efficacy of seed potentiation on the redox regulation of experimental accelerated aged seeds is found to be cultivar-specific and comparatively better in the cultivar Tulaipanji as compared to the cultivar Jamainadu and in the order herbal extract, hydrogen peroxide, hydropriming and triadimefon. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01375-9.
Collapse
Affiliation(s)
- Babita Pal
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
26
|
Khepar V, Ahuja R, Sidhu A, Samota MK. Nano-sulfides of Fe and Mn Efficiently Augmented the Growth, Antioxidant Defense System, and Metal Assimilation in Rice Seedlings. ACS OMEGA 2023; 8:30231-30238. [PMID: 37636944 PMCID: PMC10448635 DOI: 10.1021/acsomega.3c03012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Physiological and biochemical mechanisms behind nanoparticle (NP)-induced seed germination by nanopriming with metal sulfide NPs are lacunae in the field of agriculture. Sonochemically synthesized aqua-dispersed ferrous sulfide NPs (FeS-NPs) and manganese sulfide NPs (MnS-NPs) were examined as nanopriming agents for physiological, pathological, and antioxidative defense parameters of rice in the present study. Under pot house conditions, in vivo nanopriming of rice seeds with FeS NPs and MnS-NPs at a concentration of 35 μg/mL for 8 h significantly improved the physiological parameters, viz., germination percentage, seed germination index, mean germination time, dry weight, and vigor index, and decreased the phytopathological parameters of nanoprimed rice seeds, viz., mortality, seed rot, and seedling blight. Stimulation of superoxide dismutase (SOD ≥ 28.16%), ascorbate peroxidase (APX ≥ 52.38%), and catalase (CAT ≥ 28.57%) enzymes in FeS-NP- and MnS-NP-nanoprimed seeds as compared to control (hydroprimed seeds) enhanced the fitness of rice seedlings. The augmented levels of Fe and Mn content in the shoots and roots of NP-treated seedlings as compared to hydroprimed seedlings confirmed the incorporation nanometals in rice seedlings as nanonutrients for effective plant growth. Inclusively, FeS-NPs and MnS-NPs were shown to be effective nanopriming agents for promoting the germination of naturally fungal infested rice seeds.
Collapse
Affiliation(s)
- Varinder Khepar
- Department
of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Radha Ahuja
- Department
of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anjali Sidhu
- Department
of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Mahesh K. Samota
- ICAR-Central
Institute of Post Harvest Engineering & Technology (CIPHET), Ludhiana, Punjab 141004, India
| |
Collapse
|
27
|
Spagnuolo D, Bressi V, Chiofalo MT, Morabito M, Espro C, Genovese G, Iannazzo D, Trifilò P. Using the Aqueous Phase Produced from Hydrothermal Carbonization Process of Brown Seaweed to Improve the Growth of Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2023; 12:2745. [PMID: 37514359 PMCID: PMC10383230 DOI: 10.3390/plants12142745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Seaweeds are considered a biomass for third-generation biofuel, and hydrothermal carbonization (HTC) is a valuable process for efficiently disposing of the excess of macroalgae biomass for conversion into multiple value-added products. However, the HTC process produces a liquid phase to be disposed of. The present study aims to investigate the effects of seed-priming treatment with three HTC-discarded liquid phases (namely AHL180, AHL240, and AHL300), obtained from different experimental procedures, on seed germination and plant growth and productivity of Phaseolus vulgaris L. To disentangle the osmotic effects from the use of AHL, isotonic solutions of polyethylene glycol (PEG) 6000 have also been tested. Seed germination was not affected by AHL seed-priming treatment. In contrast, PEG-treated samples showed significantly lower seed germination success. AHL-treated samples showed changes in plant biomass: higher shoot biomass was recorded especially in AHL180 samples. Conversely, AHL240 and AHL300 samples showed higher root biomass. The higher plant biomass values recorded in AHL-treated samples were the consequence of higher values of photosynthesis rate and water use efficiency, which, in turn, were related to higher stomatal density. Recorded data strongly support the hypothesis of the AHL solution reuse in agriculture in the framework of resource management and circular green economy.
Collapse
Affiliation(s)
- Damiano Spagnuolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Viviana Bressi
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Maria Teresa Chiofalo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marina Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppa Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Patrizia Trifilò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
28
|
Habibi N, Aryan S, Amin MW, Sanada A, Terada N, Koshio K. Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112187. [PMID: 37299165 DOI: 10.3390/plants12112187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Pre-sowing seed priming is one of the methods used to improve the performance of tomato plants under salt stress, but its effect photosynthesis, yield, and quality have not yet been well investigated. This experiment aimed to alleviate the impact of sodium chloride stress on the photosynthesis parameters of tomato cv. Micro-Tom (a dwarf Solanum lycopersicum L.) plants exposed to salt stress conditions. Each treatment combination consisted of five different sodium chloride concentrations (0 mM, 50 mM, 100 mM, 150 mM, and 200 mM) and four priming treatments (0 MPa, -0.4 MPa, -0.8 MPa, and -1.2 MPa), with five replications. Microtome seeds were subjected to polyethylene glycol (PEG6000) treatments for 48 hours for priming, followed by germination on a moist filter paper, and then transferred to the germination bed after 24 h. Subsequently, the seedlings were transplanted into the Rockwool, and the salinity treatments were administered after a month. In our study salinity significantly affected tomato plants' physiological and antioxidant attributes. Primed seeds produced plants that exhibited relatively better photosynthetic activity than those grown from unprimed seeds. Our findings indicated that priming doses of -0.8 MPa and -1.2 MPa were the most effective at stimulating tomato plant photosynthesis, and biochemical contents under salinity-related conditions. Moreover, primed plants demonstrated relatively superior fruit quality features such as fruit color, fruit Brix, sugars (glucose, fructose, and sucrose), organic acids, and vitamin C contents under salt stress, compared to non-primed plants. Furthermore, priming treatments significantly decreased the malondialdehyde, proline, and hydrogen peroxide content in plant leaves. Our results suggest that seed priming may be a long-term method for improving crop productivity and quality in challenging environments by enhancing the growth, physiological responses, and fruit quality attributes of Micro-Tom tomato plants under salt stress conditions.
Collapse
Affiliation(s)
- Nasratullah Habibi
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
- Faculty of Agriculture, Balkh University, Balkh 1701, Afghanistan
| | - Shafiqullah Aryan
- Faculty of Agriculture, Nangarhar University, Nangarhar 2601, Afghanistan
| | | | - Atsushi Sanada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Naoki Terada
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kaihei Koshio
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
29
|
Ahmed S, Amjad M, Sardar R, Siddiqui MH, Irfan M. Seed Priming with Triacontanol Alleviates Lead Stress in Phaseolus vulgaris L. (Common Bean) through Improving Nutritional Orchestration and Morpho-Physiological Characteristics. PLANTS (BASEL, SWITZERLAND) 2023; 12:1672. [PMID: 37111895 PMCID: PMC10145083 DOI: 10.3390/plants12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Worldwide, crop productivity is highly influenced by heavy metal toxicity. Lead (Pb) the is second-most toxic heavy metal that has high persistence in soil. Lead is translocated in plants from rhizosphere soil and enters the food chain, where it poses a significant hazard to the health of humans. In the present investigation, seed priming with triacontanol (Tria) was used to mitigate Pb phytotoxicity in Phaseolus vulgaris L. (common bean). Seeds were primed with different concentrations of Tria (control, 10 µmol L-1, 20 µmol L-1, 30 µmol L-1) solutions. The pot experiment was carried out by sowing Tria-primed seeds in contaminated soil with 400 mg kg-1 Pb. Lead alone induced a decrease in the rate of germination and a significant reduction in biomass and growth of P. vulgaris as compared to the control. All these negative effects were reversed by Tria-primed seeds. Proliferation of photosynthetic pigments was observed 1.8-fold by Tria under Pb stress. Primed seeds with 20 µmol L-1 Tria enhanced stomatal conductance (gs), photosynthetic rate (A), transpiration rate (Ei), and uptake of mineral contents (Mg+2, Zn+2, Na+, and K+) and reduced Pb accumulation in seedlings. Tria caused a 1.3-fold increase in osmotic regulator proline synthesis to alleviate Pb stress. Phenolics, soluble protein, and DPPH free radical scavenging activity were enhanced by Tria application, suggesting that exogenous Tria could be employed to improve plant tolerance to Pb stress.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Minahil Amjad
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
30
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
31
|
Wiszniewska A, Makowski W. Assessment of Shoot Priming Efficiency to Counteract Complex Metal Stress in Halotolerant Lobularia maritima. PLANTS (BASEL, SWITZERLAND) 2023; 12:1440. [PMID: 37050070 PMCID: PMC10096694 DOI: 10.3390/plants12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The study investigated whether short-term priming supports plant defense against complex metal stress and multiple stress (metals and salinity) in halophyte Lobularia maritima (L.) Desv. Plants were pre-treated with ectoine (Ect), nitric oxide donor-sodium nitroprusside (SNP), or hydrogen sulfide donor-GYY4137 for 7 days, and were transferred onto medium containing a mixture of metal ions: Zn, Pb, and Cd. To test the effect of priming agents in multiple stress conditions, shoots were also subjected to low salinity (20 mM NaCl), applied alone, or combined with metals. Hydropriming was a control priming treatment. Stress impact was evaluated on a basis of growth parameters, whereas defense responses were on a basis of the detoxification activity of glutathione S-transferase (GST), radical scavenging activity, and accumulation of thiols and phenolic compounds. Exposure to metals reduced shoot biomass and height but had no impact on the formation of new shoots. Priming with nitric oxide annihilated the toxic effects of metals. It was related to a sharp increase in GST activity, glutathione accumulation, and boosted radical scavenging activity. In NO-treated shoots level of total phenolic compounds (TPC) and flavonoids remained unaffected, in contrast to other metal-treated shoots. Under combined metal stress and salinity, NO and H2S were capable of restoring or improving growth parameters, as they stimulated radical scavenging activity. Ect and H2S did not exert any effect on metal-treated shoots in comparison to hydropriming. The results revealed the stimulatory role of nitric oxide and low doses of NaCl in combating the toxic effects of complex metal stress in L. maritima. Both NO and NaCl interfered with thiol metabolism and antioxidant activity, whereas NaCl also contributed to the accumulation of phenolic compounds.
Collapse
|
32
|
Louis N, Dhankher OP, Puthur JT. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. PHYSIOLOGIA PLANTARUM 2023; 175:e13881. [PMID: 36840678 DOI: 10.1111/ppl.13881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The significance of priming in enhancing abiotic stress tolerance is well-established in several important crops. Priming positively impacts plant growth and improves stress tolerance at multiple developmental stages, and seed priming is one of the most used methods. Seed priming influences the pre-germinative metabolism that ensures proper germination, early seedling establishment, enhanced stress tolerance and yield, even under unfavourable environmental conditions. Seed priming involves pre-exposure of seeds to mild stress, and this pre-treatment induces specific changes at the physiological and molecular levels. Interestingly, priming can improve the efficiency of the DNA repair mechanism, along with activation of specific signalling proteins and transcription factors for rapid and efficient stress tolerance. Notably, such acquired stress tolerance may be retained for longer duration, namely, later developmental stages or even subsequent generations. Epigenetic and chromatin-based mechanisms such as DNA methylation, histone modifications, and nucleosome positioning are some of the key molecular changes involved in priming/stress memory. Further, the retention of induced epigenetic changes may influence the priming-induced trans-generational stress memory. This review discusses known and plausible seed priming-induced molecular mechanisms that govern germination and stress memory within and across generations, highlighting their role in regulating the plant response to abiotic stresses. Understanding the molecular mechanism for activation of stress-responsive genes and the epigenetic changes resulting from seed priming will help to improve the resiliency of the crops for enhanced productivity under extreme environments.
Collapse
Affiliation(s)
- Noble Louis
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malapuram, Kerala, India
| |
Collapse
|
33
|
Gour T, Sharma A, Lal R, Heikrujam M, Gupta A, Agarwal LK, Chetri SP, Kumar R, Sharma K. Amelioration of the physio-biochemical responses to salinity stress and computing the primary germination index components in cauliflower on seed priming. Heliyon 2023; 9:e14403. [PMID: 36950655 PMCID: PMC10025027 DOI: 10.1016/j.heliyon.2023.e14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The significant horticultural crop, cauliflower (Brassica oleracea L. var. botrytis) is vulnerable to the excessive salt concentration in the soil, which contributes to its scaled-down growth and productivity, among other indices. The current study examines the efficacy of hydropriming, halopriming, and osmopriming on the physio-biochemical attributes and tolerance to salinity (100 mM NaCl) in cauliflower under controlled conditions. The results showed that the salinity (100 mM NaCl) has significant deleterious impacts on cauliflower seed germination, seedling growth, and photosynthetic attributes, and provoked the production of reactive oxygen species. In contrast, different priming approaches proved beneficial in mitigating the negative effects of salinity and boosted the germination, vigor indices, seedling growth, and physio-biochemical attributes like photosynthetic pigments, protein, and proline content while suppressing oxidative damage and MDA content in cauliflower seedlings in treatment- and dose-dependent manner. PCA revealed 61% (PC1) and 15% (PC2) of the total variance with substantial positive relationships and high loading conditions on all germination attributes on PC1 with greater PC1 scores for PEG treatments showing the increased germination indices in PEG-treated seeds among all the priming treatments tested. All 13 distinct priming treatments tried clustered into three groups as per Ward's approach of systematic categorization, clustering the third group showing relatively poor germination performances. Most germination traits exhibited statistically significant associations at the p < 0.01 level. Overall, the results established the usefulness of the different priming approaches facilitating better germination, survival, and resistance against salinity in the cauliflower to be used further before sowing in the salt-affected agro-ecosystems.
Collapse
Affiliation(s)
- Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Anukriti Sharma
- Department of Environmental Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Monika Heikrujam
- Department of Botany, Maitreyi College, University of Delhi, Delhi, India
| | - Anshul Gupta
- Department of Agriculture, Rajasthan Govt., Jaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Siva P.K. Chetri
- Department of Botany, Dimoria College, Khetri, Kamrup (M), Guwahati, Assam, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Corresponding author. Laboratory for Plant Translational, Research & Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur- 313001, Rajasthan, India.
| |
Collapse
|
34
|
Khanam S, Atsuzawa K, Kaneko Y. Localization of Lipid Droplets in Embryonic Axis Radicle Cells of Soybean Seeds under Various Imbibition Regimes Indicates Their Role in Desiccation Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:799. [PMID: 36840147 PMCID: PMC9958736 DOI: 10.3390/plants12040799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Desiccation tolerance allows plant seeds to remain viable during desiccation and subsequent re-hydration. In this study, we tried to develop an experimental system to understand the difference between desiccation tolerant and desiccation sensitive radicle cells by examining excised embryonic axes after re-desiccation and subsequent imbibition under various regimes. Embryonic axes excised from soybean (Glycine max (L.) Merr.) seeds imbibed for 3 h to 15 h which remained attached to the cotyledons during imbibition would grow normally after 24 h of desiccation and re-imbibition on wet filter paper. By contrast, when the embryonic axes excised after 3 h imbibition of seeds were kept on wet filter paper for 12 h to 16 h, their growth was significantly retarded after 24 h of desiccation and subsequent re-imbibition. Numerous lipid droplets were observed lining the plasma membrane and tonoplasts in radicle cells of desiccation tolerant embryonic axes before and after desiccation treatment. By contrast, the lipid droplets lining the plasma membrane and tonoplasts became very sparse in radicle cells that were placed for longer times on wet filter paper before desiccation. We observed a clear correlation between the amount of lipid droplets lining plasma membranes and the ability to grow after desiccation and re-imbibition of the excised embryonic axes. In addition to the reduction of lipid droplets in the cells, a gradual increase in starch grains was observed. Large starch grains accumulated in the radicle cells of those axes that failed to grow further.
Collapse
Affiliation(s)
- Salma Khanam
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Yasuko Kaneko
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Department of Natural Science, Faculty of Education, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
35
|
Mardani Korrani F, Amooaghaie R, Ahadi A. He-Ne Laser Enhances Seed Germination and Salt Acclimation in Salvia officinalis Seedlings in a Manner Dependent on Phytochrome and H 2O 2. PROTOPLASMA 2023; 260:103-116. [PMID: 35471709 DOI: 10.1007/s00709-022-01762-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
In the current study the role of H2O2 in He-Ne laser-induced effects on seed germination and post-germinative performance of Salvia officinalis seedlings was assessed under both non-stress and saline conditions. Salinity had adverse impacts on seed germination and root length and decreased seed germination tolerance index. Seed priming with H2O2 and He-Ne laser impacted the seed germination and vigoration in a dose-dependent manner. The optimal effects were gathered by energy dose of 6 J/cm2 laser and concentration of 5 mM H2O2. These pre-treatments enhanced seed germination due to increasing contents of total soluble and reducing sugars and the amylase activity in seeds and improved seedling performance under saline and non-saline conditions. Furthermore, Phy B transcripts were upregulated, salt-accrued oxidative stress was mitigated, and the activities of POD and CAT increased in seedlings primed with H2O2 and laser. Interestingly, applying diphenyleneiodonium (DPI as an inhibitor of NADPH oxidase activity) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) arrested the upregulation of phy B gene and abolished stimulatory impact of laser priming on the aforementioned attributes under both non-stress and saline conditions. These novel findings suggest that H2O2 as a downstream signal modulates the impacts of He-Ne laser on seed germination, seedling performance and salt acclimation in sage seedlings, and likely phy B also is involved in these responses.
Collapse
Affiliation(s)
| | - Rayhaneh Amooaghaie
- Plant Science Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
36
|
Geetha N, Sunilkumar CR, Bhavya G, Nandini B, Abhijith P, Satapute P, Shetty HS, Govarthanan M, Jogaiah S. Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. ENVIRONMENTAL RESEARCH 2023; 216:114498. [PMID: 36209791 DOI: 10.1016/j.envres.2022.114498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.
Collapse
Affiliation(s)
- Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | | | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Boregowda Nandini
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Padukana Abhijith
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India
| | - Hunthrike Shekar Shetty
- Nanobiotechnology Laboratory, DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) - 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
37
|
Khan I, Awan SA, Rizwan M, Hassan ZU, Akram MA, Tariq R, Brestic M, Xie W. Nanoparticle's uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89823-89833. [PMID: 36344893 DOI: 10.1007/s11356-022-23945-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is one of the promising techniques and shares wide ranges of applications almost in every field of life. Nanomaterials are getting continuous attractions due to specific physical and chemical properties and being applied as multifunctional material. The use of nanomaterials/nanoparticles in agriculture sector for crop improvement and protection against various environmental threats have attained greater significance. Size and nature of nanoparticles, mode of application, environmental conditions, rhizospheric and phyllospheric environment, and plant species are major factors that influence the action of nanoparticles. The mode or method of nanoparticle applications to plants is attaining greater attentions. Recently, different methods for nanoparticle applications (seed priming, foliar, and root application) are being used to improve crop growth. It is of quite worth that which method is suitable for nanoparticle application, and how nanoparticles can possibly translocate to various plant tissues from root to shoot or vice versa. These information's are poorly understood and need more investigations to explore the comprehensive mechanism by which nanoparticles make their possible entry through different plant organs and how they transport to regulate various physiological and molecular functions in plant cells. Therefore, this study comprehensively provides the knowledge of nanoparticles uptake via seed priming, foliar exposure, and root application, and their possible translocation mechanism within plants influenced by various factors that has not clearly presented. This study will provide new insights to find out an actual uptake and translocation mechanism of nanoparticles that may help researchers to develop nanoparticle-based new strategies for plants to cope with various environmental challenges. This study also focuses on different soil factors or above ground factors that are involved in nanoparticles uptake and translocation and ultimately their functioning in plants.
Collapse
Affiliation(s)
- Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zaid Ul Hassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Huangzhou, 310058, China
| | - Muhammad Adnan Akram
- School of Economics, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rezwan Tariq
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700, Thuwal, Saudi Arabia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
38
|
Liu L, Li H, Li N, Li S, Guo J, Li X. Parental salt priming improves the low temperature tolerance in wheat offspring via modulating the seed proteome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111428. [PMID: 36007631 DOI: 10.1016/j.plantsci.2022.111428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Na Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
39
|
Zhang M, Li B, Wan Z, Chen X, Liu C, Liu C, Zhou Y. Exogenous Spermidine Promotes Germination of Aged Sorghum Seeds by Mediating Sugar Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:2853. [PMID: 36365306 PMCID: PMC9657371 DOI: 10.3390/plants11212853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Starch, a substance stored in seeds, is the main source of energy for germination in sorghum seeds. However, as the seeds age, the catabolism of seed starch is affected, thereby seriously damaging germination ability. In this study, we aimed to understand how exogenous spermidine promoted germination in aged sorghum seed. Our phenotypic analysis indicated that exogenous spermidine not only significantly improved the germination rate, germination potential, germination index, and vigor index of aged seeds, but also increased the root and shoot length after germination. Further, physiological analysis showed that exogenous spermidine increased the content of soluble sugar by upregulating the activity of amylase and sucrose invertase. Exogenous spermidine also improved the activities of key enzymes in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway of aged sorghum seeds. Interestingly, exogenous spermidine protected the mitochondrial structure of aged seeds, which was consistent with the increase in the respiration rate and ATP content during seed germination. Moreover, qRT-PCR analysis revealed that exogenous spermidine induced the expression of key genes related to starch and sugar metabolism in aged sorghum seeds. In conclusion, our study demonstrated that exogenous spermidine promoted aged sorghum seed germination by regulating starch and sugar metabolism.
Collapse
Affiliation(s)
- Min Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Bang Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zuliang Wan
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaofei Chen
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
40
|
Haj Sghaier A, Tarnawa Á, Khaeim H, Kovács GP, Gyuricza C, Kende Z. The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212819. [PMID: 36365272 PMCID: PMC9654111 DOI: 10.3390/plants11212819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 05/27/2023]
Abstract
The seed germination and seedling growth of rapeseed are crucial stages in plant life, especially when facing abiotic stresses. In the present work, the effects of water and temperature on seed germination and seedling growth were investigated in a rapeseed crop (Brassica napus L.). The plants were examined under different temperature levels (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, and 35 °C) and water levels (twenty-nine levels based on either one-milliliter intervals or as a percentage of the thousand-kernel weight (TKW)). Moreover, planting densities and antifungal application techniques were investigated in the study. The findings demonstrated substantial variations between all the growth parameters investigated at all the tested temperatures, and 20 °C was considered the optimum within a broad range of 15-25 °C. Water availability plays a significant role in germination, which can be initiated at 0.65 mL, corresponding to 500% of the TKW. The method of TKW is a more accurate aspect of water application because of the consideration of the seed weight and size. The optimal water range for the accumulation of dry weight, 3.85-5.9 mL (2900-4400% of TKW), was greater than that required for seedling growth, 1.45-3.05 mL (1100-2300% of TKW). Twenty to twenty-five seeds per 9 cm Petri dish exhibited the most outstanding values compared to the others, which provides an advantage in breeding programs, especially when there are seed limitations. Seed priming is a more effective antifungal application strategy. These data can be incorporated into future rapeseed germination in vitro studies, breeding programs, and sowing date predictions.
Collapse
|
41
|
Solid matrix priming improves cauliflower and broccoli seed germination and early growth under the suboptimal temperature conditions. PLoS One 2022; 17:e0275073. [PMID: 36191289 PMCID: PMC9529278 DOI: 10.1371/journal.pone.0275073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Seed priming is an effective method for imparting stress tolerance to plants. This study aimed to analyze the effects of solid matrix priming (SMP) on cauliflower and broccoli seed germination and early seedling growth under suboptimal temperature conditions. The SMP method used in this study included the following steps: (1) mixing seeds with vermiculite and water at a ratio of 2:3:2.5 (w/w/v) and incubating for 2 days in the dark at 20°C; (2) drying the SM-primed seed; (3) germinating the SM-primed and the nonprimed seeds at 10, 15, 20, and 25°C; (4) analyzing the antioxidant enzyme activities of SM-primed and nonprimed germinating broccoli and cauliflower seeds in the early germination stage at 10, 15, 20, and 25°C; and (5) testing the emergence of SM-primed and nonprimed control seeds in the early spring glasshouse. The results showed that the SMP improved seed germination vigor and early seedling growth and increased the activities of peroxidase and ascorbate peroxidase in the germinating cauliflower and broccoli seeds under the suboptimal temperature conditions in the early germination stage compared with nonprimed seeds. It was observed that the suboptimal temperature conditions (i.e., 10 and 15°C) suppressed SM-primed and nonprimed seed germination and early seedling growth of cauliflower and broccoli. Inside a greenhouse, the SMP improved the emergence of cauliflower and broccoli seeds during the early spring season. SMP is an effective method for improving seed germination and the emergence of cauliflower and broccoli under suboptimal temperature conditions.
Collapse
|
42
|
Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, Li Y, Li M, Guo M, Zhao W, Lou B, Wang L, Lynch I, Rui Y. Green synthesis of metal-based nanoparticles for sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119755. [PMID: 35839973 DOI: 10.1016/j.envpol.2022.119755] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/22/2023]
Abstract
The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.
Collapse
Affiliation(s)
- Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; China Agricultural University Professor's Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor's Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
43
|
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnology 2022; 20:254. [PMID: 35659295 PMCID: PMC9164476 DOI: 10.1186/s12951-022-01423-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Scientific Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow, 109316, Russian Federation
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, Tamil Nadu, India.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
44
|
Chattha MU, Hassan MUU, Khan I, Nawaz M, Shah AN, Sattar A, Hashem M, Alamri S, Aslam MT, Alhaithloul HAS, Hassan MU, Qari SH. Hydrogen peroxide priming alleviates salinity induced toxic effect in maize by improving antioxidant defense system, ionic homeostasis, photosynthetic efficiency and hormonal crosstalk. Mol Biol Rep 2022; 49:5611-5624. [PMID: 35618939 DOI: 10.1007/s11033-022-07535-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Salinity stress (SS) is a serious detrimental factor for crop growth and productivity and its intensity it is continuously increasing which is posing serious threat to global food security. Hydrogen peroxide (H2O2) priming has emerged as an excellent strategy to mitigate the adverse impacts of SS. However, the role of H2O2 priming in mitigating the salinity induced toxicity is not fully explored. METHODS AND RESULTS Therefore, in this context the present study was conducted in complete randomized design (CRD) in factorial combination to determine the impact of H2O2 priming on germination, growth, physiological and biochemical traits, osmo-regulating compounds, hormonal balance and ionic homeostasis. The experiment was based on different levels of SS; control, 6 and 12 dS m-1 SS and priming treatments, control and H2O2 priming (2%). Salinity stress significantly reduced the growth, leaf water status (- 15.55%), calcium (Ca2+), potassium (K+) and magnesium (Mg2+) accumulation and increased malondialdehyde (MDA: + 29.95%), H2O2 (+ 21.48%) contents, osmo-regulating compounds (proline, soluble sugars), indole acetic acid (IAA), anti-oxidant activities (ascorbate peroxidase: APX, catalase: CAT, peroxidase: POD and ascorbic acid: AsA) and accumulation of sodium (Na+) and chloride (Cl-.). H2O2 priming effectively reduced the effects of SS on germination and growth and strengthen the anti-oxidant activities through reduced MDA (- 12.36%) and H2O2 (- 21.13%) and increasing leaf water status (16.90%), soluble protein (+ 71.32%), free amino acids (+ 26.41%), proline (+ 49.18%), soluble sugars (+ 71.02%), IAA (+ 57.59%) and gibberlic acid (GA) (+ 21.11%). Above all, H2O2 priming reduced the massive entry of noxious ions (Na+ and Cl-) while increased the entry of Ca2+, K+ and Mg2+ thus improved the plant performance under SS. CONCLUSION In conclusion H2O2 priming was proved beneficial for improving maize growth under SS thorough enhanced anti-oxidant activities, photosynthetic pigments, leaf water status, accumulation of osmo-regulating compounds, hormonal balance and ionic homeostasis.
Collapse
Affiliation(s)
| | - Muhammad Uzair Ul Hassan
- Department of Seed Science and Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Multan Bahadur Sub Campus, Layyah, Punjab, 31200, Pakistan
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | | | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| |
Collapse
|
45
|
Singhal RK, Kumar M, Bose B, Mondal S, Srivastava S, Dhankher OP, Tripathi RD. Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:187-206. [PMID: 35549957 DOI: 10.1080/15226514.2022.2068502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein's (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.
Collapse
Affiliation(s)
| | - Mahesh Kumar
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sananda Mondal
- Plant Physiology Section, Department of ASEPAN, Institute of Agriculture, Sriniketan, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge, MA, USA
| | | |
Collapse
|
46
|
Pagano A, Zannino L, Pagano P, Doria E, Dondi D, Macovei A, Biggiogera M, Araújo SDS, Balestrazzi A. Changes in genotoxic stress response, ribogenesis and PAP (3'-phosphoadenosine 5'-phosphate) levels are associated with loss of desiccation tolerance in overprimed Medicago truncatula seeds. PLANT, CELL & ENVIRONMENT 2022; 45:1457-1473. [PMID: 35188276 PMCID: PMC9311706 DOI: 10.1111/pce.14295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 05/06/2023]
Abstract
Re-establishment of desiccation tolerance is essential for the survival of germinated seeds facing water deficit in the soil. The molecular and ultrastructural features of desiccation tolerance maintenance and loss within the nuclear compartment are not fully resolved. In the present study, the impact of desiccation-induced genotoxic stress on nucleolar ultrastructure and ribogenesis was explored along the rehydration-dehydration cycle applied in standard seed vigorization protocols. Primed and overprimed Medicago truncatula seeds, obtained through hydropriming followed by desiccation (dry-back), were analysed. In contrast to desiccation-tolerant primed seeds, overprimed seeds enter irreversible germination and do not survive dry-back. Reactive oxygen species, DNA damage and expression profiles of antioxidant/DNA Damage Response genes were measured, as main hallmarks of the seed response to desiccation stress. Nuclear ultrastructural features were also investigated. Overprimed seeds subjected to dry-back revealed altered rRNA accumulation profiles and up-regulation of genes involved in ribogenesis control. The signal molecule PAP (3'-phosphoadenosine 5'-phosphate) accumulated during dry-back only in primed seeds, as a distinctive feature of desiccation tolerance. The presented results show the molecular and ultrastructural landscapes of the seed desiccation response, including substantial changes in nuclear organization.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Paola Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Daniele Dondi
- Department of ChemistryUniversity of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| | - Susana de Sousa Araújo
- Association BLC3‐Technology and Innovation CampusCentre Bio R&D UnitMacedo de CavaleirosPortugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani'University of PaviaPaviaItaly
| |
Collapse
|
47
|
Nie L, Song S, Yin Q, Zhao T, Liu H, He A, Wang W. Enhancement in Seed Priming-Induced Starch Degradation of Rice Seed Under Chilling Stress via GA-Mediated α-Amylase Expression. RICE (NEW YORK, N.Y.) 2022; 15:19. [PMID: 35344097 PMCID: PMC8960536 DOI: 10.1186/s12284-022-00567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/21/2022] [Indexed: 05/20/2023]
Abstract
Chilling stress is the major abiotic stress that severely limited the seedling establishment of direct-seeded rice in temperate and sub-tropical rice production regions. While seed priming is an efficient pre-sowing seed treatment in enhancing crop establishment under abiotic stress. Our previous research has identified two seed priming treatments, selenium priming (Se) and salicylic priming (SA) that effectively improved the seed germination and seedling growth of rice under chilling stress. To further explore how seed priming enhance the starch degradation of rice seeds under chilling stress, the present study evaluated the effects of Se and SA priming on germination and seedling growth, α-amylase activity, total soluble sugar content, hormone content and associated gene relative expression under chilling stress. The results showed that both Se and SA priming significantly increased the seed germination and seedling growth attributes, and enhanced the starch degradation ability by increasing α-amylase activity and total soluble sugar content under chilling stress. Meanwhile, seed priming increased the transcription level of OsRamy1A, OsRamy3B that regulated by GA, and increased the transcription level of OsRamy3E that regulated by sugar signals. Furthermore, seed priming significantly improved the GA3 contents in rice seeds by up-regulating the expression of OsGA3ox1 and OsGA20ox1, and decreased the ABA content and the expression of OsNCED1, indicating that the improved starch degradation ability in primed rice seeds under chilling stress might be attributed to the increased GA3 and decreased ABA levels in primed rice seeds, which induced the expression of GA-mediated α-amylase. However, studies to explore how seed priming mediate hormonal metabolism and the expression of OsRamy3E are desperately needed.
Collapse
Affiliation(s)
- Lixiao Nie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Shaokun Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Qi Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Tingcheng Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Hongyan Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Aibin He
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Weiqin Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
48
|
Sen A, Puthur J, Challabathula D, Brestič M. Transgenerational effect of UV-B priming on photochemistry and associated metabolism in rice seedlings subjected to PEG-induced osmotic stress. PHOTOSYNTHETICA 2022; 60:219-229. [PMID: 39650764 PMCID: PMC11558515 DOI: 10.32615/ps.2022.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2024]
Abstract
Rice being the major food crop for more than half of the world population is severely affected by drought stress starting from the establishment of the seedling. We focused on the UV-B priming mediated transgenerational drought tolerance of a drought-tolerant rice variety (Vaisakh) towards polyethylene glycol (PEG) 6,000 (20%)-induced drought. Results showed that priming in F0 generation and re-priming in F1 generation with UV-B enhanced the PEG stress tolerance potential of rice seedlings with increased expression of genes encoding antioxidant enzymes and stress-related proteins offering better protection to primed plants. UV-B priming maintained oxidative homeostasis of the plant cell thus ensuring uninterrupted mitochondrial and photosynthetic activities. Cumulatively, our results suggest that the transgenerational priming memory retained in the seeds is transferred to offspring without any loss. Moreover, re-priming in F1 generation further boosted the innate tolerance potential of a tolerant variety resulting in stable cellular redox homeostasis.
Collapse
Affiliation(s)
- A. Sen
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., 673635 Kerala, India
| | - J.T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., 673635 Kerala, India
| | - D. Challabathula
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610004 Tamil Nadu, India
| | - M. Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
49
|
Malek M, Ghaderi-Far F, Torabi B, Sadeghipour HR. Dynamics of seed dormancy and germination at high temperature stress is affected by priming and phytohormones in rapeseed (Brassica napus L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153614. [PMID: 34979489 DOI: 10.1016/j.jplph.2021.153614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
High temperature stress (HTS) imposes secondary dormancy (SD) also known as thermo-dormancy in many seeds. Priming by soil moisture however, may improve germination though under HTS it may compromise seed longevity. Knowledge of how HTS and priming affect dormancy status/viability loss of a particular crop seed species is essential in agriculture. Accordingly, control non-primed and hydro-primed seeds from Dk-xpower and Traper rapeseed cultivars with low and high potential for SD induction, respectively, were compared for germination behavior, response to GA and some phytohormone effectors under HTS. HTS reduced germination in non-primed Dk-xpower and Traper seeds mainly through the induction of thermo-inhibition/death and thermo-dormancy, respectively. Under HTS, GA3 application reduced thermo-dormancy in favor of thermo-inhibition only in Traper but the GA inhibitor paclobutrazol intensified thermo-dormancy in both cultivars. The ABA inhibitor, fluridone also reduced thermo-dormancy in favor of thermo-inhibition only in Traper. Thus, under HTS, GA biosynthesis is determinant in seed thermo-dormancy/thermo-inhibition dynamics. Hydropriming improved germination under HTS through reduced thermo-inhibition/death (Dk-xpower) and thermo-dormancy (Traper). Here, GA3 application increased death and compromised germination mainly in Dk-xpower. Paclubutrazol application however, increased thermo-dormancy by compromising thermo-inhibition/death in Traper. Overall, hydro-priming weakened seed phytohormonal germination responses. Controlled deterioration resulted in decreased longevity of hydro-primed seeds but induced SD in non-primed Traper seeds. Thus, down-regulation of GA biosynthesis may control differential induction of SD in rapeseed seeds under HTS while hydro-priming stimulates seed germination possibly through overcoming limitations in GA biosynthesis. The agricultural importance of these findings at the ecosystem scale is discussed.
Collapse
Affiliation(s)
- Mohsen Malek
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Farshid Ghaderi-Far
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Benjamin Torabi
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
50
|
Mamedi A, Sharifzadeh F, Maali-Amiri R, Divargar F, Rasoulnia A. Seed osmopriming with Ca 2+ and K + improves salt tolerance in quinoa seeds and seedlings by amplifying antioxidant defense and ameliorating the osmotic adjustment process. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:251-274. [PMID: 35221582 PMCID: PMC8847485 DOI: 10.1007/s12298-022-01125-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Salinity restricts seed germination and seedling growth through induction of osmotic and oxidative stresses. Therefore, this study aimed to enhance salinity tolerance in quinoa seed by pre-optimized osmo-priming treatments of CaCl2 (10 mM, 10 °C, 10 h) and KNO3 (150 mM, 5 °C, 24 h). The results showed that these treatments developed the cellular defense mechanisms in seeds as 'priming memory' that could improve the physiological and biochemical responses to salinity in post-priming stages. The germination capacity and seedling growth decreased with increasing salinity that was accompanied with a higher content of MDA and H2O2. However, the improvement of primed seed vigor against high salinity was explained by increasing the biological defense mechanisms including antioxidant enzymes (CAT, APX, SOD, GPX and PPO) and antioxidant metabolites (DPPH antioxidant activity, phenolics, flavonoids, ascorbic acid), particularly in presence of salt stress. In addition, Ca2+ and K+ priming acquired salinity tolerance in post-priming stages through a significant increase in the accumulation of proline, glycine-betaine, soluble carbohydrate. Improvement in homeostasis of K+/Na+ ratio by promoting K+ maintenance and Na+ exclusion was also found in post-priming stages. These observations may be utilized as effective methods in improving salinity tolerance of quinoa seed germination in saline agriculture by improving the antioxidant system, osmolyte accumulation and mineral nutrient homeostasis.
Collapse
Affiliation(s)
- Arash Mamedi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O Box: 3158711167, Karaj, Iran
| | - Farzad Sharifzadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O Box: 3158711167, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O Box: 3158711167, Karaj, Iran
| | - Fatemeh Divargar
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O Box: 3158711167, Karaj, Iran
| | - Abdolrahman Rasoulnia
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, P.O Box: 3158711167, Karaj, Iran
| |
Collapse
|