1
|
Jacobs CF, Peters FS, Camerini E, Cretenet G, Rietveld J, Schomakers BV, van Weeghel M, Hahn N, Verberk SGS, Van den Bossche J, Langeveld M, Kleijwegt F, Eldering E, Zelcer N, Kater AP, Simon-Molas H. Cholesterol homeostasis and lipid raft dynamics at the basis of tumor-induced immune dysfunction in chronic lymphocytic leukemia. Cell Mol Immunol 2025; 22:485-500. [PMID: 40033083 PMCID: PMC12041523 DOI: 10.1038/s41423-025-01262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Autologous T-cell therapies show limited efficacy in chronic lymphocytic leukemia (CLL), where acquired immune dysfunction prevails. In CLL, disturbed mitochondrial metabolism has been linked to defective T-cell activation and proliferation. Recent research suggests that lipid metabolism regulates mitochondrial function and differentiation in T cells, yet its role in CLL remains unexplored. This comprehensive study compares T-cell lipid metabolism in CLL patients and healthy donors, revealing critical dependence on exogenous cholesterol for human T-cell expansion following TCR-mediated activation. Using multi-omics and functional assays, we found that T cells present in viably frozen samples of patients with CLL (CLL T cells) showed impaired adaptation to cholesterol deprivation and inadequate upregulation of key lipid metabolism transcription factors. CLL T cells exhibited altered lipid storage, with increased triacylglycerols and decreased cholesterol, and inefficient fatty acid oxidation (FAO). Functional consequences of reduced FAO in T cells were studied using samples from patients with inherent FAO disorders. Reduced FAO was associated with lower T-cell activation but did not affect proliferation. This implicates low cholesterol levels as a primary factor limiting T-cell proliferation in CLL. CLL T cells displayed fewer and less clustered lipid rafts, potentially explaining the impaired immune synapse formation observed in these patients. Our findings highlight significant disruptions in lipid metabolism as drivers of functional deficiencies in CLL T cells, underscoring the pivotal role of cholesterol in T-cell proliferation. This study suggests that modulating cholesterol metabolism could enhance T-cell function in CLL, presenting novel immunotherapeutic approaches to improve outcome in this challenging disease.
Collapse
Affiliation(s)
- Chaja F Jacobs
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Elena Camerini
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Joanne Rietveld
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nico Hahn
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mirjam Langeveld
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Noam Zelcer
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands.
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Kanamori T, Yasuda S, Duan R, Ohashi M, Amou M, Hori K, Tsuda R, Fujimoto T, Higashi K, Xu W, Niidome T, Hatakeyama H. Cholesterol depletion suppresses thermal necrosis resistance by alleviating an increase in membrane fluidity. Sci Rep 2025; 15:10133. [PMID: 40128234 PMCID: PMC11933367 DOI: 10.1038/s41598-025-92232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Thermally resistant cancer cells suppress the therapeutic effects of hyperthermia. However, the mechanism underlying the thermal resistance remains unclear. With the aim of enhancing the therapeutic effects of hyperthermia, we investigated the mechanism underlying thermal resistance. We found that heat shock-induced cell death can be classified into two types: late-phase apoptosis and early-phase necrosis. Cell death was suppressed in thermally resistant cells. In addition, heat-induced necrosis resistance correlated with plasma membrane fluidity, which was maintained by cholesterol. Depletion of cholesterol from cancer cells and tumor tissues enhanced the effect of hyperthermia under both in vivo and in vitro conditions. Hence, the findings demonstrate the usefulness of cholesterol as a marker for thermally resistant cancer cells. Furthermore, the combination of cholesterol depletion and hyperthermia may be a new therapeutic strategy for thermally resistant cancers.
Collapse
Affiliation(s)
- Taisei Kanamori
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Shogo Yasuda
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Runjing Duan
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Mei Ohashi
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Mai Amou
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Kanato Hori
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Ryota Tsuda
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Taiki Fujimoto
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Kenjirou Higashi
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-0856, Japan.
| |
Collapse
|
3
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Park JS, Chung IJ, Kim HR, Jun CD. The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption. Immune Netw 2023; 23:e29. [PMID: 37416932 PMCID: PMC10320417 DOI: 10.4110/in.2023.23.e29] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023] Open
Abstract
Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
5
|
Wang W, Cao XW, Wang FJ, Zhao J. Cytotoxic effects of recombinant proteins enhanced by momordin Ic are dependent on cholesterol and ganglioside GM1. Toxicon 2023; 229:107129. [PMID: 37086901 DOI: 10.1016/j.toxicon.2023.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Plant-derived triterpenoid saponins have been shown to play a powerful role in enhancing the cytotoxic activity of protein therapeutics. However, the mechanism of how saponins are acting is not clearly understood. In this study, momordin Ic (MIC), a triterpenoid saponin derived from Kochia scoparia (L.) Schrad., specifically enhance the antiproliferative effect of recombinant MAP30 (a type I ribosome inactivating protein, RIP) in breast cancer cells. Subsequently, the possible mechanism of how MIC enhanced the cytotoxicity of MAP30 was analyzed in detail. We observed the level of intracellular labeled MAP30 using fluorescence microscopy and flow cytometry. And a reporter protein, GAL9, was used to monitor the role of MIC in promoting endosomal escape. We found endosomal escape does not play a role for the enhancer effect of MIC while the effect of MIC on MAP30 is cholesterol dependent and that ganglioside GM1, a lipid raft marker, can competitively inhibit cytotoxicity of MAP30 enhanced by MIC. Finally, we provided some insights into the correlation between the sugar side chain of MIC and its role in enhancing of RIP cytotoxicity and altering of drug cell tropism.
Collapse
Affiliation(s)
- Wei Wang
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
6
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate cell tropism via an attachment process dependent on membrane mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528071. [PMID: 36824911 PMCID: PMC9949111 DOI: 10.1101/2023.02.17.528071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Viruses interact with receptors on the cell surface to initiate and co-ordinate infection. The distribution of receptors on host cells can be a key determinant of viral tropism and host infection. Unravelling the complex nature of virus-receptor interactions is, therefore, of fundamental importance to understanding viral pathogenesis. Noroviruses are non-enveloped, icosahedral, positive-sense RNA viruses of global importance to human health, with no approved vaccine or antiviral agent available. Here we use murine norovirus as a model for the study of molecular mechanisms of virus-receptor interactions. We show that variation at a single amino acid residue in the major viral capsid protein had a key impact on the interaction between virus and receptor. This variation did not affect virion production or virus growth kinetics, but a specific amino acid was rapidly selected through evolution experiments, and significantly improved cellular attachment when infecting immune cells in suspension. However, reducing plasma membrane mobility counteracted this phenotype, providing insight into for the role of membrane fluidity and receptor recruitment in norovirus cellular attachment. When the infectivity of a panel of recombinant viruses with single amino acid variations was compared in vivo, there were significant differences in the distribution of viruses in a murine model, demonstrating a role in cellular tropism in vivo. Overall, these results highlight the importance of lipid rafts and virus-induced receptor recruitment in viral infection, as well as how capsid evolution can greatly influence cellular tropism, within-host spread and pathogenicity.
Collapse
Affiliation(s)
- Jake T Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Susanna C Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wynter K C Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - Morgan R Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Huang Y, Li X, Sun X, Yao J, Gao F, Wang Z, Hu J, Wang Z, Ouyang B, Tu X, Zou X, Liu W, Lu M, Deng C, Yang Q, Xie Y. Anatomical Transcriptome Atlas of the Male Mouse Reproductive System During Aging. Front Cell Dev Biol 2022; 9:782824. [PMID: 35211476 PMCID: PMC8861499 DOI: 10.3389/fcell.2021.782824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The elderly males undergo degenerative fertility and testicular endocrine function that jeopardize the reproductive health and well-being. However, the mechanisms underlying reproductive aging are unclear. Here, we tried to address this by investigating the phenotypes and transcriptomes of seven regions of the male mouse reproductive tract: the testis, efferent ductules, initial segment, caput, corpus and cauda epididymidis, and vas deferens, in adult (3 months) and aged (21 months) mice. Quantitative PCR, immunohistochemistry, immunofluorescent staining, and enzyme-linked immunosorbent assay were performed for the analysis of gene expression in mice, human tissues, and semen samples. Aged male mice showed both systematic and reproductive changes, and remarkable histological changes were detected in the testis and proximal epididymis. Transcriptomes of the male reproductive tract were mapped, and a series of region-specific genes were identified and validated in mouse and/or human tissues, including Protamine 1 (Prm2), ADAM metallopeptidase domain 28 (Adam28), Ribonuclease A family member 13 (Rnase13), WAP four-disulfide core domain 13 (Wfdc13), and Wfdc9. Meanwhile, age-related transcriptome changes of different regions of the male reproductive tract were characterized. Notably, increased immune response was functionally related to the male reproductive aging, especially the T cell activation. An immune response-associated factor, phospholipase A2 group IID (Pla2g2d), was identified as a potential biomarker for reproductive aging in mice. And the PLA2G2D level in human seminal plasma surged at approximately 35 years of age. Furthermore, we highlighted Protein tyrosine phosphatase receptor type C (Ptprc), Lymphocyte protein tyrosine kinase (Lck), Microtubule associated protein tau (Mapt), and Interferon induced protein with tetratricopeptide repeats 3 (Ifit3) as critical molecules in the aging of initial segment, caput, caput, and cauda epididymidis, respectively. This study provides an RNA-seq resource for the male reproductive system during aging in mice, and is expected to improve our understanding of male reproductive aging and infertility.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxin Gao
- Guangzhou Epibiotek Co., Ltd., Guangzhou, China
| | - Zhenqing Wang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hu
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Wang
- Department of Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Institute of Andrology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Starostina I, Jang YK, Kim HS, Suh JS, Ahn SH, Choi GH, Suk M, Kim TJ. Distinct calcium regulation of TRPM7 mechanosensitive channels at plasma membrane microdomains visualized by FRET-based single cell imaging. Sci Rep 2021; 11:17893. [PMID: 34504177 PMCID: PMC8429465 DOI: 10.1038/s41598-021-97326-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Transient receptor potential subfamily M member 7 (TRPM7), a mechanosensitive Ca2+ channel, plays a crucial role in intracellular Ca2+ homeostasis. However, it is currently unclear how cell mechanical cues control TRPM7 activity and its associated Ca2+ influx at plasma membrane microdomains. Using two different types of Ca2+ biosensors (Lyn-D3cpv and Kras-D3cpv) based on fluorescence resonance energy transfer, we investigate how Ca2+ influx generated by the TRPM7-specific agonist naltriben is mediated at the detergent-resistant membrane (DRM) and non-DRM regions. This study reveals that TRPM7-induced Ca2+ influx mainly occurs at the DRM, and chemically induced mechanical perturbations in the cell mechanosensitive apparatus substantially reduce Ca2+ influx through TRPM7, preferably located at the DRM. Such perturbations include the disintegration of lipid rafts, microtubules, or actomyosin filaments; the alteration of actomyosin contractility; and the inhibition of focal adhesion and Src kinases. These results suggest that the mechanical membrane environment contributes to the TRPM7 function and activity. Thus, this study provides a fundamental understanding of how the mechanical aspects of the cell membrane regulate the function of mechanosensitive channels.
Collapse
Affiliation(s)
- Irina Starostina
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Heon-Su Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Gyu-Ho Choi
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea.,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myungeun Suk
- Department of Mechanical Engineering, Dong-Eui University, Pusan, 47340, Republic of Korea.
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Pusan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat Commun 2021; 12:3872. [PMID: 34162836 PMCID: PMC8222282 DOI: 10.1038/s41467-021-23792-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.
Collapse
Affiliation(s)
- Yunmin Jung
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Jiang YP, Zhao XX, Lv HQ, Wen CP. Drug screening and development from the affinity of S protein of new coronavirus with ACE2. Eur J Clin Microbiol Infect Dis 2021; 40:715-723. [PMID: 33034780 PMCID: PMC7545154 DOI: 10.1007/s10096-020-04048-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Recently, various studies have shown that angiotensin-converting enzyme 2 (ACE2) acts as the "doorknob" that can be bound by the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which conduces to its entrance to the host cells, and plays an important role in corona virus disease 2019 (COVID-19). This paper aims to collect and sorts out the existing drugs, which exert the ability to block the binding of S protein and ACE2 so as to provide directions for the later drug development. By reviewing the existing literature, we expound the pathogenesis of SARS-CoV-2 from the perspective of S protein and ACE2 binding, and summarize the drugs and compounds that can interfere with the interaction of spike protein and ACE2 receptor from different ways. We summarized five kinds of substances, including peptide P6, griffithsin, hr2p analogs, EK1, vaccine, monoclonal antibody, cholesterol-depleting agents, and extracts from traditional Chinese medicine. They can fight SARS-CoV-2 by specifically binding to ACE2 receptor, S protein, or blocking membrane fusion between the host and virus. ACE2 is the key point for SARS-CoV-2 to enter the cells, and it is also the focus of drug intervention. Our drug summary on this pathomechanism is expected to provide ideas for the drug research on SARS-CoV-2 and help to develop anti-coronavirus drugs of broad spectrum for future epidemics.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiao-Xuan Zhao
- Department of gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hui-Qing Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Cheng-Ping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Sreetama SC, Chandra G, Van der Meulen JH, Ahmad MM, Suzuki P, Bhuvanendran S, Nagaraju K, Hoffman EP, Jaiswal JK. Membrane Stabilization by Modified Steroid Offers a Potential Therapy for Muscular Dystrophy Due to Dysferlin Deficit. Mol Ther 2018; 26:2231-2242. [PMID: 30166241 PMCID: PMC6127637 DOI: 10.1016/j.ymthe.2018.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice—findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.
Collapse
Affiliation(s)
- Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Mohammad Mahad Ahmad
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Peter Suzuki
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
12
|
Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging. Exp Gerontol 2018; 105:140-145. [DOI: 10.1016/j.exger.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
13
|
Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma. Biochim Biophys Acta Gen Subj 2017; 1862:684-691. [PMID: 29253593 DOI: 10.1016/j.bbagen.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H+ pump affects cholesterol mobilization to the plasma membrane. METHODS Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H+ transport in membrane vesicles, and intact cell H+ fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET). RESULTS Cholesterol depletion by 5mM MβCD was found to be inhibitory to the hydrolytic and H+ pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H+ efflux in live cells at the same extent of MβCD. CONCLUSIONS We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin. GENERAL SIGNIFICANCE The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma.
Collapse
|
14
|
Danial JSH, Cronin B, Mallik C, Wallace MI. On demand modulation of lipid composition in an individual bilayer. SOFT MATTER 2017; 13:1788-1793. [PMID: 28165095 DOI: 10.1039/c6sm01774f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Changes in local lipid composition are thought to play a key role in regulating many complex cellular processes. By studying lipid organization in artificial lipid bilayers the physical principles underlying these process can be studied in detail. However, such in vitro measurements are often hindered by heterogeneities in the lipid composition of individual bilayers prepared by current bulk methods. Here, the lipid composition of an individual droplet interface bilayer is varied by lipid titration into the bilayer from the oil phase in a microfluidic device. Control of lipid composition allows the reversible switching between single- and two-phase regions and sampling of specific lipid compositions in an individual bilayer. This method enables controlled modulation of composition-sensitive processes in a single lipid membrane.
Collapse
Affiliation(s)
- John S H Danial
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bríd Cronin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Chandini Mallik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
15
|
Kilbride P, Woodward HJ, Tan KB, Thanh NTK, Chu KME, Minogue S, Waugh MG. Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment. PeerJ 2015; 3:e1351. [PMID: 26528413 PMCID: PMC4627923 DOI: 10.7717/peerj.1351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Cholesterol has important functions in the organization of membrane structure and this may be mediated via the formation of cholesterol-rich, liquid-ordered membrane microdomains often referred to as lipid rafts. Methyl-beta-cyclodextrin (cyclodextrin) is commonly used in cell biology studies to extract cholesterol and therefore disrupt lipid rafts. However, in this study we reassessed this experimental strategy and investigated the effects of cyclodextrin on the physical properties of sonicated and carbonate-treated intracellular membrane vesicles isolated from Cos-7 fibroblasts. We treated these membranes, which mainly originate from the trans-Golgi network and endosomes, with cyclodextrin and measured the effects on their equilibrium buoyant density, protein content, represented by the palmitoylated protein phosphatidylinositol 4-kinase type IIα, and cholesterol. Despite the reduction in mass stemming from cholesterol removal, the vesicles became denser, indicating a possible large volumetric decrease, and this was confirmed by measurements of hydrodynamic vesicle size. Subsequent mathematical analyses demonstrated that only half of this change in membrane size was attributable to cholesterol loss. Hence, the non-selective desorption properties of cyclodextrin are also involved in membrane size and density changes. These findings may have implications for preceding studies that interpreted cyclodextrin-induced changes to membrane biochemistry in the context of lipid raft disruption without taking into account our finding that cyclodextrin treatment also reduces membrane size.
Collapse
Affiliation(s)
- Peter Kilbride
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Holly J Woodward
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Kuan Boone Tan
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - Nguyễn T K Thanh
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - K M Emily Chu
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Shane Minogue
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Mark G Waugh
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| |
Collapse
|
16
|
Arenas-Del Ángel M, Legorreta-Herrera M, Mendoza-Hernández G, Garfias Y, Chávez R, Zenteno E, Lascurain R. Amaranthus leucocarpus lectin recognizes a moesin-like O-glycoprotein and costimulates murine CD3-activated CD4(+) T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:182-95. [PMID: 26417436 PMCID: PMC4578519 DOI: 10.1002/iid3.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022]
Abstract
The Galβ1,3GalNAcα1,O-Ser/Thr specific lectin from Amaranthus leucocarpus (ALL) binds a ∼70 kDa glycoprotein on murine T cell surface. We show that in the absence of antigen presenting cells, murine CD4+ T cells activated by an anti-CD3 antibody plus ALL enhanced cell proliferation similar to those cells activated via CD3/CD28 at 48 h of culture. Moreover, ALL induced the production of IL-4, IL-10, TNF-alpha, and TGF-beta in CD3-activated cells. Proteomic assay using two-dimensional electrophoresis and far-Western blotting, ALL recognized two prominent proteins associated to the lipid raft microdomains in CD3/CD28-activated CD4+ T cells. By mass spectrometry, the peptide fragments from ALL-recognized proteins showed sequences with 33% homology to matricin (gi|347839 NCBInr) and 41% identity to an unnamed protein related to moesin (gi|74186081 NCBInr). Confocal microscopy analysis of CD3/CD28-activated CD4+ T cells confirmed that staining by ALL colocalized with anti-moesin FERM domain antibody along the plasma membrane and in the intercellular contact sites. Our findings suggest that a moesin-like O-glycoprotein is the ALL-recognized molecule in lipid rats, which induces costimulatory signals on CD4+ T cells.
Collapse
Affiliation(s)
- Maria Arenas-Del Ángel
- Departamento de Bioquimica, Facultad de Medicina Universidad Nacional Autónoma de México
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunologia Molecular, Facultad de Estudios Superiores Zaragoza Universidad Nacional Autónoma de México
| | | | - Yonathan Garfias
- Departamento de Bioquimica, Facultad de Medicina Universidad Nacional Autónoma de México ; Unidad de Investigación Instituto de Oftalmologia "Fundación Conde de Valenciana"
| | - Raul Chávez
- Departamento de Bioquimica, Facultad de Medicina Universidad Nacional Autónoma de México
| | - Edgar Zenteno
- Departamento de Bioquimica, Facultad de Medicina Universidad Nacional Autónoma de México
| | - Ricardo Lascurain
- Departamento de Bioquimica, Facultad de Medicina Universidad Nacional Autónoma de México ; Departamento de Investigación en Bioquimica Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", México
| |
Collapse
|
17
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct. Am J Physiol Renal Physiol 2015; 308:F1229-37. [PMID: 25761882 DOI: 10.1152/ajprenal.00635.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | | | - Rajeev Rohatgi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
18
|
Doan VM, Chen C, Lin X, Nguyen VP, Nong Z, Li W, Chen Q, Ming J, Xie Q, Huang R. Yulangsan polysaccharide improves redox homeostasis and immune impairment in d-galactose-induced mimetic aging. Food Funct 2015; 6:1712-8. [DOI: 10.1039/c5fo00238a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity.
Collapse
Affiliation(s)
- Van Minh Doan
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Chunxia Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
- Department of Hyperbaric Oxygen
| | - Xing Lin
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Van Phuc Nguyen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Zhihuan Nong
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Weisi Li
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qingquan Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Jianjun Ming
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qiuqiao Xie
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Renbin Huang
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| |
Collapse
|
19
|
Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9712. [PMID: 25216565 PMCID: PMC4162887 DOI: 10.1007/s11357-014-9712-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Natural aging is accompanied by a dysregulation of the host immune response that has well-known clinical consequences but poorly defined underlying causes. It has previously been reported that advancing age is associated with an increase in membrane cholesterol level in T cells. The aim of this study was to investigate whether high-density lipoprotein (HDL) can modulate the age-related accumulation of membrane cholesterol in T cells and impact on their subsequent responsiveness. Our data reveal that cholesterol metabolism, influx, and efflux are altered in T cells with aging, which may in part explain the increase in membrane cholesterol level observed in T cells in elderly individuals. HDL was unable to promote reverse cholesterol transport in T cells from elderly subjects with the same efficiency as was observed in T cells from young subjects besides unchanged ABCA-1 and SR-BI expressions. HDL exhibited a short-acting co-stimulatory effect by enhancing T cell production of interleukin-2 (IL-2). Moreover, HDL from healthy normolipemic individuals exerted differential effects on T cell proliferation that depended on the age of the HDL donor. Finally, HDL modulated TCR/CD28 activation by inducing sustained signaling through pLck, pERK, and pAkt. These data suggest that HDL has immunomodulatory effects on T cells that are influenced by age.
Collapse
Affiliation(s)
- Anis Larbi
- />Singapore Immunology Network (SIgN), Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carl Fortin
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Gilles Dupuis
- />Clinical Research Center, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Hicham Berrougui
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Abdelouahed Khalil
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Tamas Fulop
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
20
|
Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, He JJ. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS One 2014; 9:e99545. [PMID: 24911518 PMCID: PMC4050050 DOI: 10.1371/journal.pone.0099545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/16/2014] [Indexed: 12/15/2022] Open
Abstract
HIV-1 infection enhances HCV replication and as a consequence accelerates HCV-mediated hepatocellular carcinoma (HCC). However, the precise molecular mechanism by which this takes place is currently unknown. Our data showed that infectious HIV-1 failed to replicate in human hepatocytic cell lines. No discernible virus replication was observed, even when the cell lines transfected with HIV-1 proviral DNA were co-cultured with Jurkat T cells, indicating that the problem of liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was transferred from nef-expressing T cells to hepatocytic cells through conduits, wherein up to 16% (average 10%) of the cells harbored the transferred Nef, when the hepatocytic cells were co-cultured with nef-expressing Jurkat cells for 24 h. Further, Nef altered the size and numbers of lipid droplets (LD), and consistently up-regulated HCV replication by 1.5∼2.5 fold in the target subgenomic replicon cells, which is remarkable in relation to the initially indolent viral replication. Nef also dramatically augmented reactive oxygen species (ROS) production and enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate HCC. Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating progression of liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Yan Fan
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoyu Luo
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Myoung-Gwi Ryou
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jinfeng Liu
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Linden Green
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Johnny J. He
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
21
|
Hissa B, Duarte JG, Kelles LF, Santos FP, del Puerto HL, Gazzinelli-Guimarães PH, de Paula AM, Agero U, Mesquita ON, Guatimosim C, Chiari E, Andrade LO. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells. PLoS Negl Trop Dis 2012; 6:e1583. [PMID: 22479662 PMCID: PMC3313932 DOI: 10.1371/journal.pntd.0001583] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/12/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may modulate the fusion of pre-docked lysosomes at the cell cortex.
Collapse
Affiliation(s)
- Bárbara Hissa
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline G. Duarte
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila F. Kelles
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabio P. Santos
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L. del Puerto
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana M. de Paula
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Oscar N. Mesquita
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana O. Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
22
|
Premasekharan G, Nguyen K, Contreras J, Ramon V, Leppert VJ, Forman HJ. Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production. Free Radic Biol Med 2011; 51:1184-94. [PMID: 21741475 DOI: 10.1016/j.freeradbiomed.2011.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/04/2011] [Accepted: 06/09/2011] [Indexed: 11/23/2022]
Abstract
Silica inhalation can induce respiratory disease. Iron is suspected of playing an important role in silica-mediated respiratory toxicity, but unambiguously determining its role has been hampered by incomplete characterization, use of high particle doses, and lack of understanding of proinflammatory mechanisms. In this study, we investigated a novel hypothesis for the mechanism of silica particle-induced increase in cytokine production. We studied the role of iron in lipid peroxidation-dependent transcription of cytokines in macrophages by ground natural silica particles at low sublethal doses. Particle size, size distribution, surface area, and structure were determined using electron microscopy, nitrogen adsorption, and X-ray diffraction. Iron impurity concentrations before and after acid treatment were determined by energy-dispersive X-ray and inductively coupled plasma mass spectroscopy. At a low noncytotoxic dose (1 μg/ml) of 2-μm silica, the presence of iron significantly increased superoxide (O(2)(•-)), lipid peroxidation, lipid raft disruption, and cytokine production in macrophages. The iron chelators deferoxamine mesylate and diethylenetriaminepentaacetic acid were found to abrogate O(2)(•-) production and inhibit lipid peroxidation, raft disruption, and cytokine induction. Tricyclodecan-9-yl xanthate, a competitive inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), which is an upstream participant in NF-κB activation, and manganese(III) tetrakis(N-ethylpyridinium-2-yl) porphyrin, a superoxide dismutase and catalase mimic, blocked silica-stimulated cytokine production. We propose a pathway of iron-induced lipid peroxidation disrupting lipid rafts and signaling for the production of cytokines through PC-PLC in silica-exposed macrophages.
Collapse
|
23
|
Larbi A, Pawelec G, Wong SC, Goldeck D, Tai JJY, Fulop T. Impact of age on T cell signaling: a general defect or specific alterations? Ageing Res Rev 2011; 10:370-8. [PMID: 20933612 DOI: 10.1016/j.arr.2010.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Decreased immune responsiveness associated with aging is generally termed "immunosenescence". Several theories have been proposed to explain age-related declines in immune responses. Here, we will focus on and describe potential defects in T cell signal transduction from the membrane to the nucleus, leading to changes in the type, intensity and duration of the response as a major factor contributing to immunosenescence. We will first detail T cell signaling through the T cell receptor (TCR), CD28 and IL-2 receptor (IL-2R) and then discuss the observed age-related alterations to these signaling pathways. The role of membrane rafts in T cell signaling and T cell aging will be described. These factors will be considered in the context of the notion that age-related changes to T cell signaling may be attributed to changes in the functionality of the T cells due to shifts in T cell subpopulations with age. For this reason, we conclude by highlighting the application of multiparametric signaling analysis in leukocyte subsets using flow cytometry as a means to obtain a clearer picture with respect to age-related changes to immune signaling.
Collapse
|
24
|
Kline MA, O'Connor Butler ES, Hinzey A, Sliman S, Kotha SR, Marsh CB, Uppu RM, Parinandi NL. A simple method for effective and safe removal of membrane cholesterol from lipid rafts in vascular endothelial cells: implications in oxidant-mediated lipid signaling. Methods Mol Biol 2010; 610:201-11. [PMID: 20013180 DOI: 10.1007/978-1-60327-029-8_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid raft-associated cholesterol has been identified as a pivotal player among membrane lipids in regulating cellular functions. Cholesterol of the vascular endothelial cell (EC) membranes is also being recognized as an important element in the vascular EC signaling. However, methods utilized in studying the important role of lipid raft-associated cholesterol in cell signaling involve removal of the raft cholesterol with the aid of chemical agents called cyclodextrins. Caution should be exercised in using cyclodextrins to remove the cellular lipid raft-associated cholesterol as the cyclodextrins cause adverse effects on cells such as loss of cell viability or induction of cytotoxicity. Therefore, the choice of a cyclodextrin to remove the cellular lipid raft-associated cholesterol is extremely important in order to ensure effective and safe removal of cholesterol from the cellular lipid rafts. In order to achieve this, here, we have selected the bovine pulmonary artery endothelial cells (BPAECs) and subjected them to the removal of cholesterol using two different beta-cyclodextrin compounds, methyl-beta-cyclodextrin (MbetaCD) and hydroxypropyl-beta-cyclodextrin (HPCD). Phospholipase D (PLD), which generates one of the most potent bioactive lipid signal mediators (phosphatidic acid), is activated by oxidants. Therefore, we examined the effects of cholesterol removal by utilizing our current methods on the hydrogen peroxide (H(2)O(2))-activated PLD in BPAECs. Differences in the loss of cholesterol and the resulting effects on the cell membrane, cell viability, morphology, and the extent of oxidant-induced PLD activation were determined. The results revealed that both MbetaCD and HPCD caused loss of cholesterol, loss of cell viability, and altered cell morphology in the chosen EC system. It was also determined that the HPCD compound caused far less extensive damage to the cells than the MbetaCD, therefore making the HPCD compound a safer tool for EC cholesterol removal.
Collapse
Affiliation(s)
- Michelle A Kline
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bridge DR, Novotny MJ, Moore ER, Olson JC. Role of host cell polarity and leading edge properties in Pseudomonas type III secretion. MICROBIOLOGY-SGM 2009; 156:356-373. [PMID: 19910414 DOI: 10.1099/mic.0.033241-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type III secretion (T3S) functions in establishing infections in a large number of Gram-negative bacteria, yet little is known about how host cell properties might function in this process. We used the opportunistic pathogen Pseudomonas aeruginosa and the ability to alter host cell sensitivity to Pseudomonas T3S to explore this problem. HT-29 epithelial cells were used to study cellular changes associated with loss of T3S sensitivity, which could be induced by treatment with methyl-beta-cyclodextrin or perfringolysin O. HL-60 promyelocytic cells are innately resistant to Pseudomonas T3S and were used to study cellular changes occurring in response to induction of T3S sensitivity, which occurred following treatment with phorbol esters. Using both cell models, a positive correlation was observed between eukaryotic cell adherence to tissue culture wells and T3S sensitivity. In examining the type of adhesion process linked to T3S sensitivity in HT-29 cells, a hierarchical order of protein involvement was identified that paralleled the architecture of leading edge (LE) focal complexes. Conversely, in HL-60 cells, induction of T3S sensitivity coincided with the onset of LE properties and the development of actin-rich projections associated with polarized cell migration. When LE architecture was examined by immunofluorescent staining for actin, Rac1, IQ-motif-containing GTPase-activating protein 1 (IQGAP1) and phosphatidylinositol 3 kinase (PI3 kinase), intact LE structure was found to closely correlate with host cell sensitivity to P. aeruginosa T3S. Our model for host cell involvement in Pseudomonas T3S proposes that cortical actin polymerization at the LE alters membrane properties to favour T3S translocon function and the establishment of infections, which is consistent with Pseudomonas infections targeting wounded epithelial barriers undergoing cell migration.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| | - Matthew J Novotny
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| | - Elizabeth R Moore
- Laboratory of Intracellular Parasites, NIAID, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Joan C Olson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506-9177, USA
| |
Collapse
|
26
|
Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Exp Gerontol 2009; 44:760-5. [PMID: 19735715 DOI: 10.1016/j.exger.2009.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 08/21/2009] [Accepted: 08/31/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bifidobacteria are a natural part of the bacterial flora in the human body and have a symbiotic bacteria-host relationship with human beings. Aging is associated with reduced number of beneficial colonic bifidobacteria and impaired immunity. Lipoteichoic acid is a major constituent of the cell wall of bifidobacteria which is important for bacterial survival, growth, and function. The possible anti-aging effects of lipoteichoic acid isolated from bifidobacteria is presently unknown. OBJECTIVE The aim of the present study was to investigate possible anti-aging effects of lipoteichoic acid isolated from bifidobacteria on senescent mice artificially induced by chronic injection of d-galactose and explore potential anti-aging's mechanisms. METHODS Mice were artificially induced senescence by consecutive injection of d-galactose (100mg/kg) once daily for 7weeks and lipoteichoic acid from bifidobacterium bifidum, was simultaneously administered to them once a week by intraperitoneal infusion. Mice were sacrificed, blood and other samples were collected at the indicated time. Anti-oxidation activity in brain, histology of tissue, gene expression, lymphocyte's DNA damage and cytokine production of lymphocytes in vitro and in vivo were measured. RESULTS Lipoteichoic acid could significantly improve general appearance of the aging model mice, improve anti-oxidation activity in brain, increase IL-2 level and decrease TNF-alpha level in vitro and in vivo, respectively. Besides, LTA remarkably inhibited DNA damage in the both splenic lymphocytes and circulating lymphocytes. Moreover, LTA could decrease p16 expression while increase c-fos expression in the d-galactose treated mice. CONCLUSION Taken together, the results indicated, for the first time, that LTA could suppress the aging process via the following several mechanisms, including enhancement of anti-oxidation activity in brain, improvement of immune function and alteration of gene expression.
Collapse
|
27
|
Garcia GG, Miller RA. Age-related changes in lck-Vav signaling pathways in mouse CD4 T cells. Cell Immunol 2009; 259:100-4. [PMID: 19577230 PMCID: PMC2728147 DOI: 10.1016/j.cellimm.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/24/2022]
Abstract
Activation of lck-fyn kinases during T cell receptor signaling leads to Vav phosphorylation, activation of downstream targets including Rac1, and a transient decline in ezrin and moesin phosphorylation. We have shown that age increases Rac1 activity and lowers ezrin and moesin phosphorylation in resting mouse CD4 cells, changes that could be the results of alterations in lck-Vav signaling. Analysis of Vav in CD4 cells from old mice shows increases in the phosphorylation of two key regulatory residues, Tyr160 and Tyr174, suggesting enhancement of Vav GTPase activity. In addition, analysis of lck status also shows age-related increases in phosphorylation of two key residues, Tyr394 and Tyr505, which have opposite effects on lck function. These changes in lck-Vav signals in resting CD4 cells may contribute in turn to age-related increases in Rac1 activity and declines in phosphorylation of cytoskeletal proteins including Ezrin and Moesin.
Collapse
Affiliation(s)
- Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
28
|
Immune receptor signaling, aging and autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:312-24. [PMID: 19065799 DOI: 10.1007/978-0-387-09789-3_21] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aging is associated with a myriad of changes including alterations in glucose metabolism, brain function, hormonal regulation, muscle homeostasis and the immune system. Aged dividuals, generally still defined as over 65 years old, differ from middle-aged or young donors in many features of the immune system. The major observation is that the elderly population is not able to cope with infections as well as younger adults and recovery generally takes longer. Moreover, some diseases first appear with advancing age and are likely associated with dysfunction of the immune system. Thus, Alzheimer's disease, atherosclerosis, type II diabetes and some autoimmune disorders are linked to changes in immune function. One major immune cell population implicated as being responsible for the initiation and chronicity of immune dysfunction leading to diseases or immunosuppression is the T-cell. Although many changes in B-cell and innate immune function in aging are associated with the appearance of disease, they are not as well studied and clearly demarcated as changes in the T-cell compartment. The adaptive immune system is coordinated by T-cells, the activation of which is required for the initiation, maintenance and termination of responses against pathogens. Changes in the expression and functions of the T-cell receptor (TCR) for antigen and its co-receptors are closely associated with immunosenescence. Certain similar changes have also been found in some other disease states, e.g., rheumatoid arthritis, systemic lupus erythematosus and cancer. In this chapter, we will summarize our knowledge about multichain immune recognition receptor signaling, mainly the TCR, in aging and autoimmune diseases.
Collapse
|
29
|
Wilson S, Mazzatti DJ. Current status and future prospects in the search for protein biomarkers of immunosenescence. Expert Rev Proteomics 2008; 5:561-9. [PMID: 18761467 DOI: 10.1586/14789450.5.4.561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Complex adaptations including changes in cellular redox status, the production of high levels of pro-inflammatory cytokines and alterations in immunity occur as the result of aging of the immune system (immunosenescence). These events are thought to underlie the progression of chronic degenerative diseases of aging, such as atherosclerosis, Type 2 diabetes and Alzheimer's disease. It is envisaged that identifying early biomarkers of immune aging would aid in identifying individuals at risk of age-related disease and would allow the discovery of novel intervention strategies. Proteomics has emerged as a rapidly expanding and innovative field, investigating protein expression, interaction and function at a global level. Several proteomic strategies, including use of mass spectrometry and non-mass spectrometry-based detection systems (including secondary antibody labeling with fluorescent tags) may be particularly advantageous in identifying biomarkers of immune health. Application of these approaches may identify factors that both contribute to (and define) age-dependent deregulation of the immune system.
Collapse
Affiliation(s)
- Steve Wilson
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | | |
Collapse
|
30
|
Collison LW, Murphy EJ, Jolly CA. Glycerol-3-phosphate acyltransferase-1 regulates murine T-lymphocyte proliferation and cytokine production. Am J Physiol Cell Physiol 2008; 295:C1543-9. [PMID: 18971390 DOI: 10.1152/ajpcell.00371.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously established a correlation between reduced mitochondrial glycerol-3-phosphate acyltransferase-1 (GPAT-1) activity and decreased proliferation in splenic T-lymphocytes from aged rats. To better understand the immunoregulatory role of GPAT-1, we examined T-lymphocyte function in young GPAT-1 knockout (KO) mice. We show that without GPAT-1, T-lymphocyte proliferation is inhibited and activation induced apoptosis is increased. Th-1 (IL-2 and IFN-gamma) cytokine secretion is reduced, and Th-2 (IL-4 and IL-10) cytokine secretion is increased. These changes may be due to alterations in membrane lipid composition since we found changes in the relative content of individual phospholipid species. Furthermore, we show increased arachidonate content and subsequent increased prostaglandin E(2) secretion, which may inhibit T-lymphocyte proliferation. Taken together, we show a novel link between GPAT-1 and changes in T-lymphocyte function. These data have broad health implications because GPAT-1 suppression has recently been implicated as a new target for preventing insulin sensitivity and hepatic steatosis and we show that immune function may also be affected. Interestingly, the changes in young GPAT-1 KO splenic T-lymphocytes are similar to defects commonly seen in T-lymphocytes from aged rodents, which further underscores the significance of GPAT-1 in T-lymphocyte function.
Collapse
Affiliation(s)
- Lauren W Collison
- Department of Human Ecology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
31
|
Erridge C, Kennedy S, Spickett CM, Webb DJ. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem 2008; 283:24748-59. [PMID: 18559343 DOI: 10.1074/jbc.m800352200] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Univesity of Strathclyde, 204 George St., Glasgow G1 1XW, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Groysman N, Orynbayeva Z, Katz M, Kolusheva S, Khanin M, Danilenko M, Jelinek R. Membrane processes and biophysical characterization of living cells decorated with chromatic polydiacetylene vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1335-43. [PMID: 18331821 DOI: 10.1016/j.bbamem.2008.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/13/2008] [Accepted: 01/30/2008] [Indexed: 11/19/2022]
Abstract
The structural complexity of the cell membrane makes analysis of membrane processes in living cells, as compared to model membrane systems, highly challenging. Living cells decorated with surface-attached colorimetric/fluorescent polydiacetylene patches might constitute an effective platform for analysis and visualization of membrane processes in situ. This work examines the biological and chemical consequences of plasma membrane labeling of promyelocytic leukemia cells with polydiacetylene. We show that the extent of fusion between incubated lipid/diacetylene vesicles and the plasma membrane is closely dependent upon the lipid composition of both vesicles and cell membrane. In particular, we find that cholesterol presence increased bilayer fusion between the chromatic vesicles and the plasma membrane, suggesting that membrane organization plays a significant role in the fusion process. Spectroscopic data and physiological assays show that decorating the cell membrane with the lipid/diacetylene patches reduces the overall lateral diffusion within the membrane bilayer, however polydiacetylene labeling does not adversely affect important cellular metabolic pathways. Overall, the experimental data indicate that the viability and physiological integrity of the surface-engineered cells are retained, making possible utilization of the platform for studying membrane processes in living cells. We demonstrate the use of the polydiacetylene-labeled cells for visualizing and discriminating among different membrane interaction mechanisms of pharmaceutical compounds.
Collapse
Affiliation(s)
- Natalie Groysman
- The Ilse Katz Institute of Nanotechnology and Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
33
|
Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol 2007; 18:608-15. [PMID: 17890113 PMCID: PMC2596300 DOI: 10.1016/j.semcdb.2007.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/24/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Elizabeth C. Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
| | - Fabian Flores-Borja
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, United Kingdom
| | - Panagiotis S. Kabouridis
- Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
34
|
Levitan I, Gooch KJ. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid Redox Signal 2007; 9:1519-34. [PMID: 17576163 DOI: 10.1089/ars.2007.1686] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane-cytoskeleton coupling is known to play major roles in a plethora of cellular responses, such as cell growth, differentiation, polarization, motility, and others. In this review, the authors discuss the growing amount of evidence indicating that membrane-cytoskeleton interactions are regulated by the lipid composition of the plasma membrane, suggesting that cholesterol-rich membrane domains (lipid rafts), including caveolae, are essential for membrane-cytoskeleton coupling. Several models for raft-cytoskeleton interactions are discussed. Also described is the evidence suggesting that raft-cytoskeleton interactions play key roles in several cytoskeleton-dependent processes, particularly in the regulation of cellular biomechanical properties. To address further the physiological significance of raft-cytoskeleton coupling, the authors focus on the impact of oxidized low density lipoproteins, one of the major cholesterol carriers and proatherogenic factors, on the integrity of lipid rafts/caveolae, and on the organization of the cytoskeleton. Finally, the authors review the recent studies showing that oxLDL and cholesterol depletion have similar impacts on the biomechanical properties of vascular endothelial cells, which in turn affect endothelial angiogenic potential.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
35
|
Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1311-24. [PMID: 17493580 PMCID: PMC1948080 DOI: 10.1016/j.bbamem.2007.03.026] [Citation(s) in RCA: 856] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 12/14/2022]
Abstract
The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol.
Collapse
Affiliation(s)
- Raphael Zidovetzki
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 90291, USA
| | | |
Collapse
|
36
|
Tomoiu A, Larbi A, Fortin C, Dupuis G, Fulop T. Do membrane rafts contribute to human immunosenescence? Ann N Y Acad Sci 2007; 1100:98-110. [PMID: 17460168 DOI: 10.1196/annals.1395.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging is associated with an alteration of the immune response called immunosenescence. It is now well accepted that all parts of the immune system, the adaptive as well as the innate, undergo immunosenescence. However, the adaptive immune response and especially T cell functions are the most affected by aging. Aging is associated with profound changes in lymphocytes subpopulations, however, the functional changes within these subsets are more important to elucidate. Indeed, T cells present functional modifications resulting in a decreased clonal expansion and interleukin-2 (IL-2) production. So there should be an alteration in the activation process of T cells with aging involving the T cell receptor (TCR) and CD28 receptor signaling cascades. The alterations in membrane rafts composition and function can underline this altered activation of T cells with aging and then contribute to human immunosenescence. The experimental data in favor of this hypothesis will be reviewed.
Collapse
Affiliation(s)
- Andru Tomoiu
- Research Center on Aging, Immunology Program, Geriatric Division, Faculty of Medicine, University of Sherbrooke, 1036 rue Belvedere sud, Sherbrooke J1H 4C4, Quebec, Canada
| | | | | | | | | |
Collapse
|
37
|
Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. Am J Physiol Cell Physiol 2007; 293:C440-50. [PMID: 17459945 DOI: 10.1152/ajpcell.00492.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our earlier studies have shown that Kir2.x channels are suppressed by an increase in the level of cellular cholesterol, whereas cholesterol depletion enhances the activity of the channels. In this study, we show that Kir2.1 and Kir2.3 channels have double-peak distributions between cholesterol-rich (raft) and cholesterol-poor (non-raft) membrane fractions, indicating that the channels exist in two different types of lipid environment. We also show that whereas methyl-beta-cyclodextrin-induced cholesterol depletion removes cholesterol from both raft and non-raft membrane fractions, cholesterol enrichment results in cholesterol increase exclusively in the raft fractions. Kinetics of both depletion-induced Kir2.1 enhancement and enrichment-induced Kir2.1 suppression correlate with the changes in the level of raft cholesterol. Furthermore, we show not only that cholesterol depletion shifts the distribution of the channels from cholesterol-rich to cholesterol-poor membrane fractions but also that cholesterol enrichment has the opposite effect. These observations suggest that change in the level of raft cholesterol alone is sufficient to suppress Kir2 activity and to facilitate partitioning of the channels to cholesterol-rich domains. Therefore, we suggest that partitioning to membrane rafts plays an important role in the sensitivity of Kir2 channels to cholesterol.
Collapse
Affiliation(s)
- Saloni Tikku
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
38
|
Fulop T, Dupuis G, Fortin C, Douziech N, Larbi A. T cell response in aging: influence of cellular cholesterol modulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:157-69. [PMID: 16802606 DOI: 10.1007/0-387-34132-3_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, University of Sherbrooke, Sherbrooke, J1H 4C4, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Larbi A, Muti E, Giacconi R, Mocchegiani E, Fülöp T. Role of lipid rafts in activation-induced cell death: the fas pathway in aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 584:137-55. [PMID: 16802605 DOI: 10.1007/0-387-34132-3_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anis Larbi
- Research Center on Aging, Immunological Graduate Programme, Department of Medicine, University of Sherbrooke, Sherbrooke, J1H 4C4, Québec, Canada
| | | | | | | | | |
Collapse
|
40
|
Okonkowski J, Balasubramanian U, Seamans C, Fries S, Zhang J, Salmon P, Robinson D, Chartrain M. Cholesterol delivery to NS0 cells: Challenges and solutions in disposable linear low-density polyethylene-based bioreactors. J Biosci Bioeng 2007; 103:50-9. [PMID: 17298901 DOI: 10.1263/jbb.103.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/13/2006] [Indexed: 01/21/2023]
Abstract
We report the successful cultivation of cholesterol dependent NS0 cells in linear low-density polyethylene (LLDPE) Wave Bioreactors when employing a low ratio of cyclodextrin to cholesterol additive mixture. While cultivation of NS0 cells in Wave Bioreactors was successful when using a culture medium supplemented with fetal bovine serum (FBS), cultivation with the same culture medium supplemented with cholesterol-lipid concentrate (CLC), which contains lipids and synthetic cholesterol coupled with the carrier methyl-beta-cyclodextrin (mbetaCD), proved to be problematic. However, it was possible to cultivate NS0 cells in the medium supplemented with CLC when using conventional cultivation vessels such as disposable polycarbonate shake-flasks and glass bioreactors. A series of experiments investigating the effect of the physical conditions in Wave Bioreactors (e.g., rocking rate/angle, gas delivery mode) ruled out their likely influence, while the exposure of the cells to small squares of Wave Bioreactor film resulted in a lack of growth as in the Wave Bioreactor, suggesting an interaction between the cells, the CLC, and the LLDPE contact surface. Further experiments with both cholesterol-independent and cholesterol-dependent NS0 cells established that the concurrent presence of mbetaCD in the culture medium and the LLDPE film was sufficient to inhibit growth for both cell types. By reducing the excess mbetaCD added to the culture medium, it was possible to successfully cultivate cholesterol-dependent NS0 cells in Wave Bioreactors using a cholesterol-mbetaCD complex as the sole source of exogenous cholesterol. We propose that the mechanism of growth inhibition involves the extraction of cholesterol from cell membranes by the excess mbetaCD in the medium, followed with the irreversible adsorption or entrapment of the cholesterol-mbetaCD complexes to the LLDPE surface of the Wave Bioreactor. Controlling and mitigating these negative interactions enabled the routine utilization of disposable bioreactors for the cultivation of cholesterol-dependent NS0 cell lines in conjunction with an animal component-free cultivation medium.
Collapse
Affiliation(s)
- Jessica Okonkowski
- Merck Research Laboratories, Bioprocess R&D, PO Box 2000, RY80Y-105, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bullock TE, Wen B, Marley SB, Gordon MY. Potential of CD34 in the regulation of symmetrical and asymmetrical divisions by hematopoietic progenitor cells. Stem Cells 2006; 25:844-51. [PMID: 17185613 DOI: 10.1634/stemcells.2006-0346] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The control of symmetric and asymmetric division in the hematopoietic stem/progenitor cell population is critically important for the regulation of blood cell production. Asymmetric divisions depend on cell polarization, which may be conferred by location and/or interaction with neighboring cells. In this study, we sought evidence for polarization in CD34+ cells, which interact by binding to one another. In these cells, surface molecules became redistributed by mechanisms that included transport by lipid rafts, and the interacting cells were able to communicate via gap junctions. These changes were accompanied by modulation of cell cycle regulating proteins (p16(Ink4a), p27(kip1), cyclins D, and the retinoblastoma pathway proteins) and a reduction in progenitor cell proliferation in vitro. These results are consistent with an increase in asymmetric cell division kinetics. Accordingly, we found that interaction between CD34+ cells influenced the plane of cell division in a way that suggests unequal sharing of Notch-1 between daughter cell progeny. We conclude that interaction between CD34+ cells may coordinate cell function and participate in the control of hematopoietic stem/progenitor cell division kinetics.
Collapse
Affiliation(s)
- Tabitha E Bullock
- Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Campus, London, United Kingdom
| | | | | | | |
Collapse
|
42
|
Bar-On P, Rockenstein E, Adame A, Ho G, Hashimoto M, Masliah E. Effects of the cholesterol-lowering compound methyl-beta-cyclodextrin in models of alpha-synucleinopathy. J Neurochem 2006; 98:1032-45. [PMID: 16895578 DOI: 10.1111/j.1471-4159.2006.04017.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aggregation of alpha-synuclein (alpha-syn) is believed to play a critical role in the pathogenesis of disorders such as dementia with Lewy bodies and Parkinson's disease. The function of alpha-syn remains unclear, although several lines of evidence suggest that alpha-syn is involved in synaptic vesicle trafficking, probably via lipid binding, and interactions with lipids have been shown to regulate alpha-syn aggregation. In this context, the main objective of this study was to determine whether methyl-beta-cyclodextrin (MbetaCD), a cholesterol-extracting agent, interfered with alpha-syn accumulation in models of synucleinopathy. For this purpose, we studied the effects of MbetaCD on the accumulation of alpha-syn in a transfected neuronal cell line and in transgenic mice. Immunoblot analysis showed that MbetaCD reduced the level of alpha-syn in the membrane fraction and detergent-insoluble fraction of transfected cells. In agreement with the in vitro studies, treatment of mice with MbetaCD resulted in decreased levels of alpha-syn in membrane fractions and reduced accumulation of alpha-syn in the neuronal cell body and synapses. Taken together, these results suggest that changes in cholesterol and lipid composition using cholesterol-lowering agents may be used as a tool for the treatment of synucleinopathies.
Collapse
Affiliation(s)
- Pazit Bar-On
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093-0624, USA
| | | | | | | | | | | |
Collapse
|
43
|
Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T. Differential role of lipid rafts in the functions of CD4+ and CD8+ human T lymphocytes with aging. Cell Signal 2006; 18:1017-30. [PMID: 16236485 DOI: 10.1016/j.cellsig.2005.08.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 08/22/2005] [Accepted: 08/22/2005] [Indexed: 02/04/2023]
Abstract
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.
Collapse
Affiliation(s)
- Anis Larbi
- Research Center on Aging, 1036 Belvedere Street South, Sherbrooke, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Jang IS, Rhim JH, Kim KT, Cho KA, Yeo EJ, Park SC. Lysophosphatidic acid-induced changes in cAMP profiles in young and senescent human fibroblasts as a clue to the ageing process. Mech Ageing Dev 2006; 127:481-9. [PMID: 16516270 DOI: 10.1016/j.mad.2006.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
This study attempts to elucidate the molecular mechanisms underlying the ageing-dependent cAMP profiles in human diploid fibroblasts stimulated by lysophosphatidic acid (LPA). In senescent cells, LPA-dependent Gialpha activation was reduced, with a consequent reduction in Gi-suppressed cAMP levels, without alterations in the levels of Gialpha proteins. In young cells, when Gialpha activity was inhibited by pertussis toxin pretreatment, or when its expression was blocked by siRNA, the pattern of changes in cAMP levels in response to LPA was similar to that seen in senescent cells. An increase in protein kinase C (PKC)-dependent isoforms of adenylyl cyclase (AC) types II, IV, and VI was also observed in these senescent fibroblasts. In senescent cells treated with PKC-specific inhibitors, bis-indolylmaleimide, Gö6976, rottlerin, and PKCvarepsilonV1, LPA-induced cAMP accumulation was inhibited, indicating that increased ACs in response to LPA occur via the activation of protein kinase Cs. When the expression of AC II, IV, and VI was blocked by siRNA in senescent fibroblasts, LPA-induced cAMP accumulation was also blocked. These results suggest that the senescence-associated increase of cAMP levels after LPA treatment is associated with reduced Gialpha, increased AC II, IV, and VI proteins, and PKC-dependent stimulation of their activities and provide an explanation for the age-dependent differences in cAMP-related physiological responses.
Collapse
Affiliation(s)
- Ik-Soon Jang
- Department of Biochemistry and Molecular Biology, Ageing and Apoptosis Research Center, Seoul National University College of Medicine, Chongno-gu, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 2006; 79:1061-72. [PMID: 16501054 DOI: 10.1189/jlb.0805481] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It has been shown that the functions and the rescue from apoptosis by proinflammatory mediators of polymorphonuclear leukocytes (PMN) tend to diminish with aging. Here, we investigated the role of protein tyrosine phosphatases (PTP), especially Src homology domain-containing protein tyrosine phosphatase-1 (SHP-1), in the age-related, altered PMN functions under granulocyte macrophage-colony stimulating factor (GM-CSF) stimulation. The inhibition of PTP suggested a differential effect of GM-CSF on phosphatase activity in modulating PMN functions with aging. The down-regulation of phosphatase activity of immunopurified SHP-1 from lipid rafts of PMN of young donors was found significantly altered at 1 min of stimulation with aging. In young donors, SHP-1 is displaced from lipid rafts at 1 min of stimulation, whereas in the elderly, SHP-1 is constantly present. We assessed in PMN lipid rafts the phosphorylation of tyrosine and serine residues of SHP-1, which regulates its activity. We observed an alteration in the phosphorylation of tyrosine and serine residues of SHP-1 in PMN of elderly subjects, suggesting that GM-CSF was unable to inhibit SHP-1 activity by serine phosphorylation. GM-CSF activates Lyn rapidly, and we found alterations in its activation and translocation to the lipid rafts with aging. We also demonstrate that SHP-1 in the PMN of elderly is constantly recruited to Lyn, which cannot be relieved by GM-CSF. In contrast, in the young, the resting recruitment could be relieved by GM-CSF. Our results suggest an alteration of the SHP-1 modulation by GM-CSF in lipid rafts of PMN with aging. These alterations could contribute to the decreased GM-CSF effects on PMN.
Collapse
Affiliation(s)
- Carl F Fortin
- Laboratory for Immunology, Research Center on Aging, Clinical Research Center, and Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
46
|
Sadighi Akha AA, Miller RA. Signal transduction in the aging immune system. Curr Opin Immunol 2005; 17:486-91. [PMID: 16061371 DOI: 10.1016/j.coi.2005.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/19/2005] [Indexed: 01/08/2023]
Abstract
T cells from aged mice show defects in the early stages of the activation process, including alterations in cytoskeletal reorganization that precede discrimination, by the T cell receptor, of agonist from antagonist peptides. Aging also modifies the pattern of glycosylation of T cell surface macromolecules, and enzymatic cleavage of these modified glycoproteins can restore high level responses to T cells from aged mice. Alterations in plasma membrane lipids and cholesterol-rich microdomains might also contribute to age-related deficits in T cell signaling. Evidence for intrinsic signal defects in aged B cells is more limited, but might involve pathways that activate the transcription factor E47, which has been implicated in somatic hypermutation and class-switch recombination.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48109-0940, USA
| | | |
Collapse
|
47
|
Chakraborty D, Banerjee S, Sen A, Banerjee KK, Das P, Roy S. Leishmania donovani Affects Antigen Presentation of Macrophage by Disrupting Lipid Rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:3214-24. [PMID: 16116212 DOI: 10.4049/jimmunol.175.5.3214] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leishmania donovani-infected splenic macrophages and P388D1 (P388D1(I)) failed to activate T cells in response to low dose of exogenous peptide. The membrane fluidity of P388D1(I) was greater than that of the normal counterpart P388D1(N), but could be reduced either by exposing the cell below phase transition point or by loading cholesterol into membrane (L-P388D1(I)), and this was associated with enhanced Ag-presenting ability of P388D1(I). Presentation of endogenous leishmanial Ag, kinetoplastid membrane protein-11, was also defective, but could be corrected by loading cholesterol into membrane. Because membrane rafts are important for Ag presentation at a low peptide dose, raft architecture of P388D1(I) was studied using raft (CD48 and cholera toxin-B) and non-raft (CD71) markers in terms of their colocalization with I-A(d). Binding of anti-CD48 mAb and cholera toxin B subunit decreased significantly in P388D1(I), and consequently, colocalization with I-A(d) was not seen, but this could be restored in L-P388D1(I). Conversely, colocalization between I-A(d) and CD71 remained unaffected regardless of the presence or the absence of intracellular parasites. P388D1(N) and L-P388D1(I), but not P388D1(I), formed peptide-dependent synapse with T cells quite efficiently and this was found to be corroborated with both intracellular Ca2+ mobilization in T cells and IL-2 production. This indicated that intracellular parasites disrupt the membrane rafts, possibly by increasing the membrane fluidity, which could be corrected by making the membrane rigid. This may be a strategy that intracellular L. donovani adopts to evade host immune system.
Collapse
|
48
|
Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G. Signal transduction and functional changes in neutrophils with aging. Aging Cell 2004; 3:217-26. [PMID: 15268755 DOI: 10.1111/j.1474-9728.2004.00110.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well known that the immune response decreases during aging, leading to a higher susceptibility to infections, cancers and autoimmune disorders. Most widely studied have been alterations in the adaptive immune response. Recently, the role of the innate immune response as a first-line defence against bacterial invasion and as a modulator of the adaptive immune response has become more widely recognized. One of the most important cell components of the innate response is neutrophils and it is therefore important to elucidate their function during aging. With aging there is an alteration of the receptor-driven functions of human neutrophils, such as superoxide anion production, chemotaxis and apoptosis. One of the alterations underlying these functional changes is a decrease in signalling elicited by specific receptors. Alterations were also found in the neutrophil membrane lipid rafts. These alterations in neutrophil functions and signal transduction that occur during aging might contribute to the significant increase in infections in old age.
Collapse
Affiliation(s)
- Tamas Fulop
- Centre de Recherche sur le Vieillissement, Institut Universitaire de Gériatrie, Programme d'Immunologie, Université de Sherbrooke, Sherbrooke, Quebec J1H 4C4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|