1
|
Brand JA, Martin JM, Michelangeli M, Thoré ES, Sandoval-Herrera N, McCallum ES, Szabo D, Callahan DL, Clark TD, Bertram MG, Brodin T. Advancing the Spatiotemporal Dimension of Wildlife-Pollution Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2025; 12:358-370. [PMID: 40224496 PMCID: PMC11984497 DOI: 10.1021/acs.estlett.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
Chemical pollution is one of the fastest-growing agents of global change. Numerous pollutants are known to disrupt animal behavior, alter ecological interactions, and shift evolutionary trajectories. Crucially, both chemical pollutants and individual organisms are nonrandomly distributed throughout the environment. Despite this fact, the current evidence for chemical-induced impacts on wildlife largely stems from tests that restrict organism movement and force homogeneous exposures. While such approaches have provided pivotal ecotoxicological insights, they overlook the dynamic spatiotemporal interactions that shape wildlife-pollution relationships in nature. Indeed, the seemingly simple notion that pollutants and animals move nonrandomly in the environment creates a complex of dynamic interactions, many of which have never been theoretically modeled or experimentally tested. Here, we conceptualize dynamic interactions between spatiotemporal variation in pollutants and organisms and highlight their ecological and evolutionary implications. We propose a three-pronged approach-integrating in silico modeling, laboratory experiments that allow movement, and field-based tracking of free-ranging animals-to bridge the gap between controlled ecotoxicological studies and real-world wildlife exposures. Advances in telemetry, remote sensing, and computational models provide the necessary tools to quantify these interactions, paving the way for a new era of ecotoxicology that accounts for spatiotemporal complexity.
Collapse
Affiliation(s)
- Jack A. Brand
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Jake M. Martin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Marcus Michelangeli
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Australian
Rivers Institute, Griffith University, Nathan 4111, Australia
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- TRANSfarm
- Science, Engineering, & Technology Group, KU Leuven, Lovenjoel 3360, Belgium
- Laboratory
of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary
Biology, Institute of Life, Earth and Environment, University of Namur, Namur 5000, Belgium
| | - Natalia Sandoval-Herrera
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Erin S. McCallum
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| | - Drew Szabo
- Centre
of Excellence in Mass Spectrometry, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- School
of Chemistry, The University of Melbourne, Melbourne 3010, Australia
| | - Damien L. Callahan
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Timothy D. Clark
- School
of Life and Environmental Sciences, Deakin
University, Waurn Ponds 3216, Australia
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 907 36, Sweden
| |
Collapse
|
2
|
Salvatierra D, Islam MA, González MP, Blasco J, Araújo CVM. The Heterogeneous Multi-Habitat Assay System (HeMHAS): A non-forced ecotoxicology test system to study contamination-driven habitat selection behavior from landscape and stress ecology perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125818. [PMID: 39929425 DOI: 10.1016/j.envpol.2025.125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
In ecotoxicology, the non-forced exposure approach provides a complementary perspective to traditional ecotoxicity tests by giving the organisms an opportunity to flee to adjacent, less contaminated areas, thus allowing them to escape from any toxic effects. This approach recognizes the chemical heterogeneity among connected habitats with different levels of contamination. The Heterogeneous Multi-Habitat Assay System (HeMHAS) is a non-forced aquatic assay system that allows the free movement of the organisms throughout various compartments with the possibility to select an area according to its attractiveness or aversiveness. This system expands the environmental risk assessment (ERA) by studying the habitat selection response based on the organism's ability to perceive the surrounding environment. This represents a new frontier in ERA, where different factors other than just contamination can be integrated to assess the cost-benefits balance when a habitat is selected. Thus, the HeMHAS has become a valuable habitat-selection based approach to assess the factors driving the spatial distribution of organisms in connected ecosystems with different levels of contamination. The aim of the current work is to describe the different types of HeMHAS, their ecological relevance, technical advantages and disadvantages, and to critically discuss its applicability and results that have been published in line with landscape and stress ecology.
Collapse
Affiliation(s)
- David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain.
| | - Mohammed Ariful Islam
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| |
Collapse
|
3
|
Salvatierra D, González MP, Blasco J, Krull M, Araújo CVM. Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats. ENVIRONMENTAL RESEARCH 2025; 266:120609. [PMID: 39672495 DOI: 10.1016/j.envres.2024.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L-1 of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.
Collapse
Affiliation(s)
- David Salvatierra
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - María Pilar González
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Julián Blasco
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Marcos Krull
- . Senckenberg Research Institute and Natural History Museum, Mertonstraße 17, 60325, Frankfurt Am Main, Germany; . Benthic Ecology Laboratory, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, S/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil
| | - Cristiano V M Araújo
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| |
Collapse
|
4
|
López-Valcárcel ME, Del Arco A, Araújo CVM, Parra G. Reduced avoidance behaviour in Daphnia magna due to agrochemical-induced vulnerability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117673. [PMID: 39893885 DOI: 10.1016/j.ecoenv.2025.117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The continuous discharge of agrochemicals used in intensive agriculture contaminates aquatic systems, harming aquatic biota and their processes. Although mobile organisms can avoid continuous exposure by moving to less-affected habitats, their capacity can be altered by pollutant exposure. Populations with a previous disturbance history, which show a lower ability to respond to subsequent stressors, are defined as vulnerable. Therefore, this study investigated the so far unknown escape capacity of a vulnerable zooplankton population previously exposed to a contaminated environment. To this end, agrochemically driven vulnerability was induced in populations of Daphnia magna by exposure to sublethal concentrations of glyphosate. Vulnerability was verified using a starvation test in which significant differences were observed between the control populations and populations with a disturbance history. Both the Control and Vulnerable populations were assessed for their avoidance capacity by exposing them to a glyphosate gradient using a Heterogeneous Multiple-Habitat Assay System (HeMHAS). The control populations showed a rapid reaction from the beginning of the assay, with avoidance rates increasing over 24 h, while vulnerable populations were unable to avoid contaminated habitats for up to 24 h. Therefore, we concluded that vulnerable populations have a lower capacity to avoid contaminated habitats. In heterogeneously contaminated habitats, a lower avoidance capacity is responsible for the differential spatial distribution of the affected species, which impacts the ecosystem structure. Additionally, agrochemically induced vulnerability and its effect on avoidance behaviour may affect ecosystem functioning through the altered spatial distribution of zooplankton populations.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, Jaén E-23071, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz 78464, Germany
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Campus Universitario Río San Pedro, Puerto Real 11519, Spain
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, Jaén E-23071, Spain
| |
Collapse
|
5
|
González MP, Cecconi I, Salvatierra D, Úbeda-Manzanaro M, Parra G, Ramos-Rodríguez E, Araújo CVM. Multi-generational exposure of Daphnia magna to pharmaceuticals: Effects on colonization, reproduction, and habitat selection behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117633. [PMID: 39755089 DOI: 10.1016/j.ecoenv.2024.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of pharmaceuticals in the aquatic environment is increasing due to their growing use for human health. Although most studies are based on short exposures to these contaminants, the present study has emerged from the need to study pharmaceuticals in aquatic organisms over a long-term exposure to understand any multi-generational chronic effects and alterations regarding habitat selection. Therefore, this study shows: (1) the ability of Daphnia magna to colonize environments contaminated with caffeine, ibuprofen and fluoxetine, and (2) the effect of these pharmaceuticals on reproduction and habitat selection (under two scenarios: with and without food) after a long-term exposure period of three generations. It was observed that caffeine shortened the time between generations and caused an increase in the number of neonates per female. The opposite was observed with ibuprofen: the time to reach the third F3 generation was double when compared to those exposed to caffeine. Fluoxetine did not alter the reproduction, nor was repellent/attractive for daphnids. In the habitat selection tests, organisms cultivated in clean water preferred the compartment with caffeine, highlighting its attractive effect. Caffeine was also attractive for daphnids in the colonization test. Apart from this, no chemical showed any attractive or repulsive effect in the absence of food during the habitat selection tests. Our findings show that the presence of some pharmaceuticals could cause alterations in distribution and habitat selection patterns, and a significant effect on the reproduction of this species. underlining the importance of studying the effects of contamination by long-term exposure.
Collapse
Affiliation(s)
- María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - Ilaria Cecconi
- University of Trieste, Piazzale Europa, 1, Trieste, TS 34127, Italy.
| | - David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - María Úbeda-Manzanaro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, Jaén 23071, Spain.
| | | | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain.
| |
Collapse
|
6
|
Islam MA, Salvatierra D, González MP, Cordero-de-Castro A, Kholssi R, Moreno-Garrido I, Blasco J, Araújo CVM. Structural and functional alterations under stress conditions by contamination: A multi-species study in a non-forced multi-compartmented mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175849. [PMID: 39209171 DOI: 10.1016/j.scitotenv.2024.175849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms. Other species, such as Artemia sp. and macroalgae were also introduced into the system as environmental enrichment. All the species were distributed in five interconnected mesocosm compartments containing a copper gradient (0, 1, 10, 100 and 250 μg/L). The mobile fish avoided the copper contaminants from 1 μg/L (24 h-AC50: 4.88 μg/L), while the shrimp avoided from 50 μg/L (24 h-AC50: 136.58 μg/L). This finding suggests interspecies interactions influence habitat selection in contaminated environments, potentially jeopardizing population persistence. Among the non-motile organisms, the growth and chlorophyll content of the microalgae were concentration dependent. The growth of I. galbana was more sensitive (growth inhibition of 50 % at the highest concentration) in contrast to N. gaditana (30 % inhibition at the highest concentration) and T. chuii (25 % inhibition at the last two highest concentrations). In summary, the mesocosm HeMHAS showed how contamination-driven responses can be studied at landscape scales, enhancing the ecological relevance of ecotoxicological research.
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - David Salvatierra
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - María Pilar González
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Andrea Cordero-de-Castro
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Rajaa Kholssi
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510 Puerto Real, Spain.
| |
Collapse
|
7
|
Mena F, Araújo CVM, Echeverría-Sáenz S, Brenes-Bravo G, Moreira-Santos M. Assessing habitat selection in the prawn Macrobrachium rosenbergii using the model toxicant copper and colonization as a test endpoint: Does prior exposure determine biochemical and behavioral responses? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107073. [PMID: 39232254 DOI: 10.1016/j.aquatox.2024.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Habitat selection by aquatic organisms is dependent on the availability of adequate conditions to support life and the benefits that the habitat provides. Contaminated environments tend to be less attractive to organisms because reduced habitat quality leads to increased maintenance costs. Consequently, reduced colonization of such disturbed habitats is an expected response. However, colonization has been understudied as an ecotoxicological test endpoint, despite its proven ability to assess habitat selection by populations across various taxa. The aim of the present study was to investigate whether previous exposure to copper could alter the colonization behavior of the freshwater prawn Macrobrachium rosenbergii along a non-forced exposure gradient of interconnected copper-contaminated habitats (0 to 500 µg/L) due to physiological and behavioral impairments. To assess this, post-larvae of M. rosenbergii were pre-exposed to 0, 50, 250 and 500 µg/L copper for a maximum period of 48 h. The physiological status and motility of the organisms after pre-exposure to copper were evaluated using behavioral endpoints (swimming activity by video tracking) and biochemical biomarkers (biotransformation, oxidative stress and neurotoxicity). The results indicated that pre-exposure to copper (at concentrations of 0, 50 and 500 µg/L) significantly influenced the median colonization concentration (CC50), which decreased from 270 µg/L to 109 µg/L. None of the assessed swimming parameters (speed, motility rate, exploration rate, and total distance) were affected by the pre-exposure to copper (0, 50 and 250 µg/L). Biochemically, cholinesterase levels were only affected in the prawn population exposed to 250 µg/L of copper. The present study provides a better understanding of the relevance of colonization as an ecotoxicological endpoint for assessing the spatial distribution of populations, including both new inhabitants and previously exposed organisms, in recovering habitats.
Collapse
Affiliation(s)
- Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain
| | - Silvia Echeverría-Sáenz
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Gabriel Brenes-Bravo
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), 86-3000, Heredia, Costa Rica
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
8
|
Flipkens G, Dujardin V, Salden J, T'Jollyn K, Town RM, Blust R. Olivine avoidance behaviour by marine gastropods (Littorina littorea L.) and amphipods (Gammarus locusta L.) within the context of ocean alkalinity enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115840. [PMID: 38104435 DOI: 10.1016/j.ecoenv.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Gigaton scale atmospheric carbon dioxide (CO2) removal (CDR) is needed to keep global warming below 1.5 °C. Coastal enhanced olivine weathering is a CDR technique that could be implemented in coastal management programmes, but its CO2 sequestration potential and environmental safety remain uncertain. Large scale olivine spreading would change the surficial sediment characteristics, which could potentially reduce habitat suitability and ultimately result in community composition changes. To test this hypothesis, we investigated the avoidance response of the marine gastropod Littorina littorea (Linnaeus, 1758) and marine amphipod Gammarus locusta (Linnaeus, 1758) to relatively coarse (83 - 332 µm) olivine and olivine-sediment mixtures during short-term choice experiments. Pure olivine was significantly avoided by both species, while no significant avoidance was observed for sediment with 3% or 30% w/w olivine. For L. littorea, aversion of the light green colour of pure olivine (i.e. positive scototaxis) was the main reason for avoidance. Moreover, olivine was not significantly avoided when it was 7.5 cm (45%) closer to a food source/darker microhabitat (Ulva sp.) compared to natural sediment. It is inferred that the amphipod G. locusta avoided pure olivine to reduce Ni and Cr exposure. Yet, a significant increase in whole body Ni concentrations was observed after 79 h of exposure in the 30% and 100% w/w olivine treatments compared to the sediment control, likely as a result of waterborne Ni uptake. Overall, our results are significant for ecological risk assessment of coastal enhanced olivine weathering as they show that L. littorea and G. locusta will not avoid sediments with up to 30% w/w relatively coarse olivine added and that the degree of olivine avoidance is dependent on local environmental factors (e.g. food or shelter availability).
Collapse
Affiliation(s)
- Gunter Flipkens
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Vincent Dujardin
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Jordy Salden
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Kyle T'Jollyn
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Raewyn M Town
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ronny Blust
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
9
|
Johns M, Deloe K, Beaty LE, Simpson AM, Nutile SA. Avoidance behavior of Hyalella azteca in response to three common-use insecticides. CHEMOSPHERE 2023; 345:140492. [PMID: 37865201 DOI: 10.1016/j.chemosphere.2023.140492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Non-target organisms in aquatic environments may experience lethal or sublethal effects following exposure to contaminants. Most protocols and regulations, however, are designed to provide protection from lethal effects and are thus based on conventional estimates of population lethality. The relative lack of reliable behavioral endpoints makes it challenging to implement regulations that are similarly protective against sublethal toxicity. The objective of this study was to quantify the avoidance behavior of Hyalella azteca when exposed to three insecticides-bifenthrin (B), chlorpyrifos (C), and permethrin (P)-at a range of estimated lethal concentrations. A two-choice behavioral arena was used for each chemical to quantify H. azteca activity and time spent in either uncontaminated sediment or sediment spiked at concentrations reflecting estimated 48-h lethal concentrations (LC50, LC25, and LC10). For all three insecticides, naïve H. azteca demonstrated a preference for the uncontaminated sediment over the contaminated sediment at the LC50 (B: 312 ng/gOC; C: 1265 ng/gOC; P: 5042 ng/gOC) and LC25 (B: 230 ng/gOC; C: 859 ng/gOC; P: 3817 ng/gOC), spending significantly more time in the uncontaminated side of the arena. H. azteca did not avoid sediment at LC10 (B: 204 ng/gOC; C: 609 ng/gOC; P: 1515 ng/gOC) levels, indicating the existence of a potential threshold of detection. Despite the lack of substrate preference at this exposure level, H. azteca were nevertheless more active (i.e., increased zone-switching) when exposed to bifenthrin at the LC10, suggesting a possible irritation response (e.g., movement after exposure) to this chemical. Our results provide evidence that H. azteca exhibit innate avoidance responses to sediments contaminated with common insecticides at concentrations below those represented by traditional toxicological endpoints (e.g., LC50). The sensitivity and ease with which this behavioral endpoint can be assayed demonstrates the potential utility of behavioral endpoints in toxicological assessments using model organisms.
Collapse
Affiliation(s)
- Miranda Johns
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Kyle Deloe
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Lynne E Beaty
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Adam M Simpson
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| | - Samuel A Nutile
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA.
| |
Collapse
|
10
|
Zhang Y, Xie M, Spadaro DM, Simpson SL. Improving toxicity prediction of metal-contaminated sediments by incorporating sediment properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122708. [PMID: 37806427 DOI: 10.1016/j.envpol.2023.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
For the purpose of sediment quality assessment, the prediction of toxicity risk-levels for aquatic organisms based on simple environmental measurements is desirable. One commonly used approach is the comparison of total contaminant concentrations with corresponding water and sediment quality guideline values, serving as a Line of Evidence (LoE) based on chemistry-toxicity effects relationships. However, the accuracy of toxicity predictions can be improved by considering the factors that modify contaminant bioavailability. In this study we used paired chemistry-ecotoxicity data sets for sediments to evaluate the improvement in toxicity risk predictions using bioavailability-modified guidelines. The sediments were predominantly contaminated with metals, and measurements of sediment particle size, total organic carbon (TOC) and acid volatile sulfide (AVS) were used to modify hazard quotients (HQ). To further assess the predictive efficacy of the bioavailability-modified guideline models, sediments with differing contamination levels were tested for toxicity to a benthic amphipod's reproduction. To account for differences between laboratory exposure and field exposure scenarios, where the latter creates greater dilution, both static-renewal and flow-through test procedures were employed, and flow-through resulted in lower dissolved metal concentrations in the overlying waters. We also investigated how lower AVS concentration by oxidation modified the toxicity. This study reaffirmed that consideration of factors that influence contaminant bioavailability improves toxicity risk predictions, however the improvements may be modest. The sediment particle size data had the greatest influence on the modified HQ, indicating that higher percentage of fine particle size (<63 μm) contributed most to a lower predicted toxicity. The comparison of the static-renewal and flow-through test results continue to raise important questions about the relevance of static or static-renewal toxicity test results for risk assessment decisions, as both these test designs may cause unrealistically high contributions of dissolved metals in overlying waters to toxicity. Overall, this study underscores the value of incorporating outcomes from simple and routine sediment analysis (e.g., particle size, TOC, and consideration of AVS) to enhance the predictive efficacy of toxicity risk assessments in the context of sediment quality risk assessment.
Collapse
Affiliation(s)
- Yanfeng Zhang
- CSIRO Environment, Lucas Heights, NSW, 2234, Australia; Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minwei Xie
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
| | | | - Stuart L Simpson
- CSIRO Environment, Lucas Heights, NSW, 2234, Australia; Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
11
|
Soose LJ, Hügl KS, Oehlmann J, Schiwy A, Hollert H, Jourdan J. A novel approach for the assessment of invertebrate behavior and its use in behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165418. [PMID: 37433332 DOI: 10.1016/j.scitotenv.2023.165418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Sublethal effects are becoming more relevant in ecotoxicological test methods due to their higher sensitivity compared to lethal endpoints and their preventive nature. Such a promising sublethal endpoint is the movement behavior of invertebrates which is associated with the direct maintenance of various ecosystem processes, hence being of special interest for ecotoxicology. Disturbed movement behavior is often related to neurotoxicity and can affect drift, mate-finding, predator avoidance, and therefore population dynamics. We show the practical implementation of the ToxmateLab, a new device that allows monitoring the movement behavior of up to 48 organisms simultaneously, for behavioral ecotoxicology. We quantified behavioral reactions of Gammarus pulex (Amphipoda, Crustacea) after exposure to two pesticides (dichlorvos and methiocarb) and two pharmaceuticals (diazepam and ibuprofen) at sublethal, environmentally relevant concentrations. We simulated a short-term pulse contamination event that lasted 90 min. Within this short test period, we successfully identified behavioral patterns that were most pronounced upon exposure to the two pesticides: Methiocarb initially triggered hyperactivity, after which baseline behavior was restored. On the other hand, dichlorvos induced hypoactivity starting at a moderate concentration of 5 μg/L - a pattern we also found at the highest concentration of ibuprofen (10 μg/L). An additional acetylcholine esterase inhibition assay revealed no significant impact of the enzyme activity that would explain the altered movement behavior. This suggests that in environmentally realistic scenarios chemicals can induce stress - apart from mode-of-action - that affects non-target organisms' behavior. Overall, our study proves the practical applicability of empirical behavioral ecotoxicological approaches and thus represents a next step towards routine practical use.
Collapse
Affiliation(s)
- Laura J Soose
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Kim S Hügl
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Andreas Schiwy
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Environmental Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Henner Hollert
- Goethe University of Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Fraunhofer-Institute für Molecular Biology and Applied Ecology IME, Department Environmental Media-related Ecotoxicology, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University of Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Venâncio C, Ribeiro R, Lopes I. Pre-exposure to seawater or chloride salts influences the avoidance-selection behavior of zebrafish larvae in a conductivity gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122126. [PMID: 37390916 DOI: 10.1016/j.envpol.2023.122126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The risk assessment of freshwater salinization is constructed around standard assays and using sodium chloride (NaCl), neglecting that the stressor is most likely a complex mixture of ions and the possibility of prior contact with it, triggering acclimation mechanisms in the freshwater biota. To date, as far as we are aware of, no information has been generated integrating both acclimation and avoidance behavior in the context of salinization, that may allow these risk assessments upgrading. Accordingly, 6-days-old Danio rerio larvae were selected to perform 12-h avoidance assays in a non-confined 6-compartment linear system to simulate conductivity gradients using seawater (SW) and the chloride salts MgCl2, KCl, and CaCl2. Salinity gradients were established from conductivities known to cause 50% egg mortality in a 96-h exposure (LC50,96h,embryo). The triggering of acclimation processes, which could influence organisms' avoidance-selection under the conductivity gradients, was also studied using larvae pre-exposed to lethal levels of each salt or SW. Median avoidance conductivities after a 12-h of exposure (AC50,12h), and the Population Immediate Decline (PID) were computed. All non-pre-exposed larvae were able to detect and flee from conductivities corresponding to the LC50,96h,embryo, selecting compartments with lower conductivities, except for KCl. The AC50,12h and LC50,96h overlapped for MgCl2 and CaCl2, though the former is considered as more sensitive as it was obtained in 12 h of exposure. The AC50,12h for SW was 1.83-fold lower than the LC50,96h, thus, reinforcing the higher sensitivity of the parameter ACx and its adequacy for risk assessment frameworks. The PID, at low conductivities, was solely explained by the avoidance behavior of non-pre-exposed larvae. Larvae pre-exposed to lethal levels of salt or SW were found to select higher conductivities, except for MgCl2. Results indicated that avoidance-selection assays are ecologically relevant and sensitive tools to be used in risk assessment processes. Stressor pre-exposure influenced organisms' avoidance-selection behavior under conductivity gradients, suggesting that under salinization events organisms may acclimate, remaining in altered habitats.
Collapse
Affiliation(s)
- Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Rui Ribeiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
13
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Fear generalization and behavioral responses to multiple dangers. Trends Ecol Evol 2023; 38:369-380. [PMID: 36428124 DOI: 10.1016/j.tree.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Animals often exhibit consistent-individual differences (CIDs) in boldness/fearfulness, typically studied in the context of predation risk. We focus here on fear generalization, where fear of one danger (e.g., predators) is correlated with fear of other dangers (e.g., humans, pathogens, moving vehicles, or fire). We discuss why fear generalization should be ecologically important, and why we expect fear to correlate across disparate dangers. CIDs in fear are well studied for some dangers in some taxa (e.g., human fear of pathogens), but not well studied for most dangers. Fear of some dangers has been found to correlate with general fearfulness, but some cases where we might expect correlated fears (e.g., between fear of humans, familiar predators, and exotic predators) are surprisingly understudied.
Collapse
|
15
|
de Mello ME, França FM, Vieira E, Bach EE, Marcantônio AS, Ferreira CM. Atrazine contaminated sites and bullfrog tadpoles: evasive trends and biochemical consequences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:344-356. [PMID: 36964299 DOI: 10.1007/s10646-023-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATZ) is one of the most used active principles in agricultural systems. This pesticide has the ability to easily accumulate in terrestrial and aquatic environments, causing impacts with chronic adverse effects. Avoidance tests are tests that seek to assess the concentration from which a given organism escapes, that is, migrates to another habitat. They are being used as a modality of innovative and minimally invasive ecotoxicological tests. Our objective was to evaluate the sensitivity and possible toxic effects of ATZ in bullfrog tadpoles (Lithobates catesbeianus), through avoidance tests and oxidative stress analyses. We performed the behavioral avoidance test lasting 12 h, with observations every 60 min in a linear multi-compartment system with seven compartments. Each compartment corresponded to a concentration: negative control, 1, 2, 20, 200, 2000, 20,000 µg L-1. After the selection of habitat, organisms were forcedly maintained in the chosen concentrations for 48 h and then, metabolic effects were measured assessing the blood plasma amino acid profile and liver protein degradation. We also determined the effective concentrations of ATZ tested at 0 h and 48 h. The results showed that there was an effect of the treatment on the distribution of tadpoles, but not on the hours or on the combined effect (interaction). The biochemical analyses also showed a concentration-dependent relationship which caused significant toxic effects even in a short period of time. In conclusion, these frogs were able to avoid places with high concentrations of ATZ in the first hours of exposure, which suggests that in the natural environment these animals can migrate or avoid areas contaminated by this herbicide; however, depending on the selected concentration, serious biochemical consequences can occur.
Collapse
Affiliation(s)
| | | | - Eliane Vieira
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | - Erna E Bach
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | | | | |
Collapse
|
16
|
Haggerty CJE, Delius BK, Jouanard N, Ndao PD, De Leo GA, Lund AJ, Lopez-Carr D, Remais JV, Riveau G, Sokolow SH, Rohr JR. Pyrethroid insecticides pose greater risk than organophosphate insecticides to biocontrol agents for human schistosomiasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120952. [PMID: 36586553 DOI: 10.1016/j.envpol.2022.120952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis. We used a laboratory dose-response experiment and an observational field study to determine the relative toxicities of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three organophosphate (chlorpyrifos, malathion, and terbufos) insecticides to Macrobrachium prawns. In the lab, pyrethroids were consistently several orders of magnitude more toxic than organophosphate insecticides, and more likely to runoff fields at lethal levels according to modeling data. At 31 water contact sites in the lower basin of the Senegal River where schistosomiasis is endemic, we found that Macrobrachium prawn survival was associated with pyrethroid but not organophosphate application rates to nearby crop fields after controlling for abiotic and prawn-level factors. Our laboratory and field results suggest that widely used pyrethroid insecticides can have strong non-target effects on Macrobrachium prawns that are biocontrol agents where 400 million people are at risk of human schistosomiasis. Understanding the ecotoxicology of high-risk insecticides may help improve human health in schistosomiasis-endemic regions undergoing agricultural expansion.
Collapse
Affiliation(s)
- Christopher J E Haggerty
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Bryan K Delius
- Duquesne University, Department of Biological Sciences, Pittsburgh, PA, USA
| | - Nicolas Jouanard
- Centre de Recherche Biomédicale Espoir pour La Santé, Saint-Louis, Senegal; Station D'Innovation Aquacole, Saint-Louis, Senegal
| | - Pape D Ndao
- Station D'Innovation Aquacole, Saint-Louis, Senegal; Université Gaston Berger (UGB), Route de Ngallèle, BP 234, Saint-Louis, Senegal
| | - Giulio A De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, USA
| | - David Lopez-Carr
- Human-Environment Dynamics Lab, Department of Environmental Studies, UCSB, Santa Barbara, CA, USA
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Gilles Riveau
- Centre de Recherche Biomédicale Espoir pour La Santé, Saint-Louis, Senegal; University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA; Marine Science Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
17
|
Voinorosky CL, Standen KM, Stewart KJ. Environmental Impact of Triclopyr on Habitat Quality in Boreal Rights-of-Way. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2955-2967. [PMID: 36039969 DOI: 10.1002/etc.5475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The indirect effects of herbicides on habitat quality in boreal ecoregions remain poorly understood. Herbicides are commonly applied on boreal rights-of-way to control vegetation below power lines, where they can indirectly enter the soil ecosystem after leaf abscission. Key soil processes such as litter decomposition and soil nutrient cycling can be influenced by altering litter chemistry and/or impacting decomposer species. Disruption of these soil processes could lead to changes in ecosystem health of boreal systems. The indirect impacts of triclopyr on habitat quality of treated boreal rights-of-way were examined through litter mass loss and quality (carbon-to-nitrogen ratios) and the response of boreal invertebrates (Folsomia candida and Oppia nitens) in microcosms and avoidance tests. Litter breakdown rates were not significantly different within a year of treatment. However, we did observe nitrogen profile differences between field-treated and untreated samples, which likely resulted from triclopyr-induced repression of natural leaf senescence processes. At field application rates, there were no differences in survival and reproduction rates of F. candida, which is key in litter breakdown. The triclopyr concentrations that caused 50% of tested F. candida and O. nitens to avoid treated litter were above field application rates. Therefore, field application rates of triclopyr are not expected to impair habitat quality and ecosystem services of boreal ecoregions based on the parameters we evaluated. Our study improves understanding of the effects of herbicide application on habitat quality and is critical for responsible herbicide use on boreal rights-of-way. Environ Toxicol Chem 2022;41:2955-2967. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Katherine M Standen
- Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katherine J Stewart
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
Vera-Herrera L, Araújo CVM, Cordero-de-Castro A, Blasco J, Picó Y. Assessing the colonization by Daphnia magna of pesticide-disturbed habitats (chlorpyrifos, terbuthylazine and their mixtures) and the behavioral and neurotoxic effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119983. [PMID: 35988674 DOI: 10.1016/j.envpol.2022.119983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The spread of pesticides in water bodies integrated into agricultural landscapes may prevent some areas from being colonized. In this study, the effects on the colonization responses of D. magna exerted by gradients of realistic environmental concentrations of the pesticides chlorpyrifos, terbuthylazine and their mixtures were tested in a novel multicompartment non-forced exposure system. Furthermore, the effects of both pesticides and their mixtures on the swimming behavior and the neurotransmission activity of D. magna were analyzed using a traditional forced exposure system. The synthesis and concentration of the main environmental metabolites of terbuthylazine were also analyzed. Results confirmed that D. magna exposed to mixture gradients were able to detect the pollutants and their colonization dynamics were drastically inhibited. The swimming behavior increased in D. magna exposed to the highest concentration of the mixture treatment. AChE activity was only significantly inhibited in the D. magna exposed to the highest concentration of chlorpyrifos. Changes in swimming behavior could not be directly related to the effects on AChE. Furthermore, the synthesis of the metabolite terbuthylazine 2-hydroxy during the course of the experiments was confirmed. These results demonstrate the importance of integrating pesticide mixtures in both non-forced and forced exposure systems during ecotoxicological assays.
Collapse
Affiliation(s)
- Lucía Vera-Herrera
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-UV-GV, Moncada-Naquera Road, Km 4.5, 46113, Valencia, Spain.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-UV-GV, Moncada-Naquera Road, Km 4.5, 46113, Valencia, Spain.
| |
Collapse
|
19
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
20
|
Ecological Integrity Impairment and Habitat Fragmentation for Neotropical Macroinvertebrate Communities in an Agricultural Stream. TOXICS 2022; 10:toxics10070346. [PMID: 35878251 PMCID: PMC9316105 DOI: 10.3390/toxics10070346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The Volcán River watershed in the south Pacific of Costa Rica comprises forests, small urban settlements, cattle fields, and intensive agriculture (mostly pineapple and sugarcane). The ecological integrity and quality of its waters was assessed from 2011–2013 and 2018–2019 by means of physical–chemical parameters (pH, conductivity, temperature, DO, DBO, nitrate, total phosphorus, and pesticide residues) and benthic macroinvertebrate (MI) sampling in eight sites (Volcán, Cañas, and Ángel Rivers, and Peje and Maura streams), resulting in high ecological integrity in all sites except the Peje stream, which is polluted with nitrates and pesticides. Only in this stream was there a marked seasonal variation in the abundance of 16 MI families including Leptohyphidae, Leptophlebiidae, Philopotamidae, Glossossomatidae, and Corydalidae, among others, whose presence was limited exclusively to the dry season (December to April), disappearing from the stream in the rainy season, with corresponding peaks in nitrate (max 20.3 mg/L) and pesticides (mainly herbicides and organophosphate insecticides). The characteristics of the watershed, with large areas of forest and excellent water quality, allow for the re-colonization of organisms into the Peje stream; however, those organisms are incapable of development and growth, providing evidence of a contaminant-driven habitat fragmentation in this stream during the rainy season.
Collapse
|
21
|
Umeokeke HC, Amaeze HN, Ehiguese FO, Ogunfeitimi OO, Soriwei ET, Labinjo SA. Dichlorvos and Paraquat induced avoidance responses in tadpoles (Amietophrynus regularis reuss, 1833) and their contribution to population decline. Environ Anal Health Toxicol 2022; 37:e2022017-0. [PMID: 35878925 PMCID: PMC9314201 DOI: 10.5620/eaht.2022017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022] Open
Abstract
Pesticides notwithstanding their benefits in agriculture pose threats to non-target fauna such as amphibians. This study examined the avoidance responses of tadpoles of the African common toad, <i>Amietophrynus regularis</i>, exposed to Dichlorvos and Paraquat under a non-forced multi-compartmented exposure system (NFS) and estimated the Population Immediate Decline (PID) by integrating avoidance and lethal responses. The NFS was designed to allow the free movement of tadpoles across six compartments in order to elucidate the ability of aquatic organisms to detect and potentially avoid contaminated environments at will. The tadpoles (n=3 per compartment/concentration; 18 per system) were exposed to gradients of Dichlorvos (0, 0.3, 0.5, 0.7, 1.0 and 2.0 mg/L) and Paraquat (0, 1.0, 5.0, 10.0, 15.0, and 20.0 mg/L) in quadruplicates with their distribution recorded every 20 mins for 3 h. 48 h acute toxicity tests under forced exposure system (FS) was performed using the same range of concentrations. Acute toxicity (48 h) response in the FS tests was dose dependent with LC<sub>50</sub> values of 0.79 mg/L and 6.46 mg/L recorded for Dichlorvos and Paraquat, respectively. The mean percentage distribution of tadpoles recorded for Dichlorvos and Paraquat was about 11% and 0% in the highest concentrations (2.0 and 20.0 mg/L) to 58% and 69% in compartments with no contaminants (control), respectively. PID was primarily driven by avoidance responses rather than mortality. These findings are of conservation interest as it elucidates the potential of both pesticides to impair local distribution of amphibians and cause biodiversity loss.
Collapse
Affiliation(s)
- Hilary C. Umeokeke
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
- Correspondence:
| | - Henry N. Amaeze
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Friday O. Ehiguese
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cadiz,
Spain
| | - Olusola O. Ogunfeitimi
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Evelyn T. Soriwei
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| | - Suuru A. Labinjo
- Ecotoxicology Laboratory, Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Akoka-Yaba, Lagos,
Nigeria
| |
Collapse
|
22
|
Salvatierra D, Rodríguez-Ruiz Á, Cordero A, López-Doval J, Baldó F, Blasco J, Araújo CVM. Experimental evidence of contamination driven shrimp population dynamics: Susceptibility of populations to spatial isolation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153225. [PMID: 35063515 DOI: 10.1016/j.scitotenv.2022.153225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Contamination is likely to affect the composition of an ecological landscape, leading to the rupture of ecological connectivity among habitats (ecological fragmentation), which may impact on the distribution, persistence and abundance of populations. In the current study, different scenarios within a spatially heterogeneous landscape were simulated in the Heterogeneous Multi-Habitat Assay System (HeMHAS) to evaluate the potential effect that contamination (copper at 0.5 and 25 μg/L) might have on habitat selection by the estuarine shrimp Palaemon varians in combination with two other ecological factors: predator presence and food availability. As a result, P. varians detected and avoided copper; however, in the presence of the predation signal, shrimps shifted their response by moving to previously avoided regions, even if this resulted in a higher exposure to contamination. When encouraged to move towards environments with a high availability of food, a lower connectivity among the shrimp populations isolated by both contamination and predation risk simultaneously was evidenced, when compared to populations isolated only by the risk of predation. These results indicate that contamination might: (i) trigger avoidance in shrimps, (ii) prevent colonization of attractive foraging areas, (iii) enhance populations' isolation and (iv), make populations more susceptible to local extinction.
Collapse
Affiliation(s)
- David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain.
| | - Ángela Rodríguez-Ruiz
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | - Andrea Cordero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | | | - Francisco Baldó
- Spanish Institute of Oceanography, Oceanographic Center of Cadiz (IEO-CSIC), Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cadiz, Spain
| |
Collapse
|
23
|
Mena F, Romero A, Blasco J, Araújo CVM. Can a mixture of agrochemicals (glyphosate, chlorpyrifos and chlorothalonil) mask the perception of an individual chemical? A hidden trap underlying ecological risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113172. [PMID: 34998261 DOI: 10.1016/j.ecoenv.2022.113172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As aquatic environments associated with conventional agriculture are exposed to various pesticides, it is important to identify any possible interactions that modify their effects when in a mixture. We applied avoidance tests with Danio rerio, exposing juveniles to three relevant current use pesticides: chlorpyrifos (CPF), chlorothalonil (CTL) and glyphosate (Gly), individually and in binary mixtures (CPF-Gly and CTL-Gly). Our goal was to identify the potential of contaminants to trigger the avoidance response in fish and detect any changes to that response resulting from binary mixtures. Avoidance was assessed for three hours using an open gradient system with six levels of increasing concentrations. Fish avoided environmentally relevant concentrations of the three compounds. The avoidance of CPF [AC50 = 7.95 (3.3-36.3) µg/L] and CTL [AC50 = 3.41 (1.2-41.6) µg/L] was evident during the entire period of observation. In the case of Gly, the response changed throughout the experiment: initially (until 100 min) the fish tolerated higher concentrations of the herbicide [AC50 = 52.2 (12.1-2700) µg/L] while during the later period (after 100 min) a clearer avoidance [1.5 (0.8-4.2) µg/L] was observed. The avoidance recorded using CPF and CTL alone was attenuated by the presence of Gly. Applying an additive concentration model, Gly initially acted synergistically with the other two compounds, although this interaction was not observed during the later period. Avoidance gives us an idea of how the distribution of populations may be altered by contamination, our results suggest that in some mixtures this response may be inhibited, at least temporarily, thus masking the ecological risk of the exposure.
Collapse
Affiliation(s)
- Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000 Heredia, Costa Rica.
| | - Adarli Romero
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
24
|
Dos Santos CR, Arcanjo GS, de Souza Santos LV, Koch K, Amaral MCS. Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118049. [PMID: 34479163 DOI: 10.1016/j.envpol.2021.118049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds are increasingly detected in raw and treated wastewater, surface water, and drinking water worldwide. These compounds can cause adverse effects to the ecosystem even at low concentrations and, to assess these impacts, toxicity tests are essential. However, the toxicity data are scarce for many PhACs, and when available, they are dispersed in the literature. The values of pharmaceuticals concentration in the environment and toxicity data are essential for measuring their environmental and human health risks. Thus this review verified the concentrations of pharmaceuticals in the aquatic environment and the toxicity related to them. The risk assessment was also carried out. Diclofenac, naproxen, erythromycin, roxithromycin, and 17β-estradiol presented a high environment risk and 17α-ethinylestradiol presented a high human health risk. This shows the potential of these pharmaceuticals to cause adverse effects to the ecosystem and humans and establishes the necessity of their removal through advanced technologies.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Gemima Santos Arcanjo
- Department of Environmental Engineering, Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine Valéria de Souza Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30.535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 385748, Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles. TOXICS 2021; 9:toxics9110301. [PMID: 34822692 PMCID: PMC8623862 DOI: 10.3390/toxics9110301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023]
Abstract
The use of non-forced multi-compartmented exposure systems has gained importance in the assessment of the contamination-driven spatial avoidance response. This new paradigm of exposure makes it possible to assess how contaminants fragment habitats, interfering in the spatial distribution and species’ habitat selection processes. In this approach, organisms are exposed to a chemically heterogeneous scenario (a gradient or patches of contamination) and the response is focused on identifying the contamination levels considered aversive for organisms. Despite the interesting results that have been recently published, the use of this approach in ecotoxicological risk studies is still incipient. The current review aims to show the sensitivity of spatial avoidance in non-forced exposure systems in comparison with the traditional endpoints used in ecotoxicology under forced exposure. To do this, we have used the sensitivity profile by biological groups (SPBG) to offer an overview of the highly sensitive biological groups and the species sensitive distribution (SSD) to estimate the hazard concentration for 5% of the species (HC5). Three chemically different compounds were selected for this review: copper, glyphosate, and Ag-NPs. The results show that contamination-driven spatial avoidance is a very sensitive endpoint that could be integrated as a complementary tool to ecotoxicological studies in order to provide an overview of the level of repellence of contaminants. This repellence is a clear example of how contamination might fragment ecosystems, prevent connectivity among populations and condition the distribution of biodiversity.
Collapse
|
26
|
Venâncio C, Ribeiro R, Lopes I. Seawater intrusion: an appraisal of taxa at most risk and safe salinity levels. Biol Rev Camb Philos Soc 2021; 97:361-382. [PMID: 34626061 DOI: 10.1111/brv.12803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Seawater intrusion into low-lying coastal ecosystems carries environmental risks. Salinity levels at these coastal ecosystems may vary substantially, causing ecological effects from mortality to several sublethal endpoints, such as depression of rates of feeding, somatic growth, or reproduction. This review attempts to establish safe salinity levels for both terrestrial and freshwater temperate ecosystems by integrating data available in the literature. We have four specific objectives: (i) to identify the most sensitive ecological taxa to seawater intrusion; (ii) to establish maximum acceptable concentrations-environmental quality standards (MAC-EQSs) for sea water (SW) from species sensitivity distributions (SSDs); (iii) to compile from the literature examples of saline intrusion [to be used as predicted environmental concentrations (PECs)] and to compute risk quotients for the temperate zone; and (iv) to assess whether sodium chloride (NaCl) is an appropriate surrogate for SW in ecological risk assessments by comparing SSD-derived values for NaCl and SW and by comparing these with field data. Zooplankton, early life stages of amphibians and freshwater mussels were the most sensitive ecological receptors for the freshwater compartment, while soil invertebrates were the most sensitive ecological receptors for the terrestrial compartment. Hazard concentration 5% (HC5 ) values, defined as the concentration (herein measured as conductivity) that affects (causes lethal or sublethal effects) 5% of the species in a distribution, computed for SW were over 22 and 40 times lower than the conductivity of natural SW (≈ 52 mS/cm) for the freshwater and soil compartment, respectively. This sensitivity of both compartments means that small increments in salinity levels or small SW intrusions might represent severe risks for low-lying coastal ecosystems. Furthermore, the proximity between HC5 values for the soil and freshwater compartments suggests that salinized soils might represent an additional risk for nearby freshwater systems. This sensitivity was corroborated by the derivation of risk quotients using real saline intrusion examples (PECs) collected from the literature: risk was >1 in 34 out of 37 examples. By contrast, comparisons of HC5 values obtained from SSDs in field surveys or mesocosm studies suggest that natural communities are more resilient to salinization than expected. Finally, NaCl was found to be slightly more toxic than SW, at both lethal and sublethal levels, and, thus, is suggested to be an acceptable surrogate for use in risk assessment.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Rui Ribeiro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
27
|
Sager E, Rossi A, Loughlin TM, Marino D, Torre FDELA. Multibiomarker responses in Danio rerio after exposure to sediment spiked with triclosan. AN ACAD BRAS CIENC 2021; 93:e20201938. [PMID: 34550207 DOI: 10.1590/0001-3765202120201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Triclosan (TCS) is an antimicrobial and antimycotic agent widely used in personal care products. In aquatic environments, both TCS and its biomethylated more persistent form, methyl-triclosan (MeTCS), are usually detected in wastewater effluents and rivers, where are commonly adsorbed to suspended solids and sediments. The aim of this study was to evaluate biochemical and physiological effects in Danio rerio after a short term (2 days) and prolonged (21 days) exposures to sediment spiked with TCS acting as the source of the pollutant in the assay. The activities of catalase (CAT), glutathione-s transferase (GST) and superoxide dismutase (SOD), lipid peroxidation levels (LPO), total capacity against peroxyl radicals (ACAP), and acetylcholinesterase enzymatic activity (AChE) were measured in liver, gills, and brain. Most of TCS on the spiked sediment was biotransformed to MeTCS and promoted different adverse effects on D. rerio. Gills were the most sensitive organ after 2 day-exposure, showing lipid damage and increased SOD activity. After 21 days of exposure, liver was the most sensitive organ, showing lower ACAP, increased LPO levels, and SOD and CAT activities. This is the first study reporting the effects on biochemical markers in D. rerio from a MeTCS sink resulting from sediment spiked with TCS.
Collapse
Affiliation(s)
- Emanuel Sager
- Universidad Nacional de Luján (UNLu), Grupo de estudios de Contaminación Antrópica en Peces, Instituto de Ecología y Desarrollo Sustentable (CONICET- UNLu), Departamento de Ciencias Básicas, Luján, Ruta 5 y Avenida Constitución, 6700, Buenos Aires, Argentina
| | - Andrea Rossi
- UNL, Instituto Nacional de Limnología, CONICET, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.,UNL, Facultad de Humanidades y Ciencias, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Tomás Mac Loughlin
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, Calle 115 s/n, 1900 La Plata, Buenos Aires, Argentina
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, Calle 115 s/n, 1900 La Plata, Buenos Aires, Argentina
| | - Fernando DE LA Torre
- Universidad Nacional de Luján (UNLu), Grupo de estudios de Contaminación Antrópica en Peces, Instituto de Ecología y Desarrollo Sustentable (CONICET- UNLu), Departamento de Ciencias Básicas, Luján, Ruta 5 y Avenida Constitución, 6700, Buenos Aires, Argentina
| |
Collapse
|
28
|
Baesu A, Ballash G, Mollenkopf D, Wittum T, Sulliván SMP, Bayen S. Suspect screening of pharmaceuticals in fish livers based on QuEChERS extraction coupled with high resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146902. [PMID: 33872907 DOI: 10.1016/j.scitotenv.2021.146902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in aquatic environments is of increasing concern due to the presence of residues in fish and aquatic organisms, and emerging antibiotic resistance. Wastewater release is an important contributor to the presence of these compounds in aquatic ecosystems, where they may accumulate in food webs. The traditional environmental surveillance approach relies on the targeted analysis of specific compounds, but more suspect screening methods have been developed recently to allow for the identification of a variety of contaminants. In this study, a method based on QuEChERS extraction - using acetonitrile/water mixture as solvent and PSA/C18 for sample clean-up - was applied to identify pharmaceuticals and their metabolites in fish livers. Both target and suspect screening workflows were used and fish were sampled upstream and downstream of wastewater treatment plants from the Scioto River, Ohio (USA). The method performed well in terms of extraction of some target PPCPs, with recoveries generally above 90%, good repeatability (<20%), and linearity. Based on target analysis, lincomycin and sulfamethoxazole were two antibiotics identified in fish livers at average concentrations of 30.3 and 25.6 ng g-1 fresh weight, respectively. Using suspect screening, another antibiotic, azithromycin and an antidepressant metabolite, erythrohydrobupropion were identified (average concentrations: 27.8 and 13.8 ng g-1, respectively). The latter, reported, to the best of our knowledge, for the first time in fish livers, was also found at higher concentrations in fish livers sampled downstream vs. upstream. The higher frequency of detection for azithromycin in benthic feeding fish species (63%) as well as clusters identified between different foraging groups suggest that foraging behavior may be an important mechanism in the bioaccumulation of PPCPs. This study shows how suspect screening is effective in identifying new contaminants in fish livers, notably using differential analysis among different spatially distributed samples.
Collapse
Affiliation(s)
- Anca Baesu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gregory Ballash
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - Dixie Mollenkopf
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - Thomas Wittum
- Departments of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, United States of America
| | - S Mažeika Patricio Sulliván
- Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
29
|
Bour A, Hamann Sandgaard M, Syberg K, Palmqvist A, Carney Almroth B. Comprehending the complexity of microplastic organismal exposures and effects, to improve testing frameworks. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125652. [PMID: 33773244 DOI: 10.1016/j.jhazmat.2021.125652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) have been identified as a threat to global ecosystems. Current projections indicate that the negative impacts of MPs will increase in the environment. Traditional toxicity testing does not account for the diversity of MP particles, the inherent diversity in potential exposure routes, and complex impacts in exposed organisms. Here we present and discuss factors influencing organismal exposure to MPs driven by fate and behavior of MPs in different environmental matrices and organisms behavioral niches. We then provide a structured classification of potential effects of MPs, chemical or particulate, generic or specific to MPs. Using these analyses, we discuss appropriateness and limitations of applying traditional, chemical-based ecotoxicity testing for the study of MPs, and propose practical recommendations and guidelines. Future laboratory based studies can be improved to increase understanding of potential real world effects of MPs by careful selection of appropriate exposure systems and conditions, test organism, MP characteristics, endpoints and required controls. We build upon recommendations provided in previous publications and complement them with a list of parameters and practical information that should be checked and/or reported in MP studies.
Collapse
Affiliation(s)
- Agathe Bour
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Annemette Palmqvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Ramires PF, Tavella RA, Escarrone AL, Volcão LM, Honscha LC, de Lima Brum R, da Silva AB, da Silva Júnior FMR. Ecotoxicity of triclosan in soil: an approach using different species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41233-41241. [PMID: 33782822 DOI: 10.1007/s11356-021-13633-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Triclosan is an antimicrobial agent widely used in personal care products and an emerging contaminant with potential to have harmful effects to edaphic organisms. This study aimed to evaluate the impacts of exposure to triclosan on the microbiota, plants, and edaphic animals using isolated bioassays and a microcosm scale representation (multispecies system). Among the isolated bioassays, the phytotoxicity test with Lactuca sativa, avoidance test with Eisenia andrei, and acute toxicity with E. andrei and Armadillidium vulgare were used. The multispecies system used seeds of L. sativa and Sinapis alba, together with earthworms and terrestrial isopods. This system also evaluated microbial activity through alkaline phosphatase and the metabolic profile using Ecoplate™, BIOLOG microplates. Exposure to triclosan impacted seedling growth in the isolated bioassay and germination and root growth in the microcosm scale assay; it also caused mortality in terrestrial isopods, earthworm avoidance and alteration of alkaline phosphatase, and the consumption profile of carbohydrates and carboxylic acids in the microbiota. The ecotoxicological effects evaluated in the multispecies system were perceived even in low concentrations of triclosan, indicating that the interaction of this xenobiotic with the environment and organisms in a more realistic scenario can compromise ecosystem services.
Collapse
Affiliation(s)
- Paula Florêncio Ramires
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Ronan Adler Tavella
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Escarrone
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Lisiane Martins Volcão
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Laiz Coutelle Honscha
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Rodrigo de Lima Brum
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Alícia Bonifácio da Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Flávio Manoel Rodrigues da Silva Júnior
- Programa de Pós-graduação em Ciências da Saúde, Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8 Bairro Carreiros, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
31
|
Perujo N, Van den Brink PJ, Segner H, Mantyka-Pringle C, Sabater S, Birk S, Bruder A, Romero F, Acuña V. A guideline to frame stressor effects in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146112. [PMID: 33689887 DOI: 10.1016/j.scitotenv.2021.146112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Environmental policies fall short in protecting freshwater ecosystems, which are heavily threatened by human pressures and their associated stressors. One reason is that stressor effects depend on the context in which they occur and it is difficult to extrapolate patterns to predict the effect of stressors without these being contextualized in a general frame. This study aims at improving existing decision-making frameworks such as the DPSIR approach (Driver-Pressure-State-Impact-Response) or ERA (Environmental Risk Assessment) in the context of stressors. Here, we delve into stressor-impact relationships in freshwater ecosystems and develop a guideline which includes key characteristics such as stressor type, stressor duration, location, the natural levels of environmental variables to which each ecosystem is used to, among others. This guideline is intended to be useful in a wide range of ecosystem conditions and stressors. Incorporating these guidelines may favor the comparability of scientific results and may lead to a substantial advancement in the efficacy of diagnosis and predictive approaches of impacts.
Collapse
Affiliation(s)
- N Perujo
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| | - P J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA, the Netherlands
| | - H Segner
- Centre for Fish and Wildlife Health, University of Bern, P.O. Box, 3001, Bern, Switzerland
| | - C Mantyka-Pringle
- Wildlife Conservation Society Canada, Whitehorse, YT, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institut d'Ecologia Aquàtica (IEA), University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - S Birk
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstrasse 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - A Bruder
- Laboratory of Applied Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Bellinzona, Switzerland
| | - F Romero
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zurich, Switzerland
| | - V Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| |
Collapse
|
32
|
Moore EM, Alexander ME, Sloman KA, Pereira MG, Thacker SA, Orton F. Laboratory-Based Comparison for the Effects of Environmental Stressors Supports Field Evidence for the Relative Importance of Pollution on Life History and Behavior of the Pond Snail, Lymnaea stagnalis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8806-8816. [PMID: 34167293 DOI: 10.1021/acs.est.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biodiversity is declining at an alarming rate globally, with freshwater ecosystems particularly threatened. Field-based correlational studies have "ranked" stressors according to their relative effects on freshwater biota, however, supporting cause-effect data from laboratory exposures are lacking. Here, we designed exposures to elicit chronic effects over equivalent exposure ranges for three ubiquitous stressors (temperature: 22-28 °C; pollution [14 component mixture]: 0.05-50 μg/L; invasive predator cue [signal crayfish, Pacifasticus leniusculus]: 25-100% cue) and investigated effects on physiological end points in the pond snail (Lymnaeastagnalis). All stressors reduced posthatch survival at their highest exposure levels, however, highly divergent effects were observed at lower test levels. Temperature stimulated hatching, growth, and reproduction, whereas pollution delayed hatching, decreased growth, reduced egg number/embryo viability, and induced avoidance behavior. The invasive predator cue stimulated growth and reduced embryo viability. In agreement with field-based ranking of stressors, pollution was identified as having the most severe effects in our test system. We demonstrate here the utility of laboratory studies to effectively determine hierarchy of stressors according to their likelihood of causing harm in the field, which has importance for conservation. Finally, we report negative impacts on life-history traits central to population stability (survival/reproduction) at the lowest pollution level tested (0.05 μg/L).
Collapse
Affiliation(s)
- Emily M Moore
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - Mhairi E Alexander
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - M Glória Pereira
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Sarah A Thacker
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Frances Orton
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| |
Collapse
|
33
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
34
|
Assessment of Advanced Oxidation Processes Using Zebrafish in a Non-Forced Exposure System: A Proof of Concept. Processes (Basel) 2021. [DOI: 10.3390/pr9050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water bodies and aquatic ecosystems are threatened by discharges of industrial waters. Ecotoxicological effects of components occurring in untreated and treated wastewaters are often not considered. The use of a linear, multi-compartmented, non-forced, static system constructed with PET bottles is proposed for the quality assessment of treated waters, to deal with such limitations. Two synthetic waters, one simulating wastewater from the textile industry and the other one simulating wastewater from the cassava starch industry, were prepared and treated by homogeneous Fenton process and heterogeneous photocatalysis, respectively. Untreated and treated synthetic waters and their dilutions were placed into compartments of the non-forced exposure system, in which zebrafish (Danio rerio), the indicator organism, could select the environment of its preference. Basic physical–chemical and chemical parameters of untreated and treated synthetic waters were measured. The preference and avoidance responses allowed verification of whether or not the quality of the water was improved due to the treatment. The results of these assays can be a complement to conventional parameters of water quality.
Collapse
|
35
|
Venâncio C, Ribeiro R, Soares AMVM, Lopes I. Survival recovery rates by six clonal lineages of Daphnia longispina after intermittent exposures to copper. CHEMOSPHERE 2021; 264:128403. [PMID: 33007568 DOI: 10.1016/j.chemosphere.2020.128403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Natural populations are commonly exposed to sequential pulses of contaminants. Accordingly, this study aimed at testing the existence of an association between the tolerance to lethal levels of copper (Cu) and the survival recovery ability from pulsed partially lethal copper exposures in six clonal lineages of Daphnia longispina. It was hypothesized that the most tolerant genotypes would be the ones exhibiting a faster survival recovery from a pulsed contaminant exposure. For each clonal lineage, the intensity of pulses corresponded to the respective concentration of Cu causing 30% of mortality after 24h of exposure (LC30,24h). The initial hypothesis was not corroborated: obtained results showed no association between survival recovery and lethal tolerance to Cu. Nevertheless, some patterns could be detected. Firstly, the most sensitive lineages to lethal levels of copper revealed a faster survival recovery from a first Cu pulse comparatively to the most tolerant ones, though they were the most sensitive to a second pulse exposure. Secondly, the most tolerant lineages, though being more tolerant to a second exposure, exhibited the lowest survival recovery capacity after exposure to a first pulse of Cu. However, differences in the survival recovery capacity of the six clonal lineages after the exposure to the two pulses of Cu were not observed. Increasing the duration of the recovery period from 24h to 72h did not significantly alter mortality rates, except for the most sensitive and most tolerant clonal lineages. The results here obtained suggests that standard lethality assays may sub-estimate the toxicity of chemicals under realistic exposure scenarios, since sequential pulses are not infrequent in natural conditions.
Collapse
Affiliation(s)
- C Venâncio
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - R Ribeiro
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - A M V M Soares
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - I Lopes
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
Moreira RA, Araújo CVM, Junio da Silva Pinto T, Menezes da Silva LC, Goulart BV, Viana NP, Montagner CC, Fernandes MN, Gaeta Espindola EL. Fipronil and 2,4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? CHEMOSPHERE 2021; 263:127972. [PMID: 32822938 DOI: 10.1016/j.chemosphere.2020.127972] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Brazil is the largest producer of sugarcane, a crop largely dependent on chemical control for its maintenance. The insecticide fipronil and herbicide 2,4-D stand out among the most commonly used pesticides and, therefore, environmental consequences are a matter of concern. The present study aimed to investigate the toxicity mechanisms of Regent® 800 WG (a.i. fipronil) and DMA® 806 BR (a.i. 2,4-D) pesticides using forced and non-forced exposures through an integrative approach: firstly, to assess whether contamination by fipronil and 2,4-D can trigger the avoidance behavior of the fish Danio rerio (zebrafish) and Hyphessobrycon eques (serpae tetra or mato-grosso). Additionally, the effects on fish were analyzed considering the swimming behavior together with a biomarker of neurotoxicity, the activity of acetylcholinesterase (AChE). In avoidance tests with pesticide gradients, D. rerio avoided the highest concentrations of the two compounds and H. eques avoided only the highest concentration of 2,4-D. The swimming behavior (distance moved) was reduced and AChE was inhibited when D. rerio was exposed to fipronil. The 2,4-D affected the swimming (maximum speed) of H. eques, but AChE was not altered. Avoidance response seemed not to have been affected by possible effects of contaminants on swimming behavior and Ache activity. This study showed the importance of knowing the avoidance capacity, swimming behavior and neurotoxic effects of pesticides on fish in an integrated and realistic context of exposure in environments contaminated with pesticides and can be useful as ecologically relevant tools for ecological risk assessment.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Natália Prudêncio Viana
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Evaldo Luiz Gaeta Espindola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
37
|
Pardal A, Martinez AS, Christofoletti RA, Karythis S, Jenkins SR. Impacts of copper contamination on a rocky intertidal predator-prey interaction. MARINE POLLUTION BULLETIN 2021; 162:111902. [PMID: 33341076 DOI: 10.1016/j.marpolbul.2020.111902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Metal contamination can change ecological interactions with potential effects on community dynamics. However, understanding real effects of metals on biota relies on studies undertaken in natural conditions. Through a field experiment, we investigated the effects of copper contamination on the responses of a barnacle prey and its predator, the dogwhelk, and explicitly their interaction. Contamination increased barnacle mortality and reduced predation with no effects on interaction strength. This was because the higher mortality of the prey compensated for the lower consumption of the predator. Despite not affecting the interaction strength, these results suggest a decrease in energy flow in the trophic chain that may lead to important changes in community structure and ecosystem functioning. This study shows the importance of manipulative experiments designed to provide mechanistic insights into ecological interactions to better clarify the effect of stressors on the structure and dynamic of communities.
Collapse
Affiliation(s)
- André Pardal
- Center for Natural and Human Sciences, Federal University of ABC (CCNH/UFABC), Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom.
| | - Aline S Martinez
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - Simon Karythis
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| |
Collapse
|
38
|
Jacob RS, Araújo CVM, Santos LVDS, Moreira VR, Lebron YAR, Lange LC. The environmental risks of pharmaceuticals beyond traditional toxic effects: Chemical differences that can repel or entrap aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115902. [PMID: 33160736 DOI: 10.1016/j.envpol.2020.115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present study was to assess the risks of four different pharmaceutical active compounds (PhACs; diazepam, metformin, omeprazole and simvastatin). Acute and chronic toxicities were studied using the bacterium Aliivibrio fischeri and the microalgae Pseudokirchneriella subcapitata; while the repellency and attractiveness were assessed by avoidance tests with juvenile Cypirinus carpio using a multi-compartmented exposure system. Omeprazole was found to be an acutely toxic drug (EC50: 0.015 mg/L), while the other PhACs, except simvastatin, showed some chronic toxicity. Regarding avoidance, simvastatin and omeprazole induced an escape response for 50% of the fish population at 0.032 and 0.144 mg/L, respectively; contrarily, diazepam was attractive, even at lethal concentrations, representing a dangerous trap for organisms. The toxicity of the PhACs seemed not to be directly related to their repellency; and the mode of action seems to determine the repellency or attractiveness of the chemicals. Contamination by PhACs is of concern due to the environmental disturbance they might cause, either due to their acute and chronic toxicity (at the individual level), repellency (at the ecosystem level: loss of local biodiversity) or attraction to potentially lethal levels.
Collapse
Affiliation(s)
- Raquel Sampaio Jacob
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil; Civil Engineering Department, Pontifical Catholic University of Minas Gerais, ZIP 30.535-901, Belo Horizonte, MG, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Lucilaine Valéria de Souza Santos
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil; Chemical Engineering Department - Pontifical Catholic University of Minas Gerais, ZIP 30.535-901, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Liséte Celina Lange
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| |
Collapse
|
39
|
Mena F, González-Ortegón E, Solano K, Araújo CVM. The effect of the insecticide diazinon on the osmoregulation and the avoidance response of the white leg shrimp (Penaeus vannamei) is salinity dependent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111364. [PMID: 32980654 DOI: 10.1016/j.ecoenv.2020.111364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Diazinon is one of the insecticides that represent a high risk for Costa Rican estuarine environments due to its widespread use in pineapple plantations. In estuaries, organisms are frequently submitted to stress caused by natural factors (e.g., continuous changes in salinity levels) and, additionally, to stress due to contamination. Therefore, the driving question of this study was: will organisms be more susceptible to suffer the deleterious effects caused by diazinon because of the stress resulting from the salinity changes? The estuarine shrimp Penaeus vannamei was used as the model organism and two responses were measured: osmoregulation (the physiological effect after a forced and continuous 24 h-exposure) and avoidance [the behavioural effect after a short (3 h) non-forced, multi-compartmented exposure]. Juveniles were exposed to diazinon (0.1, 1, 10 and 100 μg/L) at three different salinities (10, 20 and 30). Disruption in the capacity to regulate the haemolymph osmotic pressure was observed at a salinity of 30 in individuals exposed to diazinon and methanol (used as vehicle). At that salinity, the ability of shrimps to detect and avoid the highest diazinon concentrations was impaired. P. vannamei juveniles inhabit environments with a high variation in salinity, but with an optimum osmotic point close to a salinity of 20; therefore, the higher the salinity, the greater the vulnerability of shrimps to the effects of diazinon. From an ecological point of view, this combined effect of salinity and contamination might also limit the spatial distribution of the organisms.
Collapse
Affiliation(s)
- Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000, Heredia, Costa Rica.
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510, Puerto Real, Cádiz, Spain
| | - Karla Solano
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000, Heredia, Costa Rica
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalucía (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
40
|
Araújo CVM, Laissaoui A, Silva DCVR, Ramos-Rodríguez E, González-Ortegón E, Espíndola ELG, Baldó F, Mena F, Parra G, Blasco J, López-Doval J, Sendra M, Banni M, Islam MA, Moreno-Garrido I. Not Only Toxic but Repellent: What Can Organisms' Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment? TOXICS 2020; 8:E118. [PMID: 33322739 PMCID: PMC7768353 DOI: 10.3390/toxics8040118] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023]
Abstract
The ability of aquatic organisms to sense the surrounding environment chemically and interpret such signals correctly is crucial for their ecological niche and survival. Although it is an oversimplification of the ecological interactions, we could consider that a significant part of the decisions taken by organisms are, to some extent, chemically driven. Accordingly, chemical contamination might interfere in the way organisms behave and interact with the environment. Just as any environmental factor, contamination can make a habitat less attractive or even unsuitable to accommodate life, conditioning to some degree the decision of organisms to stay in, or move from, an ecosystem. If we consider that contamination is not always spatially homogeneous and that many organisms can avoid it, the ability of contaminants to repel organisms should also be of concern. Thus, in this critical review, we have discussed the dual role of contamination: toxicity (disruption of the physiological and behavioral homeostasis) vs. repellency (contamination-driven changes in spatial distribution/habitat selection). The discussion is centered on methodologies (forced exposure against non-forced multi-compartmented exposure systems) and conceptual improvements (individual stress due to the toxic effects caused by a continuous exposure against contamination-driven spatial distribution). Finally, we propose an approach in which Stress and Landscape Ecology could be integrated with each other to improve our understanding of the threat contaminants represent to aquatic ecosystems.
Collapse
Affiliation(s)
- Cristiano V. M. Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Abdelmourhit Laissaoui
- National Centre for Nuclear Energy, Science and Technology, BP 1381, Rabat RP 10001, Morocco;
| | - Daniel C. V. R. Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, PA 68507-590, Brazil;
| | - Eloisa Ramos-Rodríguez
- Department of Ecology and Institute of Water Research, University of Granada, 18010 Granada, Spain;
| | - Enrique González-Ortegón
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Evaldo L. G. Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13.560-970, Brazil;
| | - Francisco Baldó
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Cádiz, 11006 Cádiz, Spain;
| | - Freylan Mena
- Regional Institute for Studies on Toxic Substances (IRET), Universidad Nacional, 86-3000 Heredia, Costa Rica;
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaén, 23071 Jaén, Spain;
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| | - Julio López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, 17003 Girona, Spain;
- Faculty of Sciences, University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, 1349-017 Chott-Mariem, Tunisia;
| | - Mohammed Ariful Islam
- Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Ignacio Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, 11519 Cadiz, Spain; (E.G.-O.); (J.B.); (I.M.-G.)
| |
Collapse
|
41
|
Silva DCVR, Queiroz LG, Marassi RJ, Araújo CVM, Bazzan T, Cardoso-Silva S, Silva GC, Müller M, Silva FT, Montagner CC, Paiva TCB, Pompêo MLM. Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115325. [PMID: 32814178 DOI: 10.1016/j.envpol.2020.115325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Wastewater discharges from dairy industries can cause a range of harmful effects in aquatic ecosystems, including a decline in biodiversity due to species evasion. Therefore, it is important to know the purification potential of rivers for the removal of pollutants released in dairy wastewater (DWW). The hypothesis adopted in this work was that the release of DWW into stretches of the Ribeirão dos Pombos River (São Paulo State, Brazil) might trigger an avoidance response, resulting in fish migrating to other regions, with the response being greater when the self-cleaning potential of the river is smaller. Therefore, the goals of the present study were to: (i) investigate how land use and seasonality of the rainfall regime influence the quality of the water in different areas of the river (P1: river source; P2: urban region; P3: rural region); (ii) assess the potential of the river to purify DWW; and (iii) evaluate the potential toxicity and repellency of DWW to the freshwater fish Danio rerio, using acute toxicity (mortality) and non-forced avoidance tests, respectively. P1 was shown to be the most preserved area. The chemical composition of the river varied seasonally, with higher concentrations of Cl- and SO42- at P3 during the rainy period. The river purification potential for DWW was higher at P2, due to greater microbiological activity (associated with higher BOD). The DWW was more acutely toxic in water from P2. The avoidance response was strongly determined by the concentration of DWW, especially for water from P2. The high capacity for self-cleaning at P2 did not seem sufficient to maintain the stability of the ecosystem. Finally, the non-forced exposure system proved to be a suitable approach that can assist in predicting how contaminants may affect the spatial distributions of organisms.
Collapse
Affiliation(s)
- Daniel C V R Silva
- Federal University of Southern and Southeastern Pará, Institute of Xingu Studies, São Félix Do Xingu, Pará, Brazil.
| | - Lucas G Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rodrigo J Marassi
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Thiago Bazzan
- National Institute for Space Research, São José Dos Campos, São Paulo, Brazil
| | - Sheila Cardoso-Silva
- Program in Ecology and Natural Resource Management, UFAC, Rio Branco, AC, Brazil; Institute of Oceanography, University of São Paulo, São Paulo, Brazil
| | - Gilmar C Silva
- Postgraduate Program in Environmental Technology, Federal Fluminense University, Volta Redonda, Rio de Janeiro, Brazil
| | - M Müller
- Technological Institute of Aeronautics, São José Dos Campos, São Paulo, Brazil
| | - Flávio T Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Cassiana C Montagner
- Department of Analytical Chemistry, Institute of Chemistry, Campinas State University, Campinas, São Paulo, Brazil
| | - Teresa C B Paiva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | | |
Collapse
|
42
|
Araújo CVM, Rodríguez-Romero A, Fernández M, Sparaventi E, Medina MM, Tovar-Sánchez A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. CHEMOSPHERE 2020; 257:127190. [PMID: 32480091 DOI: 10.1016/j.chemosphere.2020.127190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 05/20/2023]
Abstract
Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain; Faculty of Marine and Environmental Sciences, University of Cádiz, Av. República Saharaui, Puerto Real, 11510 Cádiz, Spain
| | - Marco Fernández
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Marina Márquez Medina
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
43
|
King RA, Stockley B, Stevens JR. Small coastal streams-Critical reservoirs of genetic diversity for trout ( Salmo trutta L.) in the face of increasing anthropogenic stressors. Ecol Evol 2020; 10:5651-5669. [PMID: 32607181 PMCID: PMC7319166 DOI: 10.1002/ece3.6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
We used microsatellite markers to investigate levels and structuring of genetic diversity in trout (Salmo trutta L.) sampled from 16 rivers along the south coast of Cornwall in southwest England. This region is characterized by many small coastal streams with a few larger catchments. At a regional level, genetic structuring of contemporary populations has been influenced by a combination of events, including the last Ice Age and also more recent human activities over the last millennium. All populations are shown to have gone through strong genetic bottlenecks, coinciding with increased exploitation of mineral resources within catchments, beginning during the Medieval period. At more local levels, contemporary human-induced habitat fragmentation, such as weir and culvert construction, has disproportionally affected trout populations in the smaller catchments within the study area. However, where small catchments are relatively unaffected by such activities, they can host trout populations with diversity levels comparable to those found in larger rivers in the region. We also predict significant future loses of diversity and heterozygosity in the trout populations inhabiting small, isolated catchments. Our study highlights how multiple factors, especially the activity of humans, have and continue to affect the levels and structuring of genetic diversity in trout over long timescales.
Collapse
Affiliation(s)
- R. Andrew King
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | | - Jamie R. Stevens
- Department of BiosciencesCollege of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| |
Collapse
|
44
|
Venâncio C, Ribeiro R, Lopes I. Active emigration from climate change-caused seawater intrusion into freshwater habitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113805. [PMID: 31883492 DOI: 10.1016/j.envpol.2019.113805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Ecological risk assessment associated with seawater intrusions has been supported on the determination of lethal/sublethal effects following standard protocols that force exposure neglecting the ability of mobile organisms to spatially avoid salinized environments. Thus, this work aimed at assessing active emigration from climate change-caused seawater intrusion into freshwater habitats. To specific objectives were delineated: first, to compute median 12-h avoidance conductivities (AC50,12h) for freshwater species, and second, to compare it with literature data (LC50,48 or 96h, EC50,6 or 21d) to assess the relevance of the inclusion of stressor-driven emigration into risk assessment frameworks. Four standard test species, representing a broad range of ecological niches - Daphnia magna, Heterocypris incongruens, Danio rerio and Xenopus laevis - were selected. The salt NaCl was used as a surrogate of natural seawater to create the saline gradient, which was established in a 7-compartment system. At each specific LC50, 48 or 96h, the proportion of avoiders were well above 50%, ranging from 71 to 94%. At each LC50, considering also avoiders, populations would decline by 85-97%. Furthermore, for D. magna and X. laevis it was noticed that at the lowest conductivities eliciting mortality, the avoidance already exceeded 50%. The results showed that the emigration from salinity-disturbed habitats exists and that can even be more sensitive than standard endpoints. Looking solely to standard endpoints involving forced exposure may greatly underestimate the risk of local population extinction, because habitat function can be severely disrupted, with subsequent stressor-driven emigration, before any adverse physiological effects at the organism level. Thus, the present study highlights the need to include non-forced exposure testing into ecological risk assessment, namely of salinity-menaced costal freshwaters.
Collapse
Affiliation(s)
- C Venâncio
- CFE-Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - R Ribeiro
- CFE-Centre for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
45
|
Blasco J, Araújo CVM, Ribeiro R, Moreira-Santos M. Do Contaminants Influence the Spatial Distribution of Aquatic Species? How New Perspectives on Ecotoxicological Assays Might Answer This Question. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:7-8. [PMID: 31880838 DOI: 10.1002/etc.4594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Puerto Real, Cádiz, Spain
| | - Rui Ribeiro
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Matilde Moreira-Santos
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Araújo CVM, Pontes JRS, Blasco J. Might the interspecies interaction between fish and shrimps change the pattern of their avoidance response to contamination? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109757. [PMID: 31606638 DOI: 10.1016/j.ecoenv.2019.109757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Contamination seems to exert a crucial role in the spatial distribution of some organisms, such as shrimps and fish. Both, especially the freshwater fish Danio rerio and the shrimp Atyaephyra desmarestii, have been tested experimentally for their avoidance response and have showed the ability to escape from toxic effects. As the behavior of avoiding or not the contamination might be altered in the presence of other factors, the aim of the current study was to verify whether the avoidance response of both species, when exposed jointly (multispecies tests), to a copper gradient is different from the avoidance response observed in monospecies tests. The avoidance was assessed in a multi-compartmented exposure system, in which a copper gradient was simulated. Organisms were tested individually and together. Both species avoided potentially toxic copper concentrations; however, shrimps were slightly more sensitive in the monospecies tests: AC50 (avoidance concentration for 50% of the population) of 60 (53-68) μg/L for the zebrafish and 50 (45-56) μg/L for the shrimp. In the multispecies tests, the sensitivity pattern changed: the avoidance response by the fish [AC50: 30 (14-46) μg/L] was greater than by the shrimps [AC50: 70 (22-141) μg/L]. Although the AC50 values are in the same order of magnitude, a slight trend to change the avoidance pattern was observed in the shrimps during multispecies test: the avoidance was lower and time-delayed. This behavioral change could be linked to the stress caused by the zebrafish sharing the space with the shrimps, perhaps increasing the territorialism of the fish, or a delay in the shrimps detecting the risk of contamination.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain.
| | - João Rodolfo S Pontes
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
47
|
Araújo CVM, Pontes JRS, Blasco J. Does the previous exposure to copper alter the pattern of avoidance by zebrafish in a copper gradient scenario? Hypothesis of time-delayed avoidance due to pre-acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133703. [PMID: 31394324 DOI: 10.1016/j.scitotenv.2019.133703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The traditional ecotoxicity assays (forced exposure) tend to use organisms that are cultured under controlled conditions or that come from undisturbed ecosystems, with no (or negligible) previous contact with contamination. The same occurs in the non-forced approach, in which organisms are exposed to a contamination gradient and can move between different concentrations choosing the less toxic one. Considering that organisms inhabiting contaminated ecosystems tend to be gradually exposed to contamination, an abrupt exposure from uncontaminated conditions to a contaminated environment might present two problems: lack of ecological relevance to a scenario where the contamination occurs gradually and a magnification of the toxicity due to the sudden change in the environmental conditions. Therefore, a key question should be addressed: might a previous exposure to contamination reduce the organisms' perception of the danger of a contaminant (hypothesis of time-delayed avoidance due to pre-acclimation-TDADP), altering their avoidance response pattern? We tested the avoidance of zebrafish (Danio rerio: ±2 months old) populations when exposed to a copper gradient (0-400 μg/L). The populations differed according to the period (24 h and 7 and 30 days) in which they were acclimated to copper (ca. 400 μg/L). The avoidance in the 2 h experiments changed as a consequence of the acclimation period. In the population that was not previously acclimated, 40% of the fish moved to the less contaminated compartment and only 6.7% stayed in the most contaminated one; for the other populations those values were, respectively, 31 and 11% (24 h-acclimation), 28 and 26% (7 day-acclimation) and 19 and 27% (30 day-acclimation). An abrupt exposure to a contaminant might overestimate the response if this is analyzed in the short-term. When the avoidance tests were prolonged to 24 h, the avoidance tended to reach similar values to those of the non-acclimated population, thus supporting our TDADP hypothesis.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain.
| | - João Rodolfo S Pontes
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain; Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
48
|
Araújo CVM, Gómez L, Silva DCVR, Pintado-Herrera MG, Lara-Martín PA, Hampel M, Blasco J. Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: How sensitive is this approach? CHEMOSPHERE 2019; 235:126-135. [PMID: 31255752 DOI: 10.1016/j.chemosphere.2019.06.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 05/06/2023]
Abstract
As the exposure of organisms to contaminants can provoke harmful effects, some organisms try to avoid a continuous exposure by using different strategies. The aim of the current study was to assess the ability of the shrimp Palaemon varians to detect a triclosan gradient and escape to less contaminated areas. Two multi-compartmented exposure systems (the linear system and the HeMHAS-Heterogeneous Multi-Habitat Assay System) were used and then results were compared. Finally, it was aimed how sensitive the avoidance response is by comparing it with other endpoints through a sensitivity profile by biological groups and the species sensitive distribution. The distribution of the shrimps along the triclosan gradient was dependent on the concentrations, not exceeding 3% for 54 μg/L in the linear system and 7% for 81 μg/L in the HeMHAS; 25% of organisms preferred the compartment with the lowest concentrations in both systems. Half of the population seems to avoid concentrations around 40-50 μg/L. The triclosan concentration that might start (threshold) to trigger an important avoidance (around 20%) was estimated to be of 18 μg/L. The profile of sensitivity to triclosan showed that avoidance by shrimps was less sensitive than microalgae growth and avoidance by guppy; however, it might occur even at concentrations considered safe for more than 95% of the species. In summary, (i) the HeMHAS proved to be a suitable system to simulate heterogeneous contamination scenarios, (ii) triclosan triggered the avoidance response in P. varians, and (iii) the avoidance was very sensitive compared to other ecotoxicological responses.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain.
| | - Livia Gómez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain; Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Daniel C V R Silva
- Institute of Xingu Studies, Federal University of Southern and Southeastern Pará, São Félix do Xingu, Pará, Brazil
| | - Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Miriam Hampel
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
49
|
Ehiguese FO, Fernandez MDCC, Lara-Martín PA, Martín-Díaz ML, Araújo CVM. Avoidance behaviour of the shrimp Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater. CHEMOSPHERE 2019; 232:113-120. [PMID: 31152895 DOI: 10.1016/j.chemosphere.2019.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The musk fragrances galaxolide (HHCB) and tonalide (AHTN) are compounds of emerging concern that have been found in various environmental compartments. The present study addressed the ability of HHCB and AHTN to elicit the avoidance response in the estuarine shrimp Palaemon varians and to predict the population immediate decline (PID) of P. varians when exposed to HHCB and AHTN by integrating both avoidance (non-forced exposure) and lethality (forced exposure) responses. The avoidance response was tested in a non-forced multi-compartmented static system, in which the shrimps could move freely among the compartments with different concentrations. The shrimps (n = 3 shrimps per compartment/concentration; 18 shrimps per system) were exposed to a gradient (0, 0.005, 0.05, 0.5, 5 and 50 μg/L) of both substances and their positions were checked at every 20 min for a 3 h period. The results from 24-h forced exposure showed no dose-response relationship and the highest percentage mortality was 17% for HHCB at 0.005 and 0.5 μg/L. In the 3-h non-forced exposure to a gradient of HHCB and AHTN, significant concentration-dependent spatial avoidance was observed for both substances. The shrimps avoided the lowest concentration of HHCB and AHTN (0.005 μg/L) by 15% and 16%. The avoidance increased significantly (p < 0.005) to a 61% and 57%, respectively, for the highest concentration (50 μg/L). The population immediate decline was driven by the avoidance behaviour of the shrimps rather than mortality. These results indicated that the aversiveness of HHCB and AHTN might have serious consequences for habitat selection processes by organisms.
Collapse
Affiliation(s)
- Friday Ojie Ehiguese
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - María Del Carmen Corada Fernandez
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - M Laura Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cadiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
50
|
Vera-Vera VC, Guerrero F, Blasco J, Araújo CVM. Habitat selection response of the freshwater shrimp Atyaephyra desmarestii experimentally exposed to heterogeneous copper contamination scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:816-823. [PMID: 30708297 DOI: 10.1016/j.scitotenv.2019.01.304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
In contaminated aquatic ecosystems, it is expected that organisms suffer some effects caused by the contaminants. However, for mobile organisms inhabiting heterogeneously contaminated ecosystems, the continuous exposure to contaminants can be avoided by moving to less contaminated habitats. The present study evaluated the habitat selection of the freshwater shrimp Atyaephyra desmarestii experimentally exposed to different copper concentrations to verify whether the heterogeneous contamination distribution and the connectivity between habitats with different copper levels could generate a random population distribution similar to metapopulation. The experiments were performed in the HeMHAS (Heterogeneous Multi-Habitat Assay System), a non-forced multi-compartmented exposure system, in which it is possible to simulate the distribution of contaminants in a linear gradient or as patches of contamination. Copper was used to simulate a linear contamination gradient (26 to 105 μg/L Cu) and two patchy scenarios with three contamination levels [reference zone (R: 26 ± 7 μg/L Cu), mixing zone (M: 61 ± 2 μg/L Cu) and disturbed zone (D: 101 ± 12 μg/L Cu)], with two mixing zones or one central mixing zone in a heterogeneous scenario. In the copper gradient scenario, a clear trend of shrimps (59.6 ± 8.0% of the population) moving to the reference zones and an avoidance of 66.7 ± 11.1% of the most contaminated zone were observed. For the patchy scenarios, a random distribution of organisms (34, 36 and 30% for R, M and D zones, respectively) was observed in the scenario with one mixing zone; on the other hand, a slight preference for the reference zones (44.9 ± 4.8%) was evidenced in the scenario with two mixing zones. As shrimps are able to select less contaminated areas, it is highly important to preserve clean zones in heterogeneously contaminated environments, such as the arrangement in meta-ecosystems, as the less- or uncontaminated zones might represent less stressful areas to protect populations against continuous contamination exposure.
Collapse
Affiliation(s)
- Victoria C Vera-Vera
- Department of Animal Biology, Plant Biology and Ecology, University of Jaén, 23071 Jaén, Spain
| | - Francisco Guerrero
- Department of Animal Biology, Plant Biology and Ecology, University of Jaén, 23071 Jaén, Spain; Center of Advanced Studies in Earth Sciences, University of Jaén, 23071 Jaén, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, CSIC, 11510 Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, CSIC, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|