1
|
Cassera E, Ferrari E, Vignati DAL, Capucciati A. The interaction between metals and catecholamines: oxidative stress, DNA damage, and implications for human health. Brain Res Bull 2025; 226:111366. [PMID: 40306586 DOI: 10.1016/j.brainresbull.2025.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
The interaction between metals and catecholamines plays a pivotal role in the generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage. ROS are linked to several diseases, including neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. This review examines how essential metals (iron, copper, zinc, manganese) and a few non-essential metal(loid)s (mercury, chromium, arsenic, aluminum, cadmium, and nickel) contribute to oxidative stress in the presence of catecholamines. In the presence of metals, catecholamines can cause oxidative DNA modification, possibly resulting in cell apoptosis, by taking part in redox reactions and oxidizing to the corresponding aminochrome with simultaneous ROS production. Essential metals are vital for physiological functions, but imbalances in their homeostasis can be harmful. Furthermore, non-essential metals, commonly encountered through environmental or occupational exposure, can exhibit significant toxicity. Previous studies on catecholamine-induced oxidative stress focused on copper and iron, but this review emphasizes the need to investigate other neurotoxic metals and expand existing knowledge on the interactions between metals, catecholamines, and DNA damage. Results from such research could help prioritizing the development of new assessment methods associated with adverse outcome pathways, to reliably predict harmful effects on human health, aiding in the development of therapeutical strategies. The present work will help to shed light on the interplay of metals, catecholamines, and DNA damage in different diseases hopefully fostering new research in this still understudied topic. Future research should investigate the molecular mechanisms through which these metals affect neuronal health and contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Elena Cassera
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Emanuele Ferrari
- National Research Council of Italy, Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Largo Tonolli 50, Verbania 28922, Italy.
| | | | - Andrea Capucciati
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy; Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, Milano 20125, Italy
| |
Collapse
|
2
|
Ali MU, Gulzar MZ, Sattar B, Sehar S, Abbas Q, Adnan M, Sun J, Luo Z, Hu G, Yu R, Wong MH. Silent threats of lead-based paints in toys and households to children's health and development. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136984. [PMID: 39740545 DOI: 10.1016/j.jhazmat.2024.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Lead (Pb), a highly toxic heavy metal, poses a significant global health risk, particularly to children. Widely used in paint manufacturing for its remarkable corrosion-resistance properties Pb exposure has been linked to severe health issues, including reduced neurotransmitter levels, organ damage, potentially leading to death in extreme cases. Children Are particularly vulnerable, with Pb toxicity primarily affecting the brain, reproductive, kidneys, and cardiovascular systems. Approximately 0.6 million children worldwide suffer from cognitive impairments caused by Pb exposure. Despite varying Pb content regulations across countries, research has found that Pb concentration in paints often exceed permissible levels. A 0.01 mg/dL blood Pb level (BLL) is considered the threshold level as per the World Health Organization. However, recent studies reveal that significant health effects, including cognitive impairments in children, occur even at BLLs < 0.01 mg/dL. This review provides critical insights into the global production and use of Pb-based paints, release mechanisms of Pb, exposure pathways, and safety standards. It also highlights the harmful effects of Pb on human health, particularly in children, and its detailed toxicity mechanisms. Finally, this review identifies critical knowledge gaps and offers perspectives for future research.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Muhammad Zeeshan Gulzar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bisma Sattar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Sajeela Sehar
- Department of Soil and Environmental Science, MNS University of Agriculture Multan, 60000, Pakistan
| | - Qumber Abbas
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland.
| | - Muhammad Adnan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Sun
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong.
| |
Collapse
|
3
|
Agarwal U, Pannu A, Tonk RK. Foreign Contaminants Target Brain Health. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:353-374. [PMID: 39812065 DOI: 10.2174/0118715273338071241213101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 01/16/2025]
Abstract
Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes. These observations motivate us to investigate contaminants and neurotoxicity collaboratively. This study investigates the link between pollutants and neuro-disease, examining transmission pathways and categorization. It also provides information on resources, causes, and challenges to minimize contamination risks. Contamination may cause various neuro-diseases, including Alzheimer's, Parkinson's, multi-system atrophy, Huntington's, autism spectrum disorder, psychiatric disorder, dementia, meningitis, encephalitis, schizophrenia, anxiety, and depression. The negative effects depend on the nature and extent of exposure. A comprehensive literature search was conducted using databases such as PubMed and Scopus, focusing on studies published till 2024. Studies were selected based on their examination of the relationship between environmental contaminants and brain health, emphasizing transmission pathways and the resulting neurological outcomes. Findings indicate that contaminants can penetrate the blood-brain barrier (BBB) via nasal, gut, and auditory routes, triggering harmful neurophysiological processes. This review highlights the urgent need for increased global awareness, policy interventions, and preventive measures to mitigate the long-term impacts of environmental contaminants on brain health, particularly in emerging nations.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, 110017, India
| | - Arzoo Pannu
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University, Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi, 110017, India
| |
Collapse
|
4
|
Bossa N, Delpivo C, Sipe JM, Gao L, Pomar V, Miralles GS, Fonseca AS, Jensen KA, Vazquez-Campos S. Indoor paint life cycle particle release: Safer-by-design products and the importance of choosing the right formula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174155. [PMID: 38942309 DOI: 10.1016/j.scitotenv.2024.174155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO2) must provide a warning label on their products. Exposure during the production and application of products containing TiO2 can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO2 pigment. This study focuses on pigment release from three TiO2-based paints and discusses the effect of paint formulation, more precisely the Pigment Volume Concentration (PVC), to predict TiO2 pigment release from the paints during a simulated use phase and at the end of life (EoL). The use phase considered mild abrasion of painted panels that simulated cleaning or touching. The EoL phase was studied using leaching tests simulating landfill disposal. TiO2 release during both activities was evident with a high discrepancy between the three paints. While dry rubbing was similar for all paints, activities involving water present a high release link to paint matrix degradation. The paint pigment volume concentration and the paint permeability determines the TiO2 release during wet rubbing and leaching. This work represents an attempt to identify the paint permeability as a matrix-related parameter to predict TiO2 release and a way to use of this parameter to develop safer products.
Collapse
Affiliation(s)
- Nathan Bossa
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| | - Camila Delpivo
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain
| | - Joana Marie Sipe
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Lijia Gao
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Vicenç Pomar
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain
| | | | - Ana Sofia Fonseca
- National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, DK-2100, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Xie X, Wang K, Shen X, Li X, Wang S, Yuan S, Li B, Wang Z. Potential mechanisms of aortic medial degeneration promoted by co-exposure to microplastics and lead. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134854. [PMID: 38889468 DOI: 10.1016/j.jhazmat.2024.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) have attracted widespread attention because they can lead to combined toxicity by adsorbing heavy metals from the environment. Exposure to lead (Pb), a frequently adsorbed heavy metal by MPs, is common. In the current study, the coexistence of MPs and Pb was assessed in human samples. Then, mice were used as models to examine how co-exposure to MPs and Pb promotes aortic medial degeneration. The results showed that MPs and Pb co-exposure were detected in patients with aortic disease. In mice, MPs and Pb co-exposure promoted the damage of elastic fibers, loss of vascular smooth muscle cells (VSMCs), and release of inflammatory factors. In vitro cell models revealed that co-exposure to MPs and Pb induced excessive reactive oxygen species generation, impaired mitochondrial function, and triggered PANoptosome assembly in VSMCs. These events led to PANoptosis and inflammation through the cAMP/PKA-ROS signaling pathway. However, the use of the PKA activator 8-Br-cAMP or mitochondrial ROS scavenger Mito-TEMPO improved, mitochondrial function in VSMCs, reduced cell death, and inhibited inflammatory factor release. Taken together, the present study provided novel insights into the combined toxicity of MPs and Pb co-exposure on the aorta.
Collapse
Affiliation(s)
- Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Kexin Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Xiaoyan Shen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Xu Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China.
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China.
| |
Collapse
|
6
|
Farmani R, Mehrpour O, Kooshki A, Nakhaee S. Exploring the link between toxic metal exposure and ADHD: a systematic review of pb and hg. J Neurodev Disord 2024; 16:44. [PMID: 39090571 PMCID: PMC11292919 DOI: 10.1186/s11689-024-09555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Attention-Deficit/Hyperactivity Disorder (ADHD) is a recognized neurodevelopmental disorder with a complex, multifactorial origin. Lead (Pb) and mercury (Hg) are highly toxic substances that can potentially impair brain development and have been implicated in the development of ADHD. This systematic review aims to analyze the epidemiological literature regarding the association between Pb and Hg exposure and the diagnosis of ADHD. METHODS From November 1983 to June 2, 2023, a comprehensive search was conducted in multiple databases and search engines, including PubMed, Web of Science, Scopus, and Google Scholar. Observational studies (case-control, cohort, and cross-sectional) measuring Pb and Hg levels in various biological samples (blood, hair, urine, nail, saliva, teeth, and bone) of children with ADHD or their parents and their association with ADHD symptoms were included. RESULTS Out of 2059 studies, 87 met the inclusion criteria and were included in this systematic review. Approximately two-thirds of the 74 studies investigating Pb levels in different biological samples reported associations with at least one subtype of ADHD. However, most studies examining Hg levels in various biological samples found no significant association with any ADHD subtype, although there were variations in exposure periods and diagnostic criteria. CONCLUSION The evidence gathered from the included studies supports an association between Pb exposure and the diagnosis of ADHD, while no significant association was found with Hg exposure. Importantly, even low levels of Pb were found to elevate the risk of ADHD. Further research is needed to explore the comprehensive range of risk factors for ADHD in children, considering its significance as a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Reyhane Farmani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, Wayne State University School of Medicine, Detroit, MI, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Porterfield K, Hore P, Whittaker SG, Fellows KM, Mohllajee A, Azimi-Gaylon S, Watson B, Grant I, Fuller R. A Snapshot of Lead in Consumer Products Across Four US Jurisdictions. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75002. [PMID: 39012763 PMCID: PMC11251510 DOI: 10.1289/ehp14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Following the removal of lead from gasoline, paint and pipes were thought to be the main sources of lead exposure in the United States. However, consumer products, such as certain spices, ceramic and metal cookware, traditional health remedies, and cultural powders, are increasingly recognized as important sources of lead exposure across the United States. OBJECTIVE This paper reviews data from four US jurisdictions that conduct in-home investigations for children with elevated blood lead levels (BLLs) to examine the prevalence of lead exposures associated with consumer products, in comparison with housing-related sources. METHODS Authors reviewed investigation data (2010-2021) provided by California, Oregon, New York City, and King County, Washington, and compared the extent of lead exposures associated with housing-related vs. consumer products-related sources. DISCUSSION The proportion of investigations identifying consumer products-related sources of lead exposure varied by jurisdiction (range: 15%-38%). A review of US CDC and US FDA alerts and New York City data indicates that these types of lead-containing products are often sourced internationally, with many hand carried into the United States during travel. Based on surveillance data, we believe that US immigrant and refugee communities are at an increased risk for lead exposures associated with these products. To engage health authorities, there is a need for evidentiary data. We recommend implementing a national product surveillance database systematically tracking data on consumer products tested by childhood lead poisoning prevention programs. The data repository should be centralized and accessible to all global stakeholders, including researchers and governmental and nongovernmental agencies, who can use these data to inform investigations. Effectively identifying and addressing the availability of lead-containing consumer products at their source can focus resources on primary prevention, reducing lead exposures for users abroad and in the United States. https://doi.org/10.1289/EHP14336.
Collapse
Affiliation(s)
| | - Paromita Hore
- Bureau of Environmental Disease and Injury Prevention, New York City Department of Health and Mental Hygiene, New York, New York, USA
| | | | - Katie M. Fellows
- Hazardous Waste Management Program in King County, Seattle, Washington, USA
| | - Anshu Mohllajee
- Childhood Lead Poisoning Prevention Branch, California Department of Public Health, Richmond, California, USA
| | | | - Berna Watson
- Childhood Lead Poisoning Prevention Branch, California Department of Public Health, Richmond, California, USA
| | | | | |
Collapse
|
8
|
Gangoso L, Mateo R, Santamaría-Cervantes C, García-Alfonso M, Gimeno-Castellano C, Arrondo E, Serrano D, van Overveld T, de la Riva M, Cabrera MA, Donázar JA. Blood lead levels in an endangered vulture decline following changes in hunting activity. ENVIRONMENTAL RESEARCH 2024; 252:118712. [PMID: 38548255 DOI: 10.1016/j.envres.2024.118712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Lead ammunition stands out as one of the most pervasive pollutants affecting wildlife. Its impact on bird populations have spurred efforts for the phase-out of leaded gunshot in several countries, although with varying scopes and applications. Ongoing and future policy changes require data to assess the effectiveness of adopted measures, particularly in the current context of biodiversity loss. Here, we assessed the long-term changes in blood lead (Pb) levels of Egyptian vultures from the Canary Islands, Spain, which have been severely affected by Pb poisoning over the past two decades. During this period, the reduction in hunting pressure and changes in legislation regarding firearms usage for small game hunting likely contributed to a decrease in environmental Pb availability. As anticipated, our results show a reduction in Pb levels, especially after the ban on wild rabbit hunting with shotgun since 2010. This effect was stronger in the preadult fraction of the vulture population. However, we still observed elevated blood Pb levels above the background and clinical thresholds in 5.6% and 1.5% of individuals, respectively. Our results highlight the positive impact of reducing the availability of Pb from ammunition sources on individual health. Nonetheless, the continued use of Pb gunshot remains an important source of poisoning, even lethal, mainly affecting adult individuals. This poses a particular concern for long-lived birds, compounding by potential chronic effects associated with Pb bioaccumulation. Our findings align with recent studies indicating insufficient reductions in Pb levels among European birds of prey, attributed to limited policy changes and their uneven implementation. We anticipated further reductions in Pb levels among Egyptian vultures with expanded restrictions on hunting practices, including a blanket ban on Pb shot usage across all small game species.
Collapse
Affiliation(s)
- L Gangoso
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, C/ José Antonio Novais 12, 28040, Madrid, Spain.
| | - R Mateo
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - C Santamaría-Cervantes
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - M García-Alfonso
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| | - C Gimeno-Castellano
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| | - E Arrondo
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain; Department of Zoology, University of Granada, Avenida Fuente Nueva s/n, 18071, Granada, Spain
| | - D Serrano
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| | - T van Overveld
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| | - M de la Riva
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| | - M A Cabrera
- Dirección general de Espacios Naturales y Biodiversidad. Consejería de Transición Ecológica y Energía, Gobierno de Canarias, C/ Prof. Agustín Millares Carló, 18, 35071, Las Palmas de Gran Canaria, Spain
| | - J A Donázar
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
9
|
Poudel K, Ikeda A, Fukunaga H, Brune Drisse MN, Onyon LJ, Gorman J, Laborde A, Kishi R. How does formal and informal industry contribute to lead exposure? A narrative review from Vietnam, Uruguay, and Malaysia. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:371-388. [PMID: 36735953 DOI: 10.1515/reveh-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Lead industries are one of the major sources of environmental pollution and can affect human through different activities, including industrial processes, metal plating, mining, battery recycling, etc. Although different studies have documented the various sources of lead exposure, studies highlighting different types of industries as sources of environmental contamination are limited. Therefore, this narrative review aims to focus mainly on lead industries as significant sources of environmental and human contamination. CONTENT Based on the keywords searched in bibliographic databases we found 44 relevant articles that provided information on lead present in soil, water, and blood or all components among participants living near high-risk areas. We presented three case scenarios to highlight how lead industries have affected the health of citizens in Vietnam, Uruguay, and Malaysia. SUMMARY AND OUTLOOK Factories conducting mining, e-waste processing, used lead-acid battery recycling, electronic repair, and toxic waste sites were the primary industries for lead exposure. Our study has shown lead exposure due to industrial activities in Vietnam, Uruguay, Malaysia and calls for attention to the gaps in strategic and epidemiologic efforts to understand sources of environmental exposure to lead fully. Developing strategies and guidelines to regulate industrial activities, finding alternatives to reduce lead toxicity and exposure, and empowering the public through various community awareness programs can play a crucial role in controlling exposure to lead.
Collapse
Affiliation(s)
- Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Centre for Health Equity, University of Melbourne, Melbourne, Australia
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Marie-Noel Brune Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Lesley Jayne Onyon
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Julia Gorman
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Amalia Laborde
- Department of Toxicology, Faculty of Medicine, Republic University of Montevideo, Montevideo, Uruguay
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| |
Collapse
|
10
|
Wang N, Li C, Gao X, Huo Y, Li Y, Cheng F, Jiang F, Zhang Z. Co-exposure to lead and high-fat diet aggravates systemic inflammation in mice by altering gut microbiota and the LPS/TLR4 pathway. Metallomics 2024; 16:mfae022. [PMID: 38658185 DOI: 10.1093/mtomcs/mfae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
This study reports the toxicity of Pb exposure on systemic inflammation in high-fat-diet (HFD) mice and the potential mechanisms. Results indicated that Pb exacerbated intestinal barrier damage and increased serum levels of lipopolysaccharide (LPS) and diamine oxidase in HFD mice. Elevated LPS activates the colonic and ileal LPS-TLR4 inflammatory signaling pathway and further induces hepatic and adipose inflammatory expression. The 16S rRNA gene sequencing results showed that Pb promoted the abundance of potentially harmful and LPS-producing bacteria such as Coriobacteriaceae_UCG-002, Alloprevotella, and Oscillibacter in the intestines of HFD mice, and their abundance was positively correlated with LPS levels. Additionally, Pb inhibited the abundance of the beneficial bacteria Akkermansia, resulting in lower levels of the metabolite short-chain fatty acids (SCFAs). Meanwhile, Pb inhibited adenosine 5'-monophosphate-activated protein kinase signaling-mediated lipid metabolism pathways, promoting hepatic lipid accumulation. The above results suggest that Pb exacerbates systemic inflammation and lipid disorders in HFD mice by altering the gut microbiota, intestinal barrier, and the mediation of metabolites LPS and SCFAs. Our study provides potential novel mechanisms of human health related to Pb-induced metabolic damage and offers new evidence for a comprehensive assessment of Pb risk.
Collapse
Affiliation(s)
- Nana Wang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Changhao Li
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yuan Huo
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yuting Li
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Fangru Cheng
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Fei Jiang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Mercan S, Kilic MD, Zengin S, Yayla M. Experimental study for inorganic and organic profiling of toy makeup products: Estimating the potential threat to child health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33975-33992. [PMID: 38696006 PMCID: PMC11136717 DOI: 10.1007/s11356-024-33362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Inorganic elements are added to toys as impurities to give desired stability, brightness, flexibility, and color; however, these elements may cause numerous health issues after acute or chronic exposure. In this study, the inorganic profile of 14 elements (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Se, Sb, Pb, and Zn) in 63 toy makeup products was identified by inductively coupled plasma-mass spectrometry after microwave acid digestion method. Additionally, organic allergen fragrance was investigated by gas chromatography-mass spectrometry. The systemic exposure dosage (SED), margin of safety (MoS), lifetime cancer risk (LCR), hazard quotient (HQ), and hazard indices were used to assess the safety evaluation. Then, 57 out of 63 samples (90.48%) exceeded the limits at least for one toxic element with descending order Ni > Cr > Co > Pb > Sb > Cd > As > Hg. The SED values were compared with tolerable daily intake values and remarkably differences were found for Al and Pb. The MoS values for 57.15% of samples exceeded the limit value for Al, As, Cd, Co, Hg, Mn, Sb, and Zn elements. The LCR values were observed at 100% (n = 63), 79.37% (n = 50), 85.71% (n = 54), 77.78% (n = 49), and 18.87% (n = 10) for Cr, Ni, As, Pb, and Cd, respectively. Also, the skin sensitization risks were obtained for Cr and Ni at 26.980% (n = 17) and 9.52% (n = 6), respectively. The HQ values for 80% of samples were found to be ≥ 1 at least for one parameter. The investigation of fragrance allergens in samples did not show any significant ingredients. As a result, toy makeup products marketed in local stores were found to be predominantly unsafe. Children should be protected from harmful chemicals by regular monitoring and strict measures.
Collapse
Affiliation(s)
- Selda Mercan
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey.
| | - Mihriban Dilan Kilic
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Simge Zengin
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| | - Murat Yayla
- Institute of Forensic Sciences and Legal Medicine, Department of Science, Istanbul University- Cerrahpasa, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
12
|
Lee J, Hu M. Effect of Environmental and Socioeconomic Factors on Increased Early Childhood Blood Lead Levels: A Case Study in Chicago. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:383. [PMID: 38673296 PMCID: PMC11050586 DOI: 10.3390/ijerph21040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
This study analyzes the prevalence of elevated blood lead levels (BLLs) in children across Chicagoland zip codes from 2019 to 2021, linking them to socioeconomic, environmental, and racial factors. Wilcoxon tests and generalized additive model (GAM) regressions identified economic hardship, reflected in per capita income and unemployment rates, as a significant contributor to increased lead poisoning (LP) rates. Additionally, LP rates correlate with the average age of buildings, particularly post the 1978 lead paint ban, illustrating policy impacts on health outcomes. The study further explores the novel area of land surface temperature (LST) effects on LP, finding that higher nighttime LST, indicative of urban heat island effects, correlates with increased LP. This finding gains additional significance in the context of anthropogenic climate change. When these factors are combined with the ongoing expansion of urban territories, a significant risk exists of escalating LP rates on a global scale. Racial disparity analysis revealed that Black and Hispanic/Latino populations face higher LP rates, primarily due to unemployment and older housing. The study underscores the necessity for targeted public health strategies to address these disparities, emphasizing the need for interventions that cater to the unique challenges of these at-risk communities.
Collapse
Affiliation(s)
- Jangho Lee
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Michael Hu
- PGY3 Internal Medicine-Pediatrics, School of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Shvachiy L, Amaro-Leal Â, Machado F, Rocha I, Outeiro TF, Geraldes V. Gender-Specific Effects on the Cardiorespiratory System and Neurotoxicity of Intermittent and Permanent Low-Level Lead Exposures. Biomedicines 2024; 12:711. [PMID: 38672068 PMCID: PMC11048361 DOI: 10.3390/biomedicines12040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Lead exposure is a significant health concern, ranking among the top 10 most harmful substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems, especially the cardiovascular and neurological systems, leading to problems such as hypertension, heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differences are a crucial factor, with women's reproductive systems being especially vulnerable, resulting in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization of lead exposure presents new challenges in managing this issue. Therefore, understanding the gender-specific implications is essential for developing effective treatments and public health strategies to mitigate the impact of lead-related health problems. This study examined the effects of intermittent and permanent lead exposure on both male and female animals, assessing behaviours like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on baro- and chemoreceptor reflexes. The study's findings revealed that permanent lead exposure has more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the importance of not only investigating different types of lead exposure but also considering gender differences in toxicity when addressing this public health concern.
Collapse
Affiliation(s)
- Liana Shvachiy
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Ângela Amaro-Leal
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - Filipa Machado
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany; (L.S.); (T.F.O.)
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (F.M.); (I.R.)
- Institute of Physiology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| |
Collapse
|
14
|
Wang M, Xia Y, Ai S, Gu X, Wang HL. Kaempferol improves Pb-induced cognitive impairments via inhibiting autophagy. J Nutr Biochem 2024; 125:109556. [PMID: 38151193 DOI: 10.1016/j.jnutbio.2023.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Kaempferol (Kam) is a flavonoid antioxidant found in fruits and vegetables, which was discovered as neuroprotective antioxidants. Lead (Pb), an environmental pollution, could induce learning and memory deficits. Nevertheless, little is known about the mechanisms underlying Kam actions in Pb-induced learning and memory deficits. In this study, we investigated the effects of Kam on Pb-induced cognitive deficits. Pb-exposed rats were treated with 50 mg/kg Kam from postnatal day (PND) 30 to PND 60. Then, Y-maze and Morris water maze have been used to detect the spatial memory in all groups of rats. Hematoxylin and eosin (HE) staining and Nissl staining were used to analyze the neuronal structure damages. The results found Kam treatment improved the learning and memory ability and alleviated hippocampal neuronal pathological damages. Besides, Kam could significantly reverse the synaptic transmission related protein expression including PSD95 and NMDAR2B. Further research found that Kam downregulated autophagy markers, P62, ATG5, Beclin1, and LC3-II. Furthermore, 3-MA, autophagy inhibitor, increased the levels of NMDAR2B and PSD95 in Pb-induced PC12 cells, indicating Kam alleviated Pb-induced neurotoxicity through inhibiting autophagy activation. Our results showed that Kam could ameliorate Pb-induced cognitive impairments and neuronal damages by decreasing Pb-induced excess autophagy accumulation.
Collapse
Affiliation(s)
- Mengmeng Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
15
|
Wiesinger H, Bleuler C, Christen V, Favreau P, Hellweg S, Langer M, Pasquettaz R, Schönborn A, Wang Z. Legacy and Emerging Plasticizers and Stabilizers in PVC Floorings and Implications for Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1894-1907. [PMID: 38241221 PMCID: PMC10832040 DOI: 10.1021/acs.est.3c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Christophe Bleuler
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Verena Christen
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
| | - Philippe Favreau
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Miriam Langer
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
- Eawag—Swiss
Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Roxane Pasquettaz
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Andreas Schönborn
- Institute
of Natural Resource Sciences, ZHAW Zurich
University of Applied Science, 8820 Wädenswil, Switzerland
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
16
|
Korkmaz N, Kim M. Phage display selection of a Pb(II) specific peptide and its application as a biorecognition unit for colorimetric detection of Pb(II) ions. Biotechnol J 2024; 19:e2300482. [PMID: 38009643 DOI: 10.1002/biot.202300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Phage display technology employs a library of engineered filamentous M13 viruses infecting only bacteria. In this study, the genuine phage display selection technique was applied to identify a Pb(II) specific peptide. After three rounds of positive selection against Pb(II) coated agarose-based beads and the consecutive negative screenings against interfering metal ions (Al(III), Co(II), Fe(III), Ni(II), and Zn(II)), a final phage library with enhanced Pb(II) binding was obtained. Enzyme Linked Immunosorbent Assay (ELISA) analyses confirmed the selective Pb(II) binding of the enriched viruses. Twenty monoclonal phage plaques were randomly selected, single stranded DNAs (ssDNAs) were isolated and sequenced. Sequencing results revealed four different peptide sequences. Pb9 peptide (KASPYIT) showing the most specific Pb(II) binding was selected for detection studies. Pb9 was synthetically synthesized with additional three cysteine (3xCys) units at C-terminal. Twenty nanometers AuNPs were functionalized with Pb9-3xCys peptides through Au-thiol (Au-S) interaction. A colorimetric Pb(II) detection system was validated using the engineered peptide-AuNP complex at a calculated LOD of around 11 nM (3σ/k, n = 6) for the case study. The detection system was Pb(II) selective over various metal ions (Ag(II), Al(III), Au(III), Cd(II), Co(II), Cr (III), Cu(II), Fe(III), Hg(II), Mg(II), Mn(II), Ni(II), and Zn(II)). Such metal ion specific peptides can be further studied to develop simple, user friendly and cost-effective tools to design alternative detection and bioremediation systems for a circular economy.
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| | - Minyoung Kim
- Biosensor Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
| |
Collapse
|
17
|
Fadaei A. An investigation into the present levels of contamination in children's toys and jewelry in different countries: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:601-611. [PMID: 35778924 DOI: 10.1515/reveh-2022-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Contamination by heavy metals and toxic elements in children's toys and jewelry is an ongoing challenge in different countries. These contaminants can enter the children's body via oral, dermal, and respiratory routes, leading to adverse health effects. This study aimed to investigate the present levels of contamination in children's toys and jewelry in 15 countries, including UK, Saudi Arabia, Cambodia, China, Kosovo, Nigeria, North American, Kazakhstan, UAE, Pakistan, Iraq, Israel, West Bank/Palestine, Czech Republic, and Turkey. In this review, the legislation and recommendation of the United States (U.S.), the Bureau of Indian Standards (BIS), Turkish Standards Institute (TSE), Canada, and the European Union (E.U.) on toxic elements in toys and jewelry are introduced. Plastic or metallic toys and children's jewelry still have the most severe toxic elements pollution and the existence of lead (Pb), nickel (Ni), cadmium (Cd), arsenic (As), mercury (Hg), chromium (Cr), copper (Cu), selenium (Se), barium (Ba), Zinc (Zn), cobalt (Co), manganese (Mn), bisphenol A, phthalates, parabens, azo dyes, and flame retardants has been regarded as an ongoing challenge in these articles. Finally, this review offers benchmarking of the concentrations of toxic elements in all types of children's toys and jewelry in different nations.
Collapse
Affiliation(s)
- Abdolmajid Fadaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
18
|
James AA, OShaughnessy KL. Environmental chemical exposures and mental health outcomes in children: a narrative review of recent literature. FRONTIERS IN TOXICOLOGY 2023; 5:1290119. [PMID: 38098750 PMCID: PMC10720725 DOI: 10.3389/ftox.2023.1290119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background: Mental health is an important factor for children's overall wellbeing. National health statistics show that millions of children are diagnosed with mental health disorders every year, and evidence from studies on chemical pollutants like lead and bisphenols indicate that environmental exposures are linked to mental health illnesses in youth. However, the relationship between children's mental health and the environment is not well understood. This paper aims to review recent literature on prenatal and/or childhood environmental chemical exposures and mental health problems related to mood, anxiety, and behavior. This work also identifies areas of insufficient data and proposes suggestions to fill the data gaps. Methods: A narrative review was performed by searching Google Scholar and PubMed for literature published in the last 6 years (2017-2022), using search terms related to children, mental health, and environmental chemical exposure. Additional relevant studies were identified by screening the references in these papers. Results: A total of 29 studies are included in this review and results are summarized by chemical category: heavy metals, endocrine-disrupting chemicals, and pesticides. The majority of studies reported positive and significant associations between chemical exposures and child mental health outcomes including internalizing and externalizing behaviors. Conclusion: This review demonstrates that there is a growing body of literature that suggests developmental exposure to some environmental chemicals increases a child's risk of mood, anxiety, and behavior problems. Future research should expand on these findings to understand cumulative impacts, chemical mixtures, neurotoxic mechanisms, sex differences, and windows of vulnerability.
Collapse
Affiliation(s)
- Ashley A. James
- United States Environmental Protection Agency, Office of Children’s Health Protection, Regulatory Support and Science Policy Division, Washington, DC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. OShaughnessy
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
19
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
20
|
Gul A, Gul DES, Mohiuddin S. Metals as toxicants in event-based expedited production of children's jewelry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27620-y. [PMID: 37202632 DOI: 10.1007/s11356-023-27620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Globally, the hazardous substance in children's goods is of great concern. Toxic chemicals are potentially harmful to the health and growth of infants and children. Lead (Pb) and cadmium (Cd)-contaminated children's jewelry is widely encountered in many countries. This study aims to determine the concentration of metal toxicants (Pb, Cd, Ni, Cu, Zn, Co, and Fe) in event-based (Independence Day festival) children's jewelry, considering time-limited and fast production products that may compromise the quality and safety parameters during manufacturing. The determinations are for the time-constraint industrial production of children's jewelry in the context of the toxic substances in a variety of base materials used. This is the first time event-based children's jewelry has been monitored and critically assessed for metal contamination. Forty-two samples, including metallic, wooden, textile, rubber, plastic, and paint-coated plastic children's jewelry, were tested. Seventy-four percent of samples detected Pb and Cd in quantifiable amounts. Ni in 71%, Cu in 67%, Co in 43%, and Zn and Fe were detected in 100% samples with quantifiable amounts. Twenty-two ID-CJ samples exceeded the US regulatory limit for Pb and four samples for Cd. However, twenty-nine samples for Pb, eleven for Cd, five for Co, and one for Cu exceeded the EU regulatory limit. The highest concentration of Pb was found in paint-coated plastic jewelry, and the highest Cd was found in metallic jewelry. These results suggest that the potential hazards of event-based children's jewelry deserve the attention of government agencies seeking to limit children's exposure to toxic chemicals. Intergovernmental organizations and individual countries regulate chemicals in consumer products, but a coordinated international approach is lacking. Some continents and countries still lack in regulations for children's products, especially jewelry, and toys.
Collapse
Affiliation(s)
- Anam Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Dur-E-Shahwar Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaikh Mohiuddin
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
21
|
Kumari U, Sharma RK, Keshari JR, Sinha A. Environmental Exposure: Effect on Maternal Morbidity and Mortality and Neonatal Health. Cureus 2023; 15:e38548. [PMID: 37273345 PMCID: PMC10239284 DOI: 10.7759/cureus.38548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Environmental factors are important causes that impair global pregnancy outcomes and are, importantly, responsible for maternal morbidity and mortality. However, apart from the direct reasons for maternal deaths, mainly obstetric and neonatal complications, such factors are ignored or given less importance. The recent surge in research on the impact of various environmental factors on pregnancy outcomes suggests the need for immediate attention to such factors and device-specific policies to counter the situation. Moreover, the recent coronavirus disease of 2019 (COVID-19) pandemic, global warming, and climate change showed a lack of preparedness to counter the impact of such events on maternal survival and safe and successful pregnancy outcomes. In the present review, we have emphasized the specific factors responsible for increased maternal and neonatal deaths and their association with specific environmental factors. Increased attention on maternal healthcare, preparedness to counter sudden environmental challenges and improvement of the conventional requirement for better maternal healthcare access and nutrition at a global level may improve the scenario.
Collapse
Affiliation(s)
- Usha Kumari
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | | | - J R Keshari
- Biochemistery, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Archana Sinha
- Obstetrics and Gynaecology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
22
|
Schmidt F, Amrein M, Hedwig S, Kober-Czerny M, Paracchino A, Holappa V, Suhonen R, Schäffer A, Constable EC, Snaith HJ, Lenz M. Organic solvent free PbI 2 recycling from perovskite solar cells using hot water. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130829. [PMID: 36682249 DOI: 10.1016/j.jhazmat.2023.130829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies' commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 - 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites' end-of-life.
Collapse
Affiliation(s)
- Felix Schmidt
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Meret Amrein
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Sebastian Hedwig
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Manuel Kober-Czerny
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | | | - Ville Holappa
- Printed materials systems, VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, Oulu 90570, Finland
| | - Riikka Suhonen
- Printed materials systems, VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, Oulu 90570, Finland
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Edwin C Constable
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Environmental Technology, Wageningen University, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
23
|
Hu L, Zhao Y, Liu S, Zhang J, Yuan H, Xu H. High-fat diet in mice led to increased severity of spermatogenesis impairment by lead exposure: perspective from gut microbiota and the efficacy of probiotics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2653-2663. [PMID: 36326575 DOI: 10.1002/jsfa.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mechanism of multifactorial spermatogenesis impairment is unclear. This study aimed to investigate the reproductive toxicity of lead (Pb) in mice fed a high-fat diet (HFD) and to delineate the important role of gut microbiota. RESULTS Results showed that, compared with mice fed a normal diet (ND), Pb exposure caused more severe spermatogenesis impairment in HFD-fed mice, including decreased sperm count and motility, seminiferous tubule injury, serum and intratesticular testosterone decline, and downregulated expression level of spermatogenesis-related genes. Besides, 16S sequencing indicated that HFD-fed mice had increased severity of gut microbiota dysbiosis by Pb exposure compared to ND-fed mice. With fecal microbiota transplantation, the same trend of spermatogenesis impairment occurred in recipient mice, which confirmed the important role of gut microbiota. Moreover, probiotics supplementation restored the gut microbial ecosystem, and thus improved spermatogenic function. CONCLUSION Our work suggested that a population with HFD might face more reproductive health risks upon Pb exposure, and revealed an intimate linkage between microbiota dysbiosis and spermatogenesis impairment, accompanied by the potential usefulness of probiotics as prophylactic and therapeutic. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
25
|
Hu L, Zhao Y, Liu S, Zhang J, You T, Gan B, Xu H. Lead exposure exacerbates adverse effects of HFD on metabolic function via disruption of gut microbiome, leading to compromised barrier function and inflammation. Eur J Nutr 2023; 62:783-795. [PMID: 36264385 DOI: 10.1007/s00394-022-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The toxicity of lead (Pb) has been intensively studied, while the adverse effects in the population on a high-fat diet (HFD) remain unclear. This study compared the different biologic effects of Pb in CHOW and HFD-fed mice and investigated the important role that gut microbiota may play. METHODS C57BL/6 mice were fed a CHOW diet and HFD with or without 1 g/L Pb exposure through drinking water for 8 weeks. Using oral glucose tolerance test, histopathological observation, real-time fluorescence quantitative PCR, enzyme-linked immunosorbent assay, and 16S high-throughput sequencing to compare the Pb toxicity, fecal microbiota transplantation was conducted to investigate the key role of gut microbiota. RESULTS The metabolic disorders induced by HFD were aggravated by chronic Pb intake, and HFD exacerbated the Pb accumulation in the colon by 96%, 32% in blood, 27% in the liver, and 142% in tibiae. Concomitantly, Pb induced more serious colonic injury, further disturbing the composition of gut microbiota in the HFD-fed mice. Moreover, altered fecal microbiota by HFD and Pb directly mediated metabolic disorders and colonic damage in recipient mice, which emphasized the importance of gut microbiota. CONCLUSION These findings indicated that the population with HFD has lower resistance and would face more security risks under Pb pollution, and pointed out the importance of assessing the health impacts of food contaminants in people with different dietary patterns.
Collapse
Affiliation(s)
- Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Bei Gan
- Institute for Testing of Industrial Products of Jiangxi General Institute of Testing and Certification, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
26
|
Yan YZ, Hu YH, Guo H, Lin KQ. Burden of cardiovascular disease attributable to dietary lead exposure in adolescents and adults in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156315. [PMID: 35636555 DOI: 10.1016/j.scitotenv.2022.156315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Lead is a naturally occurring metal with a range of industrial applications; however, it can cause adverse health effects upon human exposure. Even if blood lead levels (BLLs) in the human body are in the acceptable range, it is independently associated with cardiovascular disease (CVD), which is the leading cause of death in China. However, the role of lead exposure in CVD outcomes has not been quantified well. A top-down approach was adopted in this study to calculate the population attribution fraction (PAF) by combining pooled BLLs in the Chinese population reported between 2001 and 2022 with the relative risk (RR) of lead-induced CVD. Subsequently, the disease burden (DB) of lead-induced CVD was estimated and expressed in disability-adjusted life years (DALYs), and the attribution analysis about various sources of lead exposure was performed. Among Chinese adolescents and adults, BLLs of 5.50 ± 2.45 μg/dL resulted in an estimated total DB (×106 DALYs) of 2.21 (2.07-2.32) for CVD, including 1.18 (1.12-1.25), 0.71 (0.69-0.74), 0.23 (0.15-0.26), and 0.02 (0.02-0.02) for stroke, and ischemic, hypertensive, and rheumatic heart diseases, respectively. Dietary lead intake was a major contributor to the DB (68.1%), and lead ingested through food was responsible for 15.1 × 105 DALYs of the CVD burden. Guangxi, Hunan, and Yunnan regions in China reported higher BLLs in adolescents and adults, and the DB of lead-induced CVD was higher in Hunan, Henan, and Sichuan. Lead is a risk factor for CVD that can cause significant DB. Further practical and cost-effective efforts to reduce lead exposure are urgently needed.
Collapse
Affiliation(s)
- Yi-Zhong Yan
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China.
| | - Yun-Hua Hu
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| | - Hong Guo
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| | - Kang-Qian Lin
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi 832002, China
| |
Collapse
|
27
|
Yazdanfar N, Vakili Saatloo N, Sadighara P. Contamination of potentially toxic metals in children's toys marketed in Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68441-68446. [PMID: 35538346 DOI: 10.1007/s11356-022-20720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Chemical exposure of heavy metals in children is of particular concern. However, using heavy metal-contaminated toys can threaten the life and well-being of children. Therefore, quality control of toys for avoiding children exposure to potentially toxic metals is important. The investigation of potentially toxic metals (arsenic, barium, antimony, cadmium, chromium, mercury, lead, selenium) in toys was performed in present study. A total number of 150 popular cheap priced plastic toy samples were purchased from the eight metropolitan and most visited provinces in Iran and analyzed by atomic absorption spectrophotometer for arsenic, barium, antimony cadmium, chromium, mercury, lead, and selenium. As results showed As, Ba, Cd, Cr, Hg, Pb, Sb, and Se respectively were in the range of 0-0.9 mg/kg, 0.3-5 mg/kg, 0-3.1 mg/kg, 0.04-4.8 mg/kg, 0-0.03 mg/kg, 0.22-11.7 mg/kg, 0-1.2 mg/kg, and 0.03-1.1 mg/kg. Cadmium was higher than the European standard in Kurdistan province. The highest amount of mercury was also observed in Tehran. The highest amount of lead, selenium, and antimony was detected in Qom province. The results showed that all the toxic elements in the collected toys were within the permissible limit. Furthermore, market monitoring is needed to control toys safety on a large scale in metropolitan cities like Qom province.
Collapse
Affiliation(s)
- Najmeh Yazdanfar
- Iranian Institute of R&D in Chemical Industries (IRDCI) (ACECR), Tehran, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang Y, Kong S, Yan Q, Zhu K, Jiang X, Liu L, Xu L, Wang Y, Pang Y, Teng X, Zhu J, Li W. An overlooked source of nanosized lead particles in the atmosphere: Residential honeycomb briquette combustion. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129289. [PMID: 35739795 DOI: 10.1016/j.jhazmat.2022.129289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric lead (Pb) pollution has attracted long-term and widespread concerns due to its high toxicity. The definite source identification of atmospheric Pb is the key step to mitigate this pollution. Here, we first report an overlooked source of atmospheric nanosized Pb particles using transmission electron microscopy and bulk sample analyses, finding that residential honeycomb briquette combustion emits large numbers of nanosized Pb-rich particles. We found that 33.7 ± 19.9 % of primary particles by number from residential honeycomb briquette combustion contains the crystalline Pb particles. These Pb-rich particles range in size from 14 to 956 nm with a mean diameter of 117 nm. Compared with raw coal chunks, honeycomb briquette combustion could emit less carbonaceous particles, but largely increase nanosized Pb particle emissions. This result is attributed to two key factors: (1) higher Pb content in honeycomb briquette (63.6 μg g-1) than that in coal chunk (8.5 μg g-1), and (2) higher Pb release rate for honeycomb briquette (62.3 %) caused by honeycomb structure than that for coal chunk (20.1 %). This study highlights that atmospheric and health implications of high emissions of toxic nanosized Pb from honeycomb briquette should be paid more attention in future research on ambient and indoor airs.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kongyang Zhu
- School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaotong Jiang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Liang Xu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuanyuan Wang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yuner Pang
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaomi Teng
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jihao Zhu
- Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
From Molecular to Functional Effects of Different Environmental Lead Exposure Paradigms. BIOLOGY 2022; 11:biology11081164. [PMID: 36009791 PMCID: PMC9405384 DOI: 10.3390/biology11081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Our comparative study brings new insights regarding the effects of environmental lead exposure on the cardiorespiratory and nervous systems. We show how various kinds of exposure can lead to different toxicities, with various degrees of nefarious effects. The developmental period is of utmost importance to the toxicity of environmental lead; however, we found that the duration of exposure is the prime reason for stronger effects, even though the dual effect of intermittent exposure causes greater molecular neuronal alterations. Abstract Lead is a heavy metal whose widespread use has resulted in environmental contamination and significant health problems, particularly if the exposure occurs during developmental stages. It is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflammation, hypertension, and autonomic dysfunction. However, different environmental lead exposure paradigms can occur, and the different effects of these have not been described in a broad comparative study. In the present study, rats of both sexes were exposed to water containing lead acetate (0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20 to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until 28 weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded. Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohistochemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hypersensitivity, without significant changes in HR and RF. Long-term memory impairment associated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the presence of neuroinflammation, was also observed. However, these alterations seemed to reverse after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure is more relevant than the timing of exposure, since the PerPb group presented more pronounced effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the first study with the characterization and comparison of physiological, autonomic, behavioral, and molecular changes caused by different low-level environmental lead exposures, from the fetal period to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These kinds of studies are of immense importance, showing the importance of the surrounding environment in health from childhood until adulthood, leading to the creation of new policies for toxicant usage control.
Collapse
|
30
|
Sumersingh Rajput D, Galib R, Kalaiselvan V, Ziaur Rahman S, Manoj Nesari T. Ancient wisdom of ayurveda vis-à-vis contemporary aspect of materiovigilance. J Ayurveda Integr Med 2022; 13:100593. [PMID: 35849968 PMCID: PMC9294253 DOI: 10.1016/j.jaim.2022.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Materiovigilance is regulatory system to study and follow incidents that might result from using medical devices. To trail the occurrence of untoward effects associated with medical devices as well as to document and prevent their recurrence; the Indian Pharmacopeia Commission initiated Materiovigilance program in India (MvPI) in 2015. Classical texts of Ayurveda include substantial description of devices intended for various therapeutic purposes such as Panchakarm (penta-bio purification procedures), Surgeries and for management of gynecological conditions etc. The implemented program of Materiovigilance does not include Ayurveda devices and thus there is need for documentation, systematic classification of Ayurveda devices and development of Ayurveda Materiovigilance (AMv). In this review, relevant information from classical texts of Ayurveda, latest published information related to Materiovigilance and information of medical devices from classical texts of Ayurveda has been scrutinized along with systematic correlation and applied interpretation of the collected data. It is observed that Materiovigilance has been well documented in Ayurveda in context of twenty six surgical and diagnostic devices; eleven mostly utilized pharmaceutical instruments five Panchakarma instruments and five home devices. For regulation of quality of Ayurveda medical devices, their manufacturing, standard utilization, reporting and prevention of medical device associated errors; it is the need of hour to create and implement regulation in the form of AMv. The Ayurveda literature highlights that the ancient seers of Ayurveda were well aware regarding Materiovigilance in their own way. However in view of modern era and mainstreaming of Ayurveda heritage, critical revision, updating, systematically categorization of Ayurveda devices, development and implementation of AMv regulation is the need of hour.
Collapse
Affiliation(s)
- Dhirajsingh Sumersingh Rajput
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Jawahar Lal Nehru Bhartiya Chikitsa Avum Homeopathy Anusandhan Bhavan, Janakpuri, New Delhi, India.
| | - R Galib
- All India Institute of Ayurveda, New Delhi, India
| | - V Kalaiselvan
- Indian Pharmacopoeia Commission, Government of India (Ministry of Health & Family Welfare), Sector 23, Raj Nagar, Ghaziabad, 201002, UP, India
| | - Syed Ziaur Rahman
- Department of Pharmacology, Jawaharlal Nehru Medical College Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | | |
Collapse
|
31
|
Gul DES, Gul A, Tanoli AK, Ahmed T, Mirza MA. Contamination by hazardous elements in low-priced children's plastic toys bought on the local markets of Karachi, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51964-51975. [PMID: 35257339 DOI: 10.1007/s11356-022-19362-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Children's plastic toys may contain toxic metals to which infants and young children can be orally exposed and may pose acute or chronic adverse health effects. This research aims to evaluate the total metal concentrations (TMCs) of Pb, Cd, Cr, Ni, Zn, Cu, and Mn in children's plastic toys bought in the local markets of Karachi, Pakistan, and compare TMCs to different toy safety regulatory limits. A total of 44 children's plastic toys sourced in the Karachi local markets were analyzed by an atomic absorption spectrophotometer for contamination of hazardous elements. Toy samples were divided into two groups: plastic toys (DCT) and plastic toys with paints or coatings (DPCT). For plastic toys, 83% (19) of samples had TMCs that exceeded European Union (EU) toy safety regulation limits for Pb, and 65% (15) of samples that exceeded for Cd. For plastic toys with paints or coating, 43% (9) of samples had TMCs that exceeded EU migration limits for Pb and 24% (5) for Cd. More than 20 samples exceeded the United States Consumer Product Safety Commission (US CPSC), Canadian, and Bureau of Indian Standards (BIS) toy safety regulation limits. In toy samples (n = 44), very high TMCs of Pb (64%), Cd (45%), Cr (5%), and Ni (2%) were observed. Zn, Cu, and Mn TMCs existed but were below the regulation limits. The contamination levels of Pb, Cd, Cr, and Ni and smaller extent of Zn, Cu, and Mn still pose health issues in children and may cause serious problems in their health.
Collapse
Affiliation(s)
- Dur-E-Shahwar Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, Pakistan
| | - Anam Gul
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, Pakistan
| | - Asad Khan Tanoli
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, Pakistan.
| | - Tehseen Ahmed
- Department of Chemistry, Faculty of Science, University of Karachi, Karachi, Pakistan
| | | |
Collapse
|
32
|
In Situ Measurements of Domestic Water Quality and Health Risks by Elevated Concentration of Heavy Metals and Metalloids Using Monte Carlo and MLGI Methods. TOXICS 2022; 10:toxics10070342. [PMID: 35878248 PMCID: PMC9320182 DOI: 10.3390/toxics10070342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 01/27/2023]
Abstract
The domestic water (DW) quality of an island province in the Philippines that experienced two major mining disasters in the 1990s was assessed and evaluated in 2021 utilizing the heavy metals pollution index (MPI), Nemerow’s pollution index (NPI), and the total carcinogenic risk (TCR) index. The island province sources its DW supply from groundwater (GW), surface water (SW), tap water (TP), and water refilling stations (WRS). This DW supply is used for drinking and cooking by the population. In situ analyses were carried out using an Olympus Vanta X-ray fluorescence spectrometer (XRF) and Accusensing Metals Analysis System (MAS) G1 and the target heavy metals and metalloids (HMM) were arsenic (As), barium (Ba), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn). The carcinogenic risk was evaluated using the Monte Carlo (MC) method while a machine learning geostatistical interpolation (MLGI) technique was employed to create spatial maps of the metal concentrations and health risk indices. The MPI values calculated at all sampling locations for all water samples indicated a high pollution. Additionally, the NPI values computed at all sampling locations for all DW samples were categorized as “highly polluted”. The results showed that the health quotient indices (HQI) for As and Pb were significantly greater than 1 in all water sources, indicating a probable significant health risk (HR) to the population of the island province. Additionally, As exhibited the highest carcinogenic risk (CR), which was observed in TW samples. This accounted for 89.7% of the total CR observed in TW. Furthermore, all sampling locations exceeded the recommended maximum threshold level of 1.0 × 10−4 by the USEPA. Spatial distribution maps of the contaminant concentrations and health risks provide valuable information to households and guide local government units as well as regional and national agencies in developing strategic interventions to improve DW quality in the island province.
Collapse
|
33
|
Chavez-Garcia JA, Noriega-León A, Alcocer-Zuñiga JA, Robles J, Cruz-Jiménez G, Juárez-Pérez CA, Martinez-Alfaro M. Association between lead source exposure and blood lead levels in some lead manufacturing countries: A systematic review and meta-analysis. J Trace Elem Med Biol 2022; 71:126948. [PMID: 35219028 DOI: 10.1016/j.jtemb.2022.126948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Lead is one of the 10 most toxic chemicals of greatest concern for its effects on public health. Predominantly, in undeveloped countries, high blood lead levels (BLLs) persist in the population. To develop intervention strategies that may reduce lead exposure in populations, it is a priority to know the sources of lead pollution. The objective of this critical review and meta-analysis is to assess whether there is an association between different sources of lead exposure and the mean difference in blood lead levels in people exposed. To identify the major lead source exposure, a statistical analysis was performed on selection studies. This investigation reveals the limited information available on the sources of lead in Mexico and other lead producer countries, such as Croatia, Ecuador, Brazil, South Korea, India, Nigeria, Turkey, and China. Meta-analysis could be performed only in battery, smelting mining, and glazed ceramic workers. Battery manufacturing workers have the highest mean difference level of lead in their blood worldwide. Mexico has the second highest mean difference BLL in battery workers in the world. An interesting difference between the mean difference in BLL in mining workers from uncontrolled industry (-39.38) and controlled industry (-5.68) was found. This difference highlighted the success of applying strict control of lead sources and community education to reduce BLL and its potential harmful effects on human health and the environment. Children living near mining sites have the highest mean difference BLL (-11.1). This analysis may aid in assessing the source of lead exposure associated with a range of BLLs in people. Furthermore, this review highlights several social and cultural patterns associated with lead exposure and lead levels in control populations. These results could help to develop international lead regulations and appropriate public health guidelines to protect people around the world.
Collapse
Affiliation(s)
| | | | | | | | | | - Cuauhtémoc Arturo Juárez-Pérez
- Research Unit Health at Work, XXI Century National Medical Center (CMNSXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | |
Collapse
|
34
|
Topal M, Arslan Topal EI, Öbek E. Preliminary assessment of health risks associated with consumption of grapevines contaminated with mining effluents in Turkey: Persistent trace elements and critical raw materials. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:517-527. [PMID: 34255427 DOI: 10.1002/ieam.4491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, some persistent trace elements and critical raw materials were investigated in grapevines contaminated with Pb-Zn mining effluents. The persistent trace elements under certain conditions remain without any change in form in the environment over long periods. The critical raw materials are the ones that have economic importance and have the risks associated with their supply. The health risks of persistent trace elements and critical raw materials in the leaves of grapevine that are consumed by humans were determined. The highest persistent trace elements concentrations followed the order of root > stem > leaf for Mn, Cu, Cd, Ni, and Cr while root > leaf > stem for Zn and leaf > root > stem for Pb. The maximum critical raw material concentrations for Co and V followed the order of root > stem > leaf. For Sb and La, these were leaf > root > stem and root > stem > leaf, respectively. The maximum critical raw materials concentrations for W was leaf > stem = root. The total maximum carcinogenic value was 0.146 for Cd while the total minimum carcinogenic value was 0.0054 for Pb. In this study, potential carcinogenic risk values in terms of ingestion of contaminated soil (Cr, Cd, and Ni) and dietary take of grapevine leaves (Ni, Cr, Cd, and Pb) are higher than acceptable levels (1 × 10-4 - 1 × 10-6 ). Maximum cancer risk on human health was determined as dietary intake of grapevine leaves. When hazard quotient for dietary (HQdie ), hazard quotient for ingestion (HQing ), and hazard quotient for inhalation (HQinh ) values of critical raw materials were examined, the maximum values were observed for children. Also, the highest hazard quotient for dermal (HQder ) value was determined for men. The hazard index and total hazard index values were >1 for critical raw materials. As a result, values >1 indicated potential non-carcinogenic human health risk associated with the consumption of grapevines contaminated with mining effluents. Actual region-specific exposure estimates for consumption of grapevines, however, were not evaluated. Integr Environ Assess Manag 2022;18:517-527. © 2021 SETAC.
Collapse
Affiliation(s)
- Murat Topal
- Department of Chemistry and Chemical Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
- Munzur University Rare Earth Elements Application and Research Center, Tunceli, Turkey
| | - E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, University of Firat, Elazig, Turkey
| |
Collapse
|
35
|
Toxic elements in children’s crayons and colored pencils: Bioaccessibility assessment. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc20091078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Crayons and colored pencils for children may contain toxic elements (TEs) exhibiting potential risk for children?s health including cognitive development, after their ingestion, through mouthing and chewing and eventually, their accumulation. The aim of this study was to determine total content of As, Pb, Cr, Cd, Ni and Sb and estimate their bioaccessibility conducting artificial saliva extraction. Sixty samples of colored pencils and crayons from 10 manufacturers were analyzed. Microwave acid assisted digestion followed by inductively coupled plasma optical spectroscopy (ICP-OES) was performed for determination of total content of TEs. Simulation of extraction by artificial saliva was applied to get more reliable data when bioavailability is concerned. The total concentrations of TEs were higher in colored pencils than in crayons and their maximum levels were: 5.78, 9.36, 9.97, 0.615, and 6.63 mg kg-1 for As, Pb, Cr, Cd and Ni, respectively. Concentration of Sb was below the detection limit for all investigated samples. This study showed that concentration of As and Pb in several samples did not comply with European Union regulative. Bioaccessibility study showed the high degree of leaching of Cr and As from pencils, but regardless of extracted portions, concentrations of selected investigated TEs were below allowed levels.
Collapse
|
36
|
Abd Wahil MS, Ja’afar MH, Md Isa Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control Study Among Preschool Children in Malaysia. Biol Trace Elem Res 2022; 200:97-121. [PMID: 33661472 PMCID: PMC7930527 DOI: 10.1007/s12011-021-02654-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb, Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb, respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.
Collapse
Affiliation(s)
- Mohd Shahrol Abd Wahil
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Paria K, Pyne S, Chakraborty SK. Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. CHEMOSPHERE 2022; 286:131874. [PMID: 34426280 DOI: 10.1016/j.chemosphere.2021.131874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Wastewater imposes a great threat to any ecosystem across the world, especially the aquatic one because of the different anthropogenic activities of human beings. The present study emphasizes the optimization of ecological parameters [pH, time (h) and temperature (°C)] employing Box-Behnken design (BBD) to achieve better bio-adsorption of a selected heavy metal [lead (Pb II)] from the wastewater through an extracellular polymeric substance (EPS) of a benthic fungus, Aspergillus penicillioides (F12) (MN210327). The relevant statistical analysis (ANOVA) has enabled to record of the optimized bio-adsorption (73.14 %) of lead (Pb II) by fungal EPS at pH (8.85) and temperature (32 °C) for a duration of 5.74 h. Besides that, at the concentration of 0.5 mg/L of EPS, the flocculating rate was noted to be highest (88.4 %) in kaolin clay and the 50 % emulsifying activity. This investigation has also opened up new vistas on the possibility of the development of an alternative method of eco-sustainable bioremediation of heavy metals by fungal EPS on an industrial scale.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Medinipur, 721102, West Bengal, India.
| | - Smritikana Pyne
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India
| | | |
Collapse
|
38
|
Bispo LFP, Nolasco AM, Souza ECD, Klingenberg D, Dias Júnior AF. Valorizing urban forestry waste through the manufacture of toys. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:351-359. [PMID: 33813312 DOI: 10.1016/j.wasman.2021.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Urban forestry generates a huge amount of waste worldwide, resulting from the processes of pruning and suppression. Disposal in landfills reduces the useful life of these facilities and forgoes the possibility of generating income from the waste. This study investigated the manufacture of toys as a strategy to valorize urban forestry waste. For this, physical-mechanical, chemical (extractive), color and shape characterizations were performed for three species of urban trees commonly planted in Brazil, a region of Neotropical forests. Toy prototypes were developed and manufactured from wood waste. Regarding color, all studied species showed high value of the variable b*, which refers to the blue-yellow axis. Handroanthus heptaphyllus wood had the highest values of basic density (0.706 g.cm-3) and Janka hardness (1142, 1027 and 1669 kgf.cm-2 for radial, tangential and transverse directions, respectively), and had the lowest volumetric shrinkage (11.38%). The lowest content of total extractives was measured in Handroanthus heptaphyllus, 6.33%, and the greatest content was found in Spathodea campanulata, 7.01%. The average value suggested for the toy prototypes varied between $ 3.70 and $ 13.58. The urban pruning wastes of the species studied have physical, chemical and mechanical attributes suitable for the manufacture of toys. This use has strong potential for environmental, economic and social sustainability and the toys are pedagogically accepted by adults and children.
Collapse
Affiliation(s)
- Luiz Fernando Pereira Bispo
- Department of Forest Sciences, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Adriana Maria Nolasco
- Department of Forest Sciences, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Elias Costa de Souza
- Department of Forest Sciences, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| | - Debora Klingenberg
- Department of Forest Sciences, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Ananias Francisco Dias Júnior
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES). Av. Governador Lindemberg, 316, Jerônimo Monteiro, ES 29550-000, Brazil
| |
Collapse
|
39
|
Khan MR, Ahmad N, Ouladsmane M, Azam M. Heavy Metals in Acrylic Color Paints Intended for the School Children Use: A Potential Threat to the Children of Early Age. Molecules 2021; 26:2375. [PMID: 33921808 PMCID: PMC8073559 DOI: 10.3390/molecules26082375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
Heavy metals are the harmful elements, regarded as carcinogens. Nevertheless, owing to their physical and chemical properties, they are still used in the production of several commercial products. Utilization of such products increases the chance for the exposure of heavy metals, some of them are categorized as probable human carcinogens (Group 1) by the International Agency for Research on Cancer. Exposure of heavy metals to school children at early age can result severe life time health issues and high chance of emerging cancer. Thus, we have performed study relating to the presence of heavy metals in acrylic color paints commonly used by the school children. Acrylic paints of different colors were assayed for seven potential heavy metals manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) using microwave digestion and iCAPQ inductively coupled plasma mass spectrometry (ICP-MS) system. The optimized method including paints digestion reagents nitric acid (HNO3, 65%, 5 mL) and hydrofluoric acid (HF, 40%, 2 mL) have offered excellent method performance with recovery values ranged between 99.33% and 105.67%. The elements were identified in all of the analyzed samples with concentrations ranged from 0.05 to 372.59 µg/g. Cd constitutes the lower percentage (0.05%), whereas Zn constitutes high ratio contribution which was tremendously high (68.33%). Besides, the paints contamination was also color specific, with considerably total heavy metal concentrations found in brunt umber (526.57 µg/g) while scarlet color (12.62 µg/g) contained lower amounts. The outcomes of our investigation highlight the necessity for guidelines addressing the heavy metals in acrylic color paints intended for the school children usage.
Collapse
Affiliation(s)
- Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.O.); (M.A.)
| | | | | | | |
Collapse
|
40
|
Comparative seasonal assessment of pollution and health risks associated with heavy metals in water, sediment and Fish of Buriganga and Turag River in Dhaka City, Bangladesh. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04464-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractHeavy-metal pollution of surface water, sediment and fish have been seen as a major global problem, with a significant proportion of developing countries like Bangladesh. This study assessed the intensity of alarming six toxic substances (Cr, Zn, Fe, Cu, Pb and Ni) throughout the River water, sediments as well as soft tissues of three widely consumed fishes (Heteropneustes fossilis, Channa punctatus and Channa striata) obtained from two urban streams of the Buriganga and Turag in the Dhaka metropolitan. For evaluating the comparative seasonal variation of heavy-metal concentration, water and sediment samples were collected from five selected sites for two different seasons (viz. 10 from winter seasons and 10 from summer seasons). Finally, a total of 20 water samples, 20 sediment and 12 fish samples were investigated by flame atomic absorption spectroscopy (FAAS) and graphite furnace atomic absorption spectrometer (GFAAS) corrected with the Zeeman effect background correction system. The hierarchy of mean concentration of selected heavy metals in Buriganga water is found to be Fe > Cr > Ni > Zn > Cu > Pb in the winter season whereas during the summer season the order is Fe > Cr > Zn > Ni > Cu > Pb. For the River Turag, the order is Fe > Zn > Cu > Ni > Cr > Pb and Fe > Zn > Ni > Cu > Cr > Pb during winter and summer season, respectively. The level of metals studied surpassed the acceptable level of drinkable water, implying the ineptitude of drinking and cooking water from these Rivers. However, this hierarchy of heavy metals for sediments of Buriganga River changed to Fe > Cr > Ni > Zn > Cu > Pb for the winter season and Fe > Cr > Ni > Cu > Zn > Pb for the summer season. Whereas, for the Turag River, the decreasing trend of metal concentration found in sediment was Fe > Zn > Cr > Ni > Cu > Pb for both seasons. For probable human health hazard implications, contamination factor (CF) and pollution load index (PLI) were studied. The CF values revealed the low-to-moderate pollution of sediment. The PLI value above one shows the degradation of the consistency of the sediments. Fe, Ni, Pb, Cr, Zn and Cu concentrations in fish species were found to be 19.66–45.1, 0.07–12.18, 1.2–10.18, 20.18–187.07, 11.08–68.25, 2.07–10.4 mg/kg, respectively. The metals studied differed considerably among organisms and seasons. Bioconcentration factor (BCF), the daily average consumption of metal (EDI), as well as target threat quotients (THQs) for specific metal indicated that Cr and Pb are harmful in fish muscles and possible risks remain for fish consumers. The obtained concentrations of some metals are higher than the WHO/FAO’s permissible limit, suggesting that the water and fish found in these Rivers are like to be harmful to the human being. This study shows that attention should be given to the risk assessment for heavy metals in these Rivers.
Collapse
|
41
|
Lyu F, Niu S, Wang L, Liu R, Sun W, He D. Efficient removal of Pb(II) ions from aqueous solution by modified red mud. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124678. [PMID: 33296756 DOI: 10.1016/j.jhazmat.2020.124678] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In the work, we employed a hydrothermal method for modification of red mud using colloidal silica and sodium hydroxide under mild conditions, and applied it into adsorbing Pb(II) ions in aqueous solutions. In the modification, zeolite structure was formed. The adsorption experiments found that the adsorption capacity of the modified red mud for Pb(II) ions was significantly improved, almost 10 times as much as that of the original red mud. Both the pseudo-first-order and pseudo-second-order kinetic equation can describe the adsorption process, indicating it a more complicated interaction. Langmuir and Dubinin-Radushkevich models well fit the adsorption isotherm, indicating that the modified red mud mainly removes lead ions from aqueous solution by monolayer physical adsorption. According to the fitting results, the saturated adsorption capacity of Pb (II) by the modified red mud is 551.11 mg/g, confirming its high efficiency adsorption performance. XRD, FTIR, XPS and SEM-EDS all detected the formation of PbCO3 and Pb3(CO3)2(OH)2. It was speculated that the adsorption mechanism should be attributed to the joint contribution of ion exchange and precipitation. The excellent performance of the modified red mud on Pb(II) ions adsorption makes it a promising candidate for the treatment of wastewater contaminated by heavy metal ions.
Collapse
Affiliation(s)
- Fei Lyu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Sulin Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Runqing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Dongdong He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| |
Collapse
|
42
|
Carranza-Lopez L, Alvarez-Ortega N, Caballero-Gallardo K, Gonzalez-Montes A, Olivero-Verbel J. Biomonitoring of Lead Exposure in Children from Two Fishing Communities at Northern Colombia. Biol Trace Elem Res 2021; 199:850-860. [PMID: 32488615 DOI: 10.1007/s12011-020-02207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
Lead (Pb) exposure is a growing concern in developing countries, especially in vulnerable children. The objective of this study was to evaluate blood lead levels (BLL) in children from two fishing populations at Northern Colombia, Loma de Arena and Tierrabomba, as well as their association with morphometric parameters, markers of hematological status, liver function, and mRNA expression of genes related to Pb toxicity. A total of 198 blood samples were collected from participants aged 5-16 years old. The mean (± standard error) BLL for the studied sample was 3.6 ± 0.3 μg/dL, and the 97.5th percentile was 21.0 μg/dL. The participants of Loma de Arena and Tierrabomba presented BLL of 3.9 ± 0.5 and 2.9 ± 0.3 μg/dL, respectively. Children born preterm had greater BLL than those born at full term. Boys had greater BLL than girls, which also occurred for participants between 12 and 16 years old, compared with those aged 5-11 years old. The BLL were negatively correlated with body mass index in children from Loma de Arena, but an opposite behavior was observed for Tierrabomba. In Loma de Arena, the mRNA expression of interferon gamma, a pro-inflammatory cytokine, increased with the BLL, but that of δ-aminolevulinic acid dehydrogenase, a sensor for Pb poisoning, decreased. In Tierrabomba, gene expression did not change with BLL. These results show that in fishing communities, lead exposure promotes different health impacts depending on age, sex, and other site-specific factors. In any case, appropriate educational and intervention programs should be carried out to minimize Pb exposure in children.
Collapse
Affiliation(s)
- Liliana Carranza-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
- Medicine and Biotechnology Research Group, School of Health Sciences, Bacteriology Program, Universidad Libre Seccional Barranquilla, Barranquilla, 080016, Colombia
| | - Neda Alvarez-Ortega
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Audreis Gonzalez-Montes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
43
|
Kuang W, Chen Z, Shi K, Sun H, Li H, Huang L, Bi J. Adverse health effects of lead exposure on physical growth, erythrocyte parameters and school performances for school-aged children in eastern China. ENVIRONMENT INTERNATIONAL 2020; 145:106130. [PMID: 32971417 DOI: 10.1016/j.envint.2020.106130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 09/09/2020] [Indexed: 05/27/2023]
Abstract
We conducted a cross-sectional study with 395 completely matched student samples enrolled from a public primary school in Nanjing of eastern China, including questionnaires, blood samples, growth indexes and school performances, all of which were used for the analysis of variance (ANOVA) and general linear model (GLM). The results showed that factors, such as gender, age, parents' education, residential passive smoking and picky eaters, had significant impacts on the blood lead levels (BPbs). As for the linear and non-linear dose-response relationship between BPbs and erythrocyte parameters, we found a positive association between BPbs and red blood cell count (RBC count) and mean corpuscular hemoglobin concentration (MCHC) but a negative association between BPbs and hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH). When BPbs increased by 10 μg/L, the RBC count increased by 0.18 × 1012/L, while HGB and HCT decreased by 1.19 g/L and 0.41% for boys, respectively. As for girls, corresponding increases in RBC count was 0.05 × 1012/L, while HGB and HCT decreased by 0.82 g/L and 0.23%. Meanwhile, for both boys and girls, MCHC increased by 2.55 g/L, while MCV and MCH levels decreased by 0.41 fL and 0.12 pg each. Furthermore, a remarkable adverse effect (p < 0.05) was observed on children's school performances as a result of increased BPbs. As BPbs increased by 10 μg/L, children's scores for Chinese, Math and English decreased by 0.42 points, 0.39 points and 0.87 points, respectively. In summary, our study indicated that lead exposure can have adverse health effects on children's erythrocyte parameters, BMI, and school performances.
Collapse
Affiliation(s)
- Wenjie Kuang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Kexin Shi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Hongbo Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Rt. 9W, Palisades, NY 10964, USA.
| | - Jun Bi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
44
|
Follow-Up of Elevated Blood Lead Levels and Sources in a Cohort of Children in Benin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228689. [PMID: 33238507 PMCID: PMC7700695 DOI: 10.3390/ijerph17228689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
Lead exposure is associated with poor cognitive development in children. Very few studies in sub-Saharan Africa (SSA) have studied blood lead levels (BLLs) and non-gasoline sources of exposure in children. Data from a birth cohort in Benin (2011-2013) suggested that 58% of 1-year-old children had BLLs > 50 ug/L. We aimed to investigate the prevalence of elevated BLLs (>50 µg/L and >100 µg /L) among 425 of these children at 6 years of age in 2016-2018 and to compare BLLs between age 1 and 6 years, and study sources of lead at age 6 years. BLLs were analysed by inductively coupled plasma mass spectrometry. Multiple linear regression and quantile regressions were used to study potential sources of lead. The prevalence of BLLs > 50 µg/L in children was 59.5% (Geometric Mean (GM) 56.4 µg/L, 95% CI: 54.1-58.7) at 6 years of age compared to 54.8% (GM 56.5 µg/L, 95% CI: 53.4-59.6) at 1 year of age. The prevalence of children with BLLs > 100 µg/L decreased from 14.4% at 1 year of age to 8.2% at 6 years of age. After adjustment for all other covariates, consumption of peanuts more than once per month was significantly associated with a 22.0% (95% CI: 4.6, 42.5) increment in BLLs at age 6 years compared with no consumption. Consumption of bushmeat killed by lead bullets at age 6 years was associated with an increase in the higher percentiles of BLLs (P75) compared with the absence of this source. Other potential sources of lead associated with BLLs with marginal significance were consumption of rice, paternal occupational exposure, and the presence of activity with the potential use of lead. This prospective cohort confirms the persistently high prevalence of elevated BLLs in children residing in a rural region in the south of Benin, as well as the presence of multiple and continuous sources of lead. These results highlight the need for prevention programs to reduce and eliminate lead exposure in children.
Collapse
|
45
|
Guney M, Kismelyeva S, Akimzhanova Z, Beisova K. Potentially toxic elements in toys and children's jewelry: A critical review of recent advances in legislation and in scientific research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114627. [PMID: 32375089 DOI: 10.1016/j.envpol.2020.114627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/21/2020] [Accepted: 04/16/2020] [Indexed: 05/13/2023]
Abstract
Contamination by potentially toxic elements (PTEs) in children's toys and jewelry is an ongoing problem where PTEs can become bioavailable especially via oral pathway (ingestion as a whole or of parts, and mouthing) and may cause adverse health effects for children. In the present review, legislation updates from the last decade in the United States (U.S.), Canada, and the European Union (E.U.) on PTEs in toys and jewelry are presented. Then, a literature review mostly covering the last decade on the total concentration, bioavailability, children's exposure, and bioaccessibility of PTEs in toys and jewelry is provided. The U.S. and Canadian legislations mainly focus on lead (Pb) and cadmium (Cd) total/soluble concentration limits to prevent exposure and have received several updates within the last decade, extending particularly the covered span of children's products. It seems that the introduction, subsequent enforcement, and update of regulations in developed countries have shifted the problem towards developing countries. In terms of categories, metallic toys and children's jewelry still have the most severe PTE contamination and the presence of Pb and Cd in these articles is an ongoing issue. Some studies suggest that color can be used as an indicator for the potential presence of PTEs (linked to chemicals such as lead chromate, cadmium sulfide) but the evidence is not always clear. Another concern is vintage/second-hand toys and jewelry as those items might have been produced before the legislation was present. As total and bioaccessible concentrations of PTEs in toys and jewelry do not always correlate, approaches considering bioaccessibility (e.g. of the E.U.) are more scientifically appropriate and help with better estimation of risk from exposure. Studies on toy and jewelry contamination using in vitro bioaccessibility techniques has become more common, however, there is still no in vitro test specifically designed and validated for toys and jewelry.
Collapse
Affiliation(s)
- Mert Guney
- Environmental Science & Technology Group (ESTg), Department of Civil and Environmental Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan; The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.
| | - Symbat Kismelyeva
- Environmental Science & Technology Group (ESTg), Department of Civil and Environmental Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Zhanel Akimzhanova
- Environmental Science & Technology Group (ESTg), Department of Civil and Environmental Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Kamila Beisova
- Environmental Science & Technology Group (ESTg), Department of Civil and Environmental Engineering, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|
46
|
Nicolli A, Mina GG, De Nuzzo D, Bortoletti I, Gambalunga A, Martinelli A, Pasqualato F, Cacciavillani M, Carrieri M, Trevisan A. Unusual Domestic Source of Lead Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124374. [PMID: 32570886 PMCID: PMC7345584 DOI: 10.3390/ijerph17124374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
Non-occupational lead poisoning is not rare, mainly occurring in domestic situations in children, but also in adults. Lead poisoning was observed in a 65 years-old woman non-exposed to risk that caught our attention with a diagnostic suspicion of acute intermittent porphyria according to recurrent episodes of abdominal pain and neuropathy of upper limbs. Acute intermittent porphyria was excluded by a laboratory investigation that showed instead severe lead poisoning. After several thorough examinations of the domestic environment, the source of intoxication has been detected in some cooking pots that released high concentrations of lead. Ethylenediamine tetracetic acid disodium calcium therapy (three cycles) reduced consistently blood lead concentration and, after one year, neuropathy was almost entirely recovered.
Collapse
Affiliation(s)
- Annamaria Nicolli
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Grazia Genga Mina
- Department of Occupational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (G.G.M.); (A.T.); Tel.: +39-498211362 (A.T.)
| | - Davide De Nuzzo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Isabella Bortoletti
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Alberto Gambalunga
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Andrea Martinelli
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Fabiola Pasqualato
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | | | - Mariella Carrieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
| | - Andrea Trevisan
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (A.N.); (D.D.N.); (I.B.); (A.G.); (A.M.); (F.P.); (M.C.)
- Correspondence: (G.G.M.); (A.T.); Tel.: +39-498211362 (A.T.)
| |
Collapse
|
47
|
Megertu DG, Bayissa LD. Heavy metal contents of selected commercially available oil-based house paints intended for residential use in Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17175-17183. [PMID: 32152861 DOI: 10.1007/s11356-020-08297-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Environmental pollution by paint-based heavy metals have been continued to be a great concern. Thus, this study was aimed at investigating the levels of selected heavy metals (Ni, Cd, Cr, Zn, and Pb) in oil-based paint samples being manufactured and sold in Ethiopia. An optimized acid digestion procedure using conc. HNO3, conc. HClO4, and 30% H2O2 mixture by volume ratio of 3:4:1 mL, respectively, for 2 h at 200 °C were used for paint samples digestion, and the contents of heavy metals were assayed by flame atomic absorption spectroscopy. The 13 out of 14 (92.9%) analyzed paint samples had contained Pb > 90 mg/kg with the highest content of 51,200 mg/kg (dry weight) in the orange colored paint. Likewise, the levels of Cr, Ni, and Zn obtained were ranged from 43.75 to 50.00, 60.02 to 128.81, and 323.69 to 1102.16 mg/kg (dry weight), respectively, while Cd was not detected in all the paint samples. Generally, the mean contents of heavy metals in the investigated paint samples have followed the order: Pb > > Cr > Zn > Ni, demonstrating the occurrence of higher lead metal content. The elevated levels of heavy metals detected in the oil-based paint samples could be attributed to the continued usage of these metals in different form during paint manufacture. On the bases of the findings, a strict monitoring and evaluation of paints being produced in Ethiopia has been recommended so that the manufacturers comply with the national (policy issue) and/or international regulations on the levels of toxic metals in paints to ensure consumers safety.
Collapse
Affiliation(s)
- Dula Gashe Megertu
- College of Natural and Computational Sciences, Department of Chemistry, Ambo University, P. O. Box 19, Ambo, Ethiopia
| | - Leta Danno Bayissa
- College of Natural and Computational Sciences, Department of Chemistry, Ambo University, P. O. Box 19, Ambo, Ethiopia.
| |
Collapse
|
48
|
Palos-Barba V, Lugo-Nabor C, Velázquez-Castillo RR, Solís-Casados DA, Peza-Ledesma CL, Rivera-Muñoz EM, Nava R, Pawelec B. Development of an Adsorbing System Made of DMS-1 Mesh Modified by Amino Groups to Remove Pb(II) Ions from Water. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1914. [PMID: 32325750 PMCID: PMC7215752 DOI: 10.3390/ma13081914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption-desorption at 77 K by Specific Brunauer-Emmett-Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.
Collapse
Affiliation(s)
- Viviana Palos-Barba
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Qro., Mexico; (V.P.-B.); (R.R.V.-C.)
| | - Cecilia Lugo-Nabor
- División de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Qro., Mexico;
| | - Rodrigo R. Velázquez-Castillo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Qro., Mexico; (V.P.-B.); (R.R.V.-C.)
| | - Dora Alicia Solís-Casados
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5, Carretera Toluca-Atlacomulco, San Cayetano, Toluca 50200, Estado de México, Mexico;
| | - Carmen L. Peza-Ledesma
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Departamento de Nanotecnología, A.P. 1–1010, Querétaro 76010, Qro., Mexico; (C.L.P.-L.); (E.M.R.-M.)
| | - Eric M. Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Departamento de Nanotecnología, A.P. 1–1010, Querétaro 76010, Qro., Mexico; (C.L.P.-L.); (E.M.R.-M.)
| | - Rufino Nava
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Qro., Mexico; (V.P.-B.); (R.R.V.-C.)
| | - Barbara Pawelec
- Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
49
|
Yan Y, Yang S, Zhou Y, Song Y, Huang J, Liu Z, Wang Y, Wei S. Estimating the national burden of mild intellectual disability in children exposed to dietary lead in China. ENVIRONMENT INTERNATIONAL 2020; 137:105553. [PMID: 32086077 DOI: 10.1016/j.envint.2020.105553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The effects of lead as a dietary pollutant remain a global public health concern that needs urgent resolution. Children are highly susceptible to the adverse outcomes of lead pollution, as even low levels of lead may cause irreversible damage to intellectual development. Since several sources of lead exposure are present in the environment, it is necessary to identify the attributable burden of lead-related diseases arising from different exposure sources. In the present study, we used epidemiological data from studies around the nation to estimate the burden of mild intellectual disability (MID) attributed to lead exposure sources by using disability-adjusted life years (DALYs). To this end, a dose-response approach was used and a model comprising three components was established: exposure, dose-response, and DALYs module. In Chinese children aged 0-6 years, blood lead levels (BLLs) of 5.34 ± 3.09 μg/dL resulted in a MID incidence rate of 12.84 cases per 1000 children, with an estimated burden of disease (BoD) of 42.23 DALYs per 1000 children. Owing to dietary lead exposure, 36.64 healthy life years per 1000 children were lost, which was notably higher than the outcomes associated with exposure from other sources. This was consistent with the result that dietary exposure was the main contributor to children's lead exposure, accounting for 86.76%. According to the regional distribution based on the existing literature, the areas in China with higher BLLs were Heilongjiang, Shanxi, and Jiangxi. Our findings provided the information for lead risk management decisions and policies making.
Collapse
Affiliation(s)
- Yizhong Yan
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sulian Yang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujing Zhou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Song
- National Food Safety Risk Assessment Center, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 10022, China.
| | - Jiao Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoping Liu
- National Food Safety Risk Assessment Center, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 10022, China.
| | - Yibaina Wang
- National Food Safety Risk Assessment Center, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 10022, China.
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
50
|
Xiong B, Zhang T, Zhao Y, Wen T, Zhang Q, Bao S, Song S. Utilization of carbonate-based tailings to remove Pb(II) from wastewater through mechanical activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134270. [PMID: 31494418 DOI: 10.1016/j.scitotenv.2019.134270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
The removal of lead in water and disposal of tailings are important environmental issues that need to be addressed urgently. This work explored the feasibility of utilizing the carbonate-based tailings (CBT) for removing lead from the simulated wastewater with the aid of wet stirred ball milling (mechanical activation). Batch experiments were performed to evaluate the influences of various experimental parameters like dosage of CBT, milling balls addition and initial concentration of lead. Under the action of mechanical activated CBT, the lead removal in the solution could reach more than 99% in 2 h, and the lead removal capacity reached 832 mg/g. The results of X-Ray Diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and Scanning Electron Microscope-Energy Dispersive Spectra (SEM-EDS) revealed that the calcite (CaCO3) in CBT played a major role in removing lead and the lead in the solution was transferred to the precipitate as cerussite (PbCO3). The mechanical activation promoted the dissolution of calcite, reduced the particle size of CBT and peeled off the lead carbonate precipitation on the surface of calcite, thereby enabling the reaction to be efficiently and thoroughly completed. The lead content in the precipitate after the reaction reached 38.4 wt%, which made it possible for lead recovery.
Collapse
Affiliation(s)
- Bowen Xiong
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Tingting Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Yunliang Zhao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Tong Wen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shenxu Bao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|